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Abstract—We consider the scenario of a Wireless Sensor
Networks (WSN) where the nodes are equipped with a pro-
grammable middleware that allows for quickly deploying differ-
ent applications running on top of it so as to follow the changing
ambient needs. We then address the problem of finding the
optimal deployment of the target applications in terms of network
lifetime. We approach the problem considering every possible de-
composition of an application’s sensing and computing operations
into tasks to be assigned to each infrastructure component. The
contribution of energy consumption due to the energy cost of
each task is then considered into local cost functions in each
node, allowing us to evaluate the viability of the deployment
solution. The proposed algorithm is based on an iterative and
asynchronous local optimization of the task allocations between
neighboring nodes that increases the network lifetime. Simulation
results show that our framework leads to considerable energy
saving with respect to both sink-oriented and cluster-oriented
deployment approaches, particularly for networks with high node
densities and non-uniform energy consumption or initial battery
charge.

Index Terms—Wireless Sensor Networks, network lifetime.
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I. INTRODUCTION

Thanks to the increasing processing and transmission power
of current nodes in Wireless Sensor Networks (WSN), these
have become complex systems that are capable of making
decisions and acting upon the information gathered about the
monitored environment. Indeed, reduction in the cost of the
devices has increased nodes capacity, thus they can perform
some processing before sending the data to a sink. Still, one
of the main open research challenges is the maximization of
the network lifetime. Devices in a WSN are typically battery
powered, battery that sometimes could be difficult to replace,
such as in the case of subterranean or underwater nodes.

These considerations contribute to the vision of an hori-
zontal ambient intelligent infrastructure wherein the sensing,
computing and communicating infrastructure is set with a
programmable middleware that allows for quickly deploying
different applications running on top of it so as to follow the
changing ambient needs. Based on this scenario, we focus on
the need for a logic that decides on the optimal deployment
solution of a target distributed application. Herein, optimality

is expressed in terms of network lifetime and a deploying
solution is such that defines which part (single task) of the
application has to be executed by each network component.
In [?], we have proposed a centralized solution that is based on
the assumption that a central node is aware of the status of each
node, selects the optimal application deployment and send the
corresponding setting to all the involved network components.
With the intention to reduce the problem complexity, to reduce
the overhead related to the communication of the central node
with the rest of the network (for node settings), and to improve
the capability of the network to adapt to topology and energy
changes, in this paper we propose a distributed solution. The
proposed algorithm is based on an iterative and asynchronous
local optimization of the task allocations between neighboring
nodes. The resulting scheme is based on gossip, which consists
in a communication paradigm in which at each instant of time
each node in the network has some positive probability to
interact with one of its neighbors. Simulation results show
that our framework results in considerable energy saving with
respect to both sink-oriented and cluster-oriented deployment
approaches, particularly for networks with high node densities
and non-uniform energy consumption or initial battery charge

This paper is organized as follows. The second section
provides the preliminaries; the third section introduces the
problem and adopted approach; the fourth section describes
the decentralized solution aimed at maximizing the network
lifetime; the following section presents some simulation re-
sults; and conclusions are drawn in the last section.

II. PRELIMIARIES

A. Past Studies

Reduction of energy consumption has always been a key
challenge for Wireless Sensor Networks. There are a great
number of works which have focused on the maximization of
the network lifetime, each one taking into account a different
approach to achieve it: some are focused on efficient routing
techniques [?], [?]; others are aimed at minimizing transmis-
sion energy consumption by sending data over may short hops
rather than fewer long hops [?]; others propose the use of relay
nodes so as to balance network energy consumption among
nodes [?], [?].
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However, none of the studies mentioned above considers
the possibility of processing data in the nodes of the path
to the destination. Because most of the energy spent in a
Wireless Sensor Network depends on the amount of data that is
transmitted over the network, reducing the amount of data may
result in a reduction of the transmission energy consumption.
This principle has been only partially adopted by LEACH [?],
where sensors serve as Cluster Heads aggregating the data
and, indeed, decreasing the number of bytes sent over the
network. Energy consumption balancing is guaranteed by a
random rotation of the role of Cluster Head.

Given the computational capacity of modern sensors, a
step forward could be taken not just by aggregating data,
but by processing them before they arrive at their destination
whenever possible and on the basis of the network topology
and power resource detection. In [?] an overlaying framework
that determines the distribution of tasks among the nodes in a
WSN by means of a centralized optimization algorithm aimed
at maximizing the network lifetime was presented. However,
one major drawback of this algorithm is its inability to react
quickly to network changes.

