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Abstract Modern manufacturing systems build on an

effective scheduling scheme that makes full use of the system

resource to increase the production, in which an important

aspect is how to minimize the makespan for a certain pro-

duction task (i.e., the time that elapses from the start of work

to the end) in order to achieve the economic profit. This can

be a difficult problem, especially when the production flow is

complicated and production tasks may suddenly change. As a

consequence, exact approaches are not able to schedule the

production in a short time. In this paper, an adaptive

scheduling algorithm is proposed to address the makespan

minimization in the dynamic job shop scheduling problem.

Instead of a linear order, the directed acyclic graph is used to

represent the complex precedence constraints among opera-

tions in jobs. Inspired by the heterogeneous earliest finish

time (HEFT) algorithm, the adaptive scheduling algorithm

can make some fast adaptations on the fly to accommodate

new jobs which continuously arrive in a manufacturing sys-

tem. The performance of the proposed adaptive HEFT algo-

rithm is compared with other state-of-the-art algorithms and

further heuristic methods for minimizing the makespan.

Extensive experimental results demonstrate the high effi-

ciency of the proposed approach.

Keywords Makespan � Flexible job shop � Adaptive
scheduling � HEFT

1 Introduction

In order to increase market competitiveness, manufacturing

enterprises are trying to find effective ways to reduce their

product cost while maintaining high quality (Fink et al.

2014; Schryen et al. 2015). A very important aspect in this

domain is to optimize the manufacturing production

schedule by taking the manufacturing system information

into consideration (Ulmer et al. 2017; Hoffmann et al.

2017). In Wang et al. (2014), a discrete scheduling system

for enterprises is built to minimize a discounted expense, in

which an information system called collaborative manu-

facturing execution system (cMES) plays an important

role. Currently, most companies obtain real-time produc-

tion information collected by manufacturing execution

systems, and will use it in scheduling procedures (Cao

et al. 2014). Zhou et al. (2015) and Raileanu et al. (2014)

propose two cMES-based job-shop scheduling algorithms

for the steel-making industry and semiconductor manu-

facture, respectively. Except for cMES, a progressive

information system, named Cyber-Physical Production

Systems (CPPS), is utilized in many manufacture produc-

tion lines. In Varvara (2016), a multi-agent systems for the

semiconductor final testing secluding problem is designed

on the basis of the information from CPPS. Xie et al.

(2017) propose an an automotive cyber-physical schedul-

ing technique that is system-based as well as adaptive and

dynamic for integrated automotive architecture. In general,

the production system is a process-aware information

system as it tries to manage and execute operational pro-

cesses which involves people, production resources and
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flows, and information sources on the basis of process

models (Ma 2010; Kriglstein et al. 2016).

An illustrative workflow of scheduling in manufacturing

enterprises is presented in Fig. 1. The manufacturing fac-

tory will obtain production tasks from the received order.

Based on the manufacturing information system and key

features of the production line, a production schedule

should be planned to maximize the production effective-

ness so that enterprises can gain as much production benefit

as possible. The production effectiveness can be repre-

sented by an objective function. Under the constraint of

manufacturing resources (people, machines, information

sources, production workflows etc.), a classic objective is

to minimize the makespan for a certain production tas-

k (i.e., the time that elapses from the start of work to the

end) as in this way enterprises can reduce the cost of labor

and electricity while achieving a high quality of products.

In this paper, we study the problem of minimizing the

production makespan in manufacturing enterprises, where

it is also a job-shop problem.

