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A B S T R A C T

Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset’s health 
conditions and plan maintenance activities accordingly. However, according to the specific degradation process, 
some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health 
stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. 
Those issues are usually addressed by performing a manual feature engineering, which results in high man-
agement cost and poor generalization capability of those approaches. In this work, we address this issue by 
coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed 
data are automatically transformed into informative features. Many effective feature learning approaches are 
based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is 
difficult to understand the input’s contribution to the classification outcome and so the reasoning behind the 
model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. 
In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by 
processing different input signals, and (ii) provide useful insights about the most informative domain trans-
formations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or tem-
perature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about 
bearings’ progressive deterioration and compared with the traditional feature engineering approach.   

1. Introduction and motivation

Industry 4.0 advocates for the usage of machine learning and IoT
technologies to automatically extract knowledge from industrial pro-
cesses [1], drive technological innovation [2], and avoid production 
inefficiencies [3]. From the perspective of maintenance operations, the 
adoption of these technologies is enabling the transition from Reactive 
(RM) and Preventive Maintenance (PM) to Predictive Maintenance 
(PdM) [4,5]. With RM maintenance operations are executed if a failure 
occurs, thus it may result in production delay and high repair costs. PM 
aims at avoiding failures by carrying out maintenance operations ac-
cording to a regular schedule and may result in unnecessary mainte-
nance and high prevention costs [6]. PdM aims at providing a good 
trade-off between RM and PM, by planning the maintenance opera-
tions according to the estimated asset’s health status and allowing the 
maintenance frequency to be as lower as possible. The health state of an 
asset can be obtained by processing its sensor data with artificial intel-
ligence techniques, and even employed to predict the asset’s remaining 
useful life (RUL). However, the reliability of RUL predictions may be 

affected by non-predictable and time-varying operational conditions, e. 
g. how intensively an asset is used while in “unhealthy” stage [7]. Thus,
many real-world applications leverage health state estimation rather 
than RUL prediction. As an example, the authors in [8] derive a health 
state indicator by combining convolutional and recurrent neural net-
works, allowing the encoding of time-series information while gener-
ating the features to estimate the health state. If the asset’s degradation 
behaves in a very consistent way, it can be modeled using a simple 
two-stage process, i.e. regular and unhealthy stage [9]. Otherwise, the 
unhealthy stage can be further divided to have a more accurate repre-
sentation of the different behaviors characterizing the degradation 
process. Most of the research works [7] divide the degradation process 
into three [10], four [11], or five stages [12]. The number of stages used 
to characterize the degradation process is a design choice resulting from 
a trade-off between the interpretability of the prediction outcome and 
the complexity of the degradation process. A machine that has a more 
consistent degradation process can be effectively modeled with a few 
easy-to-interpret stages. Instead, an effective modelling of a complex 
degradation process requires a greater number of stages, but the 
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meaning of each stage may result more difficult to be interpreted and 
less generalizable. The ability to generalize is one of the main issues with 
PdM approaches. Those tend to be designed and tailored for specific 
problems since the degradation processes may differ significantly across 
industries, plants, machines, and according to the sensors used to collect 
the measures to assess the asset’s health condition [4]. To this aim, an 
example of possible measures may be temperature, vibration, power 
consumption, and noise [13]. However, some of these measures may be 
less informative than others according to the possible type of degrada-
tion (e.g. partial breakage or deterioration of a component) and the 
asset’s operating condition (e.g. operating speed). Moreover, each 
measure needs to be properly treated to extract the information linked to 
degradation stage. These issues are usually addressed via a tight 
collaboration between data scientists and maintenance analyst to 
perform manual feature engineering, comprising (i) measure selection, 
according to the effect of a possible faults on the behavior of the signals; 
and (ii) feature extraction, i.e. transforming raw data into a more 
informative and compact representation, e.g. via statistical indicators. 
Due to (i) the multiplicity of the possible measures, (ii) the diversity of 

the degradation processes, and (iii) the specific expertise of the main-
tenance analyst involved, it is difficult to provide a high-quality feature 
engineering that is also generalizable among different PdM applications 
[14]. Moreover, manual feature engineering results in a high manage-
ment costs also because this process may be repeated during the archi-
tecture training and evaluation, as well as every time the classification 
performance critically decrease, e.g. due to unseen operational condi-
tions (Fig. 1). This results in the need to have a more automatic feature 
engineering process [15]. A possible solution is employing feature 
learning approaches [16], whose effectiveness have been proved with 
many application domains such as speech recognition and object 
detection [17]. 

Feature learning has been studied since the advent of principal 
component analysis and has been recently revolutionized by the intro-
duction of deep learning technology, resulting in better abstractions of 
the original input for subsequent classification, prediction, and detec-
tion tasks [18]. Contrary to feature engineering, feature learning is an 
integrated learning process: the algorithms learn to automatically 
transform minimally processed data into informative features able to 
simplify the classification task, reduce the management cost of a PdM 
architecture, and improve its performance. In this context, autoencoders 
(AE) are among the most popular deep learning architectures for feature 
learning [18,19]. An autoencoder is a deep neural network architecture 
made of two main components: an encoder and a decoder. The encoder 
is aimed at producing a compact representation of the inputs. The 
decoder is aimed at reconstructing the input data from a compact rep-
resentation. The compact representation obtained by a properly trained 
autoencoder (i.e. the encoding) can be used as features for classification 
tasks. As feature learner, an autoencoder offers a few peculiar advan-
tages [4], i.e. (i) by being trained in an unsupervised manner, they do 
not require prior knowledge about the data, and (ii) can fuse 
multi-sensory data while performing feature extraction [20,21]. On the 
other hand, the autoencoder cannot determine what information is 
relevant, it just learns how to extract meaningful non-linear combina-
tion of the inputs [4]. The capability to distinguish the most informative 
input is a property of manual feature engineering that is important to 
keep even in a feature learning approach. Indeed, it can be used [22] to 
(i) validate the model’s decision-making against common knowledge or 
practitioner experience, (ii) provide managers with insights to identify 
potential causes of a short machine lifetime, and (iii) motivate the 
predictions obtained by processing those features. Indeed, with the wide 
adoption of machine learning technology, it has emerged how even 
models with high recognition scores may produce results that have no 
sense to a human observer [22]. Thus, machine learning models are 
increasingly required to provide not only a good recognition perfor-
mance but also some insights about the model learned from the data, e.g. 
the inputs’ contribution for the classification. Such insights are funda-
mental to interpret the model outcome and evaluate its reliability in a 
real-world scenario, especially with black-box approaches such as deep 
neural networks [23]. Specifically, in the field of predictive maintenance 
is emerging the need for interpretable approaches able to provide 
automatic feature learning from multiple and heterogeneous sources [7, 
24,25], and an evaluation of the quality of the learned features, e.g. their 
relevance for the degradation stage classification [4]. We summarize the 
contribution of this work as it follows: 

