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Low-quality Fingerprint Classification

Abstract:

Fingerprint recognition systems mainly use minutiae points information. As shown
in many previous research works, fingerprint images do not always have good qual-
ity to be used by automatic fingerprint recognition systems. To tackle this chal-
lenge, in this thesis, we are focusing on very low-quality fingerprint images, which
contain several well-known distortions such as dryness, wetness, physical damage,
presence of dots, and blurriness. We develop an efficient, with high accuracy, deep
neural network algorithm, which recognizes such low-quality fingerprints. The ex-
perimental results have been conducted on real low-quality fingerprint database,
and the achieved results show the high performance and robustness of the in-
troduced deep network technique. The VGG16 based deep network achieves the
highest performance of 93% for dry and the lowest of 84% for blurred fingerprint
classes.
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Madala Kvaliteediga Sormejaljepiltide Klassifitseerimine

Luhikokkuvote:

Traditsioonilised sormejalgede tuvastamise siisteemid kasutavad otsuste tegemisel
minutiae punktide informatsiooni. Nagu selgub paljude varasemate t60de pohjal,
ei ole sormejilgede pildid mitte alati piisava kvaliteediga, et neid saaks kasutada
automaatsetes sormejaljetuvastuse siisteemides. Selle takistuse iiletamiseks kesk-
endub magistrito6 vaga madala kvaliteediga sormejalgede piltide tuvastusele —
sellistel piltidel on mitmed iildteada moonutused, nagu kuivus, margus, fiiiisiline
vigastatus, punktide olemasolu ja hagusus. T06 eesmérk on valja tootada efek-
tiivne ja korge tapsusega siigaval narvivorgul pohinev algoritm, mis tunneb
sormejalje ara selliselt madala kvaliteediga pildilt. FEksperimentaalsed katsed
stigavoppepohise meetodiga naitavad korget tulemuslikkust ja robustsust, olles
rakendatud praktikast kogutud madala kvaliteediga sormejalgede andmebaasil.
VGG16 baseeruv siigavoppe narvivork saavutas korgeima tulemuslikkuse kuivade
(93%) ja madalaima tulemuslikkuse héguste (84%) piltide klassifitseerimisel.

Votmesonad:
Sormejaljked, biomeetrika, CNN

CERCS:P170, Arvutiteadus, arvutusmeetodid, siisteemid, juhtimine (au-
tomaatjuhtimisteooria)
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Chapter 1

Introduction

Due to its non-invasiveness, high recognition accuracy, and the use of low-cost de-
vices, fingerprints are one of the most reliable biometric characteristics in the con-
text of human recognition and identification. Fingerprint authentication systems
deeply settled in government, business and infrastructure institutions. However,
most of the capturing systems depend on the condition of the finger’s surface (i.e
humidity, dust, temperature, etc.), which can affect the identification accuracy.

The fingerprint identification is a widely studied problem. Nevertheless, there is
a huge problem, from which all of them are suffering - low quality of fingerprints,
which makes the identification process harder, less reliable and sometimes even
impossible. That is why present article proposes a way to identify the problem
which causes the low quality of images and potentially can help in the elimination
of it. Due to the wide commercialization of fingerprint identification systems,
many of the best results in the state-of-the-art are provided by private companies.



Chapter 2

Related work

2.1 Fingerprints as biometrics

Fingerprints are one of the physiological characteristics of a human for verifying
and identifying. Along with them, a human has other distinctive features: face, ear
print, iris and retina, palm print, vein map, voice, signature. But the fingerprints
have become the most popular and widely used because of their uniqueness, good
results in recognition tasks, huge databases and they don’t require cumbersome
equipment. People use fingerprints as a way of identification in a business sector,
medical field, education, protection of information, health and life and a lot of
other.

The history of fingerprint usage started at the end of 19th century with the devel-
opment of bureaus for storage, verification and identification of criminal records.
And nowadays boarding control police departments and private companies have
databases which contain millions samples of imprints.

2.1.1 Fingerprint recognition system

Human fingerprint is a black-white image where black lines called ridges and white
called valleys. Union, intersection and other combinations of ridges create charac-
terized features of fingerprints - minutiaes. Scientists identify following minutiaes
(see Fig. 2.1):

e Ridge ending - a place where the ridge line finishes.

e Ridge bifurcation - a place where the ridge divides into two new ridges.

e Lake - a valley inside a small closed boundary of ridges.

e Independent ridge - a small ridge line (bigger than an island).

7



e [sland - a small ridge isolated by valleys.
e Spur - a small branch from the ridge.

e (Crossover - an intersection of two ridges.

Ridge Bifurcation Lake Independent Point or Spur Crossover
ending ridge Island

Iz

ol

%

Figure 2.1: The most common minutiae types. Image is taken from [5].

All distinctive features of a fingerprint can be divided into 3 main category ac-
cording to a level of detalization. See Fig. 2.2.

e Level 1 (Global features). Defines singular points and the main orientation
of ridges: arch, tented arch, left loop, right loop, whorl.

e Level 2 (Local features). Defines minutiaes described above.

e Level 3 (Fine details). Defines concrete details of ridges: width, shape,
contours and sweat pores.

Level 2 and level 3 are used for fingerprint matching since they represent individ-
ual unique fingerprints features. It should be clearly understandable that level 3
features can be used only with very high-resolution images because of their size.

The general schema for fingerprint recognition is as follows: fingerprint image
capturing, pre-processing, feature extraction, matching. Detailed information on
these stages will be present in the next sections.

2.1.2 Fingerprint image pre-processing and enhancement

Fingerprint matching can be a challenging task because of several factors: noise in
the image, low scanners capacity, finger skin deformations and distortions, finger
positioning on a scanner, etc. That is why the images require a lot of pre-processing
to improve their quality. Usually pre-processing contains noise removing, contrast
enhancement and morphological operations [75, 69]. Contrast enhancement’s idea
is to increase discernibility between ridges and valleys and by this improve image
quality. It can be applied on the input image directly or on binary ridge image.
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Figure 2.2: Hierarchy of feature levels. Image is taken from [22].

Histogram Equalization (HE) [89] is a global contrast enhancement method which
is considered as the most commonly used because of its simplicity and effective-
ness. In HE pixels values of an image are distributed uniformly which spreads the
most intensities of pixels throughout all variety range. It makes the local contrast
of ridges to become higher. As a part of noise influence reduction, Directional Me-
dian Filter (DMF) [80] is used to reduce noises along the ridge flow direction. Its
modification called Directional Weighted Median Filter [21] was proposed three
years after DMF. For a long time Gabor [33, 82| filters were used as a way to
remove noise from fingerprint images which keep the structure of ridges and val-
leys preserved. Directional Wavelet Transform [79], which decomposes an image
into blocks by applying Fourier transformation and enhances them separately,
together with Gabor filters are often used as noise removal system. Short Term
Fourier Transform [19] is a method which operates with non-stationary signals and
analyses local ridge orientation and local ridge frequency to improve the quality
of fingerprints.

As a part of image pre-processing scientists use morphological operations and most
common morphological operations are present on Fig. 2.3:

e Binarization. Changing image from gray-scaled to black-and-white image
by choosing a gray threshold. Every pixel which is above this threshold
considered as white and every pixel which is below - as black. In this way
image pixel intensity changes from [0..255] to [0, 1].
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e Filling of holes. Sweat pores and noise can spoil ridges in such a way that
small white dots appear inside ridges. It causes a problem in a stage of
minutiae search. Each of these white dots will be counted as two bifurcations.
It is important to remember that filling of holes is not used in case when 3rd
Level features are used to make fingerprint match.

e Thinning. Thinning of an image makes ridges to be only one pixel wide. It
is very useful and eases the process of finding minutiae points.

e Dilation. Sometimes it is useful to dilate ridges to make a fingerprint
smoother.