The makespan minimization has been studied in a

variety of job shop problems, ranging from the classic job

shop problem to the extended flexible job shop one. The

classic job shop problem is a well-known NP-hard problem

to schedule n jobs in an environment with m identical

machines, where a job is composed by linear precedent

operations (Garey et al. 1976). A generalization of the job

shop problem is the flexible job shop scheduling prob-

lem (FJS) in which there may be several heterogeneous

machines that are capable of handling job operations

(Brucker and Schlie 1990). Heterogeneous here means that

operations may need different processing times in different

machines. The extended flexible job shop problem is an

extension of the FJS problem where instead of a linear

order, an arbitrary directed acyclic graph (DAG) needs to

be used to model the precedence between the operations

(Birgin et al. 2015; Borenstein 2000). A typical example of

jobs that need to be modeled as DAG comes from the

printing and boarding industry, where jobs like printing and

prepress need to perform a set of operations whose inside

structures are not linear (Zeng et al. 2010).

To make use of DAG jobs in practical applications, a

few approaches have been proposed to address their

scheduling optimization problems in production. In Vilcota

and Billautb (2008), against the backdrop of the printing

and boarding industry, a tabu search and a genetic algo-

rithm are applied to find an approximation of the Pareto

frontier for the makespan and the maximum lateness cri-

teria. In Lee et al. (2012), a heuristic approach is proposed

to solve FJS with ’AND/OR’ precedence constraints in the

job operations. Besides, another genetic and tabu search

algorithm has been developed to produce a legal and fea-

sible solution for a schedule builder. A scheduling problem

of producing a variety of manufactured glass objects in a

glass factory has been addressed in Alvarez-Valdesabacc

(2005). This problem also belongs to FJS problems with

some special characteristics, such as no-wait constraints. A

heuristic list scheduling approach and its beam search

extension have been proposed in Birgin et al. (2015) to

minimize the makespan in extended FJS problems.

All aforementioned scheduling approaches are proposed

to handle the static job shop problem, which cannot be

applied to dynamic environments where jobs may arrive in

stochastic ways. From the perspective of smart production,

Fig. 1 An illustrative workflow

of scheduling in manufacturing

enterprises
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it is important to quickly make an adjustment to the current

schedule when production jobs are suddenly changed. This

is however a non-trivial problem. On the one hand, every

time a new job arrives, the previous job shop schedule

needs to be updated because the job shop problem has

changed. This involves handling the processed, processing,

and unprocessed operations. On the other hand, new jobs

may arrive unpredictably, which makes it impossible to

prepare the schedule offline. An adaptive scheduling

algorithm needs to be developed that can fast respond to

new jobs and find a new schedule in a speedy way. In

dynamic manufacturing environments, intelligent algo-

rithms or meta-heuristics are often impracticable because

recursive computations that widely exist in those algo-

rithms are time-consuming and cannot provide a resched-

ule plan fast.

In this paper, we aim to propose an efficient algorithm

that can reschedule the production for stochastic arrival

jobs in a short time. We also incorporate two important

manufacturing aspects into the scheduling. One aspect is

that a machine needs some setup time to process operations

from different jobs because different jobs may require

machines to work differently. For example, to test a

semiconductor product, a tester, a handler and an enabler

are simultaneously needed. Different jobs may match dif-

ferent resource combinations. To assemble and calibrate

the machine for the incoming new job type, a setup time is

usually required for the setup activities in the above

problem (Cao et al. 2017). The other aspect is that in order

to ensure the positioning and functioning accuracy of some

key components, it is often necessary to link or connect

two or more parts together. In this paper, we call this sit-

uation the matching operation. An example is that template

process and electrode process need to be processed in

combination (Gan and Lee 2002).

This paper presents an adaptive scheduling algorithm

named A-HEFT to minimize the makespan of dynamically

changing jobs by taking the setup time and mating opera-

tion into account. This algorithm is inspired by the

Heterogeneous Earliest Finish Time (HEFT) algorithm that

schedules applications modeled as DAGs based on the

earliest finish time principle in a heterogeneous distributed

system (Topcuouglu et al. 2002). There are two phases in

the algorithm A-HEFT. In the first phase, operations of

each job are prioritized based on the upward rank value. In

the second phase, based on the round-robin policy, opera-

tions are successively dispatched to a machine according to

the principle of the earliest finish time. For handling the

jobs newly arriving, all unprocessed operations will be re-

dispatched again, while processing operations remain

unchanged. Experimental results demonstrate that A-HEFT

can achieve shorter makespan than any other state-of-the-

art scheduling approaches.

