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Worst-Case Error Probability of a Spread-Spectrum
 
System in Energy-Limited Interference
 

Murad Hizlan, Member, IEEE, and Brian L. Hughes, Member, IEEE 

Abstract—We consider a communication channel corrupted by 
thermal noise and by an unknown and arbitrary interference 
of bounded energy. For this channel, we derive a simple upper 
bound to the worst-case error probability suffered by a direct-
sequence (DS) communication system with error-correction cod-
ing, pseudorandom interleaving, and a correlation receiver. This 
bound is exponentially tight as the block length of the error-
correcting code becomes large. Numerical examples are given that 
illustrate the dependence of the bound on the choice of error-
correcting code, the type of interleaving used, and the relative 
energy of the Gaussian noise and arbitrary interference. 

Index Terms— Direct-sequence modulation, robust detection, 
signal detection, spread-spectrum. 

I. INTRODUCTION 

ONE OF THE most important properties of spread-
spectrum communication systems is the ability to 

suppress a wide variety of interfering signals. For direct-
sequence (DS) modulation, this ability has been investigated 
for several “canonical” forms of interference, including 
stationary Gaussian noise [11], pulsed Gaussian noise [15], 
tones [5], [13], narrowband noise [9], [12], [16], impulsive 
noise [1], [2], and multiple-access interference, e.g., [5], [14]. 

In certain communication situations (e.g., hostile jamming), 
it is of interest to determine the worst possible error probability 
that can be inflicted on a DS system by an interfering signal 
with a given energy, and to identify the type of interference 
that achieves it. It is far from obvious, however, that this worst-
case interference is among the canonical forms of interference 
mentioned above. 

In [7], we derived an upper bound for the worst-case error 
probability of a DS modulator and a linear correlation receiver 
when used on a channel corrupted by Gaussian noise and an 
arbitrary interfering signal of bounded energy. The worst-case 
interference for this communication system was shown to be 

Fig. 1. Symbolic representation of the DS signal. 

a tone with the same frequency and phase as the DS carrier. 
This improved upon an earlier bound by Kullstam [10]. 

The aim of this paper is to generalize the results in [7] to 
a DS system with error-control coding, pseudorandom inter
leaving, and a correlation receiver. In Section II, we describe 
the channel and communication system models precisely, and 
we give an expression for the worst-case error probability. 
In Section III, we derive a simple upper bound to this error 
probability for a channel corrupted by additive white Gaussian 
noise (AWGN) and an unknown arbitrary interference of 
bounded energy. This bound is exponentially tight as the 
block length of the code becomes large. In Section IV, we 
identify the type of interference that maximizes the bound 
and give numerical examples that illustrate the dependence 
of the bound on the choice of code parameters, the type of 
interleaving, and the relative energy of the Gaussian noise and 
arbitrary interference. Finally, our conclusions are summarized 
in Section V. 

II. SYSTEM MODEL AND DEFINITIONS 

We consider a communication situation in which a DS 
signal with error-correction coding and pseudorandom block 
interleaving is transmitted over a communication channel 
corrupted by thermal noise and an arbitrary energy-limited 
interference. In this section, we first introduce a waveform 
model for this communication system. We then derive a 
simpler, but equivalent, matrix channel model. Finally, we 
present a measure of the worst-case system performance. 

A. A Waveform Model 
A symbolic representation of the transmitted signal is given 

in Fig. 1. Every seconds, the transmitter generates mes
sages , taking values in 
message is encoded by a binary block code with block length 

and transmitted by DS modulation with pseudonoise 

. Each 



chips per code symbol. Prior to transmission, the code 
symbols are permuted by pseudorandom block interleaving. 
By symmetry, each of the messages will suffer the same 
error probability. Thus, without loss of generality, we may 
concentrate on only one of the messages, say , and call 
it . 

Denote the binary codeword associated with message 

by . The symbols of the codeword 
are pseudorandomly interleaved over codewords to 

form an interleaved code waveform 

(1) 

where in the interval and vanishes out

side, and is the symbol duration. The index 
sequence in (1) represents pseudorandom 
block interleaving of the symbols of over codewords, 
and is modeled as a random sequence which is uniformly 
distributed over all permutations of size of the sequence 

.
 