- We propose an approach to learn degradation-representative fea-
tures from different sensory inputs, regardless of the nature of their 
time series (i.e. oscillatory or not) and regardless of which of them is 
more affected by the degradation process.  

- The quality of the features learned from each input signal and 
domain transformation are evaluated by clustering them: the more 
the clusters match the degradation classes, the more the features are 
considered representative of the degradation process. 

Fig. 1. Business Process Modeling Notation (BPMN) diagram of the setting-up 
of a predictive maintenance architecture. 

A.L. Alfeo et al.



3

- Only the best learned features are used for the classification, thus 
their rank describes their contribution in the classification, providing 
global interpretability to the model. 

To the best of our knowledge, this is the first example of a feature 
learning approach able to effectively process different input signals 
regardless of whether their behavior is oscillatory or not, thanks to a 
ranking and selection mechanism of the learned features based on their 
expected contribution in the classification. The proposed approach has 
been tested on 3 real-world cases study addressing the temperature and 
vibration of rolling bearings. The paper is structured as follows. In sec-
tion 2, we present the literature review. Section 3 details our approach. 
The case study and the experimental setup are presented in sections 4. 
Finally, section 5 and 6 discuss the obtained results and the conclusions, 
respectively. 

2. Related works

Feature learning approaches can employ both linear and non-linear
methods [26], and more recently deep neural networks [19]. The mostly 
used linear methods are principal component analysis (PCA), factor 
analysis, and linear discriminant analysis. PCA [27] is a statistical 
technique aimed at finding the principal components of inputs hyper-
space, i.e., the directions that maximize the variance between data 
points while being uncorrelated with the other components. The pro-
jections of a given data point over these directions can be used as fea-
tures of that data point. Factor analysis [28] linearly combines a set of 
latent variables or unobserved factors to generate the features. Linear 
discriminant analysis [29] is a supervised statistical technique aimed at 
finding linear combinations of features to better distinguish different 
classes. 

Some well-known non-linear approaches are manifold learning 
methods, kernel PCA, and restricted Boltzmann machines. Manifold 
Learning methods try to generalize linear frameworks (e.g. PCA) looking 
for non-linear lower-dimensional structures embedded in data. As an 
example, multidimensional scaling (MDS) aims at projecting samples in 
a low-dimensional space while preserving samples’ pairwise distances. 
Kernel PCA [14] uses kernels to extend PCA with a non-linear combi-
nation mechanism and project data samples onto higher-dimensional 
spaces [30]. Restricted Boltzmann machines [31] is a generative sto-
chastic artificial neural network able to learn inputs’ probability dis-
tribution and use it to generate features from input data. 

Deep neural network (DNN) architectures consist of hierarchies of 
abstractions of the input data whose relevant information is captured, 
combined, and passed to the next layer to be transformed in a proper 
result in the output layer. The features can be obtained by considering 
the information exchanged among the layers of specifically trained 
DNN, such as Generative Adversarial Networks [32], Deep Belief net-
works, and more often, AEs [33]. AEs employ a sort of "information 
bottleneck" to learn lower dimensionality representations of original 
inputs and faithfully reconstruct the input from that representation [24]. 
The generation of this representation (i.e. the encoding) can be con-
strained to provide it with specific properties, such as robustness to 
input noise (denoising autoencoder), enhanced organization of the 
latent space (variational autoencoder), or better compression capability 
(stacked autoencoder) [34]. By being descriptive enough to enable the 
input reconstruction, the AE’s encoding can be considered as a feature 
learned from the input data. It is indeed used in this manner in many 
research works analyzing machinery’s health condition. As an example, 
in [35] the authors leverage a feature learning and fusion mechanism 
obtained with denoising and a contractive AE with an approach for 
machinery fault diagnosis, obtaining 0.97 accuracy score. Authors in 
[36] propose an approach based on AE to detect faulty conditions in 
gearboxes and locomotive bearings, resulting in an accuracy equal to 
0.94 and 0.89, respectively. A stacked denoising AE was deployed in 
[37], to adaptively extract features for health condition detection from 