The rest of this paper is organized as follows. In Sect. 2

we present the dynamic problem with some relevant

notations. In Sect. 3 we construct the scheduling model and

elaborate the adaptive scheduling algorithm, i.e., A-HEFT.

In Sect. 4 we evaluate the proposed algorithm in compar-

ison with some other state-of-the-art algorithms. This paper

is concluded in Sect. 5.

2 Problem Description

In this section, we present the DAG model in the dynamic

scheduling environment and formulate the problem of

minimizing the scheduling makespan.

2.1 Job Operation Precedence Model

A job may consist of two or two more operations whose

relationships can be represented as a DAG model. Gener-

ally a DAG model is able to represent sequential operations

that can only be processed in a given sequential order and

parallel operations that can be processed simultaneously in

different machines. Besides, the DAG model is also able to

represent the matching operation where multiple operations

from different jobs need to be processed together in one

machine. Depending on the operation constraint type, the

route in a DAG model may fork or merge. A typical type of

a DAG job is presented in the example of Fig. 2. We use

Oi;j to represent the j-th operation of the i-th job. As shown

in Fig. 2a, DAG1 is composed of two jobs J1 and J2, where

the last operation O1;3 and O2;3 of each job need to be

processed in combination. In DAG2, there are also two jobs

whose operations, i.e., O3;3 and O4;2, need to be processed

in combination (Fig. 2).

To generalize the DAG form, two special operations are

defined in every DAG, which are the entry operation and

the exit operation. The entry operation is the first operation

that needs to be processed ahead of all the other operations.

The exit operation is the last operation that needs to be

processed after completing all the other operations. For

instance, the matching operation of O1;3 and O2;3 is the exit

operation of DAG1. Since there is no entry operation in

DAG1, a virtual entry operation is created. This virtual

entry operation is a dummy operation that does not con-

sume any production resources and will not influence the

scheduling performance. It is created to assist the priority

ranking in our proposed algorithm. Analogously, a virtual

entry operation and a virtual exit operation are created in

DAG2. In this way, all DAG jobs will start to be processed

from the entry operation and end at the exit operation.

Furthermore, we take the setup time that a machine may

need to incorporate an operation from a different job into
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the DAG model. As shown in DAG1 and DAG2, the edge

number represents such setup times.

2.2 Notations and Problem Formulation

For an easier description of the extended FJS problem, the

indices, parameters and decision variables used in this

paper are defined as shown in Table 1.

The scheduling problem in this paper can be described

as follows. Suppose the manufacturing system needs to be

rescheduled at time t (t� 0). There are n jobs that need to

be processed on m machines. Each job has one or more

operations whose relationship can be modeled as DAG.

Before the time instance of t, job operations have been

either processed or assigned to a specific machine to be

processed according to the previous schedule. If operations

have been processed or are being processed at time t, their

schedule cannot be changed because all machines are non-

preemptive. Hence, only those operations which are

unprocessed can be re-assigned to a different machine with

a different start time. The objective of rescheduling is to

minimize the makespan of completing all n jobs. The

makespan is denoted by Cmax and the objective function is

formulated as below:

Objective function:

MinimizeCmax ð1Þ

subject to the following constraints.

1. Start time constraint:

sti;j � 0; ð2Þ

where any operation should start to be processed after

0 time instance.

2. Job allocation constraints:

X

k2XOi;j

ei;j;k ¼ 1; 8t; 0� t�Cmax: ð3Þ

Note that ei;j;k is fixed for those operations sti;j � t. The

optimization algorithm only needs to optimize the

schedule on operations whose start time are greater

than t.