The transmitted signal
 is obtained from 

by binary phase-shift keying (BPSK) modulation and DS 
spreading 

(2) 

where 

with 

is the energy per codeword at the receiver, 
is the chip duration, is the carrier frequency 

, and is the spreading waveform 

Here, is a low-pass chip waveform that satisfies 
and vanishes outside the interval . 

The pseudonoise sequence is modeled as an inde
pendent identically distributed (i.i.d.) sequence of random 
variables which satisfy 
and are independent of . We remark here that, 
although (2) models transmission of the encoded symbols by 
binary phase-shift keying, all of the results in this paper can 
be adapted in a straightforward manner to quadriphase-shift 
keying (QPSK). 

As illustrated in Fig. 2, the received signal takes the form 

(3) 

where is a zero-mean white Gaussian noise process 
with one-sided power spectral density W/Hz, and is 
an unknown and arbitrary interfering signal. The signal 
represents interference from sources with unknown statistics, 
such as jamming, multiple-access interference, and impulsive 
noise. In this paper, we consider a communication situation 
in which nothing is known about except that it is 
independent of , , and , and that 
its energy is constrained. Thus, may be random or 

Fig. 2. Waveform channel model. 

deterministic, narrow-band or wide-band, stationary or time-
varying, Gaussian or non-Gaussian. 

To bound the error probability of a receiver for (3), we must 
place some constraint on the interference energy . 
This paper will focus on constraints which consist of bounds 
on the moments or tails of the probability distribution of this 
energy. Throughout most of the paper, we focus attention 
on the particular case when interference energy is strictly 
bounded, i.e., 

almost surely (a.s.) (4) 

The relationship of this case to other energy constraints is 
described in Section II-D. 

At the receiver, signal detection is performed by a standard 
correlation receiver comprising coherent filters, each one 
matched to one of the possible transmitted codewords. The 
decision is the index of the largest correlation receiver output 

arg (5) 

where ties are resolved randomly and 
. 

B. An Equivalent Matrix Channel 
It is convenient to recast the waveform channel 

described above into an equivalent matrix form. Let 

, where 
denotes the projection of onto the set of orthonormal 
signals 

Now observe that the waveforms 
form an orthonormal basis for 

. By projecting , , , 
and in (3) onto this basis, we find that the waveform 
channel of Fig. 2 is equivalent to the matrix channel 

(6) 

Here, is an matrix with elements 
, . 

The thermal noise becomes an matrix with 
i.i.d. elements, and the unknown interference 

becomes an matrix 
. 

with elements 



With these definitions, the correlation receiver (5) can be 
rewritten as 

arg (7) 

denotes the inner product. where 

C. Worst-Case Probability of Error 
Given , the conditional probability of error of the 

receiver in (5) and (7) is given by 

(8) 

where is the chip signal-to-noise power ratio. 
For a particular , the (unconditional) probability of error is 
then , where denotes expectation with respect 
to the distribution of . 

Our objective in this paper is to develop tools for bounding 
the error probability when nothing is known about except 
a constraint on the energy of . Note that the energy 
constraint (4) implies that satisfies 

(a.s.) (9) 

is the signal-to-interference power ratio. 
Hence, the worst-case probability of error for all interfering 
signals satisfying (4) is 

where 

Note that this probability will not be changed by restricting 
the supremum to deterministic sequences , i.e., 

(10) 

To see this, observe that the right side of (10) is clearly a 
lower bound to since deterministic sequences are a 
particular case of random sequences. Conversely, it is also an 
upper bound for because it is greater than or equal to 

for every outcome that satisfies . 
The main contribution of this paper is to derive an upper 

bound for . 

D. Other Constraints on Interference Energy 
Throughout most of this paper, we consider a communica

tion situation in which interference energy is strictly bounded, 
as in (4) and (9). This model would be appropriate when the 
source of interference is a single energy-limited transmitter 
or jammer. However, many types of interference of practical 
importance will not satisfy (9) for any choice of (e.g., 
Gaussian noise). In this section, we show how may 
be used to bound the error probability for a variety of situations 
where (9) is violated, but where a bound on the tail probability 
or moments of is known. 