vibration time series, resulting in 0.94 accuracy. An approach based on 
sparse AE was proposed in [38] to perform condition monitoring of an 
air compressor and achieving an accuracy up to 0.97. Similar perfor-
mances are achieved in [39], in which an architecture based on sparse 
AE is employed for fault diagnosis of induction motor. Authors in [40] 
propose a deep learning framework for the degradation process moni-
toring leveraging a novel eigenvector based on time–frequency-wavelet 
joint features processed via a deep autoencoder. In [41], a stacked 
multi-level denoising autoencoder is employed to learn robust and 
discriminative features to detect fault in wind turbine gearbox, resulting 
in the maximum accuracy of 0.98. Authors in [42] propose an approach 
based on variational autoencoder to learn representative bearings’ 
degradation features to be used for an effective health state estimation. 
In [43] the authors derive an operation-specific health indicator from 
industrial condition monitoring data via a generative deep learning 
model based on the conditional variational autoencoder. The most 
common approach with autoencoders operating on multiple input 
sources is trying to obtain a (fully or partially) shared encoding [44], 
allowing for the reconstruction of all the inputs data from it [34,45]. The 
main problem with this approach lies in the difficulty to extract some 
knowledge about the importance of each information source, given that 
their compact representation is made by their joint non-linear combi-
nation. As already mentioned in Section 1, the aspect of the explain-
ability of ML approaches is crucial and well known in the literature. 
Explainable machine learning groups the machine learning approaches 
able to provide insights about the reasoning behind their outcome. An 
explanation of a model can be evaluated according to its interpretability 
and completeness [46]. The goal of interpretability is to provide 
human-understandable insights about the mechanism used by the model 
to produce a result, e.g. the contribution of each input in the prediction. 
The goal of completeness is to accurately describe each operation per-
formed by the model to transform input data in predictions, e.g. the 
formulae expressing the data processing provided by a neural network. 
An explanation is complete when it allows to anticipate the behavior of 
the model in each situation [46]. 

Deep neural networks are black box model, thus are more complex to 
explain in an interpretable way [47]. Still, this can be achieved via ap-
proaches belonging to one of the following families [46], i.e. repre-
sentation-based, processing-based, and explanation-based. Approaches 
considering the representation of information in the model aim at inter-
preting the prediction by examining the role of each neural network 
layers, neuron units, and latent space vectors’ direction. To interpret a 
model according to how it processes data, two strategies are possible: (i) 
producing a saliency map [48], e.g. repeatedly testing the neural 
network with portions of the input occluded to create a map showing 
which parts of the data affected the network output; and (ii) treating the 
original model as a black-box and using a surrogate model, i.e. a model 
that behaves similarly to the original one but is easier to explain, i.e. via 
LIME [49] or SHAP [50]. LIME [49] (Local interpretable model-agnostic 
explanations) employs local surrogate models to provide insights about 
the contribution of each input in the model. The explanations provided 
by SHAP (SHapley Additive exPlanations) [50] works similarly, but they 
come with theoretical guarantees about their consistency and local ac-
curacy. SHAP considers the contributions of all permutations of all the 
features of the model, whereas LIME perturbs data around an individual 
prediction, resulting in lower computational costs. On the other hand, 
LIME assumes linear behavior of the machine learning model locally, 
and may result in instability of the explanations, i.e. the explanations of 
two very close instances may differ significantly [51]. Both LIME and 
SHAP have been proposed as methods to provide local interpretability, i. 
e., explaining individual predictions rather than the model at the global 
level. However, LIME can provide also global interpretability via its 
submodular pick algorithm. It selects a set of representative data in-
stances, i.e. whose non-redundant local explanations can be used to 
explain the model from a global perspective [49]. Still, it is unclear (i) to 
what extent the chosen instances are representative of the global 

A.L. Alfeo et al.



4

behavior of the model, (ii) how to identify the number of instances to 
have an effective global understanding of the model [52], as well as (iii) 
how to evaluate the trustability of a linear surrogate model when the 
object of the explanation represents complex non-linear relationships 
between input and output, as in the case of deep learning approaches 
[53]. To better interpret the behavior of these approaches, some expla-
nation may be generated during the training of the deep neural network 
itself, via (i) attention-based networks, i.e. providing a weighting over 
inputs and internal features to steer the relevant information or the most 
engaged part of a network; (ii) neural networks providing data disen-
tangled representations, i.e. organizing the data in the latent space to 
match the distribution of semantically meaningful factors of variation in 
the data, e.g. measure and trend of a time series [54]; and (iii) neural 
networks explicitly designed to generate their own explanation during 
their training. With explanation-based approaches, the interpretability of 
the model may result in higher model complexity since part of the 

training process is explicitly engineered to provide an additional 
outcome, i.e. some interpretability to the results [55]. Different proc-
essing-based, and explanation-based approaches have been used to inter-
pret approaches based on AEs [19]. An example of a processing-based 
method is used in [56] where an AE-based architecture is used to 
perform feature extraction with multiple information sources, whereas 
the interpretation is addressed with an approach inspired to LIME 
approach. In contrast with processing-based, explanation-based ap-
proaches result to be more suitable for human evaluation [46] and 
therefore usable in an industrial process such as a predictive mainte-
nance. As an example, in [57] authors obtain a disjointed multi-source 
representation in the latent space, allowing to consider the contribu-
tions of the single sources independently. Given its simplicity and 
effectiveness, a similar approach is also employed in this research work. 

Fig. 2. The architecture of the proposed approach.  
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3. Architecture design

In Fig. 2, we present the design of the proposed approach. It consists
of four functional modules, addressing data preparation, feature 
extraction, feature selection, and health status classification. Neural 
networks are known as universal approximators. However, some generic 
well-known input transformations are ineffective or inefficient to be 
obtained through neural networks. For this reason, it is often preferred 
to pass already transformed data to the network, e.g. the Fourier 
transform [58] or the spectral kurtosis [59] of a given time series. As 
such, the first step of the data preparation is a domain transformation. 
Multiple domain transformations can be provided to work with time 
series consisting of different type of input signals. Each domain trans-
formation turns a time series generated by one input channel tsc in a 
numeric array dc. Those arrays are split into m semi-overlapping seg-
ments and each segment is summarized by an aggregation operator, e.g. 
their average. Finally, the data preparation module processes n multi-
variate time series to generate a number of sets consisting of n m-length 
arrays ad,c one for each combination of transformation functions d and 
aggregation operators a, and input channel c. The set of the arrays ad,c 
obtained from a given channel c, with a domain transformation d and an 
aggregation operator a is rescaled between 0 and 1 with a min-max 
procedure and used as input for the feature extraction module. The 
feature extraction module consists of an autoencoder, trained to mini-
mize the input reconstruction error, and used to generate representative 
features (i.e. the AE’s encoding) from the input data. This feature 
extraction procedure is repeated for each possible combination of c, 
d and a. The resulting features are collected and passed to the feature 
selection module. 