3. Actual processing time:

p0i;j ¼
X

k2XOi;j

ei;j;kpi;j;k; 8i� n; j� oi; ð4Þ

where p0i;j defines the actual processing time of each

operation Oi;j and is decided by the assigned machine.

4. The Makespan calculation:

Cmax ¼ maxfsti;j þ p0i;j; 8i� n; j� oig; ð5Þ

where the makespan is the last moment of finishing all

operations.

5. Operation precedence constraint:

sti;j þ p0i;j þ s½i;j;i0;j0 � � sti0;j0 þ p0i0;j0 ; ð6Þ

where Oi;j is a precedent operation of Oi0;j0 .

6. Machine capacity constraint:

(a)

(b)

Fig. 2 Example of the precedence constraints in jobs modeled as

DAG

Table 1 General notations for describing the extended FJS problem

Notation Definition

A. Indices

Ji Index of jobs, i ¼ 1; 2; . . .; n

Oi;j Index of operations, i ¼ 1; . . .; n; j ¼ 1; . . .; oi

B. Parameters

n Total number of jobs

m Number of available machines

oi Number of operations in job Ji

XOi;j
The set of machines that can process the operation

Oi;j

Cmax The makespan

Pi;j;k The processing time of Oi;j on the machine k

s½i;j;i0 ;j0 � The setup time between Oi;j and Oi0 ;j0 . Note that

s½i;j;i0 ;j0 � is a sequence independent setup time, which

depends on operations and jobs

C. Decision

variables

ei;j;k ei;j;k ¼ 1 if operation Oi;j is assigned to be

processed on machine k. Otherwise, ei;j;k ¼ 0,

k 2 XOi;j

sti;j The start time of processing Oi;j, sti;j � 0

k½i;j;i0 ;j0 � If Oi;j is processed previous to Oi0 ;j0 on the same

machine, k½i;j;i0 ;j0 � ¼ 1. Otherwise, k½i;j;i0 ;j0 � ¼ 0
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k½i;j;i0;j0 � þ k½i;j;i0;j0� � ei;j;k þ ei0;j0;k � 1; k 2 XOi;j
\ XOi0 ;j0

sti;j þ p0i;j þ s½i;j;i0;j0 � � ð1� k½i;j;i0;j0 �Þ � L� sti0;j0
;

ð7Þ

where Oi;j and Oi0;j0 are two operations that are

assigned to the same machine and L is a sufficiently

large positive constant. Based on Birgin et al. (2015),

the above constraint provides that both operations

cannot be processed at the same time and determine

which one is processed first.

3 The Adaptive Scheduling Algorithm

In this section, we first introduce the concept of the upward

rank value ranku in the heterogeneous earliest finish time

algorithm. Next, we present the framework of the adaptive

scheduling algorithm A-HEFT to handle the stochastic

arrival jobs in the extended flexible job shop problem,

followed by an example to explain our scheduling

approach.

3.1 Upward Rank Value

The operations are selected one by on by a machine. The

selecting rules are very important to minimize the

makespan. Here we present it using the upward rank value

to decide the operation assignment order. The upward rank

value of a task is defined as

rankuðOi;jÞ ¼ dwi;je þ max
Oi0 ;j0 2succðOi;jÞ

fsi;j;i0;j0 þ rankuðOi0;j0 Þg;

ð8Þ

where dwi;je rounds up the average processing time of task

Oi;j on available machines XOi;j
; succðOi;jÞ represents the

successor operations of operation Oi;j. Operation selecting

priorities are ordered based on the descending order of

ranku. The job operation parameters of DAG1 and DAG2 in

Sect. 2.1 are presented in Tables 2 and 3, where the sym-

bol � denotes that the machine is not capable of processing

this operation. Based on Eq. 8, the upward rank values of

job operations are presented in the Ranku row of Tables 2

and 3. The select priority of operations are also presented

with a smaller number representing a higher priority.

