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Abstract: Pavement engineering is a crossroads between geotechnical and transportation engi-
neering with a sound base on construction materials. There are multiple applications of optimiza-
tion algorithms in pavement engineering, emphasizing pavement management for its socioeco-
nomic implications and back-calculation of layer properties for its complexity. A detailed literature 
review shows that optimization has been a permanent concern in pavement engineering. However, 
only in the last two decades, the increase in computational power allowed the implementation of 
metaheuristic optimization techniques with promising results in research and practice. Pavement 
management requires powerful optimization tools for multi-objective problems such as minimizing 
costs and maximizing the pavement state from network to project level with constrained budgets.  
A substantial amount of research focuses on genetic algorithms (ga), but new developments include 
particle intelligence (pso, aco, and abc). The study must go beyond small-sized networks to improve 
the management of existing road infrastructure (pavement, bridges) based on mechanistic and reli-
ability criteria.
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Optimización metaheurística aplicada en la gestión de pavimentos asfálticos
Resumen: la ingeniería de pavimentos es una encrucijada entre la ingeniería geotécnica y la ingeniería de 
transporte con una sólida base en los materiales de construcción. Existen diferentes aplicaciones de los algoritmos 
de optimización en la ingeniería de pavimentos, las cuales enfatizan la gestión del pavimento por sus implicaciones 
socioeconómicas y el cálculo inverso de las propiedades de las capas por su complejidad. Una revisión detallada 
de la literatura muestra que la optimización ha sido una preocupación permanente en la ingeniería de pavimentos; 
sin embargo, solo en las últimas dos décadas, el incremento del poder computacional permitió la implementación 
de técnicas de optimización metaheurísticas con resultados prometedores en la investigación y en la práctica. La 
gestión del pavimento requiere poderosas herramientas de optimización para problemas con objetivos múltiples, 
como minimizar costos y maximizar el estado del pavimento desde el nivel de la red hasta el del proyecto con 
presupuestos limitados. Una cantidad sustancial de investigaciones se centra en los algoritmos genéticos (ag), pero 
los nuevos desarrollos incluyen inteligencia de partículas (pso, aco y abc). El estudio debe ir más allá de las redes 
de pequeño tamaño para mejorar la gestión de la infraestructura vial existente (pavimento, puentes) con base en 
criterios mecanicistas y de confiabilidad.

Palabras clave: metaheurística; mejoramiento; gestión de pavimentos
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Introduction
This review article presents the application of 
metaheuristic optimization algorithms in pave-
ment engineering. Optimization is about finding 
the best solution from a pool that contains all 
the feasible solutions by following a three-step  
decision-making process: (a) to know the model or 
system, (b) to define the system effectiveness or ob-
jective function, and (c) to apply the theory of op-
timization [1]. A previous review on optimization 
techniques in civil engineering summarized an in-
creasing number of optimization algorithms and 
their applications to geotechnical, transportation, 
construction management, hydraulic, structural, 
and mechanical engineering problems. However, 
among 147 references, there were only two papers 
related to pavement engineering [2]. 

Pavement engineering is a crossroads between 
geotechnical and transportation engineering with 
a sound base in construction materials. It is not 
surprising that there are multiple applications of 
optimization algorithms in this area, emphasizing 
pavement management (pm) for its socioeconomic 
implications and back-calculation of layer proper-
ties for its complexity, considering the viscoelastic 
and nonlinear behavior of the materials.

In the following sections, the authors summa-
rize the research about metaheuristic optimization 
in pavement management systems (pms) in the last 
25 years and conclude about past, present, and fu-
ture lines of research. Most of the applications use 

genetic algorithms whose fundamentals can be 
found, for the sake of brevity, elsewhere [3].

Applied Optimization in 
Pavement Management 
pm systematically involves planning and pro-
gramming expenditures, design, construction, 
maintenance, operation, and in-service evalua-
tion of pavement structures in roads, airports, and 
parking lots. Management activities include data 
acquisition, planning, programming, new cons-
truction, maintenance, rehabilitation, and renova-
tion of pavements [4].

The decision-making process in pm has two ba-
sic levels: (a) the network level to develop a priority 
program and schedule work within a budget, and 
(b) the project level to focus on a particular loca-
tion and prioritize the physical implementation 
of network decisions [5]. pmss consider multiple 
objectives like minimizing the discounted total or 
annual expenditures, maximizing the pavement 
network condition according to a performance 
measure, or maximizing the use of workforce and 
machine resources. In general, there are two types 
of maintenance and rehabilitation (m&r) schedul-
ing problems in pm: the budget planning problem 
(minimizing cost over time) and the budget allo-
cation problem (maximizing the effectiveness or 
minimizing user costs) subjected to budget con-
straints [6]. Fig. 1 shows the components and ac-
tivities of a pms. 