First, let be any sequence of interference samples. We can 
use to bound the conditional error probabilities 

regardless of whether satisfies (9). If the distribution function 

of were known, say , then 

(11) 

A straightforward consequence of (11) is the following bound 
on the error: 

Thus, in any situation where or bounds on the tail prob
abilities are available, we can use 
to bound the worst-case error probability. 

Now suppose that we have a bound on a moment of . 
For concreteness, consider a constraint on the mean 

(12) 

Let , i.e., the set of all 
distribution functions of that satisfy (12). The worst-case 
error probability is then bounded by 

(13) 

satisfying (12). 
It is not difficult to see that many energy constraints can be 

treated in the same way as (12), by modifying 

where the first supremum is over all 

appropriately. 
Observe that the performance of the communication system 
for such problems is closely tied to its performance for the 
constraint (9). Moreover, any bound obtained on 
can be translated into a bound on the worst-case error for 
other energy constraints through (11). 

III. AN UPPER BOUND TO
 

A simple upper bound to
 can be found by 
applying the union bound [17, p. 264] to (8), which yields 

where 

and . It then follows from (10) that 

(14) 



Most of this section is devoted to finding bounds for the 
summands on the right. To begin, observe that 

(15) 

to be the Hamming distance between theDefining 
andcodewords 

Now define and rewrite 
(15) as 

weight 

where is a Gaussian 
random variable with mean zero and variance , 
which is independent of the and . 

To proceed further, we apply the Chernoff bound [3, p. 134] 
to the probability on the right. For all , we obtain 

(16) 

, , and denote expectations with respect where 

, , andto the distributions of 

, respectively. Let be the set of 
indexes such that and observe that for 

. For all , let if for 
some and let otherwise. It follows from 
this definition that 

, the sum on the right side reduces to 

(17) 
Recalling that is uniformly distributed over all permu
tations of size from , we see that 

is uniformly 
distributed over all binary -tuples with Hamming 

. More generally, it will be convenient to define 

(18) 

where is uniformly dis
tributed over all binary -tuples of weight . Using 
(17), we can rewrite (16) as 

(19) 

is generally difficult to reduce further. 
Here we develop a simple upper bound for 

The factor 
in terms 

of a similar expectation for Bernoulli random variables. Define 

(20) 

where 
i.i.d. Bernoulli random variables with 

for 
is easily evaluated as 

is a -tuple of 

. This quantity 

(21) 

We can also express in terms of by conditioning on 

the Hamming weight of . Letting , 



we obtain where 

(22) 

hence 

In the Appendix, we prove that is increasing in . For 

any , this implies 

and hence 

(23) 

for all , where 

elsewhere 

Since for all , we set 

and bound the numerator in (23) by 

(25) 

and is the Kullback–Leibler distance [3, p. 110] 

(26) 

Combining (19), (23), and (24), we obtain (27), shown at 
the bottom of the page, which holds for all , , 

and . Here , and is related 
to by (25). 

Recall that our objective was to bound the summands on the 
right side of (14). Such a bound can be obtained by maximizing 
(27) over all satisfying . The only term 
in (27) that depends on is . Hence, the maximization 
problem at hand may be stated as [cf., (21)] 

subject to 

(28) 

where . 
In [7, p. 1195], we showed that if 

then 

(29) 

with equality if and only if . Thus, 
(28) reduces to 

subject to 

The solution to this problem is more easily seen if we set 

and rewrite the problem in the alternate form 

subject to 

(24) 

(30) 

(27) 



Fig. 3. Behavior of 1(;) and h(;) for q < (3N 0 2)/h 3N . 

where 

(31) 

so that 

Observe that can be bounded above by a function 
derived from a two-point interpolation of 

obtain 

(35) 

for all , , where 

(36) 

Here , , and are as defined in (25), (26), and 
(31), respectively. 

The tightest bound is obtained by minimizing with respect 
to the variables in (35). Doing so, we obtain the main result 
of this section 

(37) 

where 

(38) 
, , , and 

(39) 

Here, is obtained from and the optimizing through 
(25). We show in [6, pp. 64–73] that the optimization in (39) 
can be accomplished through the simultaneous solution of the 
equations satisfying the first-order necessary conditions for , 

, and , and that is the true asymptotic 
exponent in of the error probability. Thus, the bound of 
(37) is asymptotically tight as becomes large for . 
The methods of [6] can be used with minor changes to prove 
asymptotic tightness of (37) for arbitrary . 

