24 research outputs found

    Optimal Inertial Sensor Placement and Motion Detection for Epileptic Seizure Patient Monitoring

    Get PDF
    Use of inertial sensory systems to monitor and detect seizure episodes in patients suffering from epilepsy is investigated via numerical simulations and experiments. Numerical simulations employ a mathematical model that is able to predict human body dynamic responses during a typical epileptic seizure. An optimized inertial sensor placement procedure is developed to address achievement of highest possible sensing resolution in determining angular accelerations with minimal errors. In addition, a joint torque estimation procedure is formulated to assist in the future development of a possible detection scheme. Experimental motion data obtained from an epileptic seizure patient as well as a healthy subject via a cluster of inertial measurement sensors formed a basis for proposing a suitable detection scheme based on non-linear response analysis. In particular, preliminary experimental data analysis has shown that the proposed modified Poincaré Map based scheme can become an effective tool in detecting of seizure via inertial measurements

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Understanding disease through remote monitoring technology:A mobile health perspective on disease and diagnosis in three conditions: stress, epilepsy, and COVID-19

    Get PDF
    Mobile systems and wearable technology have developed substantially over the last decade and provide a unique long-term and continuous insight and monitoring into medical condi- tions in health research. The opportunities afforded by mobile health in access, scale, and round-the-clock recording are counterbalanced by pronounced issues in areas like participant engagement, labelling, and dataset size. Throughout this thesis the different aspects of an mHealth study are addressed, from software development and study design to data collection and analysis. Three medically relevant fields are investigated: detection of stress from physiological signals, seizure detection in epilepsy and the characterisation and monitoring of COVID-19 through mobile health techniques.The first two analytical chapters of the thesis focus on models for acute stress and epileptic seizure detection, two conditions with autonomic and physiological manifestations. Firstly, a multi-modal machine learning pipeline is developed targetting focal and general motor seizures in patients with epilepsy. The heterogenity and inter-individual differences present in this study motivated the investigation of methods to personalise models with relatively little data. I subsequently consider meta-learning for few-shot model personalisation within acute stress classification, finding increased performance compared to standard methods.As the COVID-19 pandemic gripped the world the work of this thesis reoriented around using mHealth to understand the disease. Firstly, the study design and software development of Covid Collab, a crowdsourced, remote-enrollment COVID-19 study, are examined. Within these chapters, the patterns of participant enrolment and adherence in Covid Col- lab are also considered. Adherence could impact scientific interpretations if not properly accounted for. While basic drop-out and percent completion are often considered, a more dynamic view of a participant’s behaviour can also be important. A hidden Markov model approach is used to compare participant engagement over time.Secondly, the long-term effects of COVID are investigated through data collected in the Covid Collab study, giving insight into prevalence, risk factors, and symptom manifestation with respect to wearable-recorded physiological signals. Long-term and historical data accessed retrospectively facilitated the findings of significant correlations between development of long-COVID and mHealth-derived fitness and behaviour

    Innovative IoT Solutions and Wearable Sensing Systems for Monitoring Human Biophysical Parameters: A Review

    Get PDF
    none3noDigital and information technologies are heavily pervading several aspects of human activities, improving our life quality. Health systems are undergoing a real technological revolution, radically changing how medical services are provided, thanks to the wide employment of the Internet of Things (IoT) platforms supporting advanced monitoring services and intelligent inferring systems. This paper reports, at first, a comprehensive overview of innovative sensing systems for monitoring biophysical and psychophysical parameters, all suitable for integration with wearable or portable accessories. Wearable devices represent a headstone on which the IoT-based healthcare platforms are based, providing capillary and real-time monitoring of patient’s conditions. Besides, a survey of modern architectures and supported services by IoT platforms for health monitoring is presented, providing useful insights for developing future healthcare systems. All considered architectures employ wearable devices to gather patient parameters and share them with a cloud platform where they are processed to provide real-time feedback. The reported discussion highlights the structural differences between the discussed frameworks, from the point of view of network configuration, data management strategy, feedback modality, etc.Article Number: 1660openRoberto De Fazio; Massimo De Vittorio; Paolo ViscontiDE FAZIO, Roberto; DE VITTORIO, Massimo; Visconti, Paol

    A Physiological Signal Processing System for Optimal Engagement and Attention Detection.

    Get PDF
    In today’s high paced, hi-tech and high stress environment, with extended work hours, long to-do lists and neglected personal health, sleep deprivation has become common in modern culture. Coupled with these factors is the inherent repetitious and tedious nature of certain occupations and daily routines, which all add up to an undesirable fluctuation in individuals’ cognitive attention and capacity. Given certain critical professions, a momentary or prolonged lapse in attention level can be catastrophic and sometimes deadly. This research proposes to develop a real-time monitoring system which uses fundamental physiological signals such as the Electrocardiograph (ECG), to analyze and predict the presence or lack of cognitive attention in individuals during task execution. The primary focus of this study is to identify the correlation between fluctuating level of attention and its implications on the physiological parameters of the body. The system is designed using only those physiological signals that can be collected easily with small, wearable, portable and non-invasive monitors and thereby being able to predict well in advance, an individual’s potential loss of attention and ingression of sleepiness. Several advanced signal processing techniques have been implemented and investigated to derive multiple clandestine and informative features. These features are then applied to machine learning algorithms to produce classification models that are capable of differentiating between the cases of a person being attentive and the person not being attentive. Furthermore, Electroencephalograph (EEG) signals are also analyzed and classified for use as a benchmark for comparison with ECG analysis. For the study, ECG signals and EEG signals of volunteer subjects are acquired in a controlled experiment. The experiment is designed to inculcate and sustain cognitive attention for a period of time following which an attempt is made to reduce cognitive attention of volunteer subjects. The data acquired during the experiment is decomposed and analyzed for feature extraction and classification. The presented results show that to a fairly reasonable accuracy it is possible to detect the presence or lack of attention in individuals with just their ECG signal, especially in comparison with analysis done on EEG signals. The continual work of this research includes other physiological signals such as Galvanic Skin Response, Heat Flux, Skin Temperature and video based facial feature analysis

