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Abstract 

Automatic Optical Inspection (AOI) is any method of detecting defects during a Printed Circuit Board (PCB) 

manufacturing process. Early AOI methods were based on classic image processing algorithms using a reference PCB. 

The traditional methods require very complex and inflexible preprocessing stages. With recent advances in the field of 

deep learning, especially Convolutional Neural Networks (CNN), automating various computer vision tasks has been 

established. Limited research has been carried out in the past on using CNN for AOI. The present systems are inflexible 

and require a lot of preprocessing steps or a complex illumination system to improve the accuracy. This paper studies the 

effectiveness of using CNN to detect soldering bridge faults in a PCB assembly. The paper presents a method for designing 

an optimized CNN architecture to detect soldering faults in a PCBA. The proposed CNN architecture is compared with the 

state-of-the-art object detection architecture, namely YOLO, with respect to detection accuracy, processing time, and 

memory requirement. The results of our experiments show that the proposed CNN architecture has a 3.0% better average 

precision, has 50% less number of parameters and infers in half the time as YOLO. The experimental results prove the 

effectiveness of using CNN in AOI by using images of a PCB assembly without any reference image, any complex 

preprocessing stage, or a complex illumination system. 
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1. Introduction 

A Printed Circuit Board (PCB) is a mechanical structure that holds and connects electronic components. A PCB 

without electronic components installed is also called a bare PCB. Soldering is used to fix the electronic components in 

place on the PCB permanently by applying hot copper liquid onto a joint. After placing the electronic components onto 

the bare PCB it becomes a printed circuit board assembly (PCBA). With the development of technology, demand for 

electronic products to contain more features and be smaller in size has emerged. This demand has in turn caused the 

PCBA area to be smaller, more complex and denser. From enhanced complexity stems the need for accuracy. PCBA 

problems are often very costly to correct [1]. That is why, in a PCBA mass production process, the inspection of PCBA 

is considered an important task. For years, Manual Visual Inspection (MVI) has acted as the de facto test process for 

PCBA. This, coupled with an electrical test, such as an in-circuit or functional test, was deemed enough to detect major 

placement and soldering errors [2]. Manual modes of inspection had a low reliability rate and were often affected by 

visual fatigue [3, 4].  

PCBA production process consists of three main steps. 1) Solder paste layering on the board's surface; 2) component 

positioning; and 3) solder joint shaping by reflowing the solder paste. At each step of the production process, different 
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defects could occur that could be detected by stage specific AOI. Inspection after the first stage is called "Solder Paste 

Inspection (SPI)". The inspection techniques applied after the second stage are known as automatic placement inspection 

(API) techniques, while the inspection carried out after the third stage is known as post soldering inspection (PSI). It is 

observed that in all the PCBA processes, 90% of the faults are only detectable during PSI [5]. Possible faults occurring 

at this stage are solder bridge (a form of short in which solder creates a short circuit between two pins not meant to be 

connected), cold solder (a form of open where solder has not melted to create an electrical connection between the pin 

and the board), and dry-joint (where solder has not been applied to a pin, and bare copper is visible), to name some.  

To detect structural defects at an early stage in the PCBA manufacturing process is necessary to reduce the PCBA 

production cost. Many complex and high-cost techniques have been proposed in the industry, such as using X-ray, 

optical, ultrasonic, and thermal imaging [6]. Using classical image processing algorithms, Automated Optical Inspection 

(AOI), also known as Automated Visual Inspection (AVI) was proposed as a technique that improved diagnostic 

capabilities in terms of speed and tasks. Moganti et al. (1996) proposed a categorization of AOI algorithms based on the 

way information is treated, i.e., a referential approach and a non-referential approach [5]. The referential method 

compares the image to be inspected with a defect-free template, requires high alignment accuracy, and is sensitive to 

illumination. The non-referential approach works by checking if the image to be detected satisfies the general design 

rules, paving the way to losing irregular defects that do not satisfy the design rules. These image processing and 

classification algorithms take a lot of computational configuration and are usually defect specific. They can’t be found 

useful across multiple PCBAs. 