Our approach does not apply any aprioristic selection of the domain 
transformations based on the behavior (oscillatory or not) of the input 
signal; instead, it ranks the features learned from each input signal and 
domain transformation, to select only the best ones. Indeed, some input 
signals may be less affected by a given degradation process. At the same 
time, depending on the type of input signal, some domain trans-
formations could not result in representative learned features and 
therefore increase the noise in the classification task. For instance, the 
Fourier transform of a vibration signal is expected to inform about the 
degradation of machinery, thus should result in representative learned 
features. On the other hand, the same transformation applied to the 
temperature signal may result in noisy non-informative features from 
the classification perspective. Specifically, the proposed approach pro-
vides both transformations for oscillatory and non-oscillatory signals. 
This choice is motivated by the fact that predictive maintenance is most 
often based on input signals that belong to one of these two categories, 
such as vibration, temperature, environmental noise, and energy 

consumption associated with the monitored equipment [7,24]. A se-
lection mechanism is therefore essential because it is very likely that 
from each time series both representative and noisy features will be 
learned. The feature selection module aims at identifying the most 
informative combinations of channel c, domain transformation d, and 
aggregation operator a for a given classification task. The best combi-
nation can be identified according to the distance between the generated 
features, which should be shorter within the same class and greater 
among different classes. To this aim, the set of features obtained with 
each combination of c, d and a undergoes a partition-based clustering 
procedure, i.e. K-means [60]. The best quality combination is the one 
whose resulting cluster labels match the original class labels. Consid-
ering that the labels generated by the clustering may not have the same 
arrangement of classes’ labels, this match is evaluated by using the 
adjusted rand index (ARI). The adjusted rand index can be roughly 
defined as an accuracy measure that considers possible labels’ permu-
tation [61]. ARI is bounded between 1 and 0. A greater ARI corresponds 
to a better match between the labels generated by clustering and the 
labels of health classes. Only the features with higher ARI are considered 
for the classification. The selection of the learned features is specific for 
each input signal and domain transformation, thus providing some in-
sights into their contribution to the classification model. This result in 
model interpretability and comes with no additional costs, since (i) the 
ranking of the learned feature is part of the training process and does not 
require a posteriori computation to evaluate the contribution of the 
learned features in the classification, (ii) the selection of the learned 
features results in a simpler classification task; without it, a more com-
plex end-to-end deep network would be needed to cope with such a 
noisy data and achieve good classification performance, and (iii) does 
not result in additional parameters to the model, by being based on a 
clustering procedure that does only require the number of clusters, 
which corresponds to the number of degradation stages. Finally, the 
features obtained with the best n combinations (even from different 
channels) are concatenated to generate the features learned from the 
data, i.e. the inputs for the degradation state classifier. The classifier 
employs a multilayer perceptron [62] able to process the features 
learned from the data and recognize the corresponding machinery 
health status, available as labels of the original time series. 

Fig. 3. Representation of the Pronostia platform.  

Table 1 
Number of time series per case study and health stage.  

Case Study # Regular # Degraded # Critical 

A 1871 1665 181 
B 748 319 74 
C 753 371 73 
D 5850 2834 3730  

Table 2 
CI of the F1-scores obtained by varying the number of best encodings used to 
generate the features. The best performances per case study and feature 
extractor are highlighted in bold.  

Features 
Learner 

# best 
enc. 

Case Study 
A 

Case Study 
B 

Case Study 
C 

Case 
Study D 

AE 

4 
0.998 ± 
0.0007 

0.954 ±
0.0072 

0.878 ±
0.0106 

0.852 ±
0.005 

6 
0.998 ±
0.0008 

0.968 ± 
0.0066 

0.908 ±
0.0111 

0.905 ±
0.005 

8 0.998 ± 
0.0007 

0.966 ±
0.0057 

0.947 ± 
0.009 

0.912 ± 
0.003 

VAE 

4 
0.991 ±
0.0025 

0.924 ±
0.012 

0.836 ±
0.012 

0.764 ±
0.005 

6 
0.993 ±
0.0021 

0.941 ±
0.0085 

0.874 ±
0.0106 

0.766 ±
0.005 

8 
0.994 ± 
0.0022 

0.950 ± 
0.0068 

0.913 ± 
0.013 

0.798 ± 
0.010  
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4. Case study and experimental setup

The data used as case studies are collected via the experimental
platform Pronostia and publicly available [63]. It enables validating 
approaches for bearing health assessment by leveraging some 
run-to-failure time series. Those time series are collected during the 
progressive degradation of bearings, resulting from the application of a 
radial force through an actuator (Fig. 3). In three case studies [63] the 
bearing’s health is monitored with two types of signals: (i) temperature, 
sampled at 10 Hz, and (ii) vibration, sampled at 25.6 kHz with hori-
zontal and vertical accelerometers. Since the time series of the vibration 
on the horizontal and vertical axis are strictly correlated, only the first 
one is considered. Those three case studies are named 1_1, 1_2, and 2_1 
in [63]. For simplicity, in this work, we refer to them as case A, B, and C, 
respectively. We also employ another dataset [64], consisting of the 
vibration signals of a wind turbine high-speed shaft driven by a 20-tooth 
pinion gear, collected during 50 consecutive days. An inner race fault 
developed and caused the failure of the bearing across the 50 days. By 
concatenating these time-series we obtained one single run-to-failure 
time series, suitable for our analysis. We refer to this dataset as case 
study D. 