Figure 2.3: Example of morphological operations. (a) Original grayscaled image.
(b) Binary image. (c) Binary image with filled holes. (d) Thinned image. (e)
Dilated image. Image is taken from [69)].

2.1.3 Fingerprint matching

Simply, a fingerprint matching algorithm returns a degree of similarity between
two fingerprint images which is a number in a given interval (usually from 0 to
1). There are mainly two classes of fingerprint matching algorithms: minutiae
based and non-minutiae based [32]. There are also hybrid methods which are
a combination of them [15, 35, 81] and applied in a case when the quality of
a fingerprint is not enough for matching. In turn, non-minutiae based class of
algorithms can be divided into 4 categories: image based, ridge feature based,
3rd Level features based and feature-point based. But the most widely used are
minutia based algorithms which are logically divided in local minutiae matching
methods and global minutiae matching methods.

Non-minutia based approach

Image-based algorithms compare an input image and an image from a database
to find a similarity between two of them. The weakest side of this way of match-
ing is that it is very sensitive to alignment and non-linear deformations. Local
Binary Patterns [59], Histogram of Oriented Gradient [58] and Gabor response
[35, 4] are used for matching but they are also vulnerable to noise, skin conditions
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and skin deformations. Ridge feature based techniques use ridge orientation and
ridge frequency which describe topological information of ridge patterns to make
fingerprint matching. From one side they solve a non-linear deformation problem
of Image-based techniques but from another side, they have their own weakness -
ridge information alone is not always enough for matching. People often use Level
3 features [32, 17] together with ridge features which add such ridge details as
sweat pores and dots, ridge contours. But as it was mentioned before, to apply
Level 3 features we must have images of very high resolution. Feature-point based
methods usually used for object recognition and image matching but some scien-
tists use this approach for fingerprint matching as well. For this purpose Scale
Invariant Feature Transform [31] and accelerated KAZE [52] features are applied.

Minutiae-based approach

The first stage of each minutiae-based matching algorithm is a minutiae extraction.
Minutiaes are presented by their spatial location coordinates and the angle of
rotation. A minutiae of a given image is considered to be matched with a minutiae
of an image from a database if the first falls within the tolerance box of the last.
By tolerance box, we understand a permissible variation from both coordinates
and direction of certain minutiae to compensate image distortions and limitations
of minutiae extractors.

Since in real-life tasks the correct alignment of two matched fingerprints is left
unknown, it is obvious that they will vary in some way because of pose variations,
scaling and physiological aspects. That is why to reach the highest number of
matched pairs of minutiaes it is crucial to make rotational alignment, scaling and
bias.

As it was explained earlier, the minutia based techniques are classified as Local
Minutiae Matching and Global Minutiae Matching.

e Local Minutiae Matching. These algorithms are taking into account local
structures of minutiae. By local structures, we should understand different
relationships in groups of the closest minutiaes. Such structures are invariant
to global transformations of fingerprints which is undoubtedly the biggest
advantage of using local matching. It also allows us to use only a part of
information of a given fingerprint which is good for low-quality images and
partial images which are usually not fully present in real-world tasks.

e Global Minutiae Matching. In opposite, these algorithms consider the set
of minutiaes under the general scope. This is needed to make a proper
alignment and since there are three parameters by which we should align
(both coordinates and rotation) global matching may be computationally
costly. Sometimes it is useful to apply so-called pre-alignment techniques
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which are based mainly on singular points and orientation maps to reduce
the computing costs.

Recent years minutiae-based matching algorithms tend to local matching tech-
niques because of their invariance to distortion, ease and low computational power
required. Even more, the common practice is to use a consolidation stage right
after the local matching. The aim of the consolidation stage is to be sure that the
local similarity of minutiae structures is supported on a global level.

There were numerous Global Minutiae Matching techniques developed for the last
decades: Hough transform based [62, 18], ridge-based relative pre-alignment [31,
|, global matching of clusters of minutiae [33, 23], global minutiae matching
with image correlation [77], global matching by evolutionary algorithms [73, 6%,
], Weighted global matching with adjustment of scores [37, 43], and a lot of
others.

Mostly Local Minutiae Matching techniques vary in the way of computation of
local similarity and in the way of final consolidation. Among local structures

resemblance Nearest Neighbours [3, 78], Fixed Radius [¢, 14], Texture [53, &7]
and Minutiae Triplets [51, 80] approaches are the most common. And among
consolidation types the most often used are Single [3, 11], Consensus [30, 5],
Multiple [53, 54], Complex [28, 44], Incremental [78, 20].

2.1.4 Quality measurement systems

Fingerprint image quality assessment is one of the crucial aspects of biometric
recognition systems. Quality measurement can play different roles in a scope of
fingerprint recognition [26]: as a monitoring tool [11], as a control of enrolment
templates (repeat the enrolment until the required fingerprint quality will not
be reached), in verification and identification quality assessment, in quality-based
adaptation recognition systems [24, 72] (some steps of recognition can adjust to a
fingerprint quality and can perform differently depending on it). Numerous factors
can affect the quality of fingerprints from global factors, such as temperature and
humidity, to local factors, such as dirt, age of a participant and his/her collabo-
ration. Typically, fingerprint quality is defined as a measurement of fingerprint’s
ability to extract true minutiaes and clarity of shapes of ridges and valleys.

There are three main classes of quality estimation algorithms: local features based,
global features based and classifiers based.

Local features based methods

In local features based approach an input fingerprint image is divided into small
rectangular blocks and each block is then classified as of low or high quality (often

12



it is useful to do not binary classification but multiclass classification, for example:
"high”, "medium”, ”"low”, "undefined”). Finally, the quality map is built to see
the most "weak” regions of the fingerprint. In some approaches, each of these
local blocks has a relative weight depending on how far they are to a fingerprint
center - blocks closer to the center provide more reliable information.

Local Direction methods [10, 17] use local direction information to calculate several
statistics of a given block, such as orientation certainty level, ridge frequency, ridge
thickness, ridge-to-valley thickness ratio. The final decision of the block’s quality
is made upon a voting of these statistics. As a result, the final local quality map
is associated to a fingerprint (see Fig. 2.4). Based on the assumption that ridge
directions are changed smoothly across a fingerprint image, the average absolute
difference of local orientation [13] is used to assess the image quality. To estimate
clarity of local ridge-valley direction local coherence of intensity gradients are used

(a) (b)

Figure 2.4: Example of a local quality map. (a) Original images of different
quality. (b) Local quality maps of the correspondent images. Image is taken
from [2].

Gabor filters are used as a way of detection of strong ridge direction [66]. Typically,
several Gabor filters, each representing different ridge directions, are applied to
local blocks. If there is noise, the response on each of these filters will be similar,
otherwise, response on one filter will be more pronounced.

Pixel intensities based quality estimator [63] calculates histograms of pixels’ in-
tensities differences. If only one histogram has the maximum value exceeding the
predefined threshold then the assessed block is considered to be directional, oth-
erwise not. Pixels’ intensities are also used to estimate the local contrast of ridges
and valleys across the ridge flow direction inside a given local block [35].

Global features based methods

Global features based methods rely on features collected from the whole image,
not as a cumulative decision taken from smaller blocks. The simplest idea is to
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calculate global statistics such as ridge frequency and check its uniformity. The
global structure of a fingerprint can be also estimated using 2D discrete Fourier
transform.