Specifically, in DAG1, O2;1 will be first selected to be

assigned and the matching operation is the last one. Based

on the upward rank value, the operation precedence con-

straint can be strictly satisfied and also perform well in the

operation scheduling.

3.2 Dynamic Scheduling Framework

We propose an adaptive scheduling algorithm named A-

HEFT to minimize the makespan of dynamic jobs by tak-

ing the setup time and matching operation into account.

Multiple jobs represented as a DAG set D ¼
fD1;D2; . . .;Ddg will be processed on a heterogeneous

machine set M ¼ fM1;M2; . . .;Mmg, where d is the DAG

set size. A dynamic scheduling framework is proposed to

reschedule the production jobs as presented in Fig. 3.

There are three types of queue: operation priority queue,

common buffer queue, and operation collocation queue.

The circles colored dark represent matching operation in

the job pool. The dynamic scheduling framework has two

key points:

Table 2 Parameters and upward rank value of DAG1

Machines Job operations

O1;1 O1;2 O2;1 O2;2 O1;3 and O2;3

M1 3 � 6 � �
M2 4 � 3 � �
M3 5 � 5 � �
M4 � 4 � 7 5

M5 � � � 3 3

Ranku 23 15 24 13 4

Select priority 2 3 1 4 5

Table 3 Parameters and

upward rank value of DAG2

Machines Job operations

O3;1 O3;2 O4;1 O3;3 and O4;2 O3;4 O4;3 O4;4 O4;5

M1 5 7 2 � � 6 6 �
M2 4 6 2 3 � 6 5 �
M3 3 5 2 � 3 4 4 �
M4 � � � � � � � 5

M5 � � � � � � � �
Ranku 60 52 49 41 3 30 17 5

Select priority 1 2 3 4 8 5 6 7
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1. The first key point is that new jobs may arrive

unpredictably. The previous job shop schedule needs

to be updated timely. It is actually a vital problem to

schedule the stochastic jobs.

2. The second key point is that a machine needs some

setup time to process operations from different jobs.

3.3 A-HEFT Scheduling Algorithm

Inspired by the heterogeneous earliest finishing time (-

HEFT) algorithm that schedules DAGs based on the ear-

liest finish time principle in a heterogeneous distributed

system, we propose an adaptive scheduling algorithm

called A-HEFT to reschedule job operations when neces-

sary. The A-HEFT scheduling algorithm includes six steps

as follows and its pseudo-code is presented in Algorithm 1:

Step(1) First of all, the current operations of all the jobs

arrive at the pool of DAGs.

Step(2) Calculate the upward rank value rankuðOi;jÞ of

every operation and put every operation in the operation

priority queue according to the descending order of

rankuðOi;jÞ. The operation priority queue of a DAG Di is

denoted as Di OPQ.

(a)

(b)

Fig. 4 Gantt chart of

scheduling DAG jobs

Fig. 3 The dynamic scheduling framework
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Step(3) From the operation priority queue of each DAG,

the highest priority operation is selected based on the round

robin policy and is transferred to the common buffer queue.

The round robin policy indicates that every DAG will

release only one operation in one round. When the com-

mon buffer queue is empty again, the next round of oper-

ation release will start.

Step(4) In this step, operations will be successively selec-

ted from the common buffer queue and assigned to the

operation collection queue. Every machine has its own

operation collection queue and operations stored in the

operation collection queue will be successively processed by

this machine. The operation collection queue of a machine k

is denoted as Mk OCQ. In the common buffer queue, an

operation with maximum rankuðOi;jÞ will be selected and

assigned to the machine that can finish its process at the

earliest moment compared to all other available machines in

XOi;j
. Note that each operation is first allocated to the oper-

ation collection queue rather than the machine itself. Only

when the start time of the operation is equal to the current

time instant, is the operation assigned to the machine to be

processed. Return to the Step(3) until no operation is left.

Step(5) Schedule all operations collected in the opera-

tion collection queue of each machine.

