
Citation: Abboush, M.; Knieke, C.;

Rausch, A. GRU-Based Denoising

Autoencoder for Detection and

Clustering of Unknown Single and

Concurrent Faults during System

Integration Testing of Automotive

Software Systems. Sensors 2023, 23,

6606. https://doi.org/10.3390/

s23146606

Academic Editors: Long Wen,

Haidong Shao, Xinyu Li and

Zhuyun Chen

Received: 22 June 2023

Revised: 13 July 2023

Accepted: 19 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

GRU-Based Denoising Autoencoder for Detection and
Clustering of Unknown Single and Concurrent Faults during
System Integration Testing of Automotive Software Systems
Mohammad Abboush * , Christoph Knieke and Andreas Rausch

Institute for Software and Systems Engineering, Technische Universität Clausthal,
38678 Clausthal-Zellerfeld, Germany; christoph.knieke@tu-clausthal.de (C.K.);
andreas.rausch@tu-clausthal.de (A.R.)
* Correspondence: mohammad.abboush@tu-clausthal.de

Abstract: Recently, remarkable successes have been achieved in the quality assurance of automotive
software systems (ASSs) through the utilization of real-time hardware-in-the-loop (HIL) simulation.
Based on the HIL platform, safe, flexible and reliable realistic simulation during the system devel-
opment process can be enabled. However, notwithstanding the test automation capability, large
amounts of recordings data are generated as a result of HIL test executions. Expert knowledge-
based approaches to analyze the generated recordings, with the aim of detecting and identifying
the faults, are costly in terms of time, effort and difficulty. Therefore, in this study, a novel deep
learning-based methodology is proposed so that the faults of automotive sensor signals can be
efficiently and automatically detected and identified without human intervention. Concretely, a
hybrid GRU-based denoising autoencoder (GRU-based DAE) model with the k-means algorithm
is developed for the fault-detection and clustering problem in sequential data. By doing so, based
on the real-time historical data, not only individual faults but also unknown simultaneous faults
under noisy conditions can be accurately detected and clustered. The applicability and advantages of
the proposed method for the HIL testing process are demonstrated by two automotive case studies.
To be specific, a high-fidelity gasoline engine and vehicle dynamic system along with an entire
vehicle model are considered to verify the performance of the proposed model. The superiority
of the proposed architecture compared to other autoencoder variants is presented in the results in
terms of reconstruction error under several noise levels. The validation results indicate that the
proposed model can perform high detection and clustering accuracy of unknown faults compared to
stand-alone techniques.

Keywords: automotive software systems development; real-time validation; hardware-in-the-loop
(HIL); system integration testing; fault detection and clustering; deep learning; GRU-based denoising
autoencoder; k-means

1. Introduction

During the development of modern automotive software systems (ASSs), the depend-
ability attributes, i.e., reliability and safety, should be rigorously and comprehensively
validated. In this way, the requirements of the automotive functional safety standard
ISO 26262 [1] can be fulfilled. However, considering the increasing complexity of mod-
ern software-based vehicle systems with a high degree of functional dependencies [2],
great attention should be paid to the development of advanced verification and validation
methodologies.

Validating the target system at different stages of the development process can enable
the detection and mitigation of unexpected faults. The fault or anomaly in the nonlinear
multivariate systems is known as a deviation of one or more system parameters from
normal behavior [3]. In ASSs, various locations are vulnerable to the occurrence of faults.

Sensors 2023, 23, 6606. https://doi.org/10.3390/s23146606 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146606
https://doi.org/10.3390/s23146606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5533-0029
https://orcid.org/0000-0002-6850-6409
https://doi.org/10.3390/s23146606
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146606?type=check_update&version=1

Sensors 2023, 23, 6606 2 of 25

Sensors, actuators, the communication network, ECUs, gateways, the power supply, and
the data-logging system are the main potential points of faults in the vehicle [4]. Depending
on the environmental and interior conditions, the duration of malfunction occurrence at
the exact location varies, presenting as permanent, transient, or intermittent faults [5]. On
the other hand, based on the characteristics of the sensed signals data, the faults can be
classified into gain, offset/bias, noise, hard-over, spike, stuck-at, packet loss, delay, and drift
faults [6]. According to V-model system development approach, different test phases are
defined, namely model-in-the-loop (MIL), software-in-the-loop (SIL), processor-in-the-loop
(PIL), hardware-in-the-loop (HIL), vehicle-in-the-loop (VIL) and real test drives [7].

To overcome the limitations of pure non-real-time simulation testing and real test
drives on public roads, HIL simulation platform has been introduced as a safe, flexible, and
reliable validation method [8]. In addition, HIL can benefit from the two aforementioned
methods by conducting simulated test drives considering critical scenarios and real-time
constraints [9]. However, due to the large amount of recorded data during test execution,
conventional methods for analyzing the recordings that depend on experts with a deep
understanding of the domain are not effective [4]. Consequently, the need for innovative
solutions that reduce the cost, time and effort of the recordings analysis process has
increased. By developing automated fault detection and diagnosis (FDD), potential risks
and vulnerabilities can be effectively and accurately identified and eliminated at an early
stage of system development. Along with ensuring the safety and reliability characteristics
of the developed complex system, the cost and effort of unnecessary maintenance can also
be reduced.

The literature on FDD scheme development shows a variety of approaches. The model-
based [10], signal-based [11], knowledge-based [12], and data-driven approaches [13] are
the main categories of FDD methods. Each strategy has its pros and cons. For example, in
the model-based approach, despite its ability to identify the changes in the dynamic system
state, the design of an accurate mathematical model of the complex system is considered a
complicating factor [14]. Similarly, the knowledge-based approach, known as the rule-based
approach, requires specific qualitative knowledge dictated by experts and extensive human
intervention [15]. Moreover, for complex and large systems, the approach suffers from the
inability to detect unknown faults that are not included in the historical data [16]. A signal-
based approach is able to detect faults quickly and very effectively by analyzing the fault
symptoms in the recorded signals without system modeling. However, the main drawbacks
of this strategy are the difficulty in detecting and identifying unforeseen faults. Moreover,
detecting similar symptoms in the presence of concurrent faults is still a difficult task.

Finally, the data-driven approach has proved its superiority in FDD by extracting the
underlying structure and hidden patterns from the raw historical data without domain
knowledge [17]. In recent years, great effort has been made to investigate data-driven
approach, i.e., machine learning (ML) methods. The reason behind this is the rapid devel-
opment of sensor technologies and the availability of sufficient computational resources.
Nevertheless, the problem of availability of faulty datasets and the large amount and com-
plexity of recorded data with redundant information requires more investigation [18]. To
solve the problem of the manual extraction of representative features in ML methods, deep
learning (DL)-based methods have been intensively researched in recent years. Thanks to
the ability of DL methods to automatically extract and learn deep features from the dataset,
the shortcomings of the traditional technique can be overcome.

In the state-of-the-art approach, several DL architectures have been proposed to tackle
various application problems in different domains [19,20]. Among them, AE, GAN, CNN,
DBN, and RNN have been widely investigated. Depending on the task, the methods
are divided into anomaly/fault detection, fault classification, fault clustering, and fault
regression. For example, in [21,22], several variants of AE were used as an unsupervised
approach for detecting anomalies in the in-vehicle controller area network (CAN). On
the other hand, to identify the type of faults and the faulty component of the system,
several frameworks were proposed using the variants of RNN, i.e., GRU and LSTM, as

Sensors 2023, 23, 6606 3 of 25

the classification problem [23,24]. CNN techniques with one and two dimensions were
employed for fault diagnosis in different vehicle systems, e.g., vehicle dampers in [25]
and vehicle engines in [26]. Fault clustering is concerned with discovering the hidden
relationship between the unlabeled data and grouping the data samples into multiple
clusters. To accomplish this task, ML algorithms, e.g., k-means, are usually used with DL
methods as proposed in [27]. Once the faults are classified, it is of interest to determine
the current and future states of the components, which is known as fault prediction. For
this purpose, LSTM was applied in [28,29] for battery fault prediction in electric vehicles as
remaining-useful-life (RUL) prediction.

Despite the observable performance of the current intelligent approaches for FDD
tasks, the developed FDD model still has various aspects to be investigated and explored.
The main limitations can be summarized as follows: (1) In the developed FDD model,
the focus is on a single fault without considering the occurrence of simultaneous faults.
However, in a complex system, a combination of multiple independent faults may occur
simultaneously at different locations and lead to multi-point failures [30]. (2) Under the
real-world operating conditions of the complex system, the dataset is collected under non-
realistic conditions, i.e., noisy and unbalanced data [31,32]. Most of the conducted studies
on FDD models development, however, are developed using noise-free experimental data
under normal conditions. (3) Only the known fault patterns in the target system are
considered to address the FDD problem, which in turn leads to developing a model that
cannot detect unforeseen faults or misidentifies the detected faults [33].

To bridge the mentioned gaps, in this study, a novel intelligent method for unknown
fault detection and clustering (FDC) during the development process of ASSs is proposed.
The developed model is capable of detecting and grouping unknown faults in the sequential
data of sensor signals. To the best of our knowledge, the proposed method is applied for the
first time to the detection and grouping of concurrent unknown faults during integration
testing with real-time HIL simulation. The main contributions of the proposed study are
summarized as follows:

• Based on deep features extraction and multi-level clustering, a novel methodology is
developed using hybrid GRU-based denoising autoencoder (GRU-based DAE) and
k-means to effectively address the problem of detecting and clustering single and
simultaneous faults in the time-series data.