In this paper we propose a framework of decentralized
lifetime optimization for WSNs, adopting a solution in which
the communication scheme is based on gossip [?], [?], [?].
Gossip algorithms are decentralized and asynchronous, they
consist in a communication scheme in which at each instant
of time each node in the network has some positive probability
to interact with one of its neighbors. By the iterative interac-
tion between nodes, several examples of emerging behaviors
have been developed such as load balancing [?], distributed
averaging [?], distributed convex optimization over networks
[?], failure detection [?] and many more. Thus, communication
schemes based on gossip that mimic the act of gossiping in
a crowd of people, are easy to implement, do not require
network routing or multi-hop communications, are inherently
asynchronous and decentralized in nature.

B. Energy Consumption

As mentioned in [?], energy consumption in WSNs is
determined by three main components: sensing, processing and
transmission.

The sensing energy consumption esens is determined by the
specific characteristics of the sensor.

The processing energy consumption eproc is proportional to
the complexity of the task – that is, the number of instructions
needed to complete it – and to the ingress data datain – the
higher the number of samples involved in the processing, the
higher the energy consumption. Calling M task the number of
instructions for the task, smpin the number of samples to
be processed and einstr the average energy consumption per
executed instruction (determined on the basis of the device
datasheeet), then

eproc(task, datain) = M task × smpin × einstr (1)

Finally, the energy consumption etx required to transmit a
packet of k bits from a node A to a node B with a constant

rate R is:

etx(k, PT0A , ηA, PR0B , φAB , δAB) =

k
R

(
PR0B + PT0A +

φAB×δαAB

ηA

) (2)

where: PT0 and PR0 are the components of power consump-
tion of the transmitting and receiving circuitry; η is the drain
efficiency of the Power Amplifier; φ is a coefficient propor-
tional to the reception power and the characteristic parameters
of the antennas; δ is the distance between transmitter and
receiver; α denotes the path loss exponent.

III. PROBLEM FORMULATION

The model we consider is similar to the one described in
major details in [?]. The set of nodes in the WSN is defined in
the set X = {1, ..., i, ..., N}, where i can be a sensing node,
a router or an actuator (or node with a combination of these
roles). The node N refers to the sink (we assume to have
only one sink in the network). In our problem setting, let the
network be described by a directed acyclic graph G = {X,E},
where E ⊆ {X × X} is the set of edges, each representing
a point-to-point communication channel between the nodes;
edge (i, j) has its tail in node i and its head in node j, with its
orientation representing the direction of the information flow.
Let Ni = {j ∈ X : (i, j)or(j, i) ∈ E} be the neighborhood of
node i, namely the nodes that share a communication channel
with node i. Let Nout,i = {j ∈ X : (i, j) ∈ E} be the set of
nodes that receive information from node i and Nin,i = {j ∈
X : (j, i) ∈ E} the nodes that send information to node i. We
complete the network description with

• the distance matrix ∆ = (δij), which contains the
pairwise distances (in meters) between adjacent nodes.
If nodes i and j are not adjacent, then δij = ∞;

• the matrix Φ = (φij), with the parameters φij introduced
in Section II-B, calculated for each couple of adjacent
nodes i and j. If nodes i and j are not adjacent, then
φij = ∞;

• the set of characteristic parameters Vi = {PR0i, PT0i, ηi},
which are useful to compute the transmission energy
consumption as defined in (2) in Section II-B.

We assume that a given operation O, which can be decom-
posed into a sequence of tasks, has to be deployed in the
network. This could represent diverse operations, including:
computing the average temperature in certain geographical ar-
eas, measuring the light intensity in a room, videosurveillance
of a specific geographical area, or a combination of these. We
then define the sequence Cs = {cs1, ..., csW } of the sensing
tasks which must be executed by the network to perform the
operation O, where W is the total number of sensing tasks
required. We also define the sequence Cp = {cp1, ..., c

p
L} of

the processing tasks which must be executed by the network
to perform the operation O, where L is the total number of
processing tasks required. If, for instance, O is a measurement
of temperature from a geographical areas that has to be
spatially averaged, the set Cs would be made of a number of
elements corresponding to the number of geographical areas



where the temperature has to be measured. Cp would certainly
be “measurement of temperature” and “spatial averaging”.
Tasks are listed in Cp in priority order: if a node has to execute
both cp1 and cp2, the former must be executed before the latter.