Step(6) When the new jobs arrive, all unprocessed

operations which are waiting to be scheduled will be can-

celled and re-dispatched, while processing operations will

be unchanged. The above steps are repeated until all jobs

are accomplished.

3.4 The Simple Example of A-HEFT Scheduling

Algorithm

Based on the above steps, an example of scheduling

DAG1 and DAG2 in Sect. 2.1 is given. Suppose DAG1

arrives at t ¼ 0 and DAG2 arrives at t ¼ 8. Based on

Algorithm 1, we can obtain a schedule as presented in

Fig. 4a. At time t ¼ 8, DAG2 arrives and triggers a

reschedule. At the arrival time of DAG2, the operation

O2;2 and matching operation O1;3&O2;3 (marked out as

dash line in Fig. 4a) will be removed from the schedule

and return back to the DAGs pool. Then the removed

operations from DAG1 will be rescheduled together with

operations from DAG2 based on Algorithm 1. The

reschedule result is shown in Fig. 4b.

4 Experimental Results Anlysis

Job shop scheduling algorithms can be classified into two

main categories: static scheduling algorithms and dynamic

scheduling algorithms. Our proposed scheduling approach

can either schedule static jobs or dynamic jobs. Now two

experiments are conducted to evaluate the performance of

our proposed scheduling algorithm against some existing

approaches. The proposed algorithm is coded in Matlab

and run on a Core i5 2.7 GHz PC with 4 GB memory.

123

Z. Cao et al.: An Adaptive Scheduling Algorithm for Dynamic Jobs..., Bus Inf Syst Eng 61(3):299–309 (2019) 305



4.1 Experimental Result of Static Job Shop

Environment

In the first experiment, we evaluate the A-HEFT algorithm

in comparison with the state-of-the-art heuristic scheduling

algorithms named LIST in Birgin et al. (2015) and Earliest

Starting Time (EST) in Birgin et al. (2014) and some other

intelligent algorithms including Genetic Algorithm (Li

2015), Particle Swarm Optimization Algorithm (Kennedy

2011), Differential Evolution Algorithm (Tian et al. 2016)

and Estimation of Distribution Algorithm (Wang et al.

2015). We evaluate their performance by conducting

experiments on job configurations from Birgin et al. (2015)

and on job configurations generated randomly.

4.1.1 Experimental Result 1

For the job configurations, we use the 20 instances

YFJS01-YFJS20 from the LIST approach in Birgin et al.

(2015). In Table 4, the results of the Cmax obtained by the

LIST and EST heuristics are presented. We also present the

optimization results by running the exact solver CPLEX for

1 h. The results of LIST, EST and CPLEX originate from

the paper (Birgin et al. 2015).

The scheduling optimization results are listed in

Table 4, where the ’Average’ row shows the average value

of makespan for those 20 instances. The relative differ-

ence (short RD in Table 4) is calculated by the flowing

equation:

RD ¼
averageCmaxA�HEFT

� averageCmaxanother

averageCmaxanother

� 100% ð9Þ

On average, A-HEFT improves the scheduling result by

14.85% compared with LIST and 28.71% compared with

EST. The makespan of A-HEFT is only 1.78% worse than

the exact CPLEX solver. Considering that A-HEFT is a

heuristic algorithm with a low complexity, A-HEFT is a

very competitive algorithm.

