9,118 research outputs found

    DoorGym: A Scalable Door Opening Environment And Baseline Agent

    Full text link
    In order to practically implement the door opening task, a policy ought to be robust to a wide distribution of door types and environment settings. Reinforcement Learning (RL) with Domain Randomization (DR) is a promising technique to enforce policy generalization, however, there are only a few accessible training environments that are inherently designed to train agents in domain randomized environments. We introduce DoorGym, an open-source door opening simulation framework designed to utilize domain randomization to train a stable policy. We intend for our environment to lie at the intersection of domain transfer, practical tasks, and realism. We also provide baseline Proximal Policy Optimization and Soft Actor-Critic implementations, which achieves success rates between 0% up to 95% for opening various types of doors in this environment. Moreover, the real-world transfer experiment shows the trained policy is able to work in the real world. Environment kit available here: https://github.com/PSVL/DoorGym/Comment: Full version (Real world transfer experiments result

    BRAHMS: Novel middleware for integrated systems computation

    Get PDF
    Biological computational modellers are becoming increasingly interested in building large, eclectic models, including components on many different computational substrates, both biological and non-biological. At the same time, the rise of the philosophy of embodied modelling is generating a need to deploy biological models as controllers for robots in real-world environments. Finally, robotics engineers are beginning to find value in seconding biomimetic control strategies for use on practical robots. Together with the ubiquitous desire to make good on past software development effort, these trends are throwing up new challenges of intellectual and technological integration (for example across scales, across disciplines, and even across time) - challenges that are unmet by existing software frameworks. Here, we outline these challenges in detail, and go on to describe a newly developed software framework, BRAHMS. that meets them. BRAHMS is a tool for integrating computational process modules into a viable, computable system: its generality and flexibility facilitate integration across barriers, such as those described above, in a coherent and effective way. We go on to describe several cases where BRAHMS has been successfully deployed in practical situations. We also show excellent performance in comparison with a monolithic development approach. Additional benefits of developing in the framework include source code self-documentation, automatic coarse-grained parallelisation, cross-language integration, data logging, performance monitoring, and will include dynamic load-balancing and 'pause and continue' execution. BRAHMS is built on the nascent, and similarly general purpose, model markup language, SystemML. This will, in future, also facilitate repeatability and accountability (same answers ten years from now), transparent automatic software distribution, and interfacing with other SystemML tools. (C) 2009 Elsevier Ltd. All rights reserved

    Adaptive cancelation of self-generated sensory signals in a whisking robot

    Get PDF
    Sensory signals are often caused by one's own active movements. This raises a problem of discriminating between self-generated sensory signals and signals generated by the external world. Such discrimination is of general importance for robotic systems, where operational robustness is dependent on the correct interpretation of sensory signals. Here, we investigate this problem in the context of a whiskered robot. The whisker sensory signal comprises two components: one due to contact with an object (externally generated) and another due to active movement of the whisker (self-generated). We propose a solution to this discrimination problem based on adaptive noise cancelation, where the robot learns to predict the sensory consequences of its own movements using an adaptive filter. The filter inputs (copy of motor commands) are transformed by Laguerre functions instead of the often-used tapped-delay line, which reduces model order and, therefore, computational complexity. Results from a contact-detection task demonstrate that false positives are significantly reduced using the proposed scheme

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    A motion system for social and animated robots

    Get PDF
    This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI), with a special focus on Robot Assisted Therapy (RAT). When used for therapy it is important that a social robot is able to create an "illusion of life" so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of "likeability". The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium

    Brain-inspired conscious computing architecture

    Get PDF
    What type of artificial systems will claim to be conscious and will claim to experience qualia? The ability to comment upon physical states of a brain-like dynamical system coupled with its environment seems to be sufficient to make claims. The flow of internal states in such system, guided and limited by associative memory, is similar to the stream of consciousness. Minimal requirements for an artificial system that will claim to be conscious were given in form of specific architecture named articon. Nonverbal discrimination of the working memory states of the articon gives it the ability to experience different qualities of internal states. Analysis of the inner state flows of such a system during typical behavioral process shows that qualia are inseparable from perception and action. The role of consciousness in learning of skills, when conscious information processing is replaced by subconscious, is elucidated. Arguments confirming that phenomenal experience is a result of cognitive processes are presented. Possible philosophical objections based on the Chinese room and other arguments are discussed, but they are insufficient to refute claims articon’s claims. Conditions for genuine understanding that go beyond the Turing test are presented. Articons may fulfill such conditions and in principle the structure of their experiences may be arbitrarily close to human

    Controlling a mobile robot with a biological brain

    Get PDF
    The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robotïżœthereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots

    Exponential Δ-tracking and Δ-stabilization of second-order nonholonomic SE(2) vehicles using dynamic state feedback

    Get PDF
    In this paper, we address the problem of Δ-tracking and Δ-stabilization for a class of SE(2) vehicles with second-order nonholonomic constraints. We introduce a class of transformations called near-identity diffeomorphism that allow dynamic partial feedback linearization of the translational dynamics of this class of SE(2) vehicles. This allows us to achieve global exponential Δ-stabilization and Δ-tracking (in position) for the aforementioned classes of autonomous vehicles using a coordinate-independent dynamic state feedback. This feedback is only discontinuous w.r.t. the augmented state. We apply our results to Δ-stabilization and Δ-tracking for an underactuated surface vessel

    A systematic comparison of affective robot expression modalities

    Get PDF
    • 

    corecore