Classifier-based methods

In classifier-based methods minutiae features are extracted from the fingerprint
image and the quality of the overall image is estimated based on the quality of
these features. In other words, quality is calculated as a degree of separation
between two distributions for assessed fingerprint: match and non-match.

2.2 Fingerprints classification

To reduce the computational needs of fingerprint matching task scientists catego-
rize fingerprints in advance. Thus fingerprint identification can be done using not
the whole database of finger images but using a subset of it.

Among all features, only Level 1 features, the ones which describe the global
direction of a ridge flow, are used for fingerprint classification. Features of Level
2 and 3 are too vary and too specific and used for fingerprint matching mostly.
Therefore, fingerprints are classified into five major classes: Arch, Tented Arch,
Left Loop, Right Loop, Whorl. The logical question arises - why do we need to
classify fingerprints on these 5 classes? The answer is pretty simple, these classes
are unevenly distributed. Arch and Tented Arch are the rarest classes and only
3.7% and 2.9% of the population have them. The rest of people have loops and
whorls on their fingers with roughly equal distribution of 31.7%, 33.8% 27.9% for
Right Loop, Left Loop and Whorl respectively. Thereby, in a fingerprint matching
task, if we have an Arch classified fingerprint, for instance, we are no more required
to compare this fingerprint with the whole database, we have to compare it only
with samples of its class, which reduces the amount of work 30 times (from 100%
of a database to 3.7%).

Level 1 features hold the information of the global ridge orientation (represented
in an Orientation Map) and crucial points location - Singular points. By Singular
Points we understand regions of a fingerprint with the highest variance, i.e. a
place where ridges change their direction the most abruptly. Two types of such
Singular Points can be distinguished: Core and Delta. Intuitively, cores are points
where ridge flows flock into and deltas are points where ridge flows are diverging
from. It is clearly seen on orientation map of a fingerprint ridge flow (see Fig. 2.5).
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Figure 2.5: Example of a delta and a core singular points. (a) Original images.
(b) Their representation in orientation map view. Image is taken from [37].

2.2.1 Types of fingerprints

As it was mentioned before, there are 5 major classes presenting Level 1 features
(see Fig. 2.6).

e Arch. The only type of fingerprints which has no singular points. Ridges in
Arch fingerprints flow from one side to another and form a small hump.

e Tented Arch. Has one core and one delta singular points (the delta located
below the core). Ridge flow is similar to arch but more pronounced and
ridges have more strong curvature.

e Right Loop. Has one core and one delta singular points (the delta is below
and to the left of the core). At least one ridge starts on the left side, moves
to a center, turn around and moves back to its start.

15



e Left Loop. Has one core and one delta singular points (the delta is below
and to the right of the core). At least one ridge starts on the right side,
moves to a center, turn around and moves back to its start.

e Whorl. Has two core and two delta singular points. One or more ridges
make the complete turn around the center.

(a) (b) c) (d) (e)

Figure 2.6: Fingerprint classes. (a) Arch. (b) Tented Arch. (c¢) Right Loop. (d)
Left Loop. (e) Whorl. Red circles mark core singular points, green triangles
mark delta singular points. Image is taken from [25].

2.2.2 Classification techniques

The earliest approaches in fingerprint classification techniques consist of finite
automatons and grammars. Context-free grammars, stochastic grammars [57]
and non-deterministic finite automaton [12] were used for classification. A large
number of Neural Network architectures were proposed for this purpose. The very
first ones were using Multilayer Perceptrons [30, 6] and Self Organizing Maps [27].
The more recent Neural Network approaches apply Convolutional Neural Network
[60] which is the state-of-the-art technology in the question of image recognition.
Graph matching approach is also a common way of fingerprint classification. It
is based on a matching of graph-based patterns with a given image. Relational
graph matching [50] and its extension solution [10] were used for the classification.
Among structural techniques for the classification Decision trees [19] and Hidden
Markov Models [64] can be mentioned. Nearest Neighbour algorithm is one of the
most famous algorithms for fingerprint classification [9, 10] even in a scope of the
last years. It is also common to use it in a combination with other techniques:
Neural Networks [51] and SVM [65]. Stand-alone, SVMs are shown pretty good
results [55, 50] in tackling this problem as well.
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Chapter 3

Theoretical background

3.1 Random Forest

Random Forest (RF) is a supervised learning technique which shown a good per-
formance for both classification and regression tasks. It was first proposed by Tin
Kam Ho [29] in 1995, who used Random Subspace Method, and further improved
by Leo Breiman [7], who combined aforementioned Random Forest with Bootstrap
Aggregating approach.

The idea behind RF lies in the ensemble of decision trees which are not correlated
with each other (see Fig. 3.1). As it stated in the name, ”Forest” goes from multiple
decision tree classifiers and "Random” goes from the way of making these trees
different. To understand how the RF algorithm works we have to understand the
three main aspects of it: Bootstrap Aggregating, Random Subspace Method and
Decision Trees.

3.1.1 Bootstrap Aggregating

Bootstrap Aggregating or Bagging is a simple and very powerful ensemble method.
The algorithm is as follows:

e Get a number of subsets of the training data (subsets with replacement).

e Train each of models in the ensemble on a separate subset of the training
data.

e (Calculate the average of predictions for regression task or mode for classifi-
cation task.

Although Bagging is quite simple it has multiple advantages. First of all, it im-
proves the stability and accuracy of prediction, which has to be done since the RF
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Figure 3.1: Schematic representation of Random Forest architecture. Image is
taken from [70].

algorithm is random based. Second, Decision Trees are very sensitive to training
data and therefore they overfit very fast if we don’t do anything to prevent it,
such as pruning, putting limits on the maximum tree depth and so on. Using
Bagging we are less concerned about overfitting of each individual tree and trees
can remain as deep and as wide as we want.

3.1.2 Random Subspace Method

Random Subspace Method, also called Feature Begging, is an ensemble method
whose goal is to prevent correlation of ensemble estimators. Decision Trees decides
on which feature to do a split based on a greedy algorithm which simply minimizes
the error. Thus, if there are very important features, which have high distinctive
abilities, they are for sure will be in the most of trees. It is a problem for ensemble
techniques since estimators, in this case, have a very similar structure, which we
certainly don’t want. Feature Begging instead, forces each estimator to use only
a subset of features to train on. It makes predictions of each tree less correlated
and makes averaging of predictions more meaningful.

3.1.3 Decision Tree

Informally, Decision Tree is a representation of a rule-based classifier in the way
that it is easy to grasp. In this tree, internal node represents feature and edges
to children represent the value of this feature. Finally, leaves (nodes without
children) correspond target classes which we want to classify.
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Decision Trees are built from top to bottom by recursive partitioning of the train-
ing dataset into subsets that contain targets of only one class. Construction of a
tree is about of how to split the data, or how to find a feature, so the branches
are the most homogeneous. The most often ways to choose a feature to split are
Information Gain and Gini Impurity.

N
Ig(p) =1— Z p7 — formula for Gini Impurity
i=1

N
H(T)=—- Z pi - log,, — formula for Entropy
i=1

where p;, i € [1..N] is a percentage of each class present

in the child node that results from a split in the tree

T,
IG(T,A)=H(T)- > IITll
vevalues(A)

H(T,) — formula for Information Gain

They are very similar, as it was studied by Laura Elena Raileanu and Kilian Stoffel
[61]. Summing-up their work, it only matters in 2% of cases whether you use Gini
Impurity or Information Gain but Information Gain is a bit harder to calculate
because of the logarithm, which can slow down the training process.

3.2 Support Vector Machines

Support Vector Machines (SVM) is a supervised method for classification and
regression (mostly for classification). It was proposed by Vladimir N. Vapnik and
Alexey Ya. Chervonenkis in 1963. Then it was further improved by Vapnik in
1992 by adding a kernel trick and in 1995 by proposing of soft margin approach.