Fig. 1. pms components and activities.
Source: Summarized after Yang et al. [7]
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pms evolved into “Asset Management Systems,” 
considering the bridges and other components 
of the infrastructure and combining engineering 
principles with business practice and econom-
ic theory [8]. Asset management is a process of 
resource allocation (budget, labor, and facility) 
in several decision-making levels like asset class 
(pavement or bridges), category of works (preser-
vation versus a capacity expansion), and projects 
in each asset class and work category [9].

The need for optimization techniques is ev-
ident in the combinatorial double-exponential 
budget allocation problem on a pavement net-
work, whose search space of possible solutions is 
defined by eq. (1):

(1)

Where Ss is the size of the search space for the 
optimizing problem, A is the number of activ-
ities, Ps is the number of pavement sections, and 
T is the analysis period in years. pmss require a 
module to optimize maintenance alternatives at 
the network level to solve this combinatorial prob-
lem [10]. Considering four management activities 
(0: do-nothing, 1: routine maintenance, 2: reha-
bilitation, and 3: reconstruction) and an analysis 
period of several years, the number of pavement 
sections in the network defines the size of the 

search space for the problem. A pavement section 
represents similar conditions of climate, traffic, 
subgrade, materials, and pavement condition. For 
example, two climatic zones, three levels of traffic, 
four types of subgrades, two types of pavements, 
and seven categories of pavement condition define 
366×N combinations, where N is the actual num-
ber of sections in the pavement network. Sections’ 
longitude range between hundreds to thousands of 
meters, so their number in a road network is sig-
nificant. Thus, for a 20-year analysis period, eq. (1) 
yields  possible (4)(366∙N) 20  combinations of man-
agement activities in the network. This “combi-
natorial explosion” defines an “N-hard” problem, 
which needs significant computing power [11].

The programming of pms activities based on 
ranking methods or subjective priority rules does 
not guarantee optimal utilization of available re-
sources [12]. At the same time, effective manage-
ment will produce a safe environment for public 
users [13].

Metaheuristic Optimization in 
Pavement Management
A literature review shows multiple optimization 
techniques applications to the pm problem in the 
last 25 years. Table 1 summarizes the main charac-
teristics of several applications of genetic algorithms 
and other soft computing techniques in pms.

Table 1. Summary of pavement management applications with soft computing

Reference Description Methods (a) Crossover type 
and rate (b)

Mutation type 
and rate (c)

Population range 
(selected)

Maximum 
generations

[3] Road network 
maintenance ga and ra op uf-sg (0.10) 10–80 (50) 50

[14] Road network 
maintenance ga and ra op (0.80) sg (0.20) 80 100

[15] Road maintenance 
based in optimized 
weights of the ann

ga and ann (0.70) (0.10) 10 50

[16] Road network 
maintenance ga and ra op (0.80) uf- sg (0.20) 30 100

[12] pm activities 
programming ga op (nr) (d) uf (nr) nr nr
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Reference Description Methods (a) Crossover type 
and rate (b)

Mutation type 
and rate (c)

Population range 
(selected)

Maximum 
generations

[11] Multi-objective 
optimization in pm ga and ra op (0.60) uf (0.01) 60 70

[17] Multi-objective 
programming of pm 
activities

ga and ra op (0.80) uf (0.10) 200 500

[18] Evaluation 
of pavement 
deterioration models

ga and ra op (nr) uf (nr) nr Up to 9,600

[19] Constraint handling 
methods in pavement 
maintenance 
programming

ga and ra tp (nr) uf (nr) 100– 400 250

[49] pm optimization model ga op-u (0.85) uf (0.05) 1,000 nr

[20] Multiyear pavement 
repair scheduling 
optimization

ga and es nr nr 40 Up to 39,000

[21] Pavement 
maintenance 
scheduling for road 
closure

ga and s tp (0.80) uf (0.05) 4 20

[13] Multiobjective 
optimization model 
for Thailand highway 
network

ga and ra mp (0.90) uf (0.045) 50 100

[22] Maintenance 
optimization of 
infrastructure 
networks

ga and mc da (0.50) da (0.01) 50 10,000

[23] Pavement 
maintenance 
management

ga and ann op (0.90) uf (0.001) 924 1,270

[24] Multilayer pavement 
maintenance program ga, ra, and mc u (0.50) uf (0.01) 32 50,000

[25] Network optimization 
system with multiple 
objectives

ga, lp, and mc op (0.90) uf (0.01) 45 150

[4] Highway 
infrastructure 
maintenance schedule

ga op (0.70) uf (0.30) 100 200
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Reference Description Methods (a) Crossover type 
and rate (b)

Mutation type 
and rate (c)

Population range 
(selected)