Because of its ability to self-learn and its promising potential for generalizability on object classification and detection 

tasks, CNN has been successful in replacing traditional computer vision algorithms. The deep network architecture of 

CNN [7] can detect discrimination features from all the input images on its own, so we do not need individuals to define 

image features. With improved computing machines, especially GPUs [8], the detection process has become so fast that 

on-line PCBA fault detection is possible using CNN. This paper outlines a method to design an optimal CNN architecture 

for soldering fault detection in a PCBA. It presents a novel CNN architecture that performs well in detecting soldering 

bridge faults on PCBAs from a single image without requiring any pre-processing step or a referential PCBA image. The 

dataset contains images of different PCBAs with soldering bridge faults. The dataset is small and imbalanced, so various 

data augmentation techniques were used.  

The rest of the paper is structured as follows; Section 2 outlines the limitations of the previous research done in using 

CNN for AOI. Section 3 describes the methodology used to design the optimized CNN architecture. Section 4 presents 

the results of the optimized CNN architecture with the YOLO architecture. Section 5 concludes the paper and outlines 

the future work.  

2. Literature Review 

In the early days of the PCBA manufacturing industry, inspection tasks were performed by humans who were 

fatigued from perfunctory tasks. A comprehensive summary of the advancements in AOI systems over time has been 

given in Huang and Pan, (2015) [1], Moganti et al. (1996) [5], Taha et al. (2014) [9], Harlow (1982) [10], and Chin 

(1988) [11]. According to a report stated in Loh and Lu (1999) [12], solder joint defects correspond to 55% of the total 

faults in a PCBA. AOI can be broadly classified into three main categories, namely referential, non-referential, and 

hybrid methods [5]. Referential AOI systems compare the image of the PCB under test to a template image of the PCB 

that is free of any defects [13-15]. Referential methods include image subtraction, introduced by Lee (1978) [16], feature 

matching or template matching as used by Hara et al. (1983) [17], and comparing the compression codes [18]. Referential 

methods are susceptible to degraded performance due to image misalignment and variations in environmental conditions 

when capturing images. Non-referential methods remove the misalignment issues from the inspection process and are 

based on general design rule verification [19, 20]. Non-referential methods require complete knowledge of the PCBA 

design. Hybrid methods combine the positive effects of both referential and non-referential methods. Various forms of 

AI have been widely used in hybrid approaches, with different referential methods used as a preprocessing step for 

localizing the fault area in the image [21]. To control the variations in illumination conditions while capturing the image 

of the PCB, most AOI systems provide complex user-controlled illuminations [22, 23], e.g., three ring-shaped LEDs as 

shown in Figure 1.  

The biggest potential barrier to AOI is its inflexibility and reliance on system configuration. CNN is a self-learning 

process that has potential for generalizability. However, most of the work done on AOI using CNN has been very 

preliminary and in its initial phase. Previous applications of CNN have been mainly focused on bare PCBs using a 

reference image, a computation-intensive preprocessing step, a complex illumination system, or a combination of these 

[24-28].  

Acciani et al. (2006) [29] proposed a general architecture for applying very shallow neural networks in AOI based 

on hand-crafted features. Fanni et al. (2000) [30] used the energy components from the Fast Fourier Transform (FFT) 

and Haar Transform (HT) as the input feature set. Classic machine learning algorithms with input from selected feature 
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sets [31-33]. CNN [34, 35] has achieved outstanding results in image classification and detection tasks [36, 37]. A CNN 

takes in the whole image and learns the features necessary for classification and detection, whereas previous classifiers 

take a set of manually selected features. A huge amount of data is needed to train a CNN that generalizes well. For 

developing CNN based AOI, researchers feel a great void in the availability of publicly accessible, huge and diverse 

datasets. Tang et al. (2019) [26] and Huang and Wei (2019) [25], the authors present a publicly available dataset that 

contains examples of defects on a bare PCB only. These datasets cannot be used to design a CNN for post-soldering 

AOI systems.  