Intuitively, for given n-dimensional data points it tries to build an n-1 dimensional
hyperplane which linearly separates the data. Among all (probably infinite num-
ber) hyperplanes we have to chose the best one, the one which maximizes the
distance from closest data points to it. This approach called Hard Margin (see
Fig. 3.2a).

Originally SVM algorthm solves binary classification tasks but it is easy to extend
it to multiclass classification. In binary classification, there is only one separating
hyperplane but in case of multiclass classification, we can set a hyperplane for each
couple of classes. For example, in case of 3 classes, there would be 3 hyperplanes,
in case of 4 classes - 6 hyperplanes and so on.
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If the training data is not linear separably there are two common ways to solve
this issue: Soft Margin and Kernel Trick.
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(a) Hard Margin (b) Soft Margin

Figure 3.2: Schematic idea of SVM work.

3.2.1 Soft Margin

The idea behind the Soft Margin (see Fig. 3.2b) lies in relaxing conditions of the
optimal hyperparameter searching. For now, it will be acceptable to a data point
be in a wrong halfspace but the objective function will be penalized for this. The
penalty is directly proportional to how far the outlier from the margin. In mini-
mization task we add one more term with regularization ability. This parameter
controls the trade-off between minimizing the training error and maximizing the
size of margin between the halfspaces.

The main advantage of the Soft Margin SVM is that for it there is no such strict
requirement for data to be completely separable. Therefore the training data can
have errors as well as outliers and noise, which is more like a real-life problem. In
its turn, Hard Margin will fail if it faces something of the above.

3.2.2 Kernel Trick

When it is impossible to build a hyperplane in that feature space in which the
data is, we can simply change the feature space (often even to more high-dimension
feature space). For example, if we couldn’t build a line which separates two classes
we can increase the space dimensionality and transform the data point into three-
dimensional vectors, so the classes are separable by a plane (see Fig. 3.3).

The most common kernels are:

o K(x,y) = 2Ty + c - Linear kernel
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Input Space Feature Space

Figure 3.3: Applying of a kernel to get higher dimensionality.
e K(z,y) = (ax”y + ¢)* - Polynomial kernel

o K(z,y) = ea:p(—M) - Radial basis functions kernel
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o K(z,y) = tanh(az™y + ¢) - Hyperbolic tangent (Sigmoid) kernel

3.3 Convolutional Neural Networks

Recent years almost all state-of-the-art algorithms in the field of image recognition
are based on the Convolutional Neural Networks (CNN). The idea of CNNs was
presented in the early 80s but there wasn’t enough of computational resources to
train an efficient network for image processing that times. Nowadays with a power
of GPU computing, deeper theoretical investigations and more training data CNNs
have become demanding.

CNN is a Feed-forward Neural Network where each neuron is responsible for a
region, where regions can overlap with each other. A huge advantage of CNN is
that it requires very little image pre-processing and it learns which feature to find
in the image during the process of training while in other algorithms of image
classification features are hand-engineered. CNN consists of the input layer, the
output layer and multiple hidden layers, such as convolutional, pooling, fully-
connected layers and normalization.
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Figure 3.4: Schematic representation of a Convolutional Neural Network.

3.3.1 Architecture
Convolutional layer

Convolutional layer’s parameters consist of a number of filters, simple matrices
with numbers, and weights of these filters change during the process of training.
In a forward pass stage, we convolve each filter through the input volume and
calculate the dot product of filter matrix with the matrix of the input on every
slide of the convolution operation. More detailed it can be seen on a Fig.3.5.
After we’ve done this we receive a two-dimensional activation map which shows
a response of each spatial location on a certain filter. An intuitive explanation of
how convolutional layers work and why do we need them is that during a training
stage filters are trained to activate if they detected some pattern. On the first
layers, the patterns would be primitive, such as lines, color spots, etc. The further
we go on the layers, the more complex patterns become and after simple objects,
filters will learn to detect more complex details like circles, honeycombs, edges
and so on. The last layers should activate when they see an entire object, a class
which we want to recognize, whether it a car or a plane, a dog or a cat. See
Fig.3.6. All activation maps received from each filter are then stacked into one
three-dimensional output volume.

The convolutional layer is a building block of CNN and it does the most massive
computational work. To be named a Convolutional Neural Network, the neural
network must have at least one convolutional layer.

As we can see CNN learns to detect necessary features by itself and doesn’t re-
quire any intervention in feature engineering which is undoubtedly its main advan-
tage. We can draw an analogy between how our brain makes its image processing
and how convolutional layers learn their filters. Each number in output volume
(stacked activation maps of each filter) can be interpreted as activation of a neu-
ron which monitors for some concrete small location in the input. Since regions,
where we apply convolution, are overlapped (it is not necessary but in most cases
yes) these neurons share parameters with their spatial neighbors. Starting from
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Figure 3.5: Example of the convolution operation.
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Figure 3.6: Feature visualization of convolutional net trained on ImageNet.
Image is taken from [93].

here we will describe three main aspects of convolutional layers: local connectivity,
spatial arrangement and parameter sharing.

Local connectivity. It is not logical, from the practical point of view, to connect
a neuron to all neurons of input if we are working with high-dimensional data like
images. What we are doing is connect a neuron to only a small number of neurons
from the previous volume. This small number of neurons called the receptive field
and it is a matrix of a filter size (obviously because during forward pass we have
to make a dot product of these matrices). The connections are local along width
and height but they are full along the depth of the input. This means that filters
may have arbitrary length and width but must have the same depth as the input
volume.

Spatial arrangement. Spatial arrangement is about how we construct an output
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volume after convolution operation, meaning what would be the size of it. As it
is already known, the depth of the output volume always equals to the number of
filters. So neurons along the same depth dimension are monitoring the same spatial
region but they are looking for different features. Width and height of the output
volume are defined by a stride with which we will convolve. If stride equals to 1,
we move filters by one pixel to the right and if there are some inconsistencies on
borders of the input, we can do zero-padding - adding zeros on borders. Obviously,
the bigger stride the smaller output is received (the most common stride is 3).
Zero-padding is needed to control the size of the output volume and to reduce the
number of problems dealing with how many neurons will “fit” into the input with
a certain stride.

Parameter sharing. Parameter sharing trick is made up to decrease the number
of parameters of the network. Parameter sharing principle is based on assumption
that if one feature is learned to be detected in one place it may be useful to try to
detect it in another place. For instance, if we learned to detect a wheel in some
place on an image to recognize a car, it may be helpful to try to find another wheel
on the image. That is why we put a constraint on neurons to use the same weights
along one depth slice of an output volume. Because of it we call the weights a
filter or sometimes a kernel.

This assumption is not always applicable, for example, the input images are images
with faces which are centered. We need filters to learn to recognize eyes and noses
to detect a face. But since each filter has one set of weights for the whole image
we couldn’t learn features which appear only in one location because we expect
that those features may be found in different places.

Pooling layer

Adding pooling layers is one more way to reduce the number of parameters. Its
responsibility is to reduce the size of the input volume. Pooling layers low down
the computational cost of training and control the overfitting problem. Pooling
operation is nothing else than a form of non-linear down-sampling. It applies to
every depth slice separately as to two-dimensional matrix. Each input to a pooling
layer is divided into non-overlapping regions and then one number represent each
of these regions in the next stages. This number can be a maximum, average,
L2-norm, etc. among all numbers in the region. Max-pooling is the most common
because it lefts the strongest representation of an input. Usually, max-pooling
layer divides an input into squares 2x2 thus after pooling the number of parameters
is reduced by 75%. The depth dimension is left to be the same (see Fig. 3.7).