Maximum 
generations

[39] Chaos particle 
swarm optimization 
applied in pavement 
maintenance decision

cpso vs. nsga-II --
nr

--
nr

--
nr

50
50

[26] Design and 
management 
strategies for mixed 
public-private 
transportation 
networks

ga op (0.75) uf (0.004) 100 100

[27] Road pavement 
performance 
evaluation

ga and ann op (nr) 30

[40] pm activities 
programming pso -- -- 15 100

[28] Integrated 
prioritization and 
optimization approach 
for pm

ga nr (0.85) nr (0.05) 300 nr

[4] Optimum genetic 
algorithm structure 
selection

ga and ra u (0.90) sg (0.10) 50 500

[31] Incorporating 
priority preferences 
into pavement 
maintenance 
programming

ga op (0.85) uf (0.05) 300 nr

[34] Advanced pms ga op (0.80) uf (0.90) 100 500

[46] Analysis of pm 
Activities

ga and ra vs. 
pso and ra nr (0.90) nr (0.005) 100 1,000

[42] Planning maintenance 
works in pavements aco -- -- 40 ants 33 tours

[7] Pavement 
maintenance 
scheduling

ga op (0.60) uf (0.01) 500 5,000

[35] Multi-objective 
optimum analysis 
of pavement 
maintenance

ga and mc nr (0.60) nr (0.01) 100 nr
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The following paragraphs present research  
based on genetic algorithms and other metaheuris-
tics techniques described in Table 1.

Optimization with genetic 
algorithms
Chan et al. [3] developed the pioneer comput-
er program PAVENET, adapting the genetic al-
gorithm for analyzing the road maintenance 

management problem at the network level. The 
objective functions minimized the present worth 
of the maintenance costs over the planning hori-
zon, maximized the usage of the yearly allocated 
budgets, or minimized the fluctuations of the an-
nual expenditures. The program did not consider 
any significant rehabilitation within the analysis 
period and predicted pavement conditions with 
deterministic closed-form equations for cracking, 
rutting, and surface disintegration.

Reference Description Methods (a) Crossover type 
and rate (b)

Mutation type 
and rate (c)

Population range 
(selected)

Maximum 
generations

[36] Optimization 
of pavement 
maintenance under 
overload traffic

ga nr nr nr 100

[38] Comparative study 
of metaheuristic 
algorithms for road 
maintenance planning

nsga II
mopso

nr (0.75)
nr

nr (0.30)
nr

45
nr

400
nr

[43] Multi-objective 
optimization 
of pavement 
maintenance

pso -- -- 100 100

[44] Improved artificial bee 
colony algorithm for 
pavement resurfacing 
problem

abc -- --
100
50 foragers
50 onlookers

5,000

[48] Pavement m&r 
scheduling

wca, aoa
de, aco
pso, ga

nr nr nr nr

Methods: ga: Genetic algorithm, ra: Regression analysis, ann: Artificial neural network, s: Simulation, 
es: Expert system, mc: Markov-chain, lp: Linear programming, pso: Particle-swarm optimization, aco: 
Ant colony optimization, cpso: Chaos particle swarm optimization, nsga-II: Non-dominated sorted ge-
netic algorithm, abc: Artificial Bee Colony, wca: Water Cycle Algorithm. aoa: Arithmetic Optimization 
Algorithm. de: Differential Evolutionary, mopso: Multi-objective particle-swarm optimization.
Crossover type: op: One-point, tp: Two-point, u: Uniform, mp: Multi-point, da: Dynamically adjusted 
by the software.
Mutation type: uf: Uniform flipping, sg: Switching genes, da: Dynamically adjusted by the software.
Other: nr: Non-reported.
Source: Modified from Golroo and Tighe [4].
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Fwa et al. [14] presented an application of the 
previous work. The objective function maximized 
the management activities subjected to production 
requirements, budget constraints, workforce avail-
ability, equipment availability, material availabil-
ity, and rehabilitation constraints. The case study 
considered four highway types, four pavement re-
pair activities, and three need-urgency levels con-
sidering the number of workdays in a month.

Taha and Hanna [15] introduced a genetic al-
gorithm approach that evolves a neural network 
model to select the optimum maintenance strate-
gy for flexible pavements from a series of if-then-
else rules contained in an expert system. The input 
factors considered distress type, distress density, a 
riding condition index, traffic volume, crack type, 
and distress severity. The genetic algorithm im-
proved the selection of artificial neural network 
parameters based on the ann performance in un-
seen cases (outside the network training database). 

Fwa et al. [16] improved the PAVENET-R 
program to apply genetic algorithms in the pro-
gramming of pavement m&r activities of a road 
network over a multiple-period planning horizon. 
The model considered the division of the network 
in uniform segments, the definition of a planning 
period, and the implementation of warning lev-
els and prediction models for cracking, rutting, 
and surface disintegration based on the aashto 
performance algorithm for flexible pavements.  
The program considered three maintenance 
alternatives and one rehabilitation option.  
The objective function minimized the total pres-
ent cost, constrained to the relationship between  
the costs of the overlay rehabilitation and the com-
bination of the maintenance activities and the fea-
sibility of the combined alternatives.