A simpler bound can be obtained using the minimum 
Hamming distance of the code 

(40) 

where 
setting 

. Here, the second inequality follows by 
and the third by 
, which is a consequence of Stirling’s ap

proximation (e.g., [3, p. 18]). Although (40) is slightly looser 
than (37), it is still asymptotically tight as . 

(32) 

In the Appendix, we show that is a strictly increasing 
function which is: 1) concave for all if 

and 2) convex for and concave for 
if (where depends upon ). When 

is concave for all , we have for 
all . Otherwise, as illustrated in Fig. 3, it can be shown 
(see [17, App. 7b]) that, for some , consists of 
a straight line for all , which is tangent to at , 
and for . In either case, is concave 
and increasing for all . 

Since is concave, increasing, and , it  
follows that 

(33) 

Hence, we have established that 

(34) 

Equality in this bound is approached as becomes large. 
Since (27) is valid for any , we may replace 

everywhere by . Combining (27) and (34), we then 



IV. DISCUSSION 

In Section III, we derived an upper bound to the worst-
case error probability. In this section, we identify the type 
of interference that maximizes this bound and explore the 
dependence of this bound on the choice of system parameters. 

A. Worst-Case Interference 
It is difficult to determine the interference that maximizes 

the error probability ; however, we can identify the 
type of interference that maximizes the upper bound (35). By 
(29), the worst-case has a constant magnitude on bit intervals, 
so that . Moreover, to achieve 
equality in (33), should take on only two values, 0 and 

, where and optimize the exponent in 
(39). It follows that is of the form 

(41) 

for some integer , where 
is any binary sequence with Hamming weight . Here, 
the amplitude of the signal is chosen so that has 
the maximum energy permitted by the constraint (4), i.e., 

. Thus, the worst upper bound on 
the error probability is inflicted by an interference that is 
synchronized and in-phase with the transmitter, uses the same 
chip waveform, and is pulsed on bit intervals with a duty factor 
which depends on and . 

Some feeling for the tightness of the upper bound can be 
gained by comparing it to the error probability caused by the 
interference . Fig. 4 plots the upper bound (37) for a 
biorthogonal code with [4, p. 333], 

, , and (no thermal noise) versus the 
bit-energy-to-interference-density ratio 

(42) 

where is the system bandwidth and 
is the data rate. Also shown is a lower bound 

on the worst-case error probability, obtained by simulating 
the exact error probability (8) for and maximizing with 
respect to . For large , the maximum usually occurs at 

; consequently, the exact error probability for 
is also shown in Fig. 4 for comparison. For large , the 
figure shows that the upper bound is within 2 dB of the worst-
case error probability; for small , however, the bounds 
are far apart and the figure admits no conclusion. 

As mentioned in Section II, all of the results in this paper 
are easily adapted to QPSK, which can be viewed as two 
quadrature-multiplexed BPSK signals. With QPSK, binary 
data can be transmitted in half the time taken by BPSK. If 
we hold average transmitter and interference power fixed, the 
upper bound (35) still holds with and replaced by 
and , respectively. This is equivalent to halving the signal-
to-noise ratio and doubling the data rate , with all other 

Fig. 4. Bounds on worst-case error probability for the (32, 64, 16) biorthog
onal code with N = 32, I = 5, and 12 

= 0. 

parameters held fixed. The worst-case interference then takes 
a form similar to (41), but with sine as well as cosine terms. 

B. Symbol-Level Versus Chip-Level Interleaving 
The model given in Section II assumes interleaving at the 

code symbol level. It is interesting, however, to consider an 
alternate system in which interleaving is performed at the chip 
level (setting aside for a moment the practical difficulties which 
this entails). The worst-case performance of such a system can 
be obtained directly from (37) or (40) in the following way. 
First, consider a system with parameters , , and . Next, 
consider a system with parameters , , and 

, where the code for system is obtained by repeating 
times each symbol in the code for . Clearly, symbol-

level interleaving of system is equivalent to chip-level 
interleaving of system . Hence, we can write the exponent 
of the error bound for chip-level interleaving in terms of that 
for symbol-level interleaving 

(43) 

Equation (43) suggests that any change in will result in 
a proportional change in the error exponent when chip-level 
interleaving is used. Therefore, increasing the number of chips 
per symbol is equivalent to increasing the block length of the 
code (with fixed) when interleaving is performed at the chip 
level. 