Some scientists are strictly against using of pooling. For instance, [70] suggest to
abandon pooling layers and instead use only repeated convolutional layers with
thelarger stride.
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Figure 3.7: Example of max-pooling operation. Image is taken from [].

Fully-connected layer

Neurons in fully-connected layers have full connections to all neurons from the
previous layer as it in a regular neural network. Convolutional layers provide us
high-level features and we stack a few fully-connected layers at the end of CNN to
train non-linear combinations of these features. Anyway, adding fully-connected
layers on top of convolutional ones is not the only solution. For example, in [74]
SVM classifier was put on top of features gathered from CNN instead of a set of
fully-connected layers.

Normalization layer

For all classification techniques, there is a common curse - overfitting. As it
states from its name, overfitting is a situation when you are fitted to much to a
training data and that is why, on a test set you receive much lower results, than
it is expected. That is why scientists develop normalization techniques to put
constraints on parameters in order to deal with this issue. The most commonly
used nowadays are Dropout and Batch Normalization approaches:

e Dropout. Dropout is a regularization technique proposed by [71]. During
the training, neurons are kept active with some probability p or set to zero
with the probability 1 — p. In AlexNet — the network which won ILSVRC
2012 dropout set to be 0.5 and for GoogleNet it is set to be 0.7. The
neurons which are set to zero are “dropped out”, i.e. they do not contribute
in a forward pass as well as in a backward pass (see Fig. 3.8). At every
training epoch, (forward pass and corresponding backward) architecture of
the network is different. It makes neurons to learn more strong features
because they are not sure whether at the next epoch it can rely on other
neurons or not. It is important to remember that during prediction we do
not drop out neurons.
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e Batch normalization. Batch normalization technique was introduced by [31]
in 2015. Basically, the main idea behind the batch normalization is to nor-
malize activations of hidden neurons by subtracting the batch mean and
dividing by the batch standard deviation. By doing this we reduce internal
covariance shift (the amount by which the hidden units’ values shift around)
and also it allows us to use higher learning rates because batch normalization
takes care of that there is no activation which is very high or very low.
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a) Standard Neural Net (b) After applying dropout.

Figure 3.8: Schematic representation of Dropout application. Image is taken
from [71].

3.3.2 Activation functions

The neuron itself just calculates a weighted sum of other neurons output plus
bias. Thus, output number can be infinitely big. That is why we use activation
functions - to control the output value of a neuron and to control whether it will
“fire” or not. That trick we took from how neurons in our brain work. But
the main contribution of an activation function is that it adds non-linearity in
the network. Without this feature, we could interpolate needed function by only
linear functions.

RelLU

One of the most popular activation functions nowadays is the Rectifier linear Unit
(ReLlU). It computes the activation by formula f(x) = maz(0,x). Simply it puts
a threshold on the output: if it’s negative - put the output to zero, if it’s positive
- the output equals to the input. The benefit of ReLLU is that it’s simple, meaning
that it has no complex computations of exponent and tangents, multiplications and
divisions. Also is it was stated in [12] the Stochastic Gradient Descent converges
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much quicker rather than with sigmoid or tanh functions. Nevertheless, ReLLU has
one strong disadvantage — neurons with ReLLU activation are very sensitive to a
large gradient flow. If there would be a large gradient flow from some units with
ReLU activation, those units will be “silent” forever. But, with a proper choice of
the learning rate hyperparameter, this issue is relatively rare. ReLLU activation is
used in hidden layers because it doesn’t vanish gradients during a training process.

Softmax

The softmax activation function is used when we deal with multiclass classification
and we need to have probabilities of an input to belong to a certain class. It is
applicable only in the last layer of a neural network. The softmax activation
squeezes the outputs of each unit to a range between 0 and 1 and it also divides
each output so the total sum is equal to 1, like sum of all probabilities. The
formula for the function is next:

where 2 is a vector of which we want to transform into probabilities, €3 is a jth
component of this vector.

3.3.3 Sample architecture

VGG16

VGG16 was introduced by Karen Simonyan and Andrew Zisserman who took the
second place in the ILSVRC 2014. VGG stands from the name of this group — Vi-
sual Geometry Group from Oxford University. The main importance of their work
lies in showing that depth of the network is a crucial aspect of the construction
of a Convolutional Neural Network for image classification (having even pretty
small convolution filters of size 3x3). VGG16 consists of 5 blocks of convolutional
layers: the first two blocks are of 2 layers and the last three are of 3 layers. Each
block ends with a max-pooling layer of size 2x2 which downsamples the input four
times after the pooling operation. After the fifth convolutional block goes two
fully-connected layers, each of 4096 neurons and finally one fully-connected layer
of 1000 neurons — the number of classes present in ImageNet dataset. Neurons in
each hidden layer are activated with ReLLU and neurons in the last fully-connected
layer are activated with Softmax function. The total number of parameters is
almost 140 million.
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Figure 3.9: VGG16 architecture.

Filter visualization

We can see how CNN “sees” the input images by visualizing filters (see Fig. 3.10
to Fig. 3.14). To do it we can generate images which will maximize the activations
of these filters.

Figure 3.10: Filters of blockl_convl layer.
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Figure 3.11: Filters of block2_convl layer.

Figure 3.12: Filters of block3_convl layer.

Figure 3.13: Filters of block4_convl layer.
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Figure 3.14: Filters of block5_convl layer.

As it was mentioned before, going further from layer to layer the filters are learned
to detect more and more complex patterns. First and second layers show us the
simple ones: colors, directions, grains. Third and fourth layers are learned to
recognize more complicated structures and the final one, the fifth layer, represent
details which are more looks like features - scales of fish, feathers of birds, etc.

3.4 Transfer learning for CNN

In practice, it is very hard to train a CNN from scratch for several reasons. First
of all, it requires a huge database, for example, ImageNet database, the database
for ILSVRC competitions, has 1.2 million of images. Also, it is computationally
costly as well as time-consuming because it may take 2-3 weeks to train a neural
network on ImageNet using multiple GPUs. Here the power of Transfer Learning
(TL) comes. The main idea behind the TL concept is in sharing the knowledge
gained by one model which solves one problem with another model which solves
the similar task. In Deep Learning it is a quite common approach to use weights
of the already trained network to benefit your own network. Mostly the TL is
used in Natural Language Processing and Computer Vision tasks because features
of these issues are logically transferable. For example, if we trained a network
to recognize Spanish we can use its knowledge to recognize Portuguese because
they are similar as languages, thus it would be practically wise to use features of
the first model. It is not even always required for models to solve closely related
problems. In terms of the Computer Vision issues, it can be a detection of cars
and detection of buildings, for instance. As it was shown above features learned
on early layers are general, such as lines, edges, colors, and so on. This knowledge
can be useful to the CNN which aims to detect buildings since the first layers of
this CNN also must recognize such simple patterns.

TL learning can be applied in several different ways:
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Convolutional Networks as a fixed feature extractor. As it was mentioned
previously, CNNs are often (but not always) consist of multiple convolutional
layers as a core of computations and a few fully-connected layers at the end. The
straightforward idea is to use features given by the last convolutional layer and to
train a regular neural network using these features (or any other classifier).

Fine-tuning the CNN. The more thorough approach is to train not only the
last fully-connected layers (or any other classifier) but also to fine-tune weights
of all other layers of the network. The regular neural network which we stuck
on top of the convolutional layers has randomly initialized weights, thus it is not
practically useful to fine-tune all convolutional layers but still depends on a task
which we are going to solve. Big gradients of these randomly initialized weights
during the backpropagation stage can “harm” perfectly trained features which we
don’t want to change. Instead, we can “freeze” the early layers, meaning do not
change their weights at all and just train a few last layers as well as the classifier
at the end.