• Combining the proposed techniques enables detecting unknown faults under different
noise levels, thus being appropriate for working under real industrial operating
conditions with high robustness against noise.

• Furthermore, the comparison of different variants of the DAE architecture is analyzed
and discussed using healthy and faulty validation data.

• Finally, the applicability and robustness of the proposed method are demonstrated
using a high-fidelity simulation model of a complex gasoline engine with the entire
vehicle dynamic system. On top of that, the dataset is collected under normal and
faulty conditions using real-time fault injection considering the real-time constraints.

The rest of the article is organized as follows: The related work is presented in Section 2
highlighting the gabs and the main limitations. Following that, Section 3 introduces the
proposed method. Afterward, as a case study, the target system setup and model training
are illustrated in Section 4. Based on the real-time dataset from two automotive case studies,
the evaluation results of the proposed model are discussed and presented in Section 5.
Finally, conclusions and future research directions are outlined in Section 6.

2. Related Work

Nowadays, in manufacturing and industrial applications, the ML-based FDD approach
plays a vital role not only in improving reliability but also in ensuring the safety of the
developed systems. However, the availability of labeled data and unseen faults are the
main challenges of the development process of the FDD model.

Sensors 2023, 23, 6606 4 of 25

Towards overcoming the problem of lack of labeled data, unsupervised DL methods
have motivated researchers to explore the possibilities of features learning from unlabeled
data. Among them, AE has been introduced as a powerful technique not only to reduce the
dimensionality of data but also to extract and learn the features from unlabeled data [34]. As
a result, several research works have been conducted to investigate the applicability of AE
for FDD in various applications based on historical time-series data [35]. Mallak et al. [36],
for example, proposed a novel network architecture based on a hybrid LSTM-based au-
toencoder and a 1D CNN. The study focused on unsupervised and supervised learning
methods so that the unprecedented sensor and component faults of hydraulic systems
can be accurately detected and classified. The experimental results stated that the use of
Pearson autocorrelation can surpass conventional methods in calculating the signal differ-
ence, which in turn leads to high detection performance. In the study, a balanced dataset
from hydraulic test rigs was considered with three different fault types, i.e., stuck-at, gain,
and offset. Concerning the same area, Wang et al. [37] performed a behavioral analysis
of two DL-based FDD methods, i.e., stand-alone CNN and AE-based DNN with SoftMax
classifier. The study investigated the best DL architecture that provides high classification
accuracy with less computation time without data preprocessing. A simulation model of
an MMC HVDC transmission network under seven conditions was employed as a case
study to develop and validate the FDD model. The experimental results illustrate that the
performance of the AE-based DNN is better than that of CNN in terms of accuracy, while
the CNN requires less training and testing time. To improve the validation process of ASSs,
a hybrid DL approach was proposed in [38] to automatically detect and classify individual
sensor faults at the system level. To this end, hybrid CNN and LSTM were used to take
advantage of each technique in extracting and learning the features required for FDC. In
the mentioned study, the real-time constraints were considered in generating the healthy
and faulty dataset by using a real-time fault injection framework. The superiority of the
model in terms of detection and classification was demonstrated using a high-fidelity entire
vehicle model as a case study.

To address the challenge of unknown faults, Han et al. [39] proposed an intelligent
diagnosis model for rotating machinery based on the out-of-distribution (OOD) detection-
assisted trustworthy approach. The novelty of this work is the development of an ensemble
of five individual deep-base learners with trustworthy analysis so that the reliability
and safety of the model can be ensured against unknown faults. By doing so, during the
decision-making process, uncertainties can be identified, avoiding untrustworthy diagnoses
in practical applications. To validate the proposed approach, wind turbine and gearbox
systems are considered as two case studies. In the same context, to ensure the reliable
operation of permanent magnet synchronous motors (PMSMs) under variable operating
conditions, a novel robust CNN-based diagnosis model was proposed in [40]. The core
idea behind the research is to consider the fault-related information in the transformed
motor current signals for 2D instantaneous current residual images. Along with the rapid
development of autonomous vehicles and ADAS, much attention has been paid to the
utilization of ML techniques for the development of the FDD of such systems. In the
automotive domain, in [41], the historical test recordings of real test drives were used to
develop a robust ML-based model capable of detecting known and unknown faults under
different driving scenarios. Towards this end, an ensemble ML classifiers was used so that
the robustness of the model against data variability under different types of faults could
be achieved. To validate the proposed methodology, recordings of road tests with injected
faults during driving were used.

Besides the individual faults, one of the main complicating factors in the FDD process
is the simultaneous occurrence of multiple single faults [42]. Additionally, in multivariate
systems, acquiring data containing representative simultaneous faults with many possible
combinations remains a challenge [43]. Therefore, in the last decade, considerable attention
has been paid in various fields to developing FDD strategies for addressing this challenge.
In this regard, Zhong et al. in [44] proposed an intelligent simultaneous FDD framework

Sensors 2023, 23, 6606 5 of 25

of vehicle engines based on a probabilistic committee machine (PCM). In this study, a
real automotive case study, i.e., a real vehicle engine, was utilized to train and validate
the proposed strategy. Depending on three real engine signals, 10 types of single faults
and 4 reasonable combinations of simultaneous faults were explored. Considering the
noisy operation process, a total of 2000 and 800 samples of single and simultaneous faults,
respectively, was used. Compared to single probabilistic classifiers, the proposed method
exhibited remarkable achievements in terms of FDD performance. Nevertheless, the
accuracy can be improved by investigating the applicability of other techniques on the
same real dataset. Similarly, in the field of building management systems, i.e., HVAC
systems, great efforts have been made to develop methods and frameworks for concurrent
FDD. For example, the results obtained by Wu et al. in [45] state that hybrid classification
chains based on multiple labels with random forest can be effectively used to detect and
classify single and simultaneous faults with 99.5% test accuracy. Specifically, in the study,
focusing on actuator component, AHU was considered as a subsystem of the HVAC with
six single faults and seven simultaneous faults. Although the proposed method achieved
above-average performance compared to other methods, there is still room for improvement
in terms of sensor FDD under noisy conditions and time constraints. Referring to the same
problem in a solid oxide fuel cell system, Zang et al. argued in [46] that the problem of
the multi-class classification of concurrent faults can be addressed using a multi-label DL
network, i.e., a stacked sparse autoencoder. The novelty of the proposed method lies in
the fact that independent and concurrent fault samples are not required. The features are
automatically extracted from normal and unknown state samples of the target system.
However, despite the demonstrated superiority of the proposed model for independent
and concurrent faults, the study is limited to four possible combinations of the concurrent
faults using non-real-time simulation data. Finally, one interesting approach towards
the simultaneous FDD problem was proposed in [47] using the integration of GAN and
continuous wavelet transform. The idea of the proposed study centers on the conversion of
the sequential data into 2D time–frequency images, which, in turn, are used to construct the
target model based on an adversarial learning mechanism. Thanks to the semi-supervised
approach, a small number of labeled samples were used to overcome the challenge of
availability of representative faulty data. Moreover, a real dataset from a gearbox test
platform was used to analyze the effect of the training data on development, i.e., the
number of labeled samples and the image size. The performance of the proposed system
was evaluated under 15 different conditions and compared with that of other related works.
The results demonstrated the improvement of the existing FDD methods in the literature in
terms of classification accuracy with 99.16% on unlabeled data. An overview of the related
work is presented in Table 1.

Judging from the above studies, current research in simultaneous FDD for ASSs
development has not been sufficiently conducted. Unlike our proposed work, the current
simultaneous FDD models have not considered either the real-time conditions or the
problem of noise in the training dataset. Moreover, the fault classes are limited to certain
conditions related to the target system. To address the aforementioned gaps, this study
develops a novel hybrid DL-based methodology capable of detecting and clustering both
single and concurrent faults during the development of ASSs, i.e., in the system integration
phase using real-time HIL simulation.

Sensors 2023, 23, 6606 6 of 25

Table 1. Overview of the related work.

Reference Techniques Application Domain Dataset Robustness Faults Remarks

[36] LSTM-based autoencoder FDD for hydraulic systems Hydraulic test rig
dataset Not considered Permanent, single fault

Accuracy: low 71%
Target: sensor and components faults.
Real-time constraints: not considered.

[37] AE-based DNN FDI of modular multilevel converters
systems Simulation dataset Not considered Permanent, single fault

Accuracy: high 99.7%
Target: current sensors.
Real-time constraints: not considered.

[41] Ensemble classifier-based
ML

Known and unknown faults detection
in automotive test recordings Real test drive dataset Considered Transient, single fault

Accuracy: low 85%
Target: sensors and connection signals.
Real-time constraints: not considered.

[44] PCM Diagnosis simultaneous faults of
automotive engine Real engine dataset Considered Transient, single and

simultaneous faults

Accuracy: low 88.74%
validation: sensors signals.
Real-time constraints: considered.