Pilson et al. [11] considered a multi-objective 
optimization and applied an interactivity mod-
el to predict pavement deterioration. The multi- 
objective function considered both costs and a per-
formance level of pavement and defines an “effi-
cient” frontier (actually, a Pareto front), which may 
become a hypersurface with additional objective 
functions. The authors estimated the pavement 
deterioration with a linear-regression interactivity 
model that related material conditions in four-layer 

asphalt pavement. A numerical example showed 
that it was possible to obtain efficient (Pareto) net-
work surfaces considering two objectives, includ-
ing penalties for unfeasible individuals.

Fwa et al. [17] developed a genetic  
algorithm-based formulation for multi-objective 
programming of pm activities. The authors re-
viewed the problems from previous publications 
considering two and three objective functions to 
identify a Pareto front. The original objective func-
tion maximized the labor in total workday units 
in pavement maintenance while other objective 
functions considered: (a) minimization of the total 
maintenance cost and (b) maximization of overall 
network pavement condition. The final solution se-
lection may consider the expected budget level or 
any other form of weighting between criteria. 

Shekharan [18] used genetic algorithms to 
evaluate five pavement deterioration models from 
synthetic databases created from multiple regres-
sion models. Deterioration models are essential 
in the pms to estimate the evolution of pavement 
conditions in the analysis period and trigger the 
warrants for prescribing treatments or rehabili-
tation procedures. The deterioration models were 
the present serviceability rating (psr), the distress 
maintenance rating (dmr), the pavement condi-
tion rating (pcr), and the Texan punchouts and 
patches model. The objective function minimized 
the errors between the database and the models 
based on genetic algorithms.

Chan et al. [19] reviewed the performance of 
two constraint handling methods and proposed a 
new way for applying genetic algorithms to pave-
ment maintenance programming at the network 
level. The authors analyzed a previously published 
example with an objective function to maximize 
the total weighted work production under produc-
tion requirements, budget, workforce, equipment, 
materials, and rehabilitation constraints. The 
authors summarized three constraint handling 
methods’ main features and developed the “prior-
itized resource allocation method” (pram), which 
encodes the value decision variables with addi-
tional information about the available resources 
and always satisfies the resource constraints.
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Fig. 2. AI-based decision-support technologies in pms.
Source: Modified after Sundin and Braban-Ledoux [5].

Sundin and Braban-Ledoux [5] did a com-
prehensive review of artificial intelligence-based  
decision-support technologies in pm. The prima-
ry decision-support technologies for unstruc-
tured problems are (a) group support systems, 
(b) executive information analysis, (c) expert or  
knowledge-based systems, (d) artificial neural 

networks, and (e) hybrid support systems. pmss 
use deterministic (regression), probabilistic (usu-
ally Markovian), or mechanistic-empirical per-
formance prediction models. Fig. 2 shows the 
applications of AI-based decision-support tech-
nologies to the pms decision-making process with 
some examples.
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Tack and Chou [20] compared the results of 
simple and constrained genetic algorithms with 
dynamic programming in multiyear pavement 
repair scheduling. The objective function maxi-
mized the overall average yearly network condi-
tion. The constrained genetic algorithm included 
an expert system in determining the type of re-
pair to individual pavement sections according to 
their condition. A case study showed that the pre- 
constrained genetic algorithm achieved an opti-
mum solution faster than the simple genetic algo-
rithm; however, dynamic programming was the 
most accurate optimization technique.

Cheu et al. [21] presented a hybrid methodolo-
gy using a genetic algorithm as a search technique 
coupled with a microscopic traffic simulation 
model to optimize the daily lane closure schedul-
ing in a network for maintenance activities. The 
objective function minimized the total travel time 
of vehicles in the network during the day.

Flintsch and Chen [8] reviewed soft comput-
ing applications for infrastructure management. 
The authors summarized applications of artificial 
neural networks, fuzzy logic systems, genetic al-
gorithms, and their hybridization for three main 
tasks in pm: (1) asset performance, (2) needs anal-
ysis and, (3) tradeoff analysis. The authors identi-
fied applications of genetic algorithms and fuzzy 
mathematical programming for the latter. The 
hybridization offered good perspectives; howev-
er, the authors identified several issues for soft- 
computing implementation like legacy systems, lack 
of understanding of the techniques and their bene-
fits, and lack of data to develop reliable models.

Morcous and Lounis [22] presented an ap-
proach that uses a genetic algorithm with  
Markov-chain models for programming pavement 
maintenance alternatives. Pavement deteriora-
tion is a stochastic process where the probability 
of a future state depends only on the present state. 
The maintenance alternatives defined transition 
probability matrices for the analysis period with 
associated discounted costs. The objective func-
tion minimized the discounted present value of 
the maintenance costs of all facility groups while 
keeping the condition of every group at any time 
above a threshold value.

