82 research outputs found

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Worst-Case Error Probability of a Spread-Spectrum System in Energy-Limited Interference

    Get PDF
    We consider a communication channel corrupted by thermal noise and by an unknown and arbitrary interference of bounded energy. For this channel, we derive a simple upper bound to the worst-case error probability suffered by a direct sequence (DS) communication system with error-correction coding, pseudorandom interleaving, and a correlation receiver. This bound is exponentially tight as the block length of the error correcting code becomes large. Numerical examples are given that illustrate the dependence of the bound on the choice of error correcting code, the type of interleaving used, and the relative energy of the Gaussian noise and arbitrary interferenc

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    Asynchronous CDMA Systems with Random Spreading-Part I: Fundamental Limits

    Full text link
    Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanly's concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided

    A study of correlation of sequences.

    Get PDF
    by Wai Ho Mow.Thesis (Ph.D.)--Chinese University of Hong Kong, 1993.Includes bibliographical references (leaves 116-124).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Spread Spectrum Technique --- p.2Chapter 1.1.1 --- Pulse Compression Radars --- p.3Chapter 1.1.2 --- Spread Spectrum Multiple Access Systems --- p.6Chapter 1.2 --- Definitions and Notations --- p.8Chapter 1.3 --- Organization of this Thesis --- p.12Chapter 2 --- Lower Bounds on Correlation of Sequences --- p.15Chapter 2.1 --- Welch's Lower Bounds and Sarwate's Generalization --- p.16Chapter 2.2 --- A New Construction and Bounds on Odd Correlation --- p.23Chapter 2.3 --- Known Sequence Sets Touching the Correlation Bounds --- p.26Chapter 2.4 --- Remarks on Other Bounds --- p.27Chapter 3 --- Perfect Polyphase Sequences: A Unified Approach --- p.29Chapter 3.1 --- Generalized Bent Functions and Perfect Polyphase Sequences --- p.30Chapter 3.2 --- The General Construction of Chung and Kumar --- p.32Chapter 3.3 --- Classification of Known Constructions ...........ï¼› --- p.34Chapter 3.4 --- A Unified Construction --- p.39Chapter 3.5 --- Desired Properties of Sequences --- p.41Chapter 3.6 --- Proof of the Main Theorem --- p.45Chapter 3.7 --- Counting the Number of Perfect Polyphase Sequences --- p.49Chapter 3.8 --- Results of Exhaustive Searches --- p.53Chapter 3.9 --- A New Conjecture and Its Implications --- p.55Chapter 3.10 --- Sets of Perfect Polyphase Sequences --- p.58Chapter 4 --- Aperiodic Autocorrelation of Generalized P3/P4 Codes --- p.61Chapter 4.1 --- Some Famous Polyphase Pulse Compression Codes --- p.62Chapter 4.2 --- Generalized P3/P4 Codes --- p.65Chapter 4.3 --- Asymptotic Peak-to-Side-Peak Ratio --- p.66Chapter 4.4 --- Lower Bounds on Peak-to-Side-Peak Ratio --- p.67Chapter 4.5 --- Even-Odd Transformation and Phase Alphabet --- p.70Chapter 5 --- Upper Bounds on Partial Exponential Sums --- p.77Chapter 5.1 --- Gauss-like Exponential Sums --- p.77Chapter 5.1.1 --- Background --- p.79Chapter 5.1.2 --- Symmetry of gL(m) and hL(m) --- p.80Chapter 5.1.3 --- Characterization on the First Quarter of gL(m) --- p.83Chapter 5.1.4 --- Characterization on the First Quarter of hL(m) --- p.90Chapter 5.1.5 --- Bounds on the Diameters of GL(m) and HL(m) --- p.94Chapter 5.2 --- More General Exponential Sums --- p.98Chapter 5.2.1 --- A Result of van der Corput --- p.99Chapter 6 --- McEliece's Open Problem on Minimax Aperiodic Correlation --- p.102Chapter 6.1 --- Statement of the Problem --- p.102Chapter 6.2 --- A Set of Two Sequences --- p.105Chapter 6.3 --- A Set of K Sequences --- p.110Chapter 7 --- Conclusion --- p.113Bibliography --- p.12
    • …
    corecore