[45] Classifier chains and
random forest

Simultaneous FDD of air handling
unit (AHU) system Real AHU dataset Not considered Transient, single and

simultaneous faults

Accuracy: high 99.5%
Target: actuator signals.
Real-time constraints: considered.

[46] Stacked sparse autoencoder Classifying the faults of solid oxide
fuel cell (SOFC) systems Simulation dataset Not considered Permanent, single and

simultaneous faults

Accuracy: low 79.94%
Target: actuator signals.
Real-time constraints: not considered.

[47] GANs with CWT Intelligent Single and simultaneous
FDD of the gearbox

Real gearbox test
bench dataset Considered Permanent, single and

simultaneous faults

Accuracy: high 99.16%
Target: sensors signals.
Real-time constraints: considered.

Proposed work GRU-based DAE and
k-means

Single and simultaneous FDC for HIL
testing of ASSs

Real-time simulation
dataset Considered Transient, single and

simultaneous faults

Accuracy: 0.9538%, DB score 0.4872
Target: sensors signals.
Real-time constraints: considered.

Sensors 2023, 23, 6606 7 of 25

3. Methodology
3.1. DL-Based Simultaneous Fault-Detection and Clustering Method

In this section, the key stages of the development of the proposed FDC based on
unsupervised DL techniques are outlined. The main advantage of the proposed method is
the applicability to tackle the detection and clustering problem in the presence of noisy and
unbalanced time-series data. By doing so, the real industrial scenarios can be simulated,
where the faults are unknown as a deviation from the normal system behavior. Detection
and clustering sensor signals’ faults of the ASSs during the HIL simulation-based testing is
the target of the proposed model. This allows the analysis process of the resulting failures
during HIL tests to be optimized in an efficient way by reducing the required time and
effort. Developing the proposed model is accomplished through four phases, i.e., data
collection, data preprocessing, features extraction, and detection and clustering phases as
shown in Figure 1.

Figure 1. Proposed method for detection and clustering single and simultaneous faults.

3.1.1. Data Collection

To accurately capture the actual behavior of the target system under different types of
faults, a real-time HIL simulation system is employed. Through this platform, the entire
vehicle system can be simulated with high accuracy. Moreover, the interaction between the
system under test, i.e., the ECU, and the controlled system can be accurately ensured in
real time. By doing so, the data samples of the normal system behavior, i.e., the driving
scenario, can be collected as multivariate time-series data. To generate representative fault
data, the real-time fault injection developed in the previous study [48] was used. Various

Sensors 2023, 23, 6606 8 of 25

types of single and simultaneous faults are programmatically injected into the CAN bus
in real time without changing the original system models. Some examples of the injected
sensor faults are gain, stuck-at, drift, noise, delay, and packet loss. To collect the data of
simultaneous faults, two combinations of the aforementioned fault types are injected in real
time and simultaneously at two different locations. Both the single and concurrent faults
data are saved as CSV files and forwarded to the pre-processing phase. Some examples of
the selected fault types, compared to the healthy, are illustrated Figure 2.

(a) (b) (c)

(d) (e) (f)
Figure 2. Fault types. (a) Stuck-at fault; (b) noise fault; (c) gain fault; (d) drift fault; (e) packet loss
fault; and (f) delay fault.

3.1.2. Data Preprocessing

Despite the fact that the data were generated in the context of a real-time simulation,
additional preprocessing steps are required before training the model. The reason behind
this is the need for the mitigation of irrelevant and unusable features avoiding negative
effects on the training process [49]. By doing so, not only can the computational costs of the
training be reduced, but also the problem of overfitting can be avoided. The main steps in
this phase are variable selection, scaling and normalization, dimensional reduction, noise
addition and data splitting. As ASSs have a high degree of complexity, a large number of
sensor signals with high dependencies are available. In this study, specific sensor signals
of the target system were selected so that the most relevant features are included in the
model training. For this purpose, at the system level, the engine speed, engine torque,
vehicle speed, throttle position, engine temperature, intake manifold pressure and rail
pressure were selected as input variables for the detection and clustering. To enhance the
performance of the training process, after variables selection, the feature is normalized and
scaled using the Z-score normalization function. Thus, the range of the amplitude of the
input feature is uniformly rescaled to the range [0–1]. A mathematical representation of the
representative equation of the scaling step is given in [50]. Principal component analysis
(PCA) [51] is used for dimension reductions. By doing so, the redundant information of
the extracted features can be reduced, and representative features can be selected. To be
specific, the correlated variables are transformed into independent variables, reserving the
main variation factor from several variable vectors. Once the features are normalized and
the dimensions reduced, the different noise levels are added according to the Gaussian
distribution [52]. Specifically, random sample values from a Gaussian distribution with a
mean of zero and a certain standard deviation are added to the original data. Finally, the

Sensors 2023, 23, 6606 9 of 25

preprocessed data are divided into three parts. The first part with 80% of the data is used
for training the target model, while the second and third parts with 10% each are used for
the validation and testing process.

3.1.3. GRU-DAE-Based Feature Extraction

Due to the environment and complex operation conditions, most real-world automo-
tive datasets contain uncertainty data with noise. This issue is not considered in the current
DL-based FDD models under experimental conditions. This, in turn, leads to a negative
effect on the accuracy of the developed model in real industrial applications. As a solution
of the noisy measurements problem, recently, the DAE technique [53] exhibited remarkable
achievements in enhancing the robustness of the fault-classification model against noise. As
can be seen in Figure 1, it consists of four different parts, namely the input layer, corrupted
layer, hidden layers, and output layer. The hidden layers are constructed into two main
components, an encoder and a decoder [54]. After corrupting the original input data (U) by
noise, the encoder focuses on converting the high-dimensional noisy input data (N) into a
low-dimensional representation, often referred to as the latent code (Z). Mathematically,
the encoder module of the GRU-based DAE is represented by Equation (1):

Z = fenc(WN + b) (1)

where fenc represents an activation function of the encoder, W is an encoder’s weight, and
b is an offset vector.

On the other hand, the function of the decoder is to map the latent code as output
(Y) back into the original data space, i.e., to convert the extracted features into the original
input. Thereby, a compact representation of the input data can be trained, which can be
applied for dimensionality reduction, data denoising or generative modeling. Equation (2)
represents the decoder module of the proposed architecture:

Y = fdec(W ′Z + b′) (2)

where fdec denotes an activation function of the decoder, and W ′ and b′ represent the
decoder’s weight and offset vector of the decoder, respectively. Thanks to the DAE structure,
the noise and distortion can be removed from the input data by the encoding and decoding
processes as de-noised reconstructed output data. However, to this end, the input data
should be provided with a certain level of noise, e.g., Gaussian noise or corruption, so that
the autoencoder can learn to denoise the data. In other words, the structure should be fed
with two types of input data, i.e., noisy and clean data. The core idea behind the technique
is to train the architecture by minimizing the reconstruction loss between the clean input
data and the reconstructed denoised output. Mathematically, the loss function L(U, Y) is
calculated according to Equation (3):

L(U, Y) = ||Y−U||2 (3)

Notably, DAE can be developed based on different architectures depending on the type
of data to be processed and the application domain [55]. Among them, AE based on GRU
outperforms other AE architecture in detecting anomalies with multiple sensors, having
lower complexity and inference time [56]. In our proposed architecture, GRU-based DAE
is developed to provide the comprehensive extraction of representative healthy and faulty
features considering noisy data. In the aforementioned variant, the advantages of GRU cells
are leveraged in exploring the relationships and dependencies between multidimensional
sequential data. Thus, multiple GRU layers of recurrent units series form both the encoder
and decoder parts.

Thanks to the structure of the LSTM, the limitation of the RNN, i.e., vanishing and
exploding gradients, can be overcome. However, a complex architecture of LSTM requires
a high overhead. Therefore, GRU was introduced to meet the requirements of classification

Sensors 2023, 23, 6606 10 of 25

tasks in real-time applications in terms of low resources and fast inference time [57]. The
main innovation of GRUs is the use of gating mechanisms to control the flow of information,
which makes them computationally more efficient and easier to train with fewer parameters
compared to other types of RNNs. Due to the aforementioned ability of the GRU to capture
long dependency in the data with a less complex architecture [58], it is selected in our study
to construct the DAE model. The structure consists of a cell that stores information and two
gate units for each block, i.e., the reset gate and the update gate. The function of the reset
gate is to determine how much of the previous hidden state should be forgotten, while the
update gate determines how much of the new information should be used to update the
hidden state. The hidden state in a GRU summarizes the information from all previous
time steps and serves as the input for the next time step. Figure 3 illustrates the GRU unit.

Figure 3. Internal structure of GRU cell.

Mathematically, the output of the GRU cell can be described as follows:

zt = σ(Wzxt + Vzht−1 + bz) (4)

rt = σ(Wrxt + Vrht−1 + br) (5)

h′t = tanh(Whxt + Vh(rt × ht−1) + bh) (6)

ht = (1− zt)× ht−1 + zt × h′t (7)

where zt represents the GRU update gate; xt represents the input vector, i.e., noisy input; ht
is the output vector, i.e., hidden state at time step t; W and V denote the weight; b represents
the bias matrices; and (σ, tanh) are the gate and output activation function, respectively.