Herabat and Tangphaisankun [13] developed 
a multi-objective optimization model to support  
decision-making and provide optimal mainte-
nance programs to the Thailand highway agency. 
The authors considered two objective functions: 
(a) the minimization of vehicle operating costs and 
(b) the maximization of the road network condi-
tion measured by the International Roughness In-
dex (iri). Also, they computed the operation costs 
for each type of vehicle, considering the pavement 
roughness with the hdm-III model, and used five 
maintenance types with closed-form equations to 
predict their impact on pavement roughness and 
a roughness degradation model with time. The 
constraints included budget limitation (hard con-
straint) and system preservation based on iri (soft 
constraint). The authors found an optimum iri of 
2.702 m/km to trigger maintenance applications.

Bosurgi and Trifirò [23] proposed an optimiza-
tion procedure for the management of resurfacing 
interventions on flexible pavements with genetic 
algorithms based on two indicators: (a) the Side-
way Force Coefficient (sfc) and (b) predicted ac-
cidents. Both the sfc and the accident prediction 
models used artificial neural networks related to 
sfc variation with time, cumulative traffic, geo-
metric and environmental characteristics, and the 
number of accidents on the road.

Chootinan et al. [24] developed a pavement 
maintenance program based on the Markov tran-
sition probability matrix (tpm) approach to ad-
dress the uncertainty of the predicted pavement 
condition. The authors considered the challenge to 
develop a long-term maintenance plan at the proj-
ect level that is consistent with the network-level 
recommendations and considered two objective 
functions: (a) to minimize the maintenance cost 
and (b) to maximize the pavement performance. 
The pavement performance prediction of a pave-
ment section considered an aashto-based ser-
viceability rating (psr) as a function of the initial 
condition, pavement structural number, age of 
pavement, cumulative 18-kip axle loads at the spe-
cific year, and an adjustment climatic and func-
tional factor. The authors combine the genetic 
algorithm with the condition simulation to solve 
the stochastic maintenance problem subjected to 
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budget constraints. The comparison between de-
terministic and stochastic simulations showed a 
faster convergence of the latter.

Wang et al. [25] reviewed the Arizona State ex-
perience with the Network Optimization System 
(nos) based on Markovian transition prediction 
models of pavement condition prediction coupled 
with linear optimization. The authors proposed 
integrating a genetic algorithm to solve the net-
work optimization problem at the network level. 
nos considered three pavement factors to estab-
lish the pavement condition and generate decision 
variables: level of roughness, level of cracking, and 
index to first crack. Also, the system considers six 
preserving actions from routine maintenance to 
overlay construction. The objective function max-
imized the pavement condition while minimiz-
ing agency costs in a combined weighted fitness 
function.

Unnikrishnan et al. [26] proposed a multi- 
objective bi-level mathematical programming 
framework to evaluate the impact of m&r in 
Build-Operate-Transfer (bot) highways, inte-
grating maintenance and capacity improvements 
decisions with optimal toll pricing. The users se-
lect their routes with the user equilibrium assign-
ment based on time travel, the toll, and the state 
of the pavement. The private operator and the 
public agency had different objective functions, 
maximizing the net present value of the bot, and 
minimizing the system’s total cost, respectively. 
A case study on a small network with bot and 
public roads showed different Pareto fronts for 
several combinations of actions from the private 
and public actors.

Qian [27] improved several performance pre-
diction models for pavements by hybridizing a ge-
netic algorithm and an artificial neural network. 
The author implemented the genetic algorithm 
into the back-propagation neural network training 
with an objective function to minimize the error 
between observed and predicted pavement perfor-
mance. A comparison between ann and ga-ann 
showed better forecasts for the hybrid approach.

Javed [28] stated that traditional pm prioritizes 
rules like “worst goes first,” the effective cost, or 
based on a distress index without a clear physical 

meaning. A genetic algorithm allowed to maxi-
mize the pavement behavior under constrained 
budget conditions and mitigated the sub-optimal 
alternatives produced by the user’s priority prefer-
ences employed in the pms.

Santos and Ferreira [29] developed OPTIPAV 
software with genetic algorithms. The program 
considers the optimization of pavement behavior, 
the costs of construction, preventive maintenance 
activities (and rehabilitation), the user costs, and 
the residual value of the pavement for a given anal-
ysis period. The program uses the 1993 aashto 
algorithm and the present serviceability index 
[30]. The objective function minimized the total 
discounted costs over the project analysis period 
while keeping the pavement above specified quali-
ty standards. The constraints corresponded to the 
pavement condition in each year based on the pre-
vious state and m&r activities.