 

Figure 1. Three Ring LEDs structure taken from Wu and Zhang (2014) [27] 

Tang et al. (2019) [26] proposes a template image based object detection CNN that treats the faults in a PCB as 

objects. Currently various CNN algorithms exist for object detection that try to balance the accuracy of the CNN with 

architecture efficiency. These object detection CNNs are broadly divided into two stage detectors or single stage 

detectors. 

R-CNN (Regions with CNN features) [38] is a famous two stage detector that uses selective search [39], in stage 

one, to generate region proposals, also called regions of interest (ROI). In a later version, Fast R-CNN [40], the whole 

image passes through a CNN once instead of applying CNN on each ROI individually. In Faster R-CNN [41] the region 

proposal algorithm is integrated into the CNN. Even after all the advances R-CNN is very slow but performs very well 

in terms of prediction accuracy making R-CNN impossible to infer in real-time. Overfeat combines the classification 

and localization tasks into single object detection CNN [42] that is faster but less accurate than R-CNN. YOLO (You 

Only Look Once) [43] is simple single stage object detection CNN that divides the image into a grid of fixed size and 

for each grid cell it detects the bounding box coordinates through regression and the class probabilities for a fixed 

number of anchor boxes. YOLO was able to generalize well, corroborated by its ability to predict objects from hand 

painted images. It is the fastest object detection algorithm even though it drags down the performance in accuracy. In a 

better version YOLOv2 [44], the authors have used batch normalization for faster convergence during training; a custom 

feature extraction network that makes it faster; a convolutional anchor box predictions instead of fully connected layer 

that has shown to increase the prediction accuracy at the expense of increased false detection i.e. detecting an object in 

a grid cell that was not present in reality, and a pass-through layer to use fine-grained features from an earlier layer 

leading to increased accuracy performance than earlier version of YOLO. YOLOv3 [45] was further improved by 

incorporating feature pyramid representation for multiscale detection and increase in the number of feature extraction 

layers with residual connections that improved its accuracy significantly. Figure 2 represents the working principal of 

YOLO. 

Lin et al. (2018) demonstrates for the first-time application of famous object detection CNN, YOLOv2, for detecting 

capacitors on a PCBA image [46]. Adibhatla et al. (2020) designed a deep learning algorithm based on the YOLO 

approach for detecting defects on a bare PCB [47]. Khare et al. (2020) [48] has used YOLOv3 to detect missing 

components from a PCBA using dataset from [49] that labels each IC component on PCBA image.  

To the best of the author’s knowledge at the time of writing this paper this is the first work on the effectiveness of 

using CNN for AOI of a PCBA from 2 dimensional colored image of the PCBA without requiring a referential image, 

or any pre-processing step, or a complex illumination system. In our experiment we base the CNN design on the grid 

cell division principal used in YOLO. Each input PCBA image is divided into 14 × 14 grid. The output is a binary value 

for each grid cell. An output value of 1 suggests presence of soldering bridge fault in that grid cell.   
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Figure 2. Unified Detection using YOLO taken from Redmon et al. (2016) [43] 

3. Research Methodology 

There is no one-hit formula to design an optimum CNN model, therefore, we had to rely on experiments to find an 

optimum CNN model to detect soldering bridge faults. 

3.1. Dataset 

Due to unavailability of open source dataset of soldering faults on a PCBA the dataset was collected manually. It 

includes 2D RGB images of 64 different PCBAs with soldering bridge fault manually introduced at different places. 

The total number of soldering bridge faults in the dataset is 359. The images in the dataset are resized to the size of 1024 

×1024. A corresponding annotation file was generated that contains bounding box information for all the possible 

defects in the image. Figure 3 shows a hypothetical image of PCBA and its corresponding annotation file. The 

dimensions of RGB input image to the CNN are chosen to be 448 × 448, inspired by YOLO. Resizing the image of 

whole PCBA to this size would incur loss of crucial information as the size of soldering faults are very small compared 

to the whole image size. The available dataset was not enough to train a CNN that generalizes well. Data augmentation 

is used to create a larger dataset for training. To avoid information loss and keeping in view the concept of generalization, 

we randomly cropped images of the complete PCBA panels in the dataset with the dimensions ranging from 448 × 448 

to 512×512. The augmented dataset contains mutually exclusive 2000 images created by cropping images of the PCBA 

panels and randomly applying rotation and flipping on each cropped image. A grid of size 14 × 14 was used.  