Table 2 describes the detailed specifications of the used GRU-based DAE architec-
ture. In the proposed architecture, two GRU layers are used to form the encoder module,
including 128 and 64 units, respectively. Furthermore, the batch normalization layer is
established between the GRU layers. As a bottleneck layer in the encoder module, a dense
layer is used. On the other side, similar to the encoder module, the mentioned layers are set
symmetrically such that the first GRU layer contains 64 units and the second one 128 units.

As a result of training the GRU-based DAE with the backpropagation algorithm, the
representative features of the healthy and faulty behavior can be extracted. The extracted
features, i.e., the non-corrupted low-dimensional features, are then used in the clustering
phase for detection and clustering tasks.

Sensors 2023, 23, 6606 11 of 25

Table 2. The architecture parameters of the proposed model.

Layer Output Shape Parameters

input2 (InputLayer) [(None, 4)] 0
reshape3 (Reshape) (None, 1, 4) 0
gru4 (GRU) (None, 1, 128) 51,456
batch normalization2 (BatchNormalization) (None, 1, 128) 512
gru5 (GRU) (None, 64) 37,248
dense2 (Dense) (None, 4) 260
reshape4 (Reshape) (None, 1, 4) 0
gru6 (GRU) (None, 1, 64) 13,440
batch normalization3 (Batch Normalization) (None, 1, 64) 256
gru7 (GRU) (None, 1, 128) 74,496
dense3 (Dense) (None, 1, 4) 516
reshape5 (Reshape) (None, 4) 0

Total params: 178,184
Trainable params: 177,800
Non-trainable params: 384

3.1.4. K-Means-Based Multi-Level Clustering

Once the representative features are extracted by GRU-DAE in the previous phase,
the denoised features are grouped into clusters through several levels using the k-means
method [59]. The significance of the algorithm is that the grouping of the data samples can
be performed as unsupervised learning without the need for the availability of labeled data.
Thus, the hidden patterns can be extracted from the data without any knowledge of the true
labels. k-means clustering has achieved remarkable success in addressing various technical
challenges, such as social tags, shape recognition and wireless sensor networks [60]. The
algorithm’s main principle is founded on the idea of categorizing the features into several
groups according to their similarity. By doing so, the data points with similar characteristics
will belong to the same cluster with the closest mean value. In other words, the distance
between the data samples and each cluster center is calculated. Then, the objective of the
training is to minimize the sum of squared distances within the clusters so that the samples
can be assigned to the clusters that are closest to each center. Mathematically, the sum of
squared distances can be represented in [61].

In this study, the objective is to tackle the problem of the detection and clustering of
unknown faults.Therefore, the labels of fault classes, i.e., ground truths, are unavailable.
To achieve high performance of detection and clustering, multi-level feature clustering is
implemented, i.e., three levels for single fault and two levels for concurrent faults. At the
first level, the fault detection task is carried out by separating the healthy and faulty features.
Based on the grouped faulty features, in the case of a single fault, the faulty components
can be determined by separating the corresponding faulty features, e.g., faulty features of
accelerator pedal position (APP) and RPM sensor. Finally, the last level is performed to
group the features of a specific type of faults, e.g., gain or delay, in the case of single and
concurrent faults.

Two main phases are performed to find the optimal cluster centroids and achieve
convergence, i.e., cluster assignment and centroid update. In the first phase, the Euclidean
distance between the data points and each centroid is calculated. In the second phase,
each centroid is updated based on the calculation of the mean of all data points assigned
to a cluster. Note that the extracted features are not labeled, and the method should be
able to cluster not only the samples of single faults but also the samples of simultaneous
faults with different combinations. In this study, 5 clusters are selected to represent single
faults and 10 clusters for their combinations. To avoid the drawback of k-means when
processing massive amounts of data, the PCA technique is employed before clustering. By

Sensors 2023, 23, 6606 12 of 25

identifying the underlying structure in the data, the high-dimensional data are converted
into low-dimensional data, which in turn reduces the computational effort and load.

4. Case Study and Experimental Implementation

This section presents the experimental setup and implementation steps of the proposed
method. The structure of the target system, which is used as a case study to demonstrate
the applicability, is described. To evaluate the performance and robustness of the proposed
model, two different automotive case studies, namely a gasoline engine system and a
dynamic vehicle system, are utilized.

4.1. HIL Real-Time Simulation System

The ability of automatic code generation from a complex model using a model-based
development approach has paved the way for significant advancements in the field of real-
time simulation. The HIL system has been introduced as an effective tool for a safe, reliable
and reproducible real-time verification and validation platform. Therefore, in this study,
to simulate and execute the systems of selected case studies in real time, the HIL system
is used. Figure 4 illustrates the major hardware components of the HIL system, i.e., HIL
simulator (dSPACE SCALEXIO), MicroAutoBox as real ECU, and physical communication.
The models are run in real time such that the ECU model is deployed and executed in
MicroAutoBox, and the rest of the whole vehicle model is deployed and executed in
SCALEXIO. Performing the experiments involves the use of four software tools, namely,
ModelDesk, ConfigurationDesk, MotionDesk and ControlDesk [62].

Figure 4. Real-time virtual test drives environment.

4.2. Case Study 1: Gasoline Engine

Due to its essential role in the vehicle system, and according to ISO 26262, the engine
management system is classified as classes C to D of the Automotive Safety Integrity Level
(ASIL). Therefore, faults in such a system should be rigorously analyzed and mitigated
during the development process. In this study, a high-fidelity system model of the ASM
gasoline engine provided by dSPACE [63] is used. The behavioral model is designed in
the MATLAB/Simulink environment covering all subsystems and components so that
the detailed characteristics of the system can be modeled comprehensively. To represent
the interaction characteristics of the target system with the other vehicle subsystems, the
powertrain model, vehicle dynamics model, and environment model are also considered
as illustrated in Figure 5. To simulate the real ECU, the control algorithm of the target
system is also modeled in the form of connected Simulink blocks. In this case study, the
ECU model of the engine system represents the system under test (SUT). The connection

Sensors 2023, 23, 6606 13 of 25

between the SUT and the mentioned vehicle subsystems is realized by using the CAN bus
protocol employing the Real-Time Interface CAN Multimessage Blockset (RTICANMM).
The structure of the engine system consists also of several subsystems, i.e., air path system,
fuel system, piston engine system, and exhaust system.

Since the modeled system provides high accessibility to the internal variables, the
sensor and actuator components are selected for the potential fault location in this study, in
particular, the crank angle sensor, battery voltage sensor, accelerator pedal sensor, ignition
and starter demand, EGR mass flow, engine speed, intake and exhaust manifold pressure,
fuel pressure, throttle, coolant temperature sensor and railbar sensor. Various types of
sensor faults are considered for this purpose, i.e., gain, stuck-at, noise, delay, and packet
loss. Notably, the aforementioned fault types are programmatically injected in real time via
RTICANMM without changing the system model.

Figure 5. System architecture of the selected case study.

4.3. Case Study 2: Vehicle Dynamics with Traffic

The objective of the second case study is to validate the performance of the developed
model in a real driving scenario. However, to avoid the limitations of a real test drive
in terms of time, cost per test kilometer, and risk to the test driver, this study employs
a real-time simulated test drive. Specifically, the ASM vehicle dynamics model from
dSPACE [63] is used to develop the real-time digital test drive platform in our laboratory.
As shown in Figure 4, the platform includes a HIL simulator, MicroAutoBox II as a real
ECU, CAN bus communication, driving elements, and a 3D driving environment model.
The developed platform enables both manual and automatic driving modes. Thanks to
dSPACE’s ModelDesk and MotionDesk development tools, the driving environment and
roads can be designed and modeled precisely and flexibly. What results is that the validation
data can be generated based on the user’s behavior in real time for our proposed DL-based
FDC. The main steps of the execution are the setting of the internal and external system
parameters, the design/selection of the driving environment, i.e., the road and driving
conditions, the configuration of the recording data system, and the real-time executions.
The driving scenario of conducting the digital test drive is illustrated in Figure 6 as a vehicle
speed over the time.

Sensors 2023, 23, 6606 14 of 25

Figure 6. Driving scenario of the selected case study.

4.4. Data Description

Once the test configurations are specified, the driving scenarios can be manually/
automatically executed. Under fault-free conditions, standard system behavior, including
signals from the sensors and actuators, can be captured in real time, generating a healthy
dataset. For case study 1, to conduct automatic test drives, the highway is selected from
the list of driving scenarios as a predefined scenario (see Figure 6). In case study 2, on
the other hand, to manually perform a user-based test drive, our developed real-time test
environment is used. The time sampling rate of the recording system is set to 0.01 s. The
throttle position [%], engine temperature [degC], mean effective engine torque [Nm], engine
speed [rpm], intake manifold pressure [Pa], rail pressure [bar] and vehicle speed [Km|h]
are selected in both case studies as input variables of the proposed model. To generate the
faulty dataset, the aforementioned five fault types are injected into the target components,
i.e., the APP sensor and engine speed sensor, individually and simultaneously. For this
purpose, the real-time FI framework developed in the previous work is used. Detailed
information about the possible fault types in the time-series data can be found in [64,65].