First, those long run-to-failure time series are broken down into 
partially overlapping time windows, each of them from now on is called 
time series for simplicity. The duration of each of them is equal to 30 s 
and corresponds to a health stage of the bearing. In this study, we 
consider 3 health stages: (i) regular, in which the bearing operates 
normally and there is no evidence of degradation, (ii) degraded, i.e. 
characterized by more and more evidence of health degradation, and 
(iii) critical, in which the bearing is close to failing. To determine the 
degradation labels for each time series, we consider the instants in which 
the bearing may be considered out of the regular health stage or tran-
sitioning to the critical health stage. According to [65,66], a bearing can 
be considered at the beginning of its degradation process when the ac-
celeration of the vibration signal is consistently equal or greater than 1 g. 

Thus, we smooth the vibration time-series via a moving average and 
consider the time instant in which the vibration is greater than 1 g as the 
first instant of the degraded health stage. To detect the transition to the 
critical health stage, we observe how quick Root Mean Square (RMS) of 
the vibration raw signal increases [67]. Specifically, the RMS curve is 
approximated via a polynomial regression, and the time instant in which 
the slope difference between two consecutive instants exceeds its 95th 
percentile is considered the beginning of the critical health stage. The 
resulting number of examples for each case study and health stage are 
reported in Table 1. 

The input channels in our case studies consist of bearing’s vibration 
and temperature signals. Vibration time series are usually analyzed in 
the frequency domain, whereas an analysis in the time domain can be 
sufficient with less fluctuating time series such as the temperature. Since 
the proposed approach is supposed to work with these two different 
types of input signals, the data preparation module is set to provide the 
following general-purpose transformations: probability density func-
tion, discrete Fourier transform, and spectral kurtosis. Considering that 
the Fourier transform has a real and an imaginary part, each time series 
tsc is used to generate five numeric arrays dc: the series in the time 
domain, its probability density function, its discrete Fourier transform 
(real and an imaginary part), and its spectral kurtosis. Each one of those 
arrays are split in 128 semi-overlapped segments. Finally, each segment 
is aggregated via their mean or standard deviation. The autoencoder 
used in the feature extractor consists of 4 dense neural network layers for 
the encoder (128 + 64 + 32 + 16 neurons) and the same for the decoder 
(16 + 32 + 64 + 128 neurons). As loss function, we use the mean square 
error (MSE), as neurons’ activation function we use relu (rectified linear 
unit), and adam as optimization strategy due to its computational effi-
ciency and little memory requirements [68]. Beside the “basic” 
autoencoder, the variational autoencoder could be useful in a feature 
learning problem, as it attempts to constrain the latent space to have a 
better spatial organization of the encodings, i.e. with a Gaussian distri-
bution [69]. Therefore, we compare deep autoencoder and variational 
autoencoder in our experimentations. Both feature extractor models 
have the same number of neurons with the only exception of the last 
encoder layer, which is generative for the variational autoencoder [34]. 
K-means clustering algorithm is used for the feature selection module. 
The classifier consists of a multiplayer perceptron with 3 hidden layers, 
each one of 16 neurons with relu activation function. Each architecture 
module is built in Python, by using well known machine learning li-
braries (e.g. sklearn and tensorflow). To assess the benefits of a feature 
learning approach with respect to a classic feature extraction approach, 
we employ a set of largely used features for industrial assets’ degrada-
tion analysis [3,70]. Specifically, we extract:  

(a) 90th, 75th, 50th, and 25th percentile of the time series  
(b) maximum, median, mean absolute deviation, skewness of the 

time series  
(c) the difference between the global (i.e. of the whole run-to failure 

time series) and local (i.e. of the current time window) mean 
absolute deviation  

(d) the difference between the global and local median [3]  
(e) number of continuous time-intervals with values greater than 

90th, 75th, 50th, and 25th percentile of the time series [3]  
(f) number of samples greater than 50 % and 25 % of the maximum 

of the time series [3] 

Table 3 
Average F1-score degradation due to the lowering of the training epochs of the 
classifier, from 500 to 100.  

Features Learner Case Study A Case Study B Case Study C Case Study D 

AE 0% − 2% − 6.8% − 8.1% 
VAE 0.3 % − 1.5% − 4.6% − 1.1%  

Table 4 
CI of the F1-scores obtained by using the feature extractor and the handcrafted 
features presented in Section 4. The best performances are highlighted in bold.  

Case 
study 

Signal Hand-crafted 
features 

AE VAE [78] 

A 

Vibr. 
0.830 ±
0.0249 

0.998 ± 
0.0009 

0.995 ±
0.0014 

0.968 ±
0.0019 

Temp. 
0.941 ±
0.0143 

0.955 ±
0.0038 

0.975 ± 
0.0032 

– 

Both 0.968 ±
0.0118 

0.999 ± 
0.0006 

0.994 ±
0.0022 

– 

B 

Vibr. 0.755 ±
0.0545 

0.951 ± 
0.0076 

0.828 ±
0.0135 

0.783 ±
0.0120 

Temp. 
0.817 ±
0.0348 

0.877 ±
0.0098 

0.898 ± 
0.0095 – 

Both 
0.907 ±
0.0253 

0.966 ± 
0.0057 

0.950 ±
0.0068 

– 

C 

Vibr. 0.757 ±
0.0505 

0.958 ± 
0.0070 

0.924 ±
0.0100 

0.674 ±
0.0080 

Temp. 
0.879 ±
0.0437 

0.918 ±
0.0066 

0.921 ± 
0.0062 – 

Both 
0.882 ±
0.0599 

0.947 ± 
0.0091 

0.913 ±
0.0130 – 

D Vibr. 
0.899 ±
0.0147 

0.912 ± 
0.0032 

0.798 ±
0.010 

0.856 ±
0.0038  

Table 5 
CI of the F1-scores obtained by processing the features extracted with K-means.  