During the fine-tuning of the CNN there is one more thing to keep in mind. The
Learning Rate should be smaller than it was during training the original ones. It
comes from the expectation that CNN weights are already pretty tuned and we
don’t want to update them strongly and very fast.

The main factors which help us to define a strategy of applying TL in our specific
case are the size of a dataset we have (small or big) and how much it is similar to
the original one, the one on which the original network was trained. Here are a
few common rules:

1. The new dataset is similar to the original one and it is small. The
dataset is similar to the original so we can expect that the original network
has similar not only general features but the more distinctive features too.
So it is a good idea to use the fixed output of the last convolutional layer
and build-up a new classifier on top of these features. Since the dataset
is small it has no sense to fine-tune the last convolutional layers because
the network can be easily overfitted. Intuitively, the overfitted CNN will be
trained to detect not the key features but non-core ones. For example, we
trained a CNN to distinguish man from women and the dataset consists of 5
men images and 5 women images. If all men in this small image set are dark-
haired and all women are blondes then the network can understand that the
color of hair is a distinctive feature, which is obviously not. Next, every
dark-haired human will be classified as a man and every blonde human as
a woman. With a dataset of several millions images this situation is nearly
impossible.

2. The new dataset is similar to the original one and it is big. In this
case, we can replace the classifier and fine-tune through the full network.
Basically, we will train a completely new network but with weights initialized

31



with weights of another net.

3. The new dataset is different from the original and it is small. Since
the dataset is different from the original one we must use only early features
of the network from which we transfer the knowledge. The last features
are too specific to the original dataset and thus using of them would be a
mistake. The dataset is small, so the only thing we can do is to build a
classifier on top of early features given by the original network.

4. The new dataset is different from the original and it is big. If we
have a reasonably large set of images we can train the network from scratch.
But it still will be a good idea not to initialize weights randomly but use
weights of the pre-trained network as initial ones. It may accelerate the
process of training.

There is one disadvantage of applying Transfer Learning. We have obvious and
clear restrictions on architecture. Since we use pre-trained net we have limitations
on the structure of a net. It is inconvenient to add or remove layers in the middle,
only at the end.
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Chapter 4

Problem definition

When dealing with massive enrollment, with a lot of people in a queue, rapidity
is important. Especially when fingerprints are rejected during the verification it is
valuable to know the reason, to make the subject do specific things before repeat
capture and move to the next subject.

The task came from a real-life problem. The Ministry of Foreign Affairs of Spain
was needed a software which will recognize the type of distortion of a given finger-
print. Having this information they can improve the fingerprint of an identified
person physically. For example, the common trick is to improve a dry fingerprint
by rubbing a finger on a forehead or a nose, since on these part of the body there
are a lot of fat glands. The grease helps a fingerprint to increase the contact area
which improves its quality. The opposite operation, removing of extra grease or
sweat can improve a wet fingerprint by reducing the contact area.

The database was given by a consular post of one South America country. South
America is a densely populated territory with almost half a billion of the human
population. It consists of twelve sovereign states and a lot of islands. Every time
someone wants to cross boundaries of one or another territory he or she has to
prove his or her identity with a biometric identifier — fingerprints. Hereby, an
enormous number of fingerprint scanning per day are done every day there. In-
stitutions which faces with fingerprint authentication and identification suffering
from low-quality fingerprints all the time. Considering that mostly South Ameri-
can countries are industrial and agricultural we understand that people there work
with their hands. That is why their fingerprints are often distorted. Moreover,
wet and warm climate harm the quality of skin even harder.

The only requirement they put was to make it fast, so this software could be
imported into the SDK of a scanner and could work in real time. So the ideal
scenario is as follows: the person comes to a consular post, put a finger on a
scanner, scanner shows that its quality is low and why it is low, the police officer
explains what to do with the finger and then the fingerprint gets a sufficient quality
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for making an identification.

The proposed algorithm can be used not only by the government institutions
but by private companies as well. For example, it can be useful for closed type
manufactures where workers are obligated to verify their identity. In such factories,
there are working thousands of people which makes a huge load on throughputs
of verification system and since it is a factory there are probably exist some skin
distortion issues.
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Chapter 5

Proposed method

Convolutional neural networks shown their superiority in the world of image pro-
cessing and object classification. Starting from 2012, Convolutional Neural Net-
work started to beat all other Machine Learning techniques on ILSVRC. That is
why it was decided to build a Deep Learning based classifier. To train the network
from scratch we didn’t have a huge amount of data so we used some workaround
techniques to build-up powerful classifiers.

5.1 Model architecture and construction

Since the dataset was small we decided to apply a Transfer Learning approach
and borrow some knowledge gained from another network trained to solve image
classification tasks. As a basement for the classifiers, VGG16, network trained on
ImageNet dataset, was taken. It has shown very good results on ILSVRC 2014
and what was the most important, it is completely available in the internet.

ImageNet dataset contains 1000 classes of different objects: cars, planes, animals,
plants, and so on. It is obviously very different from fingerprint images so we
chose to follow the third strategy of TL described above, that is to use only early
features of the VGG16 net and train own classifier on top of these features.

The whole process of model training can be split into two parts: bottleneck feature
extraction and model fine-tuning.

Bottleneck feature extraction stage.

In bottleneck feature extraction stage we passed all training samples through orig-
inal VGG16 and saved outputs of 4th convolution block. After this, we got feature
representation of the input images in terms of filters of 4th convolutional block.
We didn’t take outputs of the 5th convolutional block because they are too spe-
cific to complex objects recognition: cats, dogs, cars, etc. In our case we have
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to distinguish objects with simpler shapes and structure in general and features
learned in the 4th convolutional block would be perfectly enough for our case.
Those features we used as inputs for a fully-connected three-layer network which
were trained and which weights were saved for the next stage.

Fine-tuning stage.

In the fine-tuning stage, there were some modifications to the original VGG16
network. First of all, the last convolutional block, the 5th one, was cut off because
it was trained too much to classify images from ImageNet dataset. Then we made
trainable only the 4th convolutional block and frozen the first 3 convolutional
blocks. On top of the resulting model, we put the fully-connected three-layer
network with weights from the previous stage. Two first layers are of 256 neurons
and the last one of 2 neurons — to have predictions of belonging to one or another
class for the input image. After the second fully-connected layer we put a dropout
layer with a probability of 0.5 to be dropped. First two layers finish with the
ReLU activation function and the last one with the Softmax activation function.
The learning rate is set to be 0.001 which is rather small. The learning rate is
smaller than usual because weights of the top classifier are initialized randomly
and weights of the convolutional layers are almost perfect and we don’t want to
distort them too much.

5.2 Data augmentation and preprocessing

Since we did not have enough of training images we had to apply data augmen-
tation techniques. Data augmentation makes a random modification of an input
image and provides a new image. In order to not screw up a training process, not
all possible modifications can be used, for example, any pixel whitening or adding
of noise are forbidden since they can change an image class. In our case we used
the next random modifications (see Fig. 5.1):

Width shift

Height shift

Rotation on +-10 degrees clockwise

Horizontal flip

Vertical flip

Data augmentation gave us 10000 of training samples per each fingerprint class
instead of 2000 of the original. This extended training dataset was used in the
fine-tuning stage of model training.
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Figure 5.1: (a) Original low-quality fingerprint; (b) Width shifted low-quality
fingerprint; (¢) Height shifted low-quality fingerprint; (d) Rotated low-quality
fingerprint; (e) Horizontally flipped low-quality fingerprint; (f) Vertically flipped
low-quality fingerprint.