Focusing on generating a representative dataset with high coverage, the faults are
injected permanently and transiently. In the case of transient faults, the faults are injected
during real-time execution between 170 and 330 s, while the permanent faults are injected
throughout the entire drive cycle. As a result, 856,000 samples of faulty data are generated,
including five individual faults. In addition, concurrent fault samples are collected from
ten different combinations of two fault types. To achieve this, two different faults are
injected into the APP sensor and the speed sensor simultaneously. Figure 7 illustrates
the individual and simultaneous faults generated by the fault injection method. Table 3
presents the generated data for each experiment corresponding to each type of fault and its
combinations. The dataset is generated in the form of CSV files containing all the selected
variables. The size of each CSV file is about 63,422 KB, which, in the sum of all files, gives
a sufficient dataset for the DL approach with a size of 2.6 GB. Afterward, the collected
data are passed to the preprocessing stage so that the data are cleaned, normalized, and
split into three parts. In case study 1, for training the target model, 80% of the generated
time-series data, i.e., healthy and faulty data, is randomly selected, whereas to optimize
the decision threshold, 10% is used for validation. Additionally, 10% is used for the testing
process. As a consequence, no labeling process is imposed on the dataset. On the other
hand, all generated data from case study 2, i.e., 180,000 samples, are used to validate the
developed model. To overcome the problem of robustness to noise, different noise levels
are added to the dataset according to the Gaussian mechanism.

Sensors 2023, 23, 6606 15 of 25

Some examples of the generated faulty data compared to the healthy data can be seen
in Figure 7. Specifically, Figure 7a,b illustrate the system behavior in the presence of single
fault, whereas the effect of the concurrent faults is presented in Figure 7c,d.

(a) (b)

(c) (d)

Figure 7. System behavior under single and concurrent transient faults. (a) Effect of gain fault as a
single fault. (b) Effect of delay fault as a single fault. (c) Effect of stuck-at and delay fault as concurrent
faults. (d) Effect of noise and packet loss fault as concurrent faults.

Table 3. Faults and collected dataset description.

Fault ID Fault Type Fault Duration Training Samples Testing Samples

H Healthy - 2,352,000 294,000
F1 Gain 165–320 s 2,352,000 294,000
F2 Stuck-at 172–330 s 2,352,000 294,000
F3 Noise 175–310 s 2,352,000 294,000
F4 Packet loss 170–312 s 2,352,000 294,000
F5 Delay 170–325 s 2,352,000 294,000

F1F2 Gain and Stuck-at 166–338 s 2,352,000 294,000
F1F3 Gain and Noise 168–340 s 2,352,000 294,000
F1F4 Gain and Packet loss 179–329 s 2,352,000 294,000
F1F5 Gain and Delay 177–334 s 2,352,000 294,000
F2F3 Stuck-at and Noise 174–330 s 2,352,000 294,000
F2F4 Stuck-at and Packet loss 180–327 s 2,352,000 294,000
F2F5 Stuck-at and Delay 173–324 s 2,352,000 294,000
F3F4 Noise and Packet loss 166–320 s 2,352,000 294,000
F3F5 Noise and Delay 179–328 s 2,352,000 294,000
F4F5 Packet loss and Delay 176–336 s 2,352,000 294,000

4.5. Training and Optimization of DAE

The initial step after capturing the data from the real-time simulation is data prepa-
ration, whereby the data are cleaned and reprocessed. Once the data are pre-processed,

Sensors 2023, 23, 6606 16 of 25

Gaussian noise is artificially added to the data depending on the desired noise level. Follow-
ing the addition of the noise, the data are divided into three parts, i.e., training, validation
and testing, as shown in Figure 8. Prior to the training process, the configurations of the
model architecture are specified, i.e., the parameters and hyperparameters are initialized. It
is noteworthy that the hyperparameters play a crucial role in the performance of the trained
model. Therefore, in this study, to build an effective model, a range of hyperparameters
are selected, covering the number of layers, number of GRU unit, learning rate, batch size,
noise level, activation function and the optimizer. To optimize the target model, validation
data samples are used so that the hyperparameter values are tuned according to the defined
range. The criteria of selecting the hyperparameters is to reach convergence with high
accuracy. Considering this strategy, different DAE variants, i.e., ANN-DAE, CNN-DAE
and LSTM-CNN-DAE, are trained. The list of optimized hyperparameters of the proposed
GRU-based DAE architecture is summarized in Table 4. To provide better comparison,
the convergence curves of the proposed trained model as a result of the training process
under different levels of noise, i.e., 3%, 6%, 8% and 10%, are illustrated in Figure 9a–d,
respectively. Concerning the optimization phase, the tuning of the hyperparameters is one
of the well-known challenges in the development of DL models. Hence, in this study, the
technique of auto-tuning is used so that the hyperparameters can be dynamically adjusted
during the optimization process. Specifically, after initializing the model parameters, the
training process is monitored, i.e., the loss and performance metrics are tracked. Then, the
target parameter is updated accordingly until convergence is achieved.

Figure 8. Flowchart of model training and optimization.

(a) (b)

(c) (d)
Figure 9. Hyperparameter optimization results with training and validation accuracy. (a) Under level
noise 3%. (b) Under level noise 6%. (c) Under level noise 8%. (d) Under level noise 10%.

Sensors 2023, 23, 6606 17 of 25

Table 4. Optimal Hyperparameters for GRU-DAE architecture.

Hyperparameter Optimal Values

GRU Layers 4
Dense Layers 2
GRU Unit 384
Batch Normalization Layer 2
Epochs 850
Batch Size 128
Learning Rate 0.0001
Activation Function adam
Optimizer tanh
Noise Level 10%

5. Results and Discussion

The testing and evaluation results of the proposed model are presented in this section,
highlighting the superiority of the proposed architecture compared to other models. Fur-
thermore, the ability of the proposed model to overcome the challenge of simultaneous
faults under different noise conditions is demonstrated using the test data samples.

5.1. Evaluation Metrics

According to the proposed methodology, the results are discussed in two phases:
feature extraction and clustering. For this purpose, the reconstruction error, i.e., the mean
square error MSE, is used to evaluate GRU-DAE. On the other hand, to assess clustering
performance, the Davies–Bouldin (DB) score is used.

The reconstruction error is an evaluation measure to determine how well the devel-
oped model is able to reproduce the data pattern after the coding and decoding process.
The MSE [66] represents the loss function of the DAE design so that the reconstruction error
between the original input and the reconstructed denoised data can be qualified. The lower
the reconstruction error, the better the data representation of the trained model. The goal
of training and optimizing the designed model is to minimize the reconstruction error so
that the essential features can be accurately captured and reconstructed. The mathematical
equation for the MSE is presented in Equation (8), where Xi is the samples of the original
input data, X′i is the samples of the reconstructed output and L is the total number of
data points:

MSE =
1
L

Σ(Xi − X′i)
2 (8)

The DB score is widely used for developing unsupervised clustering models as a
quality assessment measure [67]. The idea behind this measure is to determine the degree
of similarity between clusters and their respective centers. In other words, the ratio between
the similarity within a cluster and the dissimilarity between clusters is used to calculate
the average of the maximum similarity of each cluster set. A lower value indicates better
clustering performance with precisely separated clusters. Thus, the search for the optimal
number of clusters aims to minimize the ratio value, while taking into account the problem
of overfitting. At the elbow point, where the inertia value increasingly changes, the optimal
number of clusters is considered the best. Mathematically, the calculation of the DB score
is given in Equation (9). C represents the number of clusters, D is the average distance
between cluster data points and its centroid, and L is distance between the centroids of
clusters ci and cj:

DB =
1
C

Σmax
(Di − Dj)

L(ci, cj)
(9)

In addition to the above evaluation metrics for unlabeled data, several quantitative
evaluation measures are used to assess the performance of the proposed model. In par-
ticular, based on predefined labeled testing data, the precision, recall and F1-score are

Sensors 2023, 23, 6606 18 of 25

calculated to evaluate the fault-detection and clustering performance of the developed ar-
chitecture [68]. The percentage of the total classification results that were correctly predicted
can be identified by precision, while recall represents the correctly identified elements as a
percentage of all elements to be identified. Finally, to calculate the harmonic mean between
precision and recall, the F1-score is used. Mathematically, the quantitative assessment
metrics used can be represented by Equations (10)–(12), based on the true positive (TP),
false positive (FP) and false negative (FN) values:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)

5.2. GRU-DAE Performance Compared to Other AE Variants

In this study, the superiority of the proposed model is demonstrated by comparing its
performance with other AE variants. For this purpose, ANN-AE, ANN-DAE and CLSTM-
DAE are implemented. All developed models are validated using the same test samples. In
Table 5, the high performance of the proposed model in extracting the noise-free features
with a low MSE of 0.0073 is evident. Notably, ANN-DAE performs well under noise-free
conditions with a low MSE value of 0.0212.

Besides the clean data, the applicability of the proposed model in denoising the data is
illustrated at different noise levels compared to the other models. In this case, four different
levels of Gaussian noise are added, i.e, 3%, 6%, 8% and 10%. Although the MSE value,
in our proposed model, is increased with increasing noise, the MSE value at a high noise
level is still acceptable compared to that of the other models, i.e., 0.0618 at noise 10%. On
the other hand, CLSTM-DAE shows poor outcomes with a MSE value of 0.5641 due to its
complex structure. Besides the simple structure, ANN-DAE also shows good performance
at different noise levels, i.e., 0.0316, 0.0530, 0.0706 and 0.0766. However, compared to our
proposed model, further improvement is needed to achieve higher accuracy.