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Non-invasive wearable sensing systems for continuous health monitoring and long-term behavior modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.Includes bibliographical references (p. 212-228).Deploying new healthcare technologies for proactive health and elder care will become a major priority over the next decade, as medical care systems worldwide become strained by the aging populations. This thesis presents LiveNet, a distributed mobile system based on low-cost commodity hardware that can be deployed for a variety of healthcare applications. LiveNet embodies a flexible infrastructure platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification capabilities. Using LiveNet, we are able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. Most clinical sensing technologies that exist have focused on accuracy and reliability, at the expense of cost-effectiveness, burden on the patient, and portability. Future proactive health technologies, on the other hand, must be affordable, unobtrusive, and non-invasive if the general population is going to adopt them.(cont.) In this thesis, we focus on the potential of using features derived from minimally invasive physiological and contextual sensors such as motion, speech, heart rate, skin conductance, and temperature/heat flux that can be used in combination with mobile technology to create powerful context-aware systems that are transparent to the user. In many cases, these non-invasive sensing technologies can completely replace more invasive diagnostic sensing for applications in long-term monitoring, behavior and physiology trending, and real-time proactive feedback and alert systems. Non-invasive sensing technologies are particularly important in ambulatory and continuous monitoring applications, where more cumbersome sensing equipment that is typically found in medical and clinical research settings is not usable. The research in this thesis demonstrates that it is possible to use simple non-invasive physiological and contextual sensing using the LiveNet system to accurately classify a variety of physiological conditions. We demonstrate that non-invasive sensing can be correlated to a variety of important physiological and behavioral phenomenon, and thus can serve as substitutes to more invasive and unwieldy forms of medical monitoring devices while still providing a high level of diagnostic power.(cont.) From this foundation, the LiveNet system is deployed in a number of studies to quantify physiological and contextual state. First, a number of classifiers for important health and general contextual cues such as activity state and stress level are developed from basic non-invasive physiological sensing. We then demonstrate that the LiveNet system can be used to develop systems that can classify clinically significant physiological and pathological conditions and that are robust in the presence of noise, motion artifacts, and other adverse conditions found in real-world situations. This is highlighted in a cold exposure and core body temperature study in collaboration with the U.S. Army Research Institute of Environmental Medicine. In this study, we show that it is possible to develop real-time implementations of these classifiers for proactive health monitors that can provide instantaneous feedback relevant in soldier monitoring applications. This thesis also demonstrates that the LiveNet platform can be used for long-term continuous monitoring applications to study physiological trends that vary slowly with time.(cont.) In a clinical study with the Psychiatry Department at the Massachusetts General Hospital, the LiveNet platform is used to continuously monitor clinically depressed patients during their stays on an in-patient ward for treatment. We show that we can accurately correlate physiology and behavior to depression state, as well as to track changes in depression state over time through the course of treatment. This study demonstrates how long-term physiology and behavioral changes can be captured to objectively measure medical treatment and medication efficacy. In another long-term monitoring study, the LiveNet platform is used to collect data on people's everyday behavior as they go through daily life. By collecting long-term behavioral data, we demonstrate the possibility of modeling and predicting high-level behavior using simple physiologic and contextual information derived solely from ambulatory mobile sensing technology.by Michael Sung.Ph.D

    Power Efficient Data Compression Hardware for Wearable and Wireless Biomedical Sensing Devices

    Get PDF
    This thesis aims to verify a possible benefit lossless data compression and reduction techniques can bring to a wearable and wireless biomedical device, which is anticipated to be system power saving. A wireless transceiver is one of the main contributors to the system power of a wireless biomedical sensing device, and reducing the data transmitted by the transceiver with a minimum hardware cost can therefore help to save the power. This thesis is going to investigate the impact of the data compression and reduction on the system power of a wearable and wireless biomedical device and trying to find a proper compression technique that can achieve power saving of the device. The thesis first examines some widely used lossy and lossless data compression and reduction techniques for biomedical data, especially EEG data. Then it introduces a novel lossless biomedical data compression technique designed for this research called Log2 sub-band encoding. The thesis then moves on to the biomedical data compression evaluation of the Log2 sub-band encoding and an existing 2-stage technique consisting of the DPCM and the Huffman encoding. The next part of this thesis explores the signal classification potential of the Log2 sub-band encoding. It was found that some of the signal features extracted as a by-product during the Log2 sub-band encoding process could be used to detect certain signal events like epileptic seizures, with a proper method. The final section of the thesis focuses on the power analysis of the hardware implementation of two compression techniques referred to earlier, as well as the system power analysis. The results show that the Log2 sub-band is comparable and even superior to the 2-stage technique in terms of data compression and power performance. The system power requirement of an EEG signal recorder that has the Log2 sub-band implemented is significantly reduced
    corecore