 

Figure 3. Method for writing annotation file (on the right side) for a PCBA image file (on the left side) with dimensions W x 

H and 2 soldering bridge faults represented in red and green bounding boxes 
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3.2. CNN Design 

The performance of a CNN gets better when the network gets deeper [50] at the expense of increased resources 

utilization and increase in the number of learnable parameters. The choice of hyperparameters also plays a significant 

role in improving the performance of a CNN. We designed the CNN for soldering bridge detection in PCBA from 

scratch using the design optimization principles of inception module, bottleneck layer and residual block. In the 

inception module [51] filters of different sizes are used in each layer and the results are stacked. This allows the model 

to choose optimal filter size for itself. Conventionally the number of channels increases as we go deeper in a CNN 

model. This gives the deeper layers a larger receptive field. Lin et al. (2013) [52] a network in network layer is introduced 

as a 1 × 1 convolutional layer called a bottleneck layer. The bottleneck layer has the same summarising effect as pooling 

layer except that pooling layer shrinks the width and height while the bottleneck layer shrinks the number of channels 

which in turn reduces the overall number of parameters. A ground-breaking CNN architecture optimization principal 

was the introduction of residual block in He et al. (2016) [53]. Residual block effectively diminishes the vanishing 

gradient problem with increasing depth of the network without adding to the computational complexity of the 

architecture. Figure 4 shows the basic structure used for designing the CNN. The number of hidden layers is chosen 

from [25] that describes CNN architecture for detecting faults in bare PCB. The five max pooling layers downsample 

the input image to an output of size 14×14. The output is a binary number for each grid cell. It is 1 if there is soldering 

bridge fault in that grid cell and 0 otherwise. The YOLO architecture described in [45] is used as benchmark for 

comparing the performance of the optimally designed CNN architecture. The metrics used for comparison are: detection 

accuracy, inference time, and number of learnable parameters in CNN. To determine the detection accuracy of an object 

detection algorithm, Average Precision (AP) is a popular metric that ranges between 0 and 1. AP is determined for an 

individual class. Mean average precision (mAP) is the mean value of average precision for all the classes in a dataset. 

As we have only soldering bridge fault in our dataset we use AP to determine the detection accuracy of the models. A 

higher value of AP signifies higher detection accuracy of a model. 

 

Figure 4. Basic structure used for designing CNN to detect soldering faults 

Conventional convolutional layers are referred to as plain convolutional layers that do not contain an inception 

module or a residual block or a bottleneck layer. We start the experiment with basic CNN architecture employing plain 

convolutional layers and then try various combinations of convolutional layers added on to the basic structure i.e. going 

deeper, bottleneck layers, inception modules and residual blocks. The models were trained using the augmented dataset. 

The models were designed based on the following methodology: 

Model 1 – Plain model based on description in Figure 4. 

Model 2 – Adding CONV layers in low level and mid-level features extraction layers of Model 1. 

Model 3 – Adding CONV layers in high level features extraction layers of Model 1. 

Model 4 – Adding residual block and bottleneck layer to the model giving the best performance results from Model 1-3. 

Model 5 – Adding Inception module in low level feature extractor layers. 

Model 6 – Adding CONV layers to the most efficient model chosen from Model 1-5.  
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3.3. Hyperparameters 

We use filters of size 3×3 and stride value of 1 in all the convolutional layers except for the Inception layer which 

is a combination of filters of different sizes. We used max pooling layer with window size of 2 and stride value of 2. 

Following YOLO, we used Leaky ReLU, with slope for negative input values equal to 0.1, as the activation function in 

all the hidden layers and used sigmoid activation function in the last layer to return the prediction values in between 0 

and 1. Adam optimizer is used for training. As our output values are binary hence, we used binary cross entropy loss 

function. A loss function determines how far away the predicted output of the model is from the ground truth during the 

training process.  