Golroo and Tighe [4] reviewed the optimum 
genetic algorithm structure for developing a main-
tenance system by performing a sensitivity anal-
ysis on the outcome of the problem concerning 
the genetic algorithm structure. The authors se-
lected five objective functions: (a) minimization of 
maintenance costs, (b) maximization of saving in 
vehicle operation cost (voc), (c) maximization of 
effectiveness, (d) maximization of saving voc over 
maintenance costs, and (e) maximization of effec-
tiveness over cost. “Effectiveness” is the area under 
the performance curve multiplied by the length of 
a pavement section and the annual average dai-
ly traffic. The authors recommended evaluating 
the ga operators instead of using typical values 
from previous publications in any optimization 
problem.

Farhan and Fwa [31] examined the implica-
tions of a priori application of priority weights in 
the pavement maintenance programming analysis. 
Highway agencies apply priority weights according 
to pavement distress, pavement condition, road 
class, or traffic volume in the process of optimal 
programming of pavement maintenance or reha-
bilitation activities. However, most agencies may 
ignore the effect that these relative magnitudes 
have on the optimization process. The authors 
applied several combinations of priority weights  
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to a case study based on genetic algorithms and 
found that such values define sub-optimal solu-
tions, the worst for multiple priority weights.

Meneses [32], [33] developed the Multi- 
objective Decision-Aid Tool (MODAT), a mod-
ified version of the OPTIPAV program, to mini-
mize the cost in a planning period by closing the 
gap between network and project management by 
changing the standard design variables (thickness, 
moduli, weather, or traffic) for the damage charac-
terization and its future prediction. The multiple 
objectives included minimizing the maintenance, 
rehabilitation, and user costs and maximizing the 
residual value of the pavement. Constraints have 
structural and functional characteristics.

Di Mino et al. [34] developed a two-objective 
optimization model to minimize road accident 
risk and rehabilitation costs on network and proj-
ect levels. The authors modeled the pavement de-
terioration as a Markovian process, used a genetic 
algorithm to optimize the rehabilitation activities 
on the pavement, and considered the potential of 
including a third objective function to minimize 
user costs.

Elhadidy et al. [35] developed an integrated pms 
for the Egyptian road network. The authors imple-
mented a genetic algorithm with a Markov-chain 
deterioration model considering the available bud-
get and road network condition based on the pave-
ment condition index (pci). The objective function 
considered two aspects: (a) minimizing the m&r 
costs and (b) maximizing the pavement condition. 
A numerical example showed a clear Pareto front 
for Egyptian conditions for network and project 
management.

Yang et al. [7] proposed a new pms integrating 
a pavement age gain model to evaluate pavement 
conditions and nsga-II to optimize pavement 
maintenance. The authors assessed both deter-
ministic and probabilistic pavement age models, 
being the latter more realistic. The objective func-
tions minimized the pavement maintenance cost 
and maximized the remaining pavement life. The 
authors defined the parameters of the ga through 
trial and error. Both deterministic and probabilis-
tic approaches showed clear Pareto fronts with a 
better result for the stochastic approach because 

it improved the pavement condition after mainte-
nance. In contrast, the deterministic approach al-
ways caused a reduction in the pavement condition.

Rifai et al. [36] developed a two-objective op-
timization model with ga considering maximum 
roughness and minimum maintenance cost for 
in-service road networks subjected to overloading 
in West Java. The pavement deterioration model 
forecasts the iri using Support Vector Machines 
for highways with and without overloading. The 
case study achieved both objective functions ac-
cording to a Pareto analysis considering three lev-
els of loading/overloading.

Santos et al. [37] presented an adaptive hybrid 
genetic algorithm (ahga) for pm. The authors com-
bined a genetic algorithm (ga) with local search 
(ls) mechanisms for solving the pavement m&r 
strategy selection problem based on the OPTIPAV 
model. The partial local search mechanism aims to 
either accelerate the discovery of reasonable solu-
tions or reach solutions that would be unreachable 
by evolution or a local method alone.

Matin et al. [38] did a comparative study of 
metaheuristic algorithms for road maintenance 
planning with a field study in the rural transporta-
tion network in Iran. The authors compared both 
single-objective and multi-objective optimiza-
tions with genetic algorithms and particle swarm 
optimization. The objective functions were: (a) 
pavement performance maximization and (b) 
maintenance cost minimization constrained by 
budget. The pavement performance model was a 
quadratic regression equation of pci versus the age 
of the pavement. The m&r actions included local-
ized preventive, global preventive, and significant 
maintenance. The authors conclude that multi- 
objective optimization is better than single-objec-
tive optimization.