As to the sensing we assign a binary state Mi ∈ {0, 1}W
to each node, which codes the sensing operations executed by
node i. The status miw of the node is equal to 1 if the node
performs the relating sensing task.

As to the processing tasks, we assign a binary state vector
si ∈ {0, 1}L to each node that represents the processing tasks
currently assigned to the node. To each configuration of the
node setting corresponds different energy consumption, as it
will better explained in the following sections. We assume
that different nodes consume different amounts of energy for
the same processing to include heterogeneity of devices in
the modeling. To each node i is associated a binary vector
di ∈ {0, 1}L which represents the kinds of processing that
node i is allowed to execute. In particular, the following holds
∀i ∈ X , and ∀l ∈ {1, . . . , L}, dil ≥ sil. To simplify the
notation we denote the matrix that collects all the statuses
of each node as S = [s1, s2, . . . , sN ]

T and the matrix that
represents all the constraints on the execution of processing
as D = [d1,d2, . . . ,dN ]

T .
We consider a scenario where the sensing operations are

already assigned to the network members (i.e., binary vectors
Mi are given, for i = 1, . . . , N ). Differently, the processing
tasks in O can be executed according to different solutions:
gathered data can be immediately sent to a sink, or it can be
processed before being transmitted. In the case of the latter,
the number of bits to be sent would be smaller, reducing the
transmission energy consumption; however, processing energy
consumption could be higher in this second case. Quantifying
the energy consumption in both cases, it could be possible
to establish which one determines a reduction of battery
consumption in the sensors, incrementing the network lifetime.
The addressed problem is then defined as the processing
status matrix S that minimizes the impact of the operation
O on the network, maximizing the network lifetime. In the
following, we elaborate the considered scenario by defining
further constraints and providing a distributed solution.

IV. DEPLOYMENT OF DISTRIBUTED APPLICATIONS

In the following, we present the proposed solution towards
a distributed application deployment in WSN. The following
Subsections present: the constraints on the traffic generated
by the distributed applications; the cost functions built on the
basis of the energy consumption formulas; the network lifetime
maximization algorithm.

A. Constraints on the Traffic Flows

In our scenario we assume that the sources of traffic in the
network (the sensors) generate samples of k bits at a certain
frequency f . The processing in the network is performed on
this type of traffic flow coming from different nodes. The
generic node i receives the traffic T in

i over which it performs
the task corresponding to its assigned status si. The effect of

this task is the generation of the output traffic T out
i , which is

computed by function p as follows

T out
i = p(T in

i , si) (3)

The output traffic is then sent to the next node. The data
generated by p in node i is modeled by the H-dimensional
vector T out

i = (touti1 , ..., toutih , ..., toutiH ), where each element
toutih = {koutih , fout

ih } corresponds to a traffic flow where each
sample of koutih bits is transmitted at the frequency fout

ih . The
number of bits koutih for each output flow toutih resulting from
p(x, y) is either constant or linear with the number of input
flows, but it cannot be non linear. Further details are available
in [?]. Data T out

i are sent to the following node j according
to the directed acyclic graph G.

Node j receives data from all adjacent nodes that reach the
sink through j

T in
j =

∪
i∈Nin,i

T out
i × zi, with zi =

{
0 si ≡ “no actions”

1 otherwise

(4)
As defined by (3), data T in

j received by node j are processed,
according to the status of j. There are many processing tasks
that can be performed in a WSN. For each one of these, an
operator p(x, y) is defined. Note that for our objective, this
operator is needed to figure out the traffic flows that will
be traversing the network for each deployment scenario. We
identified three common kinds of processing, which are spatial,
temporal and single sample processing. We refer to [?] for
further details about this distinction.