The learning rate was initially chosen as a small value of 1 × 10−5 for the first 25 epochs to induce stability in the 

training process. For the next 50 epochs its value was raised to 1 × 10−3 for a faster convergence of the model. For the 

remaining epochs we used a learning rate of 5 × 10−6. The model was evaluated tested after every 25 epochs using 

average precision (AP) of soldering bridge faults as the metric, with the threshold value of 0.5. Training was stopped 

when the AP started to drop. Beyond this point the model start to overfit the training data, a phenomenon where the 

model learns detail and noise in the training data such that it negatively starts to impact the performance of the model 

on new and previously unseen data, in other words it starts to lose generalization. Regularization is any supplementary 

technique that makes the model generalize well and prevents the model from overfitting. A simple technique to choose 

a model that generalizes well is to terminate training when the loss on validation dataset starts to decrease. This technique 

is called early stopping. Batch normalization is proven to improve convergence and generalization in training neural 

networks in Luo et al. (2018) [54]. We added batch normalization followed by leaky ReLU activation function for 

regularization. Another very common, simple and extremely effective regularization technique used is dropout [55]. 

When using dropout on a layer in CNN each neuron is ignored during a training step with a probability p, where p is a 

hyperparameter called dropout rate. We have used dropout layer before the prediction layer with dropout rate equal to 

0.5. 

4. Results 

This section compares the performance of the 6 CNN architectures described in Appendix I with YOLO architecture 

based on the three important metrics, namely the accuracy of the model measured through AP for soldering bridge fault, 

inference time (all the time measurements are taken on the same machine) and the number of learnable parameters in 

the model. Model4 and Model5 are based on Model1, while Model6 alters the architecture of Model4. In the comparison 

tables  means an increase in performance compared to YOLO and  means a decrease in performance as compared to 

YOLO. Table 1 describes the number of learnable parameters for the models used in the experiment. Table 2 shows the 

results of soldering bridge fault detection AP for the models used (the higher the better.) Recall value gives the total 

number of soldering bridge faults detected in the test images out of the total number of true soldering bridge faults in 

the test images. Table 3 shows the results of time taken by the models for inferencing a single panel image. The 

inferencing time experiment was repeated 5 times for each model and Table 3 shows the average value. 

Table 1. Comparison of results for the number of learnable parameters 

Model Number of Parameters Comparison 

YOLO 56,630,623 = 

Model1 6,300,390  

Model2 7,624,262  

Model3 71,607,014  

Model4 9,102,054  

Model5 13,401,702  

Model6 14,968,422  

Table 2. Comparison of results for AP of soldering bridge fault detection 

Model AP of soldering bridge fault detection Recall Comparison 

YOLO 0.80489 142 / 167 ≈ 85% = 

Model1 0.78792 135 / 167 ≈ 81%  

Model2 
0.65828 (Experiment 1) 
0.73503 (Experiment 2) 

125 / 167 ≈ 75% 
127 / 167 ≈ 76% 

 
 

Model3 0.82036 140 / 167 ≈ 84%  

Model4 0.83383 141 / 167 ≈ 84%  

Model5 0.83733 143 / 167 ≈ 86%  

Model6 0.82435 139 / 167 ≈ 83%  
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Table 3. Inference times for the different models 

Model Inference time (in seconds) Comparison 

YOLO 14.54 = 

Model1 4.40  

Model2 10.78  

Model3 9.32  

Model4 4.60  

Model5 21.01  

Model6 23.94  

From the results, it can be inferred that Model1 performs equally well in detecting soldering bridge faults as the 

YOLO model, with a slight decrease (≈2%) in the AP of soldering bridge fault detection but a significant savings in 

memory (≈88%) and inference time. These results corroborate the claim that an optimal CNN architecture exists that 

can perform better than the state-of-the-art YOLO architecture in detecting soldering faults.   

Results for Model2 and Model3 signify the importance of adding CONV layers in improving the accuracy 

performance of a model. As a rule of thumb, increasing the number of CONV layers increases the number of features 

learned, which in turn improves the accuracy of the CNN architecture, but only up to a certain number of layers [52]. 

