25 research outputs found

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid Framework for Rotating Machinery

    Full text link
    Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems. In many real applications of fault detection and diagnosis, data tend to be imbalanced, meaning that the number of samples for some fault classes is much less than the normal data samples. At the same time, in an industrial condition, accelerometers encounter high levels of disruptive signals and the collected samples turn out to be heavily noisy. As a consequence, many traditional Fault Detection and Diagnosis (FDD) frameworks get poor classification performances when dealing with real-world circumstances. Three main solutions have been proposed in the literature to cope with this problem: (1) the implementation of generative algorithms to increase the amount of under-represented input samples, (2) the employment of a classifier being powerful to learn from imbalanced and noisy data, (3) the development of an efficient data pre-processing including feature extraction and data augmentation. This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system for imbalanced conditions. Specifically, it first extracts the fault features, using Fourier and wavelet transforms to make full use of the signals. Then, it employs Wasserstein Generative Adversarial Networks (WGAN) to generate synthetic samples to populate the rare fault class and enhance the training set. Moreover, to achieve a higher performance a novel combination of Convolutional Long Short-term Memory (CLSTM) and Weighted Extreme Learning Machine (WELM) is proposed. To verify the effectiveness of the developed framework, different datasets settings on different imbalance severities and noise degrees were used. The comparative results demonstrate that in different scenarios GAN-CLSTM-ELM outperforms the other state-of-the-art FDD frameworks.Comment: 23 pages, 11 figure

    GRU-based denoising autoencoder for detection and clustering of unknown single and concurrent faults during system integration testing of automotive software systems

    Get PDF
    Recently, remarkable successes have been achieved in the quality assurance of automotive software systems (ASSs) through the utilization of real-time hardware-in-the-loop (HIL) simulation. Based on the HIL platform, safe, flexible and reliable realistic simulation during the system development process can be enabled. However, notwithstanding the test automation capability, large amounts of recordings data are generated as a result of HIL test executions. Expert knowledge-based approaches to analyze the generated recordings, with the aim of detecting and identifying the faults, are costly in terms of time, effort and difficulty. Therefore, in this study, a novel deep learning-based methodology is proposed so that the faults of automotive sensor signals can be efficiently and automatically detected and identified without human intervention. Concretely, a hybrid GRU-based denoising autoencoder (GRU-based DAE) model with the k-means algorithm is developed for the fault-detection and clustering problem in sequential data. By doing so, based on the real-time historical data, not only individual faults but also unknown simultaneous faults under noisy conditions can be accurately detected and clustered. The applicability and advantages of the proposed method for the HIL testing process are demonstrated by two automotive case studies. To be specific, a high-fidelity gasoline engine and vehicle dynamic system along with an entire vehicle model are considered to verify the performance of the proposed model. The superiority of the proposed architecture compared to other autoencoder variants is presented in the results in terms of reconstruction error under several noise levels. The validation results indicate that the proposed model can perform high detection and clustering accuracy of unknown faults compared to stand-alone techniques

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach

    Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals

    Get PDF
    Vibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method

    Fault Detection and Diagnosis of Electric Drives Using Intelligent Machine Learning Approaches

    Get PDF
    Electric motor condition monitoring can detect anomalies in the motor performance which have the potential to result in unexpected failure and financial loss. This study examines different fault detection and diagnosis approaches in induction motors and is presented in six chapters. First, an anomaly technique or outlier detection is applied to increase the accuracy of detecting broken rotor bars. It is shown how the proposed method can significantly improve network reliability by using one-class classification technique. Then, ensemble-based anomaly detection is utilized to compare different methods in ensemble learning in detection of broken rotor bars. Finally, a deep neural network is developed to extract significant features to be used as input parameters of the network. Deep autoencoder is then employed to build an advanced model to make predictions of broken rotor bars and bearing faults occurring in induction motors with a high accuracy

    A review on deep learning applications in prognostics and health management

    Get PDF
    Deep learning has attracted intense interest in Prognostics and Health Management (PHM), because of its enormous representing power, automated feature learning capability and best-in-class performance in solving complex problems. This paper surveys recent advancements in PHM methodologies using deep learning with the aim of identifying research gaps and suggesting further improvements. After a brief introduction to several deep learning models, we review and analyze applications of fault detection, diagnosis and prognosis using deep learning. The survey validates the universal applicability of deep learning to various types of input in PHM, including vibration, imagery, time-series and structured data. It also reveals that deep learning provides a one-fits-all framework for the primary PHM subfields: fault detection uses either reconstruction error or stacks a binary classifier on top of the network to detect anomalies; fault diagnosis typically adds a soft-max layer to perform multi-class classification; prognosis adds a continuous regression layer to predict remaining useful life. The general framework suggests the possibility of transfer learning across PHM applications. The survey reveals some common properties and identifies the research gaps in each PHM subfield. It concludes by summarizing some major challenges and potential opportunities in the domain
    corecore