Table 5. Reconstruction error of GRU-DAE compared to other AE variants.

Noise Level ANN-DEA CLSTM-DAE Proposed GRU-DAE

Noise-free 0.0212 0.5518 0.0073
Noise 3% 0.0316 0.5551 0.0234
Noise 6% 0.0530 0.5617 0.0421
Noise 8% 0.0706 0.5633 0.0504
Noise 10% 0.0766 0.5641 0.0618

5.3. Evaluation Results under Different Noise Levels and Fault Classes

To demonstrate the effect of the data size and number of fault classes on model
performance, the proposed model is trained under different conditions. In other words,
the ability of the proposed model to extract and reconstruct the features under different
data sizes and different number of fault classes is illustrated. As shown in Figure 10, 4
CSV, 8 CSV, 12 CSV and all CSV files are used to train the model under different levels of
noise, i.e., noise-free, 3%, 6%, 8%, and 10%. The model exhibits high performance under a
low number of fault classes with an MSE of 0.00992 under fault-free conditions. However,
the higher the level of disturbance, the larger the MSE value, which reaches 0.0598 at 10%
disturbance. On the other hand, the effect of the size of the dataset used, including the
faulty sample, can be observed in the fact that the MSE value increases as the fault classes
increase. The reason behind this is the increase in the diversity of the faulty features in

Sensors 2023, 23, 6606 19 of 25

the case of combination faults along with low data samples. Nevertheless, even with high
noise and including all fault classes, the performance of the model is still reasonable with
MSE of 0.0618 at 10% noise. Thus, the model performance in the presence of a high degree
of fault diversity can be ensured by increasing the size of the training data.

(a) (b)

(c) (d)
Figure 10. Effect of the data size and fault classes on the performance. (a) MSE using 25% of data
with 3 fault classes. (b) MSE using 50% of data with 7 fault classes. (c) MSE using 75% of data with
11 fault classes. (d) MSE using 100% of data with all classes fault classes.

5.4. Clustering Results of Single and Concurrent Faults

In this study, a multi-level clustering strategy is employed to accurately categorize the
extracted features in the presence of single and simultaneous faults. To this end, three levels
of clustering are performed so that the faulty features can be grouped without negatively
affecting the healthy features. Specifically, in the case of a single fault, as shown in Figure 11,
the extracted features are divided into two clusters at the first level, i.e., healthy and faulty.
At the second clustering level, the faulty features are grouped according to the faulty
components, either APP faults or RPM faults. Finally, at the third level, the features of
APP faults and RPM faults are grouped into specific clusters representing the nature of
each fault. However, in the case of a simultaneous fault, the characteristics of the faulty
components cannot be precisely determined. Therefore, the cluster levels are limited to
two levels. Similar to a single fault, the healthy and faulty features are separated in the first
level. Subsequently, the faulty features are clustered into subgroups representing the fault
classes that are combined to form the concurrent faults. Figure 12 illustrates the cluster
levels of the extracted features in the case of concurrent faults.

To select the optimal number of clusters, the inertia value is applied. In this strategy,
the inertia value is calculated against the number of clusters. Here, the objective is to select
the appropriate number such that the inertia value is minimized. As a result, the optimal
number is chosen at the points where the change in inertia value occurs increasingly, i.e., at
the elbow point. The chosen number of clusters depending on the inertia value is shown in
Figure 13a,b for single and simultaneous faults, respectively.

As a measure for evaluating the performance of the cluster model, the DB index in
Tables 6 and 7 shows how well the features are separated and clustered for single and
concurrent faults, respectively. In the case of a single fault, the low value of DB indicates
high performance at all cluster levels. At the first level, the DB score is 0.6442, while at the
second level, it is 0.6875, increasing slightly due to the similarity of the features of the faulty
components. The best score is obtained by clustering the faulty features of APP with a DB
index of 0.5695.

Sensors 2023, 23, 6606 20 of 25

In the case of concurrent faults and due to the increasing complexity of the extracted
features, the DB score is high compared to the single fault case. More specifically, the DB
score in the first stage is 0.7838, while in the second stage, a DB score of 0.7859 is achieved.
Nevertheless, the above values indicate the high performance of clustering, even in the
presence of simultaneous combination faults compared to conventional k-means.

In conclusion, by applying our proposed approach, robust representations against
the noise of the input can be trained, enabling more accurate fault clustering and pattern
identification, even in the presence of noise.

(a) (b)

(c) (d)
Figure 11. Feature visualization of the multi-level clustering for single fault including the clusters’
centres. (a) Level 1 clustering of the faulty features. (b) Level 2 clustering of the faulty components
features. (c) Level 3 clustering of the fault types features. (d) Level 3 clustering of the fault types
features.

(a) (b)
Figure 12. Feature visualization of the multi-level clustering for concurrent faults. (a) Level 1
clustering of the faulty features. (b) Level 2 clustering of the fault types features.

Sensors 2023, 23, 6606 21 of 25

(a) (b)
Figure 13. Optimization of number of clusters selection. (a) Clusters selection for single fault
clustering. (b) Clusters selection for concurrent faults clustering.

Table 6. Davies–Bouldin scores of the proposed model for single fault.

Clustering Level GRU DAE + K-Means Stand-Alone K-Means

Level 1 0.6442 1.2541
Level 2 0.6875 0.9560
Level 3 0.7170 0.9586
Level 3 0.5695 0.9312

Table 7. Davies–Bouldin scores of the proposed model for concurrent faults.

Clustering Level GRU DAE + K-Means Stand-Alone K-Means

Level 1 0.7838 2.0676
Level 2 0.7859 1.2288

5.5. Fault-Detection and Clustering Results of Case Study 2

In the context of DL-based FDD development, it is essential to ensure that the de-
veloped model is applicable in real industrial application. Therefore, in this study, the
dataset of system behavior under healthy and faulty conditions is recorded as testing data
based on real-time manual driving. The recordings of the digital test drives in this case
contain healthy, single and simultaneous faults. To be noted, due to the driver behavior
and real-world conditions, the test data are considered uncertainty samples.

The test results prove the effectiveness and superiority of the proposed model in
the reconstruction of the original denoised data with low loss, i.e., MSE of 0.0955. The
MSE shows that the proposed model can process uncertain real datasets containing noise
with a low reconstruction error. Moreover, a remarkable achievement is observed in the
clustering phase by clustering the faulty data. In other words, using the proposed model,
the faults can be accurately detected in single and concurrent occurrences with low DB
score, i.e., 0.4872 and 0.5617, respectively. The low score of DB for single faults indicates
that the detection performance is better than that of simultaneous faults. This is due to
the high complexity of the representative features of simultaneous faults signal patterns.
To evaluate the detection and clustering performance of the proposed method, the recall,
precision and F1-score are considered the quantitative performance criteria. To this end,
the aforementioned dataset of a real-time digital test drive containing the labels of healthy
and faulty samples is used. In the case of a individual fault, a remarkably high detection
performance is achieved with a precision of 99.17%, a recall of 95.23% and an F1-score of
97.16%. The results analysis shows that single faults can be accurately detected with a very
good positive predictive value and a high true positive rate. Furthermore, in the case of
concurrent faults, the high detection accuracy demonstrates the reliability of the proposed
model, i.e., precision 92.83%, recall 98.09% and F1-score 95.38%. It is worth noting that in
the case of compound faults, a number of test data samples are incorrectly clustered as
faulty, i.e., falsely reported. The reason behind this issue is the similarity of data samples in

Sensors 2023, 23, 6606 22 of 25

some cases between the healthy and faulty samples. This problem can be further addressed
by conducting experiments-based failure analysis to define the threshold for behavioral
deviations that are indicative of faults. Remarkably, the mentioned accuracy is also affected
by the degree of complexity of the fault patterns. In other words, some data samples of
faults types are similar to each other, which in turn leads to incorrect diagnosis results.

6. Conclusions

In this article, a novel DL-based method is proposed to tackle the problem of detecting
and clustering unknown sensor faults during the validation process of ASSs. The core
of the developed method is the adoption of a GRU-based denoising autoencoder with
the k-means algorithm. The denoised extracted features by our method contribute to a
significant improvement in the detection and clustering process under noisy conditions.
Thus, the reliability and robustness of the clustering model for single and simultaneous
faults under different levels of noise can be ensured. Compared to other restructuring
models, our proposed architecture exhibits high superiority in terms of reconstruction error
under noisy conditions. To verify the effectiveness of the developed method, the real-time
simulation data of two automotive case studies are used, i.e., gasoline engine and dynamic
vehicle system with traffic. The experimental results show that the proposed model is not
only able to extract representative features effectively but also to cluster the faults more
accurately compared to stand-alone techniques. Specifically, based on the DB index, the
results show high performance in the clustering process of single and simultaneous faults
with scores of 0.4872 and 0.5617, respectively. Quantitative evaluation metrics are used to
validate the diagnostic effectiveness of the model based on a testing dataset from a digital
test drive. In both cases of fault occurrence, i.e., individually and simultaneously, the model
achieves high detection and clustering performance with an average accuracies of 97.16%
and 95.38%, respectively. Overall, the proposed model is able to detect the potential risks
and vulnerabilities at an early stage of the system-development process. This, in turn, leads
not only to improve the safety and reliability aspects but also to reduce the costs and effort
of unnecessary maintenance.