Model3, which adds CONV layers to the high-level feature extraction part of Model1, shows ≈4% increase in AP at the 

cost of a significant increase in memory requirements and a higher inference time when compared to Model1. Model2, 

which adds CONV layers to the low-level feature extraction parts of Model1, showed anomalous behavior with a 

significant decrease in accuracy performance (≈16%), an increase in the inference time (equivalent to the increased 

inference time of Model3), and a slight increase in memory requirement. For verification, we repeated the training of 

Model2, resulting in a decreased accuracy once again. These results also suggest that adding CONV layers to the high-

level feature extraction part of a CNN has a lower chance of overfitting. Comparing Model3 to the YOLO architecture 

suggests that YOLO also has better accuracy than Model1 because it uses more CONV layers in the mid-level and high-

level feature extraction parts. Another implication from these results is that inference time does not only depend upon 

the number of learnable parameters in a model, as the inference time for Model2 and Model3 is almost similar, whereas, 

the number of learnable parameters in Model2 is 10 times higher than in Model3. This can be dependent on many 

parameters, including the depth, filter size, value of the stride, type of operations, and many more.  

To understand the phenomenon of overfitting due to an increase in the number of CONV layers in a model, we can 

use the example of a model that classifies an image as a cow or not a cow. After a certain number of layers, adding more 

layers to the model will let it learn non-important features, leading to poor generalization of the model, e.g., learning to 

extract a bell from images of cows with bells around their necks in the training dataset, or a green background if images 

labeled as cows are captured in meadows.  

For further experiments, we therefore chose Model1, which gives the best compromise between detection accuracy, 

memory requirement, and inference time. Model4 onwards is based upon improvements in the architecture of Model1. 

Model4 that incorporates only skip connections to Model1 displays a significant improvement in the performance of 

Model1 as the recall value has improved from 135 to 141 and the AP value also shows an improvement of 6% and 3.5% 

compared to Model1 and YOLO, respectively. The inventors of the residual block attribute the improvement in accuracy 

to the ability of the model to learn identity mappings that bypass the nonlinearities of a CONV layer. The performance 

improvement in Model4 suggests the effectiveness of the residual block not only in increasing the accuracy without 

increasing the learnable parameters, as Model4 has almost 84% less learnable parameters than YOLO. Model4 and 

Model1 have almost the same inference time. 

Model5 indicates the impact of applying inception modules in the low-level and mid-level feature extraction layers, 

and it proves to be beneficial in improving the accuracy of Model4 slightly at the cost of increasing the number of 

learnable parameters and inference time significantly. In Model4 and Model5 we also used the bottleneck layer. Results 

of Model5 and Model6 show a slight improvement in the accuracy performance at the expense of a significant increase 

in the number of learnable parameters and significantly slower inference time. The average accuracy of manually 

detecting the soldering faults with the aid of a magnifying glass is almost 90% [5] and the fault detection accuracy given 

by the recall value for the optimal CNN is 84%. This suggests that CNN can be powerful in achieving human level 

accuracy given it is trained on a larger dataset with an equal number of diverse examples. 

Figure 5 shows a sample of the prediction result with grid lines drawn for understanding that the image is divided 

into 14×14 grid. The prediction returns a binary for each grid cell. In the future, with more data, we can work on drawing 

bounding boxes around the fault only. 
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Figure 5. Image on the left: Prediction by Model4, Image on the right: Ground truth 

5. Conclusion 

It has been shown that CNN based AOI can be used to replace manual inspection to detect soldering faults on PCBAs. 

The problem was treated as an object detection task. Fast inferencing plays a vital role in AOI, and for this reason, we 

based our custom CNN on YOLO, which is a state-of-the-art fast object detection CNN. The experiments show that 

using state-of-the-art object detection CNNs in AOI can perform well in accuracy detection but does not prove to be 

resource efficient. Hence, transfer learning does not always provide an efficient solution for carrying out a CNN based 

AOI task. It was also shown that the accuracy performance of a custom CNN can be improved using optimization blocks 

without compromising its resource efficiency. The use of a bottleneck layer was effective in constraining the memory 

utilization while achieving high accuracy. Use of residual blocks had the most significant impact on accuracy 

improvement without any increase in resource utilization. It was seen that YOLO provides a simple technique for 

designing fast object detection CNN that generalizes well. This technique of dividing the image into a grid can be the 

basis of a custom CNN design for other types of fault detection in a PCBA. 