We now examine the exponents and for the (32, 
64, 16) biorthogonal code with . Since the exponents 
in (39) and (43) depend on only through the 

ratio , the exponents for any other orthogonal 



Fig. 6. Comparison of thermal noise with arbitrary interference. Fig. 5. Comparison of symbol-level and chip-level interleaving. 

or biorthogonal code with parameters can be 
obtained by shifting the curves to the right by 

decibels. 
In Fig. 5, we plot the error exponents (labeled s-l) 

and (labeled c-l) for in the absence 
of thermal noise ( ). Note that, when thermal noise 
is absent, both exponents become unbounded for , 
which corresponds to a worst-case error probability of zero. 
We observe from Fig. 5 that these exponents do not vary 
significantly with . We also see that the exponents for 
chip-level interleaving (c-l) are roughly 6 dB better than the 
corresponding exponents for symbol-level interleaving (s-l). 
The gap between these curves widens as increases. This is 
because, as increases, decreases and so does the worst-
case in (39). A small corresponds to a pulsed interfering 
signal [cf., (34)], which inflicts a large error probability (and 
hence a small exponent) on the correlation receiver for symbol 
interleaving. However, the chip interleaving system is more 
robust to pulsed interference, and its exponent is not reduced 
as much. This difference suggests that interleaving below the 
symbol level improves worst-case performance. While chip-
level interleaving may be difficult to achieve in practice for 
large , our results suggest that performance can be improved 
by interleaving on any time scale finer than the symbol 
duration. 

C. Thermal Noise Versus Interference 
In order to compare the effects of thermal noise with 

arbitrary interference, we define the composite signal-to-noise 
ratio to be and let , 
so that 

Hence, as varies from 0 to 1, the channel changes from 
one with only unknown interference to one with only thermal 
noise, while the total average noise power remains fixed. 

In Fig. 6, we plot and for , , the 
(32, 64, 16) biorthogonal code, and various values of . The 
ordinate of these plots is , which is defined as in (42) 
with replacing . We see from Fig. 6 that the difference 

Fig. 7. Dependence on p = d/IL. 

between symbol-level and chip-level interleaving becomes less 
significant as the interference becomes less “unknown” and 
more “thermal.” Indeed, these curves coincide for but 
are separated by more than 4 dB for . This is to be 
expected since interleaving has no effect on an additive white 
Gaussian noise (AWGN) channel. In the absence of unknown 
interference ( ), both exponents simplify to the AWGN 
exponent 

(44) 

D. Dependence on and 
In Fig. 7, we plot and 

16) biorthogonal code, and 
for 

( 
, the (32, 64, 

) in  
the absence of thermal noise. For reference, we also plot the 
exponent of the AWGN channel with the same noise power 
(44). 

As expected, we see that the exponents increase with 
(decrease with ). For small , chip-level interleaving leads to 
substantially worse performance on the arbitrary interference 
channel than on the AWGN channel. However, the opposite is 
true for large . This trend applies to chip-level interleaving 



for any , since both the chip-level exponent (43) and the 
AWGN exponent (44) are linear in . Fig. 7 also shows 
that the symbol-level exponents are worse on the arbitrary 
interference channel than on the AWGN channel for all . 
Moreover, the performance of both types of interleaving on the 
arbitrary interference channel degrades relative to performance 
on the AWGN channel as increases. It is noteworthy that 
the same would be true if were fixed and were decreased, 
since this would also decrease . 

This degradation in performance as increases is an artifact 
of the power constraint (4) and should not be construed as 
suggesting that increasing in a practical communication 
system would result in a higher error probability. Equation 
(41) suggests that worst-case interference is pulsed, and it is 
well known that the correlation receiver is not very effective 
in suppressing this type of interference. A smaller limits 
the ability of the interference to produce a high peak power, 
since any particular codeword can receive at most times 
the average interference power . 