Case study Handcrafted features AE VAE 

A 0.909 ± 0.0038 0.974 ± 0.0230 0.901 ± 0.0249 
B 0.584 ± 0.0094 0.512 ± 0.0303 0.511 ± 0.0249 
C 0.622 ± 0.0256 0.759 ± 0.0532 0.646 ± 0.0406 
D 0.389 ± 0.0070 0.643 ± 0.0229 0.559 ± 0.0348  
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(g) root mean square, crest factor, impulse factor, peak to peak, en-
tropy, kurtosis of the time series [70] 

Some features are extracted only with temperature data (e, and f), 
others only with vibration data (g). The results obtained by passing 
those features to the degradation classifier, should allow us to know if 
the proposed feature learning approach is able to compensate for the 
lack of a traditional feature engineering. 

We evaluate the capability of the feature selection module of (i) 
filtering out noisy or non-informative learned features for classification, 
and (ii) generating a global explanation of the proposed method. Thus, 
we repeat the measurement of the classification performances without 
the feature selection module, by just connecting the features provided by 
all the trained autoencoders to the MLP classifier. To test whether a 

more powerful or better-trained classifier could compensate for the in-
crease in classification noise, we test many different hyper- 
parameterizations of the classifier via a Bayesian optimization 
approach, a global optimization method for noisy black-box functions 
[71]. Specifically, beside the classic hyper-parameterization of a MLP 
classifier, we tested the addition of a dropout layer before each densely 
connected layer. Dropout layers have been employed in predictive 
maintenance classifier given their effectiveness in preventing the 
network to overfit over noisy data [72,73]. The hyper-parameters space 
includes the activation function (identity, logistic, tanh, relu), the opti-
mization algorithm (lbfgs, sgd, adam), the L2 regularization term (from 
0.000001 to 0.001), the learning rate (constant, inverse scaling, adaptive), 
the maximum number of training iterations (from 500 to 4000), the 
dropout probability per layer (from 0 to 0.4), and the number of neurons 
per layer i.e. [32,32,32,4], [64,64,64], [264,64,16]. The best set of 
hyper-parameters for each case study have been employed to parame-
trize the classifier and measure its classification performances, as well as 
provide global interpretability to the model by using LIME. 

5. Results

In this section, we show our experimental results. Each one of them is
presented as a 95 % confidence interval (CI) obtained with a stratified 
Monte Carlo cross fold validation, i.e. by randomly picking 70 % of the 
data as training set and 30 % as testing set, with 10 repetitions. The 
hardware platform used for our experiments employs an AMD EPYC CPU 
(8 cores, 16 Threads, 2195 MHz), 23 Gigabyte RAM, and an NVIDIA 
Tesla T4 GPU. Firstly, we assess the impact of different numbers of best 
encodings, the ones to be concatenated to generate the final array of 
features for the classifier. We test 4, 6, and 8 as numbers of best 
encodings, both with AE and VAE as feature learners. The feature learner 
has been trained by using an early stop configuration, i.e. the training 
stops if the error does not decrease significantly for 10 subsequent 
epochs. The classifier employs 500 training epochs. Table 2 shows the 
F1-scores confidence interval of the obtained with the three case studies. 

Given a number of best encodings, AE always performs better than 
VAE. Among all, the case study C results to benefit more from a greater 
number of encodings. Thus, a number of best encodings equal to 8, is 
employed as configuration with all the next experimentations. We aim at 
assessing if the classifier is "accommodating" for the complexity of the 
classification, potentially hiding the poor quality of the features. In this 
case, lowering the number of training epochs of the classifier should 
result in a major decrease in the performances. In Table 3, we show the 
degradation of the average F1-scores obtained by lowering the training 
epochs of the classifier from 500 to 100. This results in minor perfor-
mance decrease with each case study, both for the feature extractor 
based on VAE and AE, thus the classifier is not compensating for a poor- 
quality feature extraction. 

In the majority of the trials of the first experiment, the training of the 

Table 6 
F1-scores CI obtained with a VAE-based approach, by adding white Gaussian 
noise to the vibration signals of the Pronostia dataset. The white Gaussian noise 
has been parametrized according to the signal-noise ratio (SNR).  

SNR CASE A CASE B CASE C CASE D 

0.7 0.957 ± 0.021 0.786 ± 0.039 0.811 ± 0.034 0.721 ± 0.097 
0.8 0.984 ± 0.011 0.813 ± 0.063 0.864 ± 0.051 0.749 ± 0.095 
0.9 0.988 ± 0.009 0.815 ± 0.041 0.841 ± 0.040 0.780 ± 0.068 
1 0.981 ± 0.018 0.833 ± 0.059 0.870 ± 0.036 0.760 ± 0.043  

Table 7 
CIs of the execution time of a single training epoch (in seconds).  

Training time [sec] CASE A CASE B CASE C CASE D 

AE 17.9 ± 1.1 10.2 ± 0.6 10.1 ± 0.6 40.2 ± 3.4 
VAE 19.7 ± 0.7 12.8 ± 0.6 13.4 ± 0.6 30.0 ± 1.6 
MLP 2.0 ± 0.3 1.7 ± 0.1 1.9 ± 0.2 2.8 ± 0.3  

Table 8 
CIs of the F1-scores obtained without the feature selection module, with 
different optimization of the baseline MLP classifier and its improved version.  