4.1.2 Experimental Result 2

In order to evaluate the scheduling performance of

A-HEFT more comprehensively, various instances are

randomly generated. The compared optimization approa-

ches include LIST, and four intelligent algorithms includ-

ing Genetic Algorithm (GA), Particle Swarm Optimization

Algorithm (PSO), Differential Evolution Algorithm (DE)

and Estimation of Distribution Algorithm (EDA). The

Table 4 Simulation results of

20 instances
Instances Cmax LIST EST CPLEX (1 h limit)

Cmax Improve ð%Þ Cmax Improve ð%Þ Cmax Improve ð%Þ

YFJS01 886 1130 21.59 1318 32.78 773 - 14.62

YFJS02 944 1133 16.68 1243 24.06 825 - 14.42

YFJS03 406 575 29.39 439 7.52 347 - 17.00

YFJS04 628 576 - 9.0 569 - 10.36 390 - 61.02

YFJS05 689 608 - 13.32 566 - 21.73 445 - 54.83

YFJS06 606 633 4.27 633 4.27 447 - 35.57

YFJS07 714 628 - 13.69 628 - 13.69 444 - 60.81

YFJS08 411 485 15.26 531 22.60 353 - 16.43

YFJS09 297 402 26.12 506 41.31 242 - 22.73

YFJS10 452 513 11.89 541 16.45 399 - 13.28

YFJS11 874 745 - 17.31 740 - 18.11 526 - 66.16

YFJS12 669 744 10.08 813 17.71 512 - 30.66

YFJS13 546 553 1.27 717 23.85 405 - 34.81

YFJS14 1443 1555 7.20 2055 29.78 1317 - 9.57

YFJS15 1454 1690 13.97 2296 36.67 1244 - 16.81

YFJS16 1468 1769 17.02 2006 26.82 1243 - 18.10

YFJS17 1274 1734 26.53 2408 47.09 1622 21.45

YFJS18 1297 1735 25.25 2082 37.71 2082 37.70

YFJS19 1224 1604 23.69 2038 39.94 1525 19.74

YFJS20 1184 1700 30.35 2369 50.02 2020 41.39

Average 873.3 1025.60 11.36 1224.9 19.73 858.05 - 18.33

RD (%) 14.85 28.71 - 1.78
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intelligent algorithm runs ten times and iterates 500 times

in each run.

The job instances are generated randomly with the

parameter setting being the same as that in Li (2015),

Kennedy (2011), Tian et al. (2016), and Wang et al.

(2015). More specifically, GA uses the same chromosome

representation, two-cut points crossover, and two-cut

points mutation. PSO uses inertia weight to adjust its

parameters. DE creates new candidate solutions by com-

bining existing ones according to its standard formulae.

EDA uses the probability distribution from current elitist

solutions and samples new solutions based on it. All job

instances are supposed to be ready simultaneously at the

beginning.

The scheduling results are presented in Tables 5 and 6,

where Size n1=n2 denotes that there are n1 jobs and n2
machines; CPUtime denotes the computation time spent on

optimizing the schedule. We observe that in most cases

A-HEFT has a smaller makespan compared to other algo-

rithms. The CPUtime of A-HEFT is also the least among

all algorithms. The superiority of A-HEFT becomes larger

with the increase of scheduling size, because the CPUtime

of four intelligent algorithms exponentially increases with

the scheduling size and cannot achieve a better optimiza-

tion result. Besides, compared to the heuristic algorithm

LIST, A-HEFT also performs better in achieving a smaller

makespan and taking less CPUtime.

4.2 Experimental Result of Dynamic Job Shop

Environment

In the second experiment, we test the performance of

A-HEFT by simulating the jobs arriving continuously over

time in a dynamic manufacturing system. Whenever a new

job arrives, the production schedule will be newly opti-

mized to ensure that the makespan with new arrival jobs

will be minimized. The reschedule will only work for

unprocessed operations because processed and processing

operations cannot be rescheduled.

