2,128 research outputs found

    Quantum algorithms for process parallel flexible job shop scheduling

    Get PDF
    Flexible Job Shop Scheduling is one of the most difficult optimization problems known. In addition, modern production planning and control strategies require continuous and process-parallel optimization of machine allocation and processing sequences. Therefore, this paper presents a new method for process parallel Flexible Job Shop Scheduling using the concept of quantum computing based optimization. A scientific benchmark and the application to a realistic use-case demonstrates the good performance and practicability of this new approach. A managerial insight shows how the approach for process parallel flexible job shop scheduling can be integrated in existing production planning and control IT-infrastructure

    DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    Get PDF

    Optimización metaheurística aplicada en la gestión de pavimentos asfálticos

    Get PDF
    Pavement engineering is a crossroads between geotechnical and transportation engineering with a sound base on construction materials. There are multiple applications of optimization algorithms in pavement engineering, emphasizing pavement management for its socioeconomic implications and back-calculation of layer properties for its complexity. A detailed literature review shows that optimization has been a permanent concern in pavement engineering. However, only in the last two decades, the increase in computational power allowed the implementation of metaheuristic optimization techniques with promising results in research and practice. Pavement management requires powerful optimization tools for multi-objective problems such as minimizing costs and maximizing the pavement state from network to project level with constrained budgets. A substantial amount of research focuses on genetic algorithms (GA), but new developments include particle intelligence (PSO, ACO, and ABC). The study must go beyond small-sized networks to improve the management of existing road infrastructure (pavement, bridges) based on mechanistic and reliability criteria.La ingeniería de pavimentos es una encrucijada entre la ingeniería geotécnica y la ingeniería de transporte con una sólida base en los materiales de construcción. Existen diferentes aplicaciones de los algoritmos de optimización en la ingeniería de pavimentos, las cuales enfatizan la gestión del pavimento por sus implicaciones socioeconómicas y el cálculo inverso de las propiedades de las capas por su complejidad. Una revisión detallada de la literatura muestra que la optimización ha sido una preocupación permanente en la ingeniería de pavimentos; sin embargo, solo en las últimas dos décadas, el incremento del poder computacional permitió la implementación de técnicas de optimización metaheurísticas con resultados prometedores en la investigación y en la práctica. La gestión del pavimento requiere poderosas herramientas de optimización para problemas con objetivos múltiples, como minimizar costos y maximizar el estado del pavimento desde el nivel de la red hasta el del proyecto con presupuestos limitados. Una cantidad sustancial de investigaciones se centra en los algoritmos genéticos (AG), pero los nuevos desarrollos incluyen inteligencia de partículas (PSO, ACO y ABC). El estudio debe ir más allá de las redes de pequeño tamaño para mejorar la gestión de la infraestructura vial existente (pavimento, puentes) con base en criterios mecanicistas y de confiabilidad

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem

    Get PDF
    Modern manufacturing systems build on an effective scheduling scheme that makes full use of the system resource to increase the production, in which an important aspect is how to minimize the makespan for a certain production task (i.e., the time that elapses from the start of work to the end) in order to achieve the economic profit. This can be a difficult problem, especially when the production flow is complicated and production tasks may suddenly change. As a consequence, exact approaches are not able to schedule the production in a short time. In this paper, an adaptive scheduling algorithm is proposed to address the makespan minimization in the dynamic job shop scheduling problem. Instead of a linear order, the directed acyclic graph is used to represent the complex precedence constraints among operations in jobs. Inspired by the heterogeneous earliest finish time (HEFT) algorithm, the adaptive scheduling algorithm can make some fast adaptations on the fly to accommodate new jobs which continuously arrive in a manufacturing system. The performance of the proposed adaptive HEFT algorithm is compared with other state-of-the-art algorithms and further heuristic methods for minimizing the makespan. Extensive experimental results demonstrate the high efficiency of the proposed approach

    Advances in Theoretical and Computational Energy Optimization Processes

    Get PDF
    The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes
    corecore