Feature 
learner 

Classifier CASE A CASE B CASE C CASE D 

AE 

MLP 
0.788 ±
0.048 

0.831 ±
0.039 

0.884 ±
0.036 

0.861 ±
0.017 

Optimized 0.909 ± 
0.021 

0.858 ± 
0.075 

0.866 ±
0.011 

0.903 ± 
0.021 

Optimized þ
Dropout 

0.902 ±
0.061 

0.828 ±
0.069 

0.921 ± 
0.048 

0.891 ±
0.019 

VAE 

MLP 
0.935 ±
0.017 

0.836 ±
0.058 

0.860 ±
0.029 

0.720 ±
0.0163 

Optimized 0.936 ±
0.021 

0.870 ± 
0.023 

0.884 ±
0.051 

0.787 ±
0.014 

Optimized þ
Dropout 

0.947 ± 
0.017 

0.863 ±
0.039 

0.917 ± 
0.063 

0.797 ± 
0.025  

Fig. 4. Example of observations’ labeling as regular (green), degraded (yellow), and critical (red) health stage. Case Study A (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article). 
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feature extractor converged with less than 100 epochs, and never 
exceeded 125 training epochs. To test how the performances are affected 
by the number of training epochs of the feature extractor, we collect the 
classification F1-scores with 10, 25, 50, and 100 training epochs. Ac-
cording to the results shown in Fig. 5, the F1-scores CIs partially overlap 
and do not allow to speculate beyond the trend of the average F1-scores. 
The only exception to this trend is the case study D. In this regard, the 
feature extractor based on AE seems to benefit more from a greater 
number of training epochs, and especially in the case studies B, C and D. 

We compare the effectiveness of our approach with a classification 
based on a set of handcrafted features. Those are often used in bearing 
health stage classification and have been presented in the previous 
section. We also analyze how the performances vary by evaluating a 
single input signal rather than their combination. When employing the 
handcrafted features, we consider both input signals by concatenating 
the features obtained from each one of them. Moreover, we compare the 
proposed approaches with another one based on Long-Short Term 
Memory (LSTM) neural networks, due to their strong ability in model-
ling the temporal component of time series. Specifically, in [74] the 
authors extract 8 time-domain features and 2 similarity-based measures 
to train an LSTM-based neural network and derive the degradation 
assessment from the vibration signals of the Pronostia dataset. The ob-
tained F1-scores are reported in Table 4. Our approach results in better 
performances with respect to those obtained with the other approaches. 
In addition, with the only exception of case study C, the performances 
obtained by considering both input signals are better or comparable 
than the one obtained by considering one single signal. Finally, the 
feature extractor based on AE always performs better than the one with 
VAE, except for the single temperature signal. This may suggest that, by 
being more stationary, this measure (i.e. the temperature) makes it 
easier to generate a set of encodings having a Gaussian distribution, 
which is a fundamental assumption of the feature learning mechanism 
based on VAE [75]. 

The problem addressed in this work is an unbalanced classification 
problem [76], and therefore it may require an additional effort while 

training the system, e.g. employing some oversampling approach to 
cope with imbalanced data [77]. In this regard, the autoencoder can be 
employed to generate features that easily separate classes even in the 
presence of unbalanced classes in the training set [78,79]. For example, 
authors in [80] and [81]conclude that a good feature learning approach 
allows a classifier to perform well even in case of class imbalance thanks 
to its ability to cluster similar instances in the latent space [82]. Indeed, 
with our approach the features learned via autoencoder are selected by 
clustering them and evaluating the match between the class labels and 
the clusters. Since the number of clusters corresponds to the number of 
degradation stages, the clustering procedure always generates 3 clusters. 
The match between the clusters and the classes’ labels ensures that the 
features passed to the classifier are only those that place the instances of 
the same classes in proximity to each other and distant from other 
classes in the latent space. The features learned and selected in this way 
facilitate the classification, handling to a certain extent the unbalance 
issues in the training set. Of course, this is not true for the case of 
hand-crafted features. Thus, to evaluate the ability of the system to cope 
with the class imbalance in the dataset we decompose the classification 
performance according to each class, by presenting the resulting 
confusion matrices. With the handcrafted features, a balanced class 
weight is implemented during the classifier’s training. 

In Fig. 6, at the j-th row and column k-th of each confusion matrix, we 
show the confidence interval of the percentage of the samples of class j 
classified as class k [83]. The considered health stage classes are regular 
(REG), degraded (DEG), and critical (CRT). In green we highlight the 
percentage of correctly classified samples, in yellow the errors between 
10 % and 50 %, in orange the errors greater than 50 %. According to the 
results shown in Fig. 6, our approach can manage the class unbalance, 
but this property can be affected by the complexity of the case study. 
Indeed, the case studies with lower classification performances corre-
spond also to those in which the classification error on the minority 
classes is higher than the same obtained with the handcrafted features. 

As said in Section 3, high-quality features are supposed to be close to 
each other if extracted from samples of the same class, distant otherwise. 

Fig. 5. CI of the F1-scores obtained by varying the number of training epochs of the feature learner.  
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To have further insight on the quality of the features generated, we 
process them with an unsupervised clustering approach (i.e., K-means 
with 3 clusters) and evaluate if the resulting clustering labels match the 
arrangement of the actual health stage labels. The results are shown in 
Table 5. The best results per case study are highlighted in bold. Those are 
obtained with the feature extractor based on AE in three case studies out 
of four. 

It is possible to assume that the noise in a real-world degradation 
process is a random white Gaussian noise [76]. To test how this affects 
the recognition performance of the VAE-based approach, white Gaussian 
noise has been added to the vibration signal of each case study. The 
white Gaussian noise has been parametrized according to its signal-noise 
ratio (SNR). SNR values of 0.7, 0.8, 0.9, and 1 are tested, and the ob-
tained results are shown in Table 6. With SNR equal to 1 the approach 
based on VAE loses from 1% to 10 % of its performance and maintains 
almost the same values up to a ratio between signal and noise power of 
0.7. This trend supports the one found in [84]. 