B. Cost Functions

The objective of the proposed algorithm is to evaluate
the viability of each deployment solution on the basis of
cost functions that are connected to energy consumption. We
consider three cost functions: one for the sensing, one for
the processing and one for the transmission. The sensing cost
function for the node i is expressed as

Esens
i =

W∑
w=1

fout
i × esensiw ×miw (5)

with esensiw representing the sensing energy consumption for
node i performing sensing task w if its status miw is equal to 1,
as defined in Section II-B. Recall that fout

i is the node output
traffic frequency, which also represents the sensing frequency.
We define processing cost function as follows

Eproc
i =

L∑
l=1

H∑
h=1

fout
ih × eprocih (csil ,T

in
i )× sil (6)

where eprocih is the processing energy consumption defined in
(1) which depends on the task csil that has to be executed,
which in turn depends on the status sil of the node, and the
received data T in

i described in (4). Because the processing cost
depends on the number of processing per second performed
by the same node i, it is proportional to the frequency fout

ih

of each of the H egress traffic flows, where H is the size of



T out
i as described in Section IV-A. The number of samples

to calculate eproci is defined differently for each kind of
processing p(x, y) detected in Section IV-A. Both sensing and
processing are followed by a transmission. The related cost
function is

Etx
i = fi × etx(T out

i , Vi,
∪

j∈Nin,i

Vj ,
∪

j∈Nin,i

φij ,
∪

j∈Nin,i

δij)

(7)
with fi transmission frequency and etx transmission energy
consumption defined by (??) depending on: the data to be
transmitted T out

i ; the characteristic parameters Vi of the node
i; the characteristic parameters Vj of all the j nodes that will
receive the data from i which, for a connected graph, is just
one; the parameter φij concerning nodes i and j; the distance
δij between i and j.

Given (5), (6) and (??), the overall cost function for any
node i is

Ei =
(
Esens

i + Eproc
i + Etx

i

)
(8)

C. Algorithm description

We consider a network described by a directed acyclic graph
G = {X,E} (see III) in which the information flow has
reached a stationary state. The processing state of the network
is described by the processing matrix S, where sil = 1 if
node i processes task l, else sil = 0. Our objective is that of
modifying the processing state so as to maximize the lifetime
of the network τ(S), intended as the time in which at least
one node has exhausted its energy reserve from the battery:
in fact when this condition is reached the network topology is
disrupted.

If we denote the energy reserve of node i at time t as γi(t)
then we can define

τ(S) = inf{t | (∃i ∈ X)γi(t) = 0}.

Assuming a stationary state, we observe that the optimal
processing state is:

Sopt = argmax
S

τ(S) = argmax
S

min
i∈X

γi
Ei(S)

where the last equation follows from the fact that in a
stationary state the time required for a node to drain its battery
is γi/Ei where Ei is the energy consumed (per unit of time).

Since the tasks a node can process are limited, we get a
constrained optimization problem of the form:

maxS mini∈X
γi

Ei(S)
,

s.t.

∀i ∈ X di ≥ si

S ∈ {0, 1}N×L

(9)

where di, as previously defined, is the characteristics vector
of the tasks that can be processed by node i and si is the
processing state of node i.

We wish to solve problem (??) in a decentralized way
by iteratively and asynchronously solving an equivalent local

optimization problem that involves at each iteration only one
node i and its in-neighbors Nin,i.

We now propose the main result of this paper, namely
the Decentralized Life Maximization for WSNs Algorithm
(DLMA).

Algorithm 1 (Decentralized Life Maximization for WSNs):

1) Each node i ∈ X is initialized with the residual energy
of the battery γi and state si = {0}L (no processing
assigned).

2) Let k = 0 and t0 = 0.
3) At time tk+1 > tk, a node i not involved in a gossip,

and thus, as defined in II-A, not communicating with any
of its neighbours, is selected at random to interact with
nodes in its in-neighborhood Nin,i.

4) If any node in Nin,i is already involved in a gossip, then
k = k + 1 and go to 3.

5) Node i, with a current processing state s̄i (which is the
state of node i at current time tk+1), obtains the state s̄j
for all j ∈ Nin,i.

6) Solve the following local mixed integer linear program-
ming problem in the unknown variables α and sj for
j ∈ Nin,i

∪
{i}:12

min α

s.t.

Ej(sk : k ∈ Nin,i

∪
{i})

γj
< α ∀j ∈ Nin,i

∪
{i}

dj ≥ sj ∀j ∈ Nin,i

∪
{i}

T out
i (sNin,i

∪
{i}) ≤ T out

i (s̄Nin,i
∪
{i})

α ∈ R+

sj ∈ {0, 1}L ∀j ∈ Nin,i

∪
{i}

(10)
and let its optimal solution be (αopt, sNin,i

∪
{i},opt).

7) If sNin,i

∪
{i},opt exists then set the new processing status

to sj = sj,opt, for all j ∈ Nin,i

∪
{i}.

