6,501 research outputs found

    An automated system for design-rule-based visual inspection of printed circuit boards

    Get PDF
    The design and the implementation of an automated, design-rule-based, visual printed circuit board (PCB) inspection system are presented. The system employs mathematical-morphology-based image processing algorithms. This system detects PCB defects related to the conducting structures on PCBs by checking a set of geometric design rules. For this purpose, an image segmentation algorithm and a defect detection algorithm are designed. The defect detection algorithm is capable of verifying the minimum conductor spacing, minimum conductor trace width, and the minimum land width requirements on digital binary PCB images. Also, an existing defect detection algorithm is modified for its implementation in the system

    Intensity-based image registration using multiple distributed agents

    Get PDF
    Image registration is the process of geometrically aligning images taken from different sensors, viewpoints or instances in time. It plays a key role in the detection of defects or anomalies for automated visual inspection. A multiagent distributed blackboard system has been developed for intensity-based image registration. The images are divided into segments and allocated to agents on separate processors, allowing parallel computation of a similarity metric that measures the degree of likeness between reference and sensed images after the application of a transform. The need for a dedicated control module is removed by coordination of agents via the blackboard. Tests show that additional agents increase speed, provided the communication capacity of the blackboard is not saturated. The success of the approach in achieving registration, despite significant misalignment of the original images, is demonstrated in the detection of manufacturing defects on screen-printed plastic bottles and printed circuit boards

    Visual Inspection Algorithms for Printed Circuit Board Patterns A SURVEY

    Get PDF
    The importance of the inspection process has been magnified by the requirements of the modern manufacturing environment. In electronics mass-production manufacturing facilities, an attempt is often made to achieve 100 % quality assurance of all parts, subassemblies, and finished goods. A variety of approaches for automated visual inspection of printed circuits have been reported over the last two decades. In this survey, algorithms and techniques for the automated inspection of printed circuit boards are examined. A classification tree for these algorithms is presented and the algorithms are grouped according to this classification. This survey concentrates mainly on image analysis and fault detection strategies, these also include the state-of-the-art techniques. Finally, limitations of current inspection systems are summarized

    Design of automatic vision-based inspection system for solder joint segmentation

    Get PDF
    Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions

    Automatic PCB Inspection Systems

    Get PDF
    There are more than 50 process steps required to fabricate a printed circuit board (PCB). To ensure quality, human operators simply inspect the work visually against prescribed standards. The decisions made by this labor intensive, and therefore costly, procedure often also involve subjective judgements. Automatic inspection systems remove the subjective aspects and provide fast, quantitative dimensional assessments. Machine vision may answer the manufacturing industry\u27s need to improve product quality and increase productivity. The major limitation of existing inspection systems is that all the algorithms need a special hardware platform to achieve the desired real-time speeds. This makes the systems extremely expensive. Any improvements in speeding up the computation process algorithmically could reduce the cost of these systems drastically. However, they remain a better option than increasingly error prone, and slow manual human inspectio

    Manufacturing process applications team (MATeam)

    Get PDF
    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included

    Visual Inspection System To Detect Connector Tilts In PCBAs [TS156. V844 2005 f rb] [Microfiche 7845].

    Get PDF
    Sistem pemeriksaan visual automatic memainkan peranan penting dalam bahagian tapisan kualiti di industri eletronik. AVI’s are playing important roles in quality inspection in the electronic industry

    The Use of a Convolutional Neural Network in Detecting Soldering Faults from a Printed Circuit Board Assembly

    Get PDF
    Automatic Optical Inspection (AOI) is any method of detecting defects during a Printed Circuit Board (PCB) manufacturing process. Early AOI methods were based on classic image processing algorithms using a reference PCB. The traditional methods require very complex and inflexible preprocessing stages. With recent advances in the field of deep learning, especially Convolutional Neural Networks (CNN), automating various computer vision tasks has been established. Limited research has been carried out in the past on using CNN for AOI. The present systems are inflexible and require a lot of preprocessing steps or a complex illumination system to improve the accuracy. This paper studies the effectiveness of using CNN to detect soldering bridge faults in a PCB assembly. The paper presents a method for designing an optimized CNN architecture to detect soldering faults in a PCBA. The proposed CNN architecture is compared with the state-of-the-art object detection architecture, namely YOLO, with respect to detection accuracy, processing time, and memory requirement. The results of our experiments show that the proposed CNN architecture has a 3.0% better average precision, has 50% less number of parameters and infers in half the time as YOLO. The experimental results prove the effectiveness of using CNN in AOI by using images of a PCB assembly without any reference image, any complex preprocessing stage, or a complex illumination system. Doi: 10.28991/HIJ-2022-03-01-01 Full Text: PD
    corecore