Optimization with swarm 
intelligence
Shen et al. [39] applied chaos particle swarm op-
timization (cpso), with local solid searching ca-
pability and control of population diversity, to 
pavement maintenance decisions. The objective 
function maximized the economic benefit and to 
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keep the pavement in an optimal state constrai-
ned to the available budget and workforce. A case 
study against an nsga-II showed the validity of the 
cpso results and faster convergence.

Tayebi [40] applied particle swarm optimization 
(pso) to pm activities programming to determine 
the best m&r activities based on four minimizing 
cost equations. A replication of the case study pro-
posed by Fwa et al. [16] showed promising results.

Chang [41] applied the pso method to priori-
tize pavement sections for m&r activities in the 
Smooth Roads Project in Taiwan. The pavement 
condition for 135 pavement sections considered 
the standard deviation for roughness, rutting, de-
flections, cracking, pothole, bleeding, patching, 
and shoving.

Terzi and Serin [42] applied the ant colony op-
timization (aco) to the programming of m&r of 
pavements concerning the budget. The authors 
proposed a case study to maximize the routine 
maintenance workload subjected to budget and 
resource constraints for four classes of highways, 
four maintenance activities, and three emergency 
levels. The optimization results were satisfactory 
compared to the original case study and included 
a newly implemented budget restriction.

Ahmed et al. [43] applied chaos with discrete 
multi-objective particle swarm optimization to 
pavement maintenance. The authors considered 
two objective functions: minimizing the treatment 
cost and the sum of all residual pci values. The “re-
sidual pavement condition index” of a pavement 
section is the subtraction of the existing pci from 
100, multiplied by the annual average daily traffic 
and the areas of the section as weighting values. 
The authors estimate the actual pci with a re-
gression equation considering cracking areas and 
lengths, pavement age, and maintenance effect. A 
small case study with five pavement sections, five 
alternatives of m&r, and a ten-year period showed 
significant reductions in computing time com-
pared with published solutions.

Panda and Swamy [44] developed an improved 
artificial bee colony algorithm for the pavement 
resurfacing problem. The methodology considers 
user and agency costs, inflation and interest rates, 
and reachable roughness levels during pavement 

resurfacing cycles. The solution yields the frequen-
cy and thickness of resurfacing, maximizing the 
cost-effectiveness without the specification of trig-
ger roughness level. The authors used multiple col-
onies to enhance the exploration and exploitation 
capabilities of the algorithm.

Optimization with genetic 
programming
Chang and Chao [45] used genetic programming 
(gp) to support pavement m&r decisions. The au-
thors conducted gp to explore the m&r decision 
model between 18 pavement distress types (inputs) 
and the required m&r treatment among four op-
tions (output) based on 2,340 records of pavement 
distress surveys from seven roads in Taiwan. Glo-
bal and major m&r activities had the worst ac-
curacies due to their low number of cases in the 
database. Consequently, the model and algorithm 
are promising but require further refinement with 
additional data.

Optimization with greedy search
Yepes et al. [10] developed an optimization modu-
le based on local search heuristics to optimize the 
allocation of maintenance funds at the network 
level subjected to budgetary and technical restric-
tions. The heuristic consisted of a hybrid algorithm 
based on a Greedy Randomized Adaptive Search 
Procedure (grasp) to construct a population of 
feasible solutions considering penalty functions 
and a Threshold Acceptance (ta) as a postpro-
cessor of the completed solutions to intensify the 
search. The problem involved a single-objective 
optimization of the long-term effectiveness based 
on the area bound by the treatment time versus the 
performance curve. The performance was a sim-
plified form of the Pavement Condition Index for 
urban pavements.

Optimization with hybrid methods
Tayebi et al. [46] compared a genetic algorithm with 
a particle swarm optimization to minimize the cost 
of pm activities. The authors recognized the comple-
xity of predicting pavement performance and adop-
ted three aashto-based distress models: cracking, 
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rutting, and surface disintegration as traffic func-
tions and the pavement structural number (sn). 
The objective function in both algorithms minimi-
zed the m&r activities cost at the network level. The 
authors found that pso is an efficient, easy-to-im-
plement optimization model for pms, even faster 
and more accurate than the ga.

Nik et al. [47] tested eight hybridizations of 
pso and ga to optimize the homogeneous sectio-
ning of a pavement network minimizing the cost 
and sectioning error on branches and networks 
based on pci surveys. The hybrid approach pro-
ved to be better than the individual application of 
pso and ga, including computing cost. 

Naseri et al. [48] evaluated several metaheu-
ristic algorithms to solve large-scale pavement 
network m&r scheduling based on the iri deterio-
ration. A case study with 109 pavement sections 
indicated that the Water Cycle Algorithm (wca) 
has a better performance than genetic algorithms 
(ga), particle swarm optimization (pso), and diffe-
rential evolutionary (de) methods. However, the 
authors do not report multiple runs that may yield 
a different conclusion in this single aspect, consi-
dering the random features of metaheuristics.