8) Let k = k + 1 and go to 3.
�

We will formally prove in the following (see Theorem ??)
that at each iteration k of the previous algorithm, the objective
function of (??) either improves or does not change, although
we cannot guarantee that the optimal solution of (??) is
eventually found as k increases. However, Algorithm ?? offers
several advantages with respect to centralized algorithms to
compute a solution for problem (??). Both problems (??) and
(??) are hard to solve. However, the computational complexity
of the local optimization is function only of the number of

1With a slight abuse of notation we denote by sNin,i
∪
{i} the set of

vectors si that represent the available processing tasks in the nodes in the set
Nin,i

∪
{i}.

2With a slight abuse of notation we denote by Ej(sNin,i
∪
{i}) the energy

consumed by node j as function of the local processing assignment, it is
intended that the contribution of other nodes to this term can be computed
simply by considering the term T in

j set of vectors si that represent the
available processing tasks in the nodes in the set Nin,i

∪
{i}.



nodes involved in the optimization, thus despite being a mixed
integer linear programming problem, its complexity does not
grow by increasing the number of nodes in the network and
is small in absolute terms if the number of processing that
may be allocated locally between the nodes is small. Since
the allocation of processing is dynamic, the algorithm reacts
to unexpected drops in battery charge by changing the status
of the nodes involved.

We now characterize the behavior of the network while
algorithm DLMA is being executed.

Theorem 4.1: Consider a WSN that executes Algorithm ??.
Let the initial processing state S be feasible for problem (??)

in each neighborhood Ni of G. Let V (t) = maxi∈X
Ei(S)

γi
be the inverse of minimum lifetime in the network set by
the nodes with the smallest ratio between energy reserve and
power consumption. Then, if the network executes Algorithm
??

∀t ∈ R+ : V (t+) ≤ V (t).

Proof: During the algorithm execution, at each iteration
k two situations may occur:
Case 1: The processing state matrix S of the network does
not change, then V (t+) = V (t) by definition.
Case 2: The processing state matrix S changes according to
the solution of the local optimization problem (??).

The solution of problem (??) minimizes locally the energy
consumption for the node with the shortest lifetime between
nodes i and j ∈ Ni. Thus, if a feasible solution is found, and
we update the processing state of the nodes involved in the
optimization from s̄Nin,i

∪
{i},opt to sNin,i

∪
{i},opt then

minj∈Nin,i

∪
{i}

γi
Ei(sNin,i

∪
{i},opt)

≥

minj∈Nin,i

∪
{i}

γi
Ei(s̄Nin,i

∪
{i})

.
(11)

Now we need to show that the nodes not involved in the
local optimization do not decrease their life-time as a result.
In the proposed local optimization a processing state update
is performed only if each single information flow passing
from node i to the nodes in Nout,i is not increased due to
the constraint T out

i (si) ≤ T out
i (s̄i). Now the transmission

cost for any node in Nout,i can only decrease as T out
i (si) is

decreased, as shown in eq. (??), and so does its processing
cost, as shown in eq. (6). Furthermore also the nodes in the
downstream path toward the sink receive a smaller information
flow thus consuming less power. Finally, the nodes in the
upstrem path have their information flow left unchanged and
such is their power consumption. Thus it follows that

minj∈X
γi

Ei(Sopt)
≥ minj∈X

γi
Ei(S)

,

and V (t+) ≤ V (t) thus proving the statement. �
V. PERFORMANCE ANALYSIS

A. Test Cases and Simulations Setup

To evaluate the effectiveness of the algorithm on a realistic
WSN, two test cases have been taken into account, according

to some of the most significant realistic scenarios considered in
past works, such as in [?]: uniform energy consumption and
uniform initial energy at each node (UC-UE); non uniform
energy consumption and non uniform initial energy (NUC-
NUE) at each node (the energy consumption of the nodes has
been assigned randomly from 60% to 140% of the energy
consumption in case UC-UE; the initial energy has been
assigned randomly from 20% to 100% of the total battery
charge).

The analysis has been conducted in a MatLab environment,
considering an outdoor agricultural scenario. It has been
supposed to monitor a rectangular-shaped environment, where
the nodes have been deployed with densities of 0.2, 0.3 and
0.4 nodes/m2.

It has been assumed that the nodes deployment follows
a uniform distribution. Each node is equipped with sensors
gathering information of temperature, humidity, PH and light
exposure. The data are then sent to the Coordinator.

We have focused our analysis on one operation: calculation
of the mean values of gathered information over an hour,
starting from the values gathered every 10 minutes.