The author believes that the performance and generalizability of the CNN model can be improved by collecting more 

data with a diversity of examples and classes. This research paper sets a solid foundation that CNNs can provide a 

simple, highly flexible, and fast AOI system for fault detection in PCBAs. In future work, the optimized architectural 

design principles described in this study can be used to detect multiple types of faults in PCBAs. It requires there to be 

an open source dataset for different types of faults in PCBAs. 
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Appendix I 

The architectures of the models used are given below. Convolutional layer type is composed of convolution layer 

followed by batch normalization and Leaky ReLU activation layer. 

Table A1. YOLO Architecture 

 Type Filters Size / Stride Output 

 Convolutional 32 3 × 3 / 1 448 × 448 

 Convolutional 64 3 × 3 / 2 224 × 224 

1 × 

Convolutional 32 1 × 1 / 1 224 × 224 

Convolutional 64 3 × 3 / 1 224 × 224 

Residual    

 Convolutional 128 3 × 3 / 2 112 × 112 

2 × 

Convolutional 64 1 × 1 / 1 112 × 112 

Convolutional 128 3 × 3 / 1 112 × 112 

Residual    

 Convolutional 256 3 × 3 / 2 56 × 56 

8 × 

Convolutional 128 1 × 1 / 1 56 × 56 

Convolutional 256 3 × 3 / 1 56 × 56 

Residual    

 Convolutional 512 3 × 3 / 2 28 × 28 

8 × 

Convolutional 256 1 × 1 / 1 28 × 28 

Convolutional 512 3 × 3 / 1 28 × 28 

Residual    

 Convolutional 1024 3 × 3 / 2 14 × 14 

4 × 

Convolutional 512 1 × 1 / 1 14 × 14 

Convolutional 1024 3 × 3 / 1 14 × 14 

Residual    

 Convolutional 512 1 × 1 / 1 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Convolutional 512 1 × 1 / 1 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Convolutional 512 1 × 1 / 1 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Convolutional 255 1 × 1 / 1 14 × 14 

 Convolution 6 1 × 1 / 1 14 × 14 

 Sigmoid    

Table A2. Model1 Architecture 

 Type Filters Size / Stride Output 

 Convolutional 32 3 × 3 / 1 448 × 448 

 Max Pooling  2 × 2 / 2 224 × 224 

 Convolutional 64 3 × 3 / 1 224 × 224 

 Max Pooling  2 × 2 / 2 112 × 112 

 Convolutional 128 3 × 3 / 1 112 × 112 

 Max Pooling  2 × 2 / 2 56 × 56 

 Convolutional 256 3 × 3 / 1 56 × 56 

 Max Pooling  2 × 2 / 2 28 × 28 

 Convolutional 512 3 × 3 / 1 28 × 28 

 Max Pooling  2 × 2 / 2 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Dropout  0.5 14 × 14 

 Convolutional 6 1 × 1 / 1 14 × 14 

 Sigmoid    
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Table A3. Model2 Architecture 

 Type Filters Size / Stride Output 

3 × 
Convolutional 64 3 × 3 / 1 448 × 448 

Convolutional 32 1 × 1 / 1 448 × 448 

 Max Pooling  2 × 2 / 2 224 × 224 

3 × 
Convolutional 128 3 × 3 / 1 224 × 224 

Convolutional 64 1 × 1 / 1 224 × 224 

 Max Pooling  2 × 2 / 2 112 × 112 

4 × Convolutional 256 3 × 3 / 1 112 × 112 

 Convolutional 128 1 × 1 / 1 112 × 112 

 Max Pooling  2 × 2 / 2 56 × 56 

 Convolutional 256 3 × 3 / 1 56 × 56 

 Max Pooling  2 × 2 / 2 28 × 28 

 Convolutional 512 3 × 3 / 1 28 × 28 

 Max Pooling  2 × 2 / 2 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Dropout  0.5 14 × 14 

