1,655 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Energy-efficient data acquisition for accurate signal estimation in wireless sensor networks

    No full text
    Long-term monitoring of an environment is a fundamental requirement for most wireless sensor networks. Owing to the fact that the sensor nodes have limited energy budget, prolonging their lifetime is essential in order to permit long-term monitoring. Furthermore, many applications require sensor nodes to obtain an accurate estimation of a point-source signal (for example, an animal call or seismic activity). Commonly, multiple sensor nodes simultaneously sample and then cooperate to estimate the event signal. The selection of cooperation nodes is important to reduce the estimation error while conserving the network’s energy. In this paper, we present a novel method for sensor data acquisition and signal estimation, which considers estimation accuracy, energy conservation, and energy balance. The method, using a concept of ‘virtual clusters,’ forms groups of sensor nodes with the same spatial and temporal properties. Two algorithms are used to provide functionality. The ‘distributed formation’ algorithm automatically forms and classifies the virtual clusters. The ‘round robin sample scheme’ schedules the virtual clusters to sample the event signals in turn. The estimation error and the energy consumption of the method, when used with a generalized sensing model, are evaluated through analysis and simulation. The results show that this method can achieve an improved signal estimation while reducing and balancing energy consumption

    A Decentralized Lifetime Maximization Algorithm for Distributed Applications in Wireless Sensor Networks

    Get PDF
    We consider the scenario of a Wireless Sensor Networks (WSN) where the nodes are equipped with a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. We then address the problem of finding the optimal deployment of the target applications in terms of network lifetime. We approach the problem considering every possible decomposition of an application's sensing and computing operations into tasks to be assigned to each infrastructure component. The contribution of energy consumption due to the energy cost of each task is then considered into local cost functions in each node, allowing us to evaluate the viability of the deployment solution. The proposed algorithm is based on an iterative and asynchronous local optimization of the task allocations between neighboring nodes that increases the network lifetime. Simulation results show that our framework leads to considerable energy saving with respect to both sink-oriented and cluster-oriented deployment approaches, particularly for networks with high node densities and non-uniform energy consumption or initial battery charge

    Device Discovery Schemes for Energy-efficient Cluster Head Rotation in D2D

    Get PDF
     In this paper, novel device discovery approaches for the Cluster Head Rotation, which is a state-of-the-art method for the Device-to-Device communication, are proposed. The device discovery is the process to detect and to include new devices in the Device-to-Device communication. The proposed device discovery is aimed to attain energy efficiency for the communication devices. We propose two schemes for the device discovery: eNB-assisted and independent device discovery. Compared to previous work, the proposed device discovery is utilizing the cluster head rotation method, to achieve better energy efficiency. In this work, several simulations were performed and discussed for both schemes. In the first simulation, the device energy consumption is examined. After that, the number of devices that get rejected is studied. The device discovery processes in multi cluster head scenario, which is Cluster Head Rotation, are examined in this paper. The result of the simulation shows that eNB-assisted device discovery can provide better energy efficiency. Also, the number of rejected devices of the eNB-assisted device discovery is slightly lower than independent device discovery

    Energy Optimization Efficiency in Wireless Sensor Networks for Forest Fire Detection:: An Innovative Sleep Technique

    Get PDF
    Wireless Sensor Networks (WSNs) have the potential to play a significant role in forest fire detection and prevention. However, limited resources, such as short battery life pose challenges for the energy efficiency and longevity of WSN-based IoT networks. This paper focused on the energy efficiency aspect and proposed the ECP-LEACH protocol to optimize energy consumption in forest fire detection cases. The proposed protocol consists of two main components: a threshold monitoring module and a sleep scheduling module. The threshold monitoring module continuously monitors energy consumption and triggers sleep mode for nodes surpassing the predetermined threshold. The ECP-LEACH protocol offers a promising solution for improving energy efficiency in WSN-based IoT networks for forest fire detection. By optimizing sleep scheduling and duty cycles, the ECP-LEACH protocol enables significant energy savings and extended network lifetim

    Performance of data aggregation for wireless sensor networks

    Get PDF
    This thesis focuses on three fundamental issues that concern data aggregation protocols for periodic data collection in sensor networks: which sensor nodes should report their data, when should they report it, and should they use unicast or broadcast based protocols for this purpose. The issue of when nodes should report their data is considered in the context of real-time monitoring applications. The first part of this thesis shows that asynchronous aggregation, in which the time of each node’s transmission is determined adaptively based on its local history of past packet receptions from its children, outperforms synchronous aggregation by providing lower delay for a given end-to-end loss rate. Second, new broadcast-based aggregation protocols that minimize the number of packet transmissions, relying on multipath delivery rather than automatic repeat request for reliability, are designed and evaluated. The performance of broadcast-based aggregation is compared to that of unicast-based aggregation, in the context of both real-time and delay-tolerant data collection. Finally, this thesis investigates the potential benefits of dynamically, rather than semi-statically, determining the set of nodes reporting their data, in the context of applications in which coverage of some monitored region is to be maintained. Unicast and broadcast-based coverage-preserving data aggregation protocols are designed and evaluated. The performance of the proposed protocols is compared to that of data collection protocols relying on node scheduling

    A survey on Routing Protocols in Wireless Sensor Networks

    Full text link
    In ad-hoc WSN is a collection of mobile nodes that are dynamically and randomly located in such a manner that the interconnections between nodes are changing on a continual basis. The dynamic nature of these networks demands new set of network routing strategy protocols to be implemented in order to provide efficient end-to end communication. Moreover, such issues are very critical due to severe resource constraints like efficient energy utilization, lifetime of network, and drastic environmental conditions in WSNs. Neither hop-by-hop nor neither direct reach ability is possible in case of WSNs. In order to facilitate communication within the network, a routing protocol is used. In this paper we have carried out an extensive survey on WSN protocols based on structure of network, routing protocol of network & clustering techniques of routing protocols
    corecore