We have assumed that each sensed value is represented as
a double numerical value, which is 64 bits long. The nodes
communicate using IEEE 802.15.4 radio interfaces on the 2.4
GHz frequency band. The packets maximum size is 137 bytes,
with a payload of 0 to 125 bytes. To keep things simple, any
possible overhead has not been taken into account.

The local optimization problem has been solved using
the integer linear programming solver GLPK (GNU Linear
Programming Kit).

B. Analysis of Case Studies

The optimization algorithm has been applied to each of the
cases mentioned in ??. The results have been compared with
three other mechanisms:

i) data processed only by the Coordinator (mechanism C);
ii) data processed by every Cluster Head found in the path

to the Coordinator (mechanism CH);
iii) centralized optimization algorithm described in [?]

(mechanism CO).
In the following we present a comparison between the

results obtained using the DLMA algorithm and those obtained
using with mechanisms C, CH and CO. Specifically, we focus
on the percentage of the energy conservation gained when
using the proposed algorithm with respect to the alternative
methods. We refer to these results with: DLMA-C, DLMA-
CH, and DLMA-CO. Tab.?? shows the results for the opera-
tion defined in Section ??. The results show an average im-
provement of 57.7% of the proposed strategy for comparisons
DLMA-C and DLMA-CH, while, as it should be expected,
we observed an average decrement of 15.6% for comparison
DLMA-CO. As a matter of fact, this is the drawback of the
DLMA with respect to the centralized optimization algorithm
which finds an optimal solution.

As for the simulation results of the centralized optimization
algorithm, the best results are obtained for heterogeneous



TABLE I
PERCENTAGE VALUES OF ENERGY CONSERVATION USING DLMA, FOR

COMPARISONS DLMA-C, DLMA-CH AND DLMA-CO

Node density
[nodes/m2] UC-UE [%]

DLMA-C DLMA-CH DLMA-CO

0.2 65.9 33.7 −22.0

0.3 69.9 32.1 −19.4

0.4 72.2 36.5 −20.0

NUC-NUE [%]
DLMA-C DLMA-CH DLMA-CO

0.2 72.2 49.1 −11.2

0.3 76.8 49.7 −10.3

0.4 78.9 55.5 −10.6

networks, which are the most common in real scenarios. This
is because, unlike other mechanisms where the processing is
performed on fixed nodes regardless the energy consumed by
the single nodes, the nodes chosen by the algorithm to perform
the processing are those weighting less on the network.

The tendency of an improving energy conservation when
node density increases is due to two factors: in case NUC-
NUE, when the number of nodes in an area increases, it is
more likely that among neighboring nodes there are nodes
where the processing cost is lower due to their higher battery
level or energy consumption; the higher the number of nodes
in the same area, the larger the clusters formed, the bigger the
amount of data that can be processed before they arrive to the
Coordinator, reducing the energy cost.

Fig. 1. Network life percentage decrement with respect to time expressed
in days, for mechanisms C, CH, CO and DLMA, for a node density of 0.3
nodes/m2 in case NUC-NUE

Fig.?? shows the percentage decrease of the network life
expressed as the minimum residual battery capacity among
all nodes in the network, with respect to time expressed in
days, for the analysed mechanisms, for a node density of 0.3
nodes/m2 in case NUC-NUE. Starting from the same initial
battery charge, lifetime is shown to be much shorter if data
are processed by fixed nodes, than in the solutions found by
centralized optimization algorithm and DLMA. Furthermore,
early death of nodes could be avoided programming nodes to
run DLMA again when they reach a threshold battery level, so

that they can reduce their burden and extend their lifetime. Of
course, running centralized optimization algorithm again when
a node’s battery level is critical should be much more difficult
due to its higher complexity and to its centralized nature.

VI. CONCLUSIONS

In this paper we have studied the deployment of distributed
applications in WSNs and proposed a framework of decen-
tralized lifetime maximization for WSNs which minimizes the
impact of the applications on the network lifetime. The result-
ing DLMA algorithm based on gossip has been described and
implemented to perform simulation in realistic scenarios. The
results have been compared with alternative solutions, showing
an improvement with respect to fixed nodes mechanisms such
as data processed only by the Coordinator or by Cluster Heads.
DLMA algorithm is outperformed by the global optimization
algorithm, which however presents a higher computational
complexity and is unable to react quickly to network changes.
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