234 research outputs found

    Fluid limits of many-server queues with reneging

    Full text link
    This work considers a many-server queueing system in which impatient customers with i.i.d., generally distributed service times and i.i.d., generally distributed patience times enter service in the order of arrival and abandon the queue if the time before possible entry into service exceeds the patience time. The dynamics of the system is represented in terms of a pair of measure-valued processes, one that keeps track of the waiting times of the customers in queue and the other that keeps track of the amounts of time each customer being served has been in service. Under mild assumptions, essentially only requiring that the service and reneging distributions have densities, as both the arrival rate and the number of servers go to infinity, a law of large numbers (or fluid) limit is established for this pair of processes. The limit is shown to be the unique solution of a coupled pair of deterministic integral equations that admits an explicit representation. In addition, a fluid limit for the virtual waiting time process is also established. This paper extends previous work by Kaspi and Ramanan, which analyzed the model in the absence of reneging. A strong motivation for understanding performance in the presence of reneging arises from models of call centers.Comment: Published in at http://dx.doi.org/10.1214/10-AAP683 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A single-server Markovian queuing system with discouraged arrivals and retention of reneged customers

    Get PDF
    Customer impatience has a very negative impact on the queuing system under investigation. If we talk from business point of view, the firms lose their potential customers due to customer impatience, which affects their business as a whole. If the firms employ certain customer retention strategies, then there are chances that a certain fraction of impatient customers can be retained in the queuing system. A reneged customer may be convinced to stay in the queuing system for his further service with some probability, say q and he may abandon the queue without receiving the service with a probability p(=1− q). A finite waiting space Markovian single-server queuing model with discouraged arrivals, reneging and retention of reneged customers is studied. The steady state solution of the model is derived iteratively. The measures of effectiveness of the queuing model are also obtained. Some important queuing models are derived as special cases of this model

    A survey of the machine interference problem

    Get PDF
    This paper surveys the research published on the machine interference problem since the 1985 review by Stecke & Aronson. After introducing the basic model, we discuss the literature along several dimensions. We then note how research has evolved since the 1985 review, including a trend towards the modelling of stochastic (rather than deterministic) systems and the corresponding use of more advanced queuing methods for analysis. We conclude with some suggestions for areas holding particular promise for future studies.Natural Sciences and Engineering Research Council (NSERC) Discovery Grant 238294-200

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    Asymptotic approximations for stationary distributions of many-server queues with abandonment

    Full text link
    A many-server queueing system is considered in which customers arrive according to a renewal process and have service and patience times that are drawn from two independent sequences of independent, identically distributed random variables. Customers enter service in the order of arrival and are assumed to abandon the queue if the waiting time in queue exceeds the patience time. The state of the system with NN servers is represented by a four-component process that consists of the forward recurrence time of the arrival process, a pair of measure-valued processes, one that keeps track of the waiting times of customers in queue and the other that keeps track of the amounts of time customers present in the system have been in service and a real-valued process that represents the total number of customers in the system. Under general assumptions, it is shown that the state process is a Feller process, admits a stationary distribution and is ergodic. It is also shown that the associated sequence of scaled stationary distributions is tight, and that any subsequence converges to an invariant state for the fluid limit. In particular, this implies that when the associated fluid limit has a unique invariant state, then the sequence of stationary distributions converges, as NN\rightarrow \infty, to the invariant state. In addition, a simple example is given to illustrate that, both in the presence and absence of abandonments, the NN\rightarrow \infty and tt\rightarrow \infty limits cannot always be interchanged.Comment: Published in at http://dx.doi.org/10.1214/10-AAP738 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A transient solution to the M/M/c queuing model equation with balking and catastrophes

    Get PDF
    In this paper, we consider a Markovian multi-server queuing system with balking and catastrophes. The probability generating function technique along with the Bessel function properites is used to obtain a transient solution to the queuing model. The transient probabilities for the number of customers in the system are obtained explicitly. The expressions for the time-dependent expected number of customers in the system are also obtained. Finally, applications of the model are also discussed

    Service systems with balking based on queueing time

    Get PDF
    We consider service systems with balking based on queueing time, also called queues with wait-based balking. An arriving customer joins the queue and stays until served if and only if the queueing time is no more than some pre-specified threshold at the time of arrival. We assume that the arrival process is a Poisson process. We begin with the study of theM/G/1 system with a deterministic balking threshold. We use level-crossing argument to derive an integral equation for the steady state virtual queueing time (vqt) distribution. We describe a procedure to solve the equation for general distributions and we solve the equation explicitly for several special cases of service time distributions, such as phase type, Erlang, exponential and deterministic service times. We give formulas for several performance criteria of general interest, including average queueing time and balking rate. We illustrate the results with numerical examples. We then consider the first passage time problem in an M/PH/1 setting. We use a fluid model where the buffer content changes at a rate determined by an external stochastic process with finite state space. We derive systems of first-order linear differential equations for both the mean and LST (Laplace-Stieltjes Transform) of the busy period in the fluid model and solve them explicitly. We obtain the mean and LST of the busy period in the M/PH/1 queue with wait-based balking as a special limiting case of the fluid model. We illustrate the results with numerical examples. Finally we extend the method used in the single server case to multi-server case. We consider the vqt process in an M/G/s queue with wait-based balking. We construct a single server system, analyze its operating characteristics, and use it to approximate the multi-server system. The approximation is exact for the M/M/s and M/G/1 system. We give both analytical results and numerical examples. We conduct simulation to assess the accuracy of the approximation
    corecore