Conclusions
Metaheuristic methods are powerful tools to op-
timize pm activities, especially for multi-objective 
problems such as minimizing costs and maximi-
zing the pavement condition at the network and 
project levels. According to the reviewed appli-
cations, there are three general types of objective 
functions:
1. Based on cost or expenditures as follows: (a) 

minimization of maintenance costs or fluc-
tuations of yearly demand for pavement ex-
penditures, (b) maximization of usage of the 
allocated budget, and (c) maximization of sa-
vings in vehicle operating costs.

2. Based on resource consumption as follows: (a) 
maximization of usage of available workforce 
or minimization of workforce requirements, 
(b) maximization of usage of available equip-
ment or minimization of equipment require-
ments, and (c) maximization of maintenance 

production.
3. Based on pavement condition or network ope-

ration as follows: (a) maximization of effecti-
veness, (b) maximization of overall network 
pavement condition, (c) maximization of skid 
resistance, (d) minimization of total travel time 
of vehicles in a network under maintenance, 
and (e) minimization of accidents.
Cost-based functions are the preferred objec-

tive functions or constraints (fixed budget). Re-
source consumption-based objective functions 
are of interest to highway agencies with in-house 
capabilities beyond administrative management 
(self construction). Pavement condition-based is 
the most comprehensive objective function be-
cause it can be directly related to agency and user 
costs (vehicle operation costs, delay of users, and 
cost of accidents).

Beyond the promising published case studies 
in the last 25 years, one must consider testing new 
metaheuristic applications on minor test prob-
lems to compare their results to global optimum 
solutions obtained through complete enumera-
tion [49]. Most of the reviewed applications used  
small-size numerical cases with pavement networks 
composed of less than 100 homogeneous sections 
with longitudes near 500 meters. Also, typical pave-
ment sections may provide a programming scheme, 
but further work is necessary to execute the pms ac-
tivities on individual pavement sections.

Many examples apply genetic algorithms, and 
it would be wise to implement parallelization te-
chniques to expand the problem sizes beyond the 
typical cases with some pavement sections and 
a handful of management activities [50]. pm is a 
heavily constrained problem, and the random ge-
neration of individuals may produce a high rate 
of invalid agents in genetic algorithms. Although 
the penalty or “decode & repair” methods are pre-
ferred to deal with invalid individuals, it is con-
venient to consider the constraints in encoding 
solutions or using a free-encoding algorithm like 
particle swarm optimization. The genetic algo-
rithm performance improves significantly with 
hybridization with expert systems to reduce in-
valid individuals’ production or parallelization 
with subset migration among populations. Recent 
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research by Alqaili et al. [51] presents a multi-ob-
jective stochastic algorithm for discrete variables 
(isa), which surpasses the genetic algorithm in 
improving the pcr based on iri of a pavement 
network with a minimum budget in developing 
countries.

Multi-objective optimization is fundamen-
tal for better implementing pm activities because 
it explores a set of near-optimum solutions that 
offer tradeoffs for the highway agency. The current 
efforts in multi-objective optimization focus on 
two or three objective functions. Mathematica-
lly, it is possible to define N objective functions 
and obtain an incumbent solution with the mi-
nimum vector from the origin to the normalized 
N-dimensional Pareto hyper-front. However, the 
current research and technology transfer state de-
mands a simple approach to mitigate the resistance 
to embrace this new analysis method. 

Future research in multi-objective optimiza-
tion calls for sustainable aspects, such as environ-
mental and social impacts, to assess the overall 
costs and benefits induced by maintenance alter-
natives [10]. Wu et al. [9] reviewed the application 
of multi-objective optimization techniques at stra-
tegic (cross-asset), network, and project levels of 
highway asset management and highlighted the 
advantages of multi-objective optimization tech-
niques over traditional approaches. The authors 
described several methods used for supporting 
infrastructure management decisions considering 
multiple objectives. No single multi-objective opti-
mization technique is superior, and the applicabi-
lity depends on the conditions for the problem and 
available information.

Finally, one must take into account the sto-
chastic process of pavement deterioration with 
Markov-chain models as proposed in the Arizona 
State pms [49] or by Morcous and Lounis [22] and 
Shahin [52] for the pci prediction. Prediction mo-
dels are improving at a fast-paced rhythm thanks 
to machine learning methods hybridized with 
metaheuristics to forecast the pavement condi-
tion from structure-related data, for example, the 
labor-intensive pavement condition index from 
falling weight deflectometer measurements. Once 
calibrated, the prediction model evaluates multiple 

m&r scheme alternatives to maximize the pave-
ment condition with the lowest cost [53]. Machi-
ne learning also allows to predict the iri based on 
large amounts of data, for example, the Long-Term 
Pavement Performance dataset [54], and assess ve-
hicle operating costs [55] as part of an optimiza-
tion plan.
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