E. Asymptotically Optimal Random Modem and Detector 
In an earlier paper [8] we derived, for a fixed encoder, a 

random modem and detector that asymptotically minimize the 
worst-case error probability suffered on the channel (2) as the 
block length of the encoder becomes large. The feasible class 
of modems and detectors considered includes the DS system 
described in this paper. Thus, by comparing the performance 
of these two systems, we can determine how the performance 
of the DS system described in Section II compares with the 
optimally robust random modem and detector. In the absence 
of thermal noise ( ), the error exponent for the optimal 
random modem and detector on channel (2) reduces to [8] 

(45) 

In Fig. 8, we plot , , and under the same 
conditions as in Fig. 7. In this figure, the symbol-level expo
nents differ from the optimal exponents by more than 2, 4, and 
6 dB for , , and , respectively. In fact, these 
differences become more pronounced as is increased. This 
is another consequence of the pulsed nature of the worst-case 
noise. 

The exponents for chip-level interleaving are close to opti
mal random modulation and detection for . However, 
for smaller , they are markedly suboptimal. This trend also 
holds for any , since both the chip-level exponent (43) and 
the optimal exponent (45) are proportional to . 

V. CONCLUSIONS 

In this paper, we considered a communication channel 
corrupted by Gaussian noise and by an arbitrary interfering 
signal with a strict bound on energy (4). For this channel, 
we derived an upper bound to the worst-case error probability 
of a DS spread-spectrum system with error-control coding, 
pseudorandom interleaving, and a correlation receiver. We 
further showed that this result can be used to bound the error 
probability even when (4) is violated, provided a bound on 

Fig. 8. Comparison of performance with optimal performance. 

the tail probability or a moment of the interference energy is 
available. 

The worst-case interference (in the sense of maximizing 
the upper bound) consists of a signal that is synchronized 
and in-phase with the transmitter, uses the same chip wave
form, and is pulsed on symbol intervals with a duty factor 
that depends on the signal-to-interference and signal-to-noise 
power ratios and . Numerical examples suggest that, as 
the number of interleaved code symbols becomes large 
compared to the minimum distance of the code , the duty 
factor becomes smaller, the worst-case interference becomes 
increasingly impulsive, and the error probability degrades 
dramatically. This performance degradation is to be expected, 
since correlation receivers are not very effective in suppressing 
impulsive interference. 

Finally, we showed that the worst-case error probability 
can be improved by interleaving chips (or groups of chips) 
rather than bits, especially when the arbitrary interference 
dominates the Gaussian channel noise. While difficult to 
implement in practice for large , chip-level interleaving leads 
to a communication system that is more robust to impulsive 
interference. We also compared the performance of both chip-
level and symbol-level interleaving to that of the modem 
and detector derived in [8], which asymptotically minimize 
the worst-case error probability as the code block length 
becomes large. For , the performance of chip-
level interleaving is nearly optimum; for , however, 
performance is markedly suboptimum. In the latter case, 
performance can be significantly improved by using different 
modulation and detection. In particular, examination of the 
literature (e.g., [2], [16]) suggests that nonlinear detection 
would significantly improve the worst-case performance of the 
communication system considered here. 

APPENDIX 

Behavior of : We now show that , defined in (18), 
is an increasing function of . First, note that the random 
vector can be viewed as derived from by 
randomly choosing one of the “0”s of 



and changing it into a “1.” Thus, we can rewrite (18) as 

The summation on the right can be bounded below by 

Hence, we conclude that 

We now show that is strictly decreasing. To see this, 
observe that 

The fraction above is clearly negative for . The term in 
square brackets reduces to 

which can be expressed in a series expansion as 

(48) 

It is easily shown that the bracketed expression in (48) takes 
on a minimum value of eight for all and , which 
is attained by and . Thus, each term in (48) is 
positive and, hence, for .
 

Since
 is strictly decreasing, we have 

Behavior of : Next we investigate the behavior of the 
function , defined in (31). For notational simplicity, we 
will write 

First, observe that 

for (46) 

is strictly increasing.
 
Next, we examine the second derivative of
 

so 

(47) 

Since the fraction in (47) is positive for , we only need to 
consider the term in square brackets to determine the concavity 
or convexity of . By a simple algebraic manipulation of 
this term, we find that is concave if and convex 
if where 

Since , , and for , it is easily 
seen that for . 

and 

Recalling that 
, we 

is concave for 
co
all 

is concave if 
nclude that if 

; otherwise, 

and concave for . 

and convex if 
, 

is convex for 
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