Also, as a part of data pre-processing, each image was resized from 512x512 to a
size of 150x150 pixels and then rescaled to a range from 0 to 1. Resizing is needed
in order to reduce computation cost of training and rescaling of input values is
vital for training the CNN.

37



Chapter 6

Experimental results and
discussions

6.1 Database

The database consists of 2000 of training images per each class, 1000 for images
which belong to a class and 1000 which are not, the same for 200 of validation
image set. There is also a test set of 100 images.

For our problem, we have 5 different classes: dry, wet, damaged, dotted and blurred
type of fingerprint distortion. All images were labeled by experts from GEYCE
Biometrics company [!]. Each fingerprint can belong to several classes, even for
all 5, but it is a very rare situation, mostly it is 2-3 classes for a fingerprint.

Dry fingerprint (Fig. 6.1) — fingerprint which has a low contact area with a scan-
ner surface, due to its dryness, and ridges don’t fully contact with it. Potential
fingerprint enhancement is to rub a fingerprint by a forehead or nose, the face
areas with a huge amount of sweat and grease pores.

Wet fingerprint (Fig. 6.2) — fingerprint which has too high ability to contact with
a scanner surface due to a huge amount of sweat of grease on it. In this case,
not only ridges but also valleys contact the scanner surface. Potential fingerprint
enhancement is to wipe out extra sweat and grease.

Damaged fingerprint (Fig. 6.3) — fingerprint which has scars, burning or inborn
problem with a skin, when the skin is too thin and often chapped. There is no
way to improve the fingerprint quality fast in this situation. If it is a problem of
chapped skin, the fingerprint can be captured later, when wounds are healed. If
the quality is low because of scars or burning, nothing can be done.

Dotted fingerprint (Fig. 6.4) — fingerprint which has clear distinguishable dots on a
fingerprint image. It happens when the person is nervous or he or she has problems
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with excessive sweating. These dots are situated around sweat pores of the skin
and when they produce sweat during the process of scanning it is presented as
black circular dots. The fingerprint is not obligated to be dry to observe this type
of distortions there are examples of fingerprints which are dotted but not dry at
the same time. Potential enhancement of a fingerprint is a to try to do so that
identified person is not nervous.

Blurred fingerprint (Fig. 6.5) — fingerprint which has no clearly distinguishable
ridges in some part of the image. This case is often when the finger wasn’t fixed
on a scanner surface and the image was captured while a fingerprint was slightly
moved. Also, the identified person could press a finger too much so fingerprint
valleys started to be seen on the image as well. Another cause of a fingerprint
being blurred is when it burned, in this case, it is impossible to improve the quality
instantly, it can become better with time or never. Potential enhancement is to
ask an identified person to don’t move and do not press too much on a scanner
and retry the scanning.

Figure 6.1: Examples of dry fingerprints.

Figure 6.2: Examples of wet fingerprints.
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Figure 6.5: Examples of burred fingerprints.

Some of the fingerprints have multiple issues which are making them more chal-
lenging. As it can be seen in Fig. 6.6, quality of fingerprint can be degraded by
being dry, damaged and blurred or being wet and blurred. Currently, there are
two problems with images:

e For some examples it is hard to classify them even for experts, for instance,
a dry fingerprint can be easily misclassified as a dotted one and a blurred
image can be misclassified as a wet one;

e The most of fingerprints are on the border of classes, meaning that if there is
only one small piece of a fingerprint with a certain characteristic feature it is
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(a) A dry, damaged and blurred (b) A dry and dotted fingerprint. (c) A wet and blurred
fingerprint. fingerprint.

Figure 6.6: Examples of multiclass fingerprints

hard to say whether it should be assigned to this class or not. For example,
a tiny area of a fingerprint is wet, should the whole fingerprint be classified
as wet?

e (lassifiers are trained to classify images only captured by Cogent CS500
scanner. Prediction of images taken by other scanners can be lower.

6.2 Results of CNN classifier

For every type of distortion, there was built one CNN with binary classification.
Here are confusion matrices for dry, wet, damaged, dotted, and blurred fingerprint
classes are shown in Table 6.1 to 6.5. The average time of prediction is 1.6 seconds.
The overall recognition rate for all categories of low-quality classes is 89.4%. The
VGG16 based deep network achieve the performance of as high as 93% for dry
fingerprints. The blurred fingerprints are the most challenging low-quality sets
where the correct recognition rate for that class is down to 84%. As it can be
seen in the tables, the highest misclassification happens when the "not damaged”
fingerprints are being classified as damaged one. This was expected as the scanned
fingerprints contain discontinuity due to scanner limitations which are causing
similarities to the damaged fingerprints.
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Table 6.1: The confusion matrix for Dry fingerprint class, CNN classifier

‘ True
Dry | Not Dry | All
kS
gDy |61 ] 2 |63
B|NotDry| 5 | 32 |37
“lau 66 | 34 | 100

Accuracy: 0.93

Table 6.2: The confusion matrix for Wet fingerprint class, CNN classifier

‘ True
o ‘ ‘ Wet ‘ Not Wet ‘ All
_g\ Wet | 31 | 5 | 36
B Not Wet| 3 | 61 | 64
a3 | 66 [ 100

Accuracy: 0.92

Table 6.3: The confusion matrix for Damaged fingerprint class, CNN classifier

‘ True
= ‘ ‘ Damaged ‘ Not Damaged ‘ All
fg | Damaged | 42| 0 | 42
E | Not Damaged | 13 | 45 | 58
| Au |55 | 45 | 100
Accuracy: 0.87

Table 6.4: The confusion matrix for Dotted fingerprint class, CNN classifier

‘ True
- ‘ ‘ Dotted ‘ Not Dotted ‘ All
S| Dotted | 46 | T | 53
B| Not Dotted | 2 | 45 | 47
a | All |48 | 52 ] 100

Accuracy: 0.91
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Table 6.5: The confusion matrix for Blurred fingerprint class, CNN classifier

‘ True
B ‘ ‘ Blurred ‘ Not Blurred ‘ All
fg ‘ Blurred 41 ‘ 9 ‘ 50
F§ ‘ Not Blurred ‘ 7 ‘ 43 ‘ 50
| Au 48 | 52 | 100

Accuracy: 0.84

6.3 Results of other algorithms

To understand how good is the Convolutional Neural Networks based classifier we
have to compare its performance with other common approaches of solving similar
problems. As baselines two algorithms were chosen: Support Vector Machines and
Random Forest classifiers. Both of them treat each pixel of the input image as
a separate feature and in the same way as we pre-processed images for CNN we
pre-process them in this case: resize to 150x150 pixels. Rescaling of pixels from
0 to 1 made classification results worst, so we decided not to do it, while it was
crucial for CNN based classifier.

6.3.1 Results of Random Forest classifier

To make classification we trained Random Forest classifiers with the next param-
eters:

The number of decision trees in the forest = 1000.

The function to measure the quality of a split - Gini Impurity.

e The number of features to consider when looking for the best split =
vn_features = 150, where n_features = 150 - 150 = 22500 as a size of

the image.

Whether bootstrap samples are used when building trees = True.