The interval between two successive arrival jobs is

around ð10; 30�. The list scheduling algorithm from Birgin

et al. (2015) is extended to handle the stochastic arrival

jobs. The intelligent algorithms including PSO, GA, and

Table 5 Makespan results of random generated instances

Size Cmax LIST GA PSO EDA

Cmax Cmax Cmax Cmax

25/5 273 331 302.5 395 484

25/10 175 206 166 318 438

30/5 244.67 266.67 240 423 467.33

35/10 172 231.5 255 415 519.5

35/15 83 141.5 187.5 326.5 352

40/5 241 256 346 464 715

40/10 115.5 146 153.5 385 393

45/5 384.5 414.5 415.5 747.5 851.5

45/10 183.5 260 270.5 685.5 724

50/10 128.5 223 271 540 660

55/10 261 291 321 925 1009

60/5 470 635 550 758 1113

70/5 445 516 583 901 1353

70/10 286 336 472 1113 1358

75/5 516.5 532.5 568 1189.5 1371.5

75/10 294 342 472 1162 1258

80/5 464 493 668 1085 1470

90/5 388 473 688.5 1507.5 1674

95/10 330 426 616 1445 1680

100/10 269 354 660 1555 1581.5

115/5 433 494 922 1774 1707

120/10 379 429 813 1701 2290

130/10 396 509 915 1917 2366

220/25 596 328 1254 2949 3802

300/25 393 328 1809.3330 4289.6670 4704

Table 6 CPU computation time of random generated instances

Size CPUtime LIST GA PSO EDA

CPUtime CPUtime CPUtime CPUtime

25/5 0.0354 0.0282 31.8222 30.5549 34.8216

25/10 0.0038 0.0086 28.6410 26.7424 32.1509

30/5 0.0099 0.0257 38.7911 37.2753 45.2682

35/10 0.0046 0.0134 54.4313 52.7051 59.7962

35/15 0.0066 0.0250 58.1557 56.4637 65.4297

40/5 0.0046 0.0443 81.1389 73.8999 84.6620

40/10 0.0053 0.0301 63.8040 63.6976 72.0407

45/5 0.0196 0.0329 75.3547 73.5840 80.4679

45/10 0.0063 0.0677 6805376 67.0708 78.9245

50/10 0.0071 0.0311 91.6843 90.7940 101.3794

55/10 0.0065 0.0208 94.8058 93.3506 100.7389

60/5 0.0057 0.0223 117.2803 116.1261 125.4103

70/5 0.0122 0.0299 168.4582 158.7811 168.1338

70/10 0.0105 0.0350 173.1519 168.4507 182.6882

75/5 0.0139 0.0435 203.2268 197.6029 216.8134

75/10 0.0121 0.0451 216.9260 198.7615 188.7718

80/5 0.0083 0.0302 255.9793 223.1716 228.6762

90/5 0.0116 0.0543 311.2892 266.2380 283.4535

95/10 0.0697 0.1619 318.3920 295.5461 318.6999

100/10 0.0414 0.0780 339.6179 329.2611 425.5674

115/5 0.0708 0.1482 431.1600 486.4686 482.2659

120/10 0.0116 0.0650 416.2304 407.1660 435.0559

130/10 0.0220 0.0883 470.5142 466.4677 490.6642

220/25 0.0227 0.3698 1734.6420 1524.807 1641.4780

300/25 0.1011 0.6094 2186.8840 2205.1020 2333.7050
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Hybrid Estimation of Distribution Algorithm (HEDA)

Wang et al. (2016) are used to compare the performance of

A-HEFT. The scheduling results are presented in Table 7.

It can be seen that A-HEFT still performs best among all

scheduling approaches.

5 Conclusions

Due to the increasingly competitive market, it is very

important to minimize makespan which can reduce costs

and increase production profits of many companies. In this

paper, an adaptive scheduling algorithm named A-HEFT is

presented to minimize the makespan of the jobs arriving

continuously over time in a manufacturing system by tak-

ing the setup time and matching operation into account.

The job operation processing model is presented as a

directed acyclic graph in the context of the extended

flexible job shop problem. Experimental results demon-

strate that A-HEFT has a shorter makespan than the other

state-of-the-art algorithms when scheduling static jobs.

Besides, when scheduling dynamic jobs, our adaptive

scheduling algorithm can obtain the optimal solutions for

large-size job shop problems in real time.
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