As future work, the proposed framework can be further extended to cover the root-
cause identification tasks, i.e., to identify the faulty components of the developed systems
and its causes. To this end, based on the data-driven approach, historical data with repre-
sentative faulty sensors and actuators to develop the target model are required. Therefore,
novel techniques for intelligent fault detection and localization need to be explored, consid-
ering the problem of availability of representative faulty data.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; software, M.A.; validation,
M.A.; formal analysis, M.A.; investigation, M.A.; resources, M.A., C.K. and A.R.; data curation,
M.A.; writing—original draft preparation, M.A.; writing—review and editing, M.A., C.K. and A.R;
visualization, M.A.; supervision, M.A., C.K. and A.R.; project administration, M.A., C.K. and A.R. All
authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge support by Open Access Publishing Fund of Clausthal University of
Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ISO. ISO 26262-10:2012—Road Vehicles—Functional Safety—Part 10: Guideline on ISO 26262. Available online: https://www.iso.

org/standard/54591.html (accessed on 22 November 2021).
2. Vogelsang, A. Feature dependencies in automotive software systems: Extent, awareness, and refactoring. J. Syst. Softw. 2020,

160, 110458. [CrossRef]

https://www.iso.org/standard/54591.html
https://www.iso.org/standard/54591.html
http://doi.org/10.1016/j.jss.2019.110458

Sensors 2023, 23, 6606 23 of 25

3. Isermann, R.; Balle, P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control. Eng.
Pract. 1997, 5, 709–719. [CrossRef]

4. Theissler, A. Detecting Anomalies in Multivariate Time Series from Automotive Systems. Ph.D. Thesis, Brunel University School
of Engineering and Design PhD Theses, London, UK, 2013.

5. Sahoo, M.N.; Khilar, P.M. Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wirel. Pers.
Commun. 2014, 78, 1571–1591. [CrossRef]

6. Muhammed, T.; Shaikh, R.A. An analysis of fault detection strategies in wireless sensor networks. J. Netw. Comput. Appl. 2017,
78, 267–287. [CrossRef]

7. Garousi, V.; Felderer, M.; Karapıçak, Ç.M.; Yılmaz, U. Testing embedded software: A survey of the literature. Inf. Softw. Technol.
2018, 104, 14–45. [CrossRef]

8. Mihalič, F.; Truntič, M.; Hren, A. Hardware-in-the-loop simulations: A historical overview of engineering challenges. Electronics
2022, 11, 2462. [CrossRef]

9. Otten, S.; Bach, J.; Wohlfahrt, C.; King, C.; Lier, J.; Schmid, H.; Schmerler, S.; Sax, E. Automated assessment and evaluation of
digital test drives. In Advanced Microsystems for Automotive Applications 2017: Smart Systems Transforming the Automobile; Springer:
Cham, Switzerland, 2018; pp. 189–199.

10. Isermann, R. Model-based fault-detection and diagnosis–status and applications. Annu. Rev. Control 2005, 29, 71–85. [CrossRef]
11. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based

and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]
12. Li, W.; Li, H.; Gu, S.; Chen, T. Process fault diagnosis with model-and knowledge-based approaches: Advances and opportunities.

Control Eng. Pract. 2020, 105, 104637. [CrossRef]
13. Jieyang, P.; Kimmig, A.; Dongkun, W.; Niu, Z.; Zhi, F.; Jiahai, W.; Liu, X.; Ovtcharova, J. A systematic review of data-driven

approaches to fault diagnosis and early warning. J. Intell. Manuf. 2022, 1–28. [CrossRef]
14. Gonzalez-Jimenez, D.; Del-Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-driven fault diagnosis for electric drives: A review.

Sensors 2021, 21, 4024. [CrossRef]
15. Mirnaghi, M.S.; Haghighat, F. Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods:

A comprehensive review. Energy Build. 2020, 229, 110492. [CrossRef]
16. Alzghoul, A.; Backe, B.; Löfstrand, M.; Byström, A.; Liljedahl, B. Comparing a knowledge-based and a data-driven method

in querying data streams for system fault detection: A hydraulic drive system application. Comput. Ind. 2014, 65, 1126–1135.
[CrossRef]

17. Fernandes, M.; Corchado, J.M.; Marreiros, G. Machine learning techniques applied to mechanical fault diagnosis and fault
prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Appl. Intell. 2022, 52,
14246–14280. [CrossRef] [PubMed]

18. Choi, K.; Yi, J.; Park, C.; Yoon, S. Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines. IEEE
Access 2021, 9, 120043–120065. [CrossRef]

19. Zhang, F.; Saeed, N.; Sadeghian, P. Deep Learning in Fault Detection and Diagnosis of building HVAC Systems: A Systematic
Review with Meta Analysis. Energy AI 2023, 12, 100235. [CrossRef]

20. Qiu, S.; Cui, X.; Ping, Z.; Shan, N.; Li, Z.; Bao, X.; Xu, X. Deep Learning Techniques in Intelligent Fault Diagnosis and Prognosis
for Industrial Systems: A Review. Sensors 2023, 23, 1305. [CrossRef]

21. Lokman, S.F.; Othman, A.T.; Musa, S.; Abu Bakar, M.H. Deep contractive autoencoder-based anomaly detection for in-vehicle
controller area network (CAN). In Progress in Engineering Technology: Automotive, Energy Generation, Quality Control and Efficiency;
Springer: Cham, Switzerland, 2019; pp. 195–205.

22. Longari, S.; Valcarcel, D.H.N.; Zago, M.; Carminati, M.; Zanero, S. CANnolo: An anomaly detection system based on LSTM
autoencoders for controller area network. IEEE Trans. Netw. Serv. Manag. 2020, 18, 1913–1924. [CrossRef]

23. Rengasamy, D.; Jafari, M.; Rothwell, B.; Chen, X.; Figueredo, G.P. Deep learning with dynamically weighted loss function for
sensor-based prognostics and health management. Sensors 2020, 20, 723. [CrossRef]

24. Yang, J.; Guo, Y.; Zhao, W. Long short-term memory neural network based fault detection and isolation for electro-mechanical
actuators. Neurocomputing 2019, 360, 85–96. [CrossRef]

25. Zehelein, T.; Hemmert-Pottmann, T.; Lienkamp, M. Diagnosing automotive damper defects using convolutional neural networks
and electronic stability control sensor signals. J. Sens. Actuator Netw. 2020, 9, 8. [CrossRef]

26. Kumar, A.; Gandhi, C.; Zhou, Y.; Vashishtha, G.; Kumar, R.; Xiang, J. Improved CNN for the diagnosis of engine defects of
2-wheeler vehicle using wavelet synchro-squeezed transform (WSST). Knowl.-Based Syst. 2020, 208, 106453. [CrossRef]

27. Min, E.; Guo, X.; Liu, Q.; Zhang, G.; Cui, J.; Long, J. A survey of clustering with deep learning: From the perspective of network
architecture. IEEE Access 2018, 6, 39501–39514. [CrossRef]

28. Hong, J.; Wang, Z.; Yao, Y. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term
memory neural networks. Appl. Energy 2019, 251, 113381. [CrossRef]

29. Wu, Y.; Xue, Q.; Shen, J.; Lei, Z.; Chen, Z.; Liu, Y. State of health estimation for lithium-ion batteries based on healthy features and
long short-term memory. IEEE Access 2020, 8, 28533–28547. [CrossRef]

http://dx.doi.org/10.1016/S0967-0661(97)00053-1
http://dx.doi.org/10.1007/s11277-014-1836-6
http://dx.doi.org/10.1016/j.jnca.2016.10.019
http://dx.doi.org/10.1016/j.infsof.2018.06.016
http://dx.doi.org/10.3390/electronics11152462
http://dx.doi.org/10.1016/j.arcontrol.2004.12.002
http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1016/j.conengprac.2020.104637
http://dx.doi.org/10.1007/s10845-022-02020-0
http://dx.doi.org/10.3390/s21124024
http://dx.doi.org/10.1016/j.enbuild.2020.110492
http://dx.doi.org/10.1016/j.compind.2014.06.003
http://dx.doi.org/10.1007/s10489-022-03344-3
http://www.ncbi.nlm.nih.gov/pubmed/35261480
http://dx.doi.org/10.1109/ACCESS.2021.3107975
http://dx.doi.org/10.1016/j.egyai.2023.100235
http://dx.doi.org/10.3390/s23031305
http://dx.doi.org/10.1109/TNSM.2020.3038991
http://dx.doi.org/10.3390/s20030723
http://dx.doi.org/10.1016/j.neucom.2019.06.029
http://dx.doi.org/10.3390/jsan9010008
http://dx.doi.org/10.1016/j.knosys.2020.106453
http://dx.doi.org/10.1109/ACCESS.2018.2855437
http://dx.doi.org/10.1016/j.apenergy.2019.113381
http://dx.doi.org/10.1109/ACCESS.2020.2972344

Sensors 2023, 23, 6606 24 of 25

30. Winter, S.; Tretter, M.; Sattler, B.; Suri, N. simFI: From single to simultaneous software fault injections. In Proceedings of the 2013
43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Budapest, Hungary, 24–27 June
2013; pp. 1–12.

31. Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault diagnosis of rotating machinery under noisy environment conditions based
on a 1-D convolutional autoencoder and 1-D convolutional neural network. Sensors 2019, 19, 972. [CrossRef] [PubMed]

32. Peng, P.; Zhang, W.; Zhang, Y.; Wang, H.; Zhang, H. Non-revisiting genetic cost-sensitive sparse autoencoder for imbalanced fault
diagnosis. Appl. Soft Comput. 2022, 114, 108138. [CrossRef]

33. Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive maintenance enabled by machine learning: Use cases and
challenges in the automotive industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [CrossRef]

34. Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis.
Mech. Syst. Signal Process. 2017, 95, 187–204. [CrossRef]

35. Qian, J.; Song, Z.; Yao, Y.; Zhu, Z.; Zhang, X. A review on autoencoder based representation learning for fault detection and
diagnosis in industrial processes. Chemom. Intell. Lab. Syst. 2022, 231, 104711. [CrossRef]

36. Mallak, A.; Fathi, M. Sensor and component fault detection and diagnosis for hydraulic machinery integrating LSTM autoencoder
detector and diagnostic classifiers. Sensors 2021, 21, 433. [CrossRef] [PubMed]

37. Wang, Q.; Yu, Y.; Ahmed, H.O.; Darwish, M.; Nandi, A.K. Fault detection and classification in MMC-HVDC systems using
learning methods. Sensors 2020, 20, 4438. [CrossRef] [PubMed]

38. Abboush, M.; Bamal, D.; Knieke, C.; Rausch, A. Intelligent fault detection and classification based on hybrid deep learning
methods for hardware-in-the-loop test of automotive software systems. Sensors 2022, 22, 4066. [CrossRef] [PubMed]

39. Han, T.; Li, Y.F. Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware
deep ensembles. Reliab. Eng. Syst. Saf. 2022, 226, 108648. [CrossRef]

40. Park, C.H.; Kim, H.; Suh, C.; Chae, M.; Yoon, H.; Youn, B.D. A health image for deep learning-based fault diagnosis of a permanent
magnet synchronous motor under variable operating conditions: Instantaneous current residual map. Reliab. Eng. Syst. Saf. 2022,
226, 108715. [CrossRef]

41. Theissler, A. Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection. Knowl.-Based
Syst. 2017, 123, 163–173. [CrossRef]

42. Wong, P.K.; Zhong, J.; Yang, Z.; Vong, C.M. Sparse Bayesian extreme learning committee machine for engine simultaneous fault
diagnosis. Neurocomputing 2016, 174, 331–343. [CrossRef]

43. Chang, L.; Xu, X.; Liu, Z.g.; Qian, B.; Xu, X.; Chen, Y.W. BRB prediction with customized attributes weights and tradeoff analysis
for concurrent fault diagnosis. IEEE Syst. J. 2020, 15, 1179–1190. [CrossRef]

44. Zhong, J.H.; Wong, P.K.; Yang, Z.X. Fault diagnosis of rotating machinery based on multiple probabilistic classifiers. Mech. Syst.
Signal Process. 2018, 108, 99–114. [CrossRef]

45. Wu, B.; Cai, W.; Chen, H.; Zhang, X. A hybrid data-driven simultaneous fault diagnosis model for air handling units. Energy
Build. 2021, 245, 111069. [CrossRef]

46. Zhang, Z.; Li, S.; Xiao, Y.; Yang, Y. Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning.
Appl. Energy 2019, 233, 930–942. [CrossRef]

47. Liang, P.; Deng, C.; Wu, J.; Yang, Z.; Zhu, J.; Zhang, Z. Single and simultaneous fault diagnosis of gearbox via a semi-supervised
and high-accuracy adversarial learning framework. Knowl.-Based Syst. 2020, 198, 105895. [CrossRef]

48. Abboush, M.; Bamal, D.; Knieke, C.; Rausch, A. Hardware-in-the-Loop-Based Real-Time Fault Injection Framework for Dynamic
Behavior Analysis of Automotive Software Systems. Sensors 2022, 22, 1360. [CrossRef]

49. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans.
Evol. Comput. 2015, 20, 606–626. [CrossRef]

50. Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different
intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [CrossRef]

51. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
52. Goodman, N.R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann. Math.

Stat. 1963, 34, 152–177. [CrossRef]
53. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.
54. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014 arXiv:1409.1259.
55. Dong, G.; Liao, G.; Liu, H.; Kuang, G. A review of the autoencoder and its variants: A comparative perspective from target

recognition in synthetic-aperture radar images. IEEE Geosci. Remote. Sens. Mag. 2018, 6, 44–68. [CrossRef]
56. Cowton, J.; Kyriazakis, I.; Plötz, T.; Bacardit, J. A combined deep learning gru-autoencoder for the early detection of respiratory

disease in pigs using multiple environmental sensors. Sensors 2018, 18, 2521. [CrossRef]
57. Yamak, P.T.; Yujian, L.; Gadosey, P.K. A comparison between arima, lstm, and gru for time series forecasting. In Proceedings of

the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 20–22 December 2019;
pp. 49–55.

http://dx.doi.org/10.3390/s19040972
http://www.ncbi.nlm.nih.gov/pubmed/30823579
http://dx.doi.org/10.1016/j.asoc.2021.108138
http://dx.doi.org/10.1016/j.ress.2021.107864
http://dx.doi.org/10.1016/j.ymssp.2017.03.034
http://dx.doi.org/10.1016/j.chemolab.2022.104711
http://dx.doi.org/10.3390/s21020433
http://www.ncbi.nlm.nih.gov/pubmed/33435428
http://dx.doi.org/10.3390/s20164438
http://www.ncbi.nlm.nih.gov/pubmed/32784473
http://dx.doi.org/10.3390/s22114066
http://www.ncbi.nlm.nih.gov/pubmed/35684686
http://dx.doi.org/10.1016/j.ress.2022.108648
http://dx.doi.org/10.1016/j.ress.2022.108715
http://dx.doi.org/10.1016/j.knosys.2017.02.023
http://dx.doi.org/10.1016/j.neucom.2015.02.097
http://dx.doi.org/10.1109/JSYST.2020.2991161
http://dx.doi.org/10.1016/j.ymssp.2018.02.009
http://dx.doi.org/10.1016/j.enbuild.2021.111069
http://dx.doi.org/10.1016/j.apenergy.2018.10.113
http://dx.doi.org/10.1016/j.knosys.2020.105895
http://dx.doi.org/10.3390/s22041360
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1016/j.ins.2017.04.012
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1214/aoms/1177704250
http://dx.doi.org/10.1109/MGRS.2018.2853555
http://dx.doi.org/10.3390/s18082521

Sensors 2023, 23, 6606 25 of 25

58. Liu, Q.; Liang, T.; Dinavahi, V. Real-time hierarchical neural network based fault detection and isolation for high-speed railway
system under hybrid AC/DC grid. IEEE Trans. Power Deliv. 2020, 35, 2853–2864. [CrossRef]

59. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
60. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics

2020, 9, 1295. [CrossRef]
61. Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95.
62. Implementation Software—dSPACE. Available online: https://www.dspace.com/en/pub/home/products/products.cfm

(accessed on 20 March 2023).
63. Automotive Simulation Models—dSPACE. Available online: https://www.dspace.com/en/pub/home/products/sw/

automotive_simulation_models.cfm#176_26302_2 (accessed on 11 April 2023).
64. Saeed, U.; Jan, S.U.; Lee, Y.D.; Koo, I. Fault diagnosis based on extremely randomized trees in wireless sensor networks. Reliab.

Eng. Syst. Saf. 2021, 205, 107284. [CrossRef]
65. Jan, S.U.; Lee, Y.D.; Shin, J.; Koo, I. Sensor fault classification based on support vector machine and statistical time-domain

features. IEEE Access 2017, 5, 8682–8690. [CrossRef]
66. Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective

dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [CrossRef]
67. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227.

[CrossRef]
68. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,

arXiv:2010.16061.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPWRD.2020.3022750
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.3390/electronics9081295
https://www.dspace.com/en/pub/home/products/products.cfm
https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm#176_26302_2
https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm#176_26302_2
http://dx.doi.org/10.1016/j.ress.2020.107284
http://dx.doi.org/10.1109/ACCESS.2017.2705644
http://dx.doi.org/10.1016/j.neucom.2015.11.044
http://dx.doi.org/10.1109/TPAMI.1979.4766909

	Introduction
	Related Work
	Methodology
	DL-Based Simultaneous Fault-Detection and Clustering Method
	Data Collection
	Data Preprocessing
	GRU-DAE-Based Feature Extraction
	K-Means-Based Multi-Level Clustering

	Case Study and Experimental Implementation
	HIL Real-Time Simulation System
	Case Study 1: Gasoline Engine
	Case Study 2: Vehicle Dynamics with Traffic
	Data Description
	Training and Optimization of DAE

	Results and Discussion
	Evaluation Metrics
	GRU-DAE Performance Compared to Other AE Variants
	Evaluation Results under Different Noise Levels and Fault Classes
	Clustering Results of Single and Concurrent Faults
	Fault-Detection and Clustering Results of Case Study 2

	Conclusions
	References