As it can be seen, Random Forest can show more or less good results as for a
simple classifier with average accuracy among all 5 classifiers of 83.5% (Tables 6.6
to 6.10). It happens due to the fact that it is an ensemble method of pretty
simple standalone classifiers which are bad singly but can show impressive results
working together. The prediction results are still worse comparably to the CNN
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Table 6.6: The confusion matrix for Dry fingerprint class, RF classifier

True
‘ Dry ‘ Not Dry ‘ All
| 53| 1 | 54

Not Dry | 13 | 33 | 46
| 66 | 34 | 100

Predicted
T
P

=

Accuracy: 0.86

Table 6.7: The confusion matrix for Wet fingerprint class, RF classifier

‘ True
o ‘ ‘ Wet ‘ Not Wet ‘ All
jg\ Wet | 33 | &8 |4l
B Not Wet | 1 | 58 | 59
a | All | 34 | 66 |100

Accuracy: 0.91

Table 6.8: The confusion matrix for Damaged fingerprint class, RF classifier

| True
- ‘ ‘ Damaged ‘ Not Damaged ‘ All
g ‘ Damaged ‘ 41 ‘ 8 ‘ 49
Fﬂg ‘ Not Damaged ‘ 14 ‘ 37 ‘ 51
™ au s | 45 | 100
Accuracy: 0.78

Table 6.9: The confusion matrix for Dotted fingerprint class, RF classifier

‘ True
o | | Dotted | Not Dotted | All
*g | Dotted | 41 | 14 | 55
B| Not Dotted | 7 | 38 | 45
a | All |48 | 52 ] 100

Accuracy: 0.79
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Table 6.10: The confusion matrix for Blurred fingerprint class, RF classifier

‘ True
Blurred | Not Blurred | All
g
§ ‘ Blurred ‘ 41 ‘ 11 ‘ 52
B | Not Blurred | 7 | 41 | 48
Al a8 | 52 | 100

Accuracy: 0.82

classifier especially for "hard” types of distortion: damaged, dotted and blurred.
Wet an Dry fingerprints can be classified with high enough accuracy even taking
into account only pixel intensity - for wet fingerprints pixels are closer to 0, to the
black color, and dry fingerprints pixels are closer to 255, to the white color. But in
complicate classes, the classification should be made based on more sophisticated
features and here CNN based classifier shows its superiority.

6.3.2 Results of SVM classifier

To make the classification, we trained several sets of Support Vector Machines
classifiers with the next parameters:

e Penalty parameter of the error term = 1.0.

o We played with four different kernels: 3rd-degree polynomial, linear, radial
basis functions, sigmoid.

. 1 1
e Kernel coeflicient Features = T3500°

e Shrinking heuristic = True.

The SVM classifiers with RBF and sigmoid kernels make a constant classification,
meaning they classify all fingerprints either as being belonged to a class or not
belonged. It means that these kernels are not suitable to classify image data. That
is why we don’t present tables for them, which has no sense.

The conclusion here can be made the same - SVM is a good classifier even for such
diverse data as images but it is still worse than CNN in questions of image classi-
fication. The average accuracy shown by SVM was 74% for polynomial kernel and
73.6% for the linear kernel, and the best combination of them has classification
rate of 75.4% which is by far less than for CNN based classifiers (Tables 6.11 to
6.15b). As it was with Random Forest classifiers, the "simple” classes of finger-
prints - wet and dry were classified with high enough accuracy due to the fact
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Table 6.11: The confusion matrix for Dry fingerprint class, SVM classifier

(a) Polynomial kernel

(b) Linear kernel

True

‘ True ‘
o ‘ ‘ Dry ‘ Not Dry ‘ All o ‘ ‘ Dry ‘ Not Dry ‘ All
gDy | 53] 6 |59 gDy | 54| 5 |59
B NotDry| 13| 28 |41 B NetDry| 12| 20 |41
“lau 66 | 34 w0  TlAw 66| 34 |100
Accuracy: 0.81 Accuracy: 0.83
Table 6.12: The confusion matrix for Wet fingerprint class, SVM classifier
(a) Polynomial kernel (b) Linear kernel
‘ True ‘ True
o ‘ ‘ Wet ‘ Not Wet ‘ All o ‘ ‘ Wet ‘ Not Wet ‘ All
Sl Wet | 29| 7 |36 g We | 32| 8 |40
B NotWet| 5 | 59 |64 T NetWet| 2 | 58 |60
“lau |34 | 66 [100 TlAn [ 34| 66 | 100
Accuracy: 0.90

Accuracy: 0.88

Table 6.13: The confusion matrix for Damaged fingerprint class, SVM classifier

(a) Polynomial kernel

‘ True
- ‘ ‘ Damaged ‘ Not Damaged ‘ All
.*g ‘ Damaged ‘ 29 ‘ 17 ‘ 46
Fg ‘ Not Damaged ‘ 26 ‘ 28 ‘ 54
a | All |55 | 45 | 100
Accuracy: 0.57
(b) Linear kernel
‘ True
- ‘ ‘ Damaged ‘ Not Damaged ‘ All
E ‘ Damaged ‘ 20 ‘ 17 ‘ 37
F§ ‘ Not Damaged ‘ 35 ‘ 28 ‘ 63
1 an s | 45 |10
Accuracy: 0.48
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Table 6.14: The confusion matrix for Dotted fingerprint class, SVM classifier

(a) Polynomial kernel (b) Linear kernel

True True

- Dotted | Not All o Dotted | Not All
%’ Dotted % Dotted
S| Dotted | 34 |15 |49  T|Dotted | 34 |15 | 49
i S
A& | Not 14 |37 51 A | Not 14 |37 51

Dotted Dotted

| All 48 |52 | 100 | All 48 | 52 | 100

Accuracy: 0.71 Accuracy: 0.71

Table 6.15: The confusion matrix for Blurred fingerprint class, SVM classifier

(a) Polynomial kernel (b) Linear kernel

True True

- Blurred | Not All o Blurred | Not All
% Blurred % Blurred
S| Blurred| 35 |14 | 49 B| Blurred| 35 |11 | 46
St (=]
A | Not 13 38 51 A& | Not 13 41 54

Blurred Blurred

| All 48 | 52 | 100 | All 48 |52 | 100

Accuracy: 0.73 Accuracy: 0.76
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that such fingerprints can be easily separated by a hyperplane because of their
pixels value (higher numbers for dry fingerprints and lower for wet fingerprints).
But for damaged, dotted and blurred ones the situation is not so straightforward.
The classification rate of SVM for them is much lower than of classification rate
of CNN; especially for damaged fingerprints.

6.4 Devices and training computer characteris-
tics

For training and testing a PC with following characteristics was used:

e Processor. Intel Core i7-6700HQ CPU, 2.60GHz, 4 Cores, 8 Logical Proces-
Sors

o System Type. x64-based PC

e Physical Memory (RAM). 24.0 GB

e Graphics Card. NVIDIA GeForce GTX 960M.
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Chapter 7

Conclusions

7.1 Inference

In the present work the low-quality images classifier based on Convolutional Neural
Network presented. It is able to classify dry, wet, damaged, dotted and blurred
classes with the average accuracy of 89.4%. Comparing to the other top rated
Random Forests and Support Vector Machines classifiers CNN classifier is much
more accurate (6.4% for RF and 14.5% for SVM in average). There are almost no
results of similar works available in public due to the high commercialization of
fingerprint-related research.

7.2 Future work

In the future, it is possible to extend the algorithm to classify more classes such as
not centered, cut and small fingerprints. Also to do deeper research, it is possible
to try different top classifiers trained on features received from convolutional layers
of the network. It may reduce the computational cost of classification and thus
decrease the training and classification performance time which is a crucial aspect
of fingerprint authentication. It is also can be possible to use Local Binary CNN
[39] which significantly reduces the number of parameters with approximately the
same accuracy as the regular CNN.

Another obvious problem here is the lack of data. With more fingerprint examples
the Neural Network can get sufficient boost in recognition abilities. So as a way
of algorithm improvement we can collect more distorted fingerprint images.
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