 Convolutional 6 1 × 1 / 1 14 × 14 

 Sigmoid    

Table A4. Model3 Architecture 

 Type Filters Size / Stride Output 

 Convolutional 32 3 × 3 / 1 448 × 448 

 Max Pooling  2 × 2 / 2 224 × 224 

 Convolutional 64 3 × 3 / 1 224 × 224 

 Max Pooling  2 × 2 / 2 112 × 112 

 Convolutional 128 3 × 3 / 1 112 × 112 

 Max Pooling  2 × 2 / 2 56 × 56 

4 × 
Convolutional 512 3 × 3 / 1 56 × 56 

Convolutional 256 1 × 1 / 1 56 × 56 

 Max Pooling  2 × 2 / 2 28 × 28 

3 × 
Convolutional 1024 3 × 3 / 1 28 × 28 

Convolutional 512 1 × 1 / 1 28 × 28 

 Max Pooling  2 × 2 / 2 14 × 14 

3 × Convolutional 2048 3 × 3 / 1 14 × 14 

 Convolutional 1024 1 × 1 / 1 14 × 14 

 Max Pooling  2 × 2 / 2 14 × 14 

 Dropout  0.5 14 × 14 

 Convolutional 6 1 × 1 / 1 14 × 14 

 Sigmoid    

Table A5. Model4 Architecture 

 Type Filters Size / Stride Output 

 Convolutional 32 3 × 3 / 1 448 × 448 

 Max Pooling  2 × 2 / 2 224 × 224 

 Convolutional 64 3 × 3 / 1 224 × 224 

 Residual    

 Max Pooling  2 × 2 / 2 112 × 112 

 Convolutional 128 3 × 3 / 1 112 × 112 

 Residual    

 Max Pooling  2 × 2 / 2 56 × 56 
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 Convolutional 256 3 × 3 / 1 56 × 56 

 Residual    

 Max Pooling  2 × 2 / 2 28 × 28 

 Convolutional 512 3 × 3 / 1 28 × 28 

 Residual    

 Max Pooling  2 × 2 / 2 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Residual    

 Convolutional 2048 1 × 1 / 1 14 × 14 

 Dropout  0.5 14 × 14 

 Convolutional 6 1 × 1 / 1 14 × 14 

 Sigmoid    

Table A6. Model5 Architecture 

 Type Filters Size / Stride Output 

 Convolutional 32 3 × 3 / 1 448 × 448 

 Inception   448 × 448 

 Max Pooling  2 × 2 / 2 224 × 224 

2 × 

Convolutional 64 3 × 3 / 1 224 × 224 

Inception   224 × 224 

Convolutional 32 1 × 1 / 1 224 × 224 

Residual    

 Max Pooling  2 × 2 / 2 112 × 112 

 Convolutional 128 3 × 3 / 1 112 × 112 

 Inception   112 × 112 

4 × 

Convolutional 64 1 × 1 / 1 112 × 112 

Convolutional 128 3 × 3 / 1 112 × 112 

Residual    

 Max Pooling  2 × 2 / 2 56 × 56 

 Convolutional 256 3 × 3 / 1 56 × 56 

 Inception   56 × 56 

4 × 

Convolutional 128 1 × 1 / 1 56 × 56 

Convolutional 256 3 × 3 / 1 56 × 56 

Residual    

 Max Pooling  2 × 2 / 2 28 × 28 

 Convolutional 512 3 × 3 / 1 28 × 28 

 Residual    

 Convolutional 256 1 × 1 / 1 28 × 28 

 Convolutional 512 3 × 3 / 1 28 × 28 

 Max Pooling  2 × 2 / 2 14 × 14 

 Convolutional 1024 3 × 3 / 1 14 × 14 

 Residual    

 Convolutional 2048 1 × 1 / 1 14 × 14 

 Dropout  0.5 14 × 14 

 Convolutional 6 1 × 1 / 1 14 × 14 

 Sigmoid    

 