The training time is a management cost that must be considered 
when employing a machine-learning approach. In Table 7, we show the 

duration (in seconds) of a training epoch for the feature extractor (both 
with VAE and AE) and the classifier. The feature extractor based on AE 
offers quicker training epochs. The durations of a training epoch with 
case study A and D are larger due to the higher number of examples to 
process (Table 1). The classifier has a clearly smaller duration of a 
training epoch. 

Finally, we evaluate the capability of the feature selection module of 
(i) filtering out noisy or non-informative learned features for classifi-
cation, and (ii) generating a global explanation of the proposed method. 
We repeated the measurement of the classification performances 
without the feature selection module, as explained in Section 4. As 
shown in Table 8, by using the proposed MLP as a classifier, the 
recognition performances drop at least by 5%. Even with the best- 
improved configuration of the classifier, the performances do not 
improve significantly nor consistently across the case studies confirming 
how complex the management of noisy features is without the feature 
selection module. 

We further investigate the capability of the feature selection module 
to explain the model outcome and prove its reliability with respect to 

Fig. 6. Confusion matrix with 10 repetitions. At the j-th row and column k-th, we show the confidence interval of the percentage of samples of class j classified as class 
k. The possible health classes are regular (REG), degraded (DEG), and critical (CRT).
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common knowledge. As an example, in Fig. 7 we show the distribution 
of the resulting adjusted rand index (ARI) with case study A; the higher 
ARI, the more a combination is considered informative. The combina-
tions are distinguished according to their (i) input signal: vibration (vibr) 
and temperature (temp); (ii) domain transformation: time-domain (T), 
real part of the Fourier transform (FR), the imaginary part of Fourier 
transform (FI), probability density function (PDF), and spectral kurtosis 
(SK); and (iii) aggregation operator: mean (AVG), or standard deviation 
(STD). Clearly, the vibration is considered more informative for this 
classification task, in fact among the 8 combinations with the highest 
ARI, 6 are obtained from the vibration signal. Indeed, compared to the 
vibration, the temperature seems to have a less consistent trend within 
the same health stage (Fig. 4). Moreover, by observing how the com-
binations are distributed according to the input signal (Fig. 7), the two 
best combinations for the vibration signals are based on frequency 
domain transformations, whereas the most important combination for 
the temperature employs the time domain. 

To compare the capability of the feature selection module to 
generate model’s global explanations (i.e. the rank of input signals and 
domain transformation), we consider the best AE-based approach 
among the ones shown in Table 8 for case study A and employ it in 
conjunction with LIME with the submodular pick algorithm to provide 
global interpretability to the model. Since the number of samples needed 
to generate a comprehensive global explanation of the model is not 
known a priori, we use a number of instances equal to 1%, 3%, and 10 % 
of their total amount. The contribution of each feature in the model has 
been averaged by the input signal and domain transformation. By using 
both 1%, 3%, and 10 % of instances to generate the explanation, the real 

(FR) and imaginary (FI) components of the Fourier transform of the 
temperature signal are always placed among the first 4 most important 
features. Since the temperature signal exhibits a non-oscillatory 
behavior, the accountability of this global explanation may be ques-
tioned, especially if the ranking obtained with LIME (Fig. 8) is compared 
to the one obtained with our approach (Fig. 7). 

6. Conclusions

In this work, we propose a predictive maintenance approach based
on a feature learning mechanism, aimed at replacing manual feature 
engineering. In contrast with most of the feature learning approaches 

Fig. 7. 95 % CIs of the adjusted rand index used to assess the importance of each combination (input signal and data preparation) in the model for case study A.  

Fig. 8. Rank obtained with LIME via submodular pick algorithm, by averaging 
the contribution of each feature for each input signal and domain trans-
formation. 10 % of the total amount of instances have been used to generate the 
global explanation. Case study A. 
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based on deep learning, our approach is able to extract informative 
features from different time series while providing useful insights about 
the most informative combinations of time series (e.g. vibration or 
temperature) and data transformation (e.g. frequency or time domain). 
We tested our approach with a real-world dataset consisting of the 
temperature and vibration run-to-failure time series of bearings. The 
obtained results show that our approach (i) is effective, resulting in an 
average F1-score not lower than 0.94 in all case studies, (ii) offers better 
or comparable performances with respect to the ones obtained with 
manual feature engineering or with a feature extractor based on VAE, 
(iii) results in low costs for its management and training, (iv) provides 
high-quality features, i.e. close to each other within the same health 
class and different from each other otherwise, and (v) allows to interpret 
the learned model and assess its reliability with respect to common 
knowledge, e.g. which data preparation is preferable according to the 
measure analyzed, and which measure is supposed to be more infor-
mative for a given degradation process. On the other hand, our approach 
results in lower performances with the case studies characterized by a 
less progressive degradation process, i.e., in which a single health stage 
sporadically presents behaviors that are typical of a more severe 
degradation stage. This happens especially with case study C and D. This 
shortcoming can be addressed with an approach that directly constrains 
the feature learning to the classification, i.e., with approaches based on 
disentangled data representations [85]. For this reason, we aim at 
introducing this technology in future developments of the proposed 
approach. Moreover, given that the autoencoder has shown some po-
tential to cope with unbalanced classification problems, in future work 
we intend to explore more in-depth this aspect. It is indeed possible to 
modify the internal structure of the autoencoder to improve the sepa-
ration of classes in the latency space regardless of the unbalanced dis-
tribution of instances among the classes. 
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