419 research outputs found

    Experimental Analysis of Energy Efficiency of Server Infrastructure in University Datacenters

    Get PDF
    With the increased number of user applications, the amount of data generated by users, the need for more intensive data processing, in modern data centers the question of energy efficiency arises. IT equipment requires permanent maintenance of appropriate climatic conditions, therefore significant investments are needed in cooling systems and ensuring a constant supply of electricity. In this paper, an experimental analysis is performed concerning the economic and environmental aspects of server virtualization, including the business value of virtualization. An analysis was conducted to be used concurrently on a traditional architecture and a virtual ecosystem. The acquired findings show considerable advantages of virtual and cloud ecosystem in the form of optimum provision and use of physical workstation properties. Through this paper, authors analysed the power utilization when utilizing a higher number of physical servers, as opposed to the same number of virtual servers. Acquired results present a assessment of accumulative energy utilization and load on physical units during optimal workload client requests during the working week. Through the paper authors presented the idea of low electric energy consumption, using the green datacenter concept and contribution to the advancement of IT technologies at the Singidunum University, which is also applicable to other modern university datacenters

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    Green Resource Management in Distributed Cloud Infrastructures

    Get PDF
    Computing has evolved over time according to different paradigms, along with an increasing need for computational power. Modern computing paradigms basically share the same underlying concept of Utility Computing, that is a service provisioning model through which a shared pool of computing resources is used by a customer when needed. The objective of Utility Computing is to maximize the resource utilization and bring down the relative costs. Nearly a decade ago, the concept of Cloud Computing emerged as a virtualization technique where services were executed remotely in a ubiquitous way, providing scalable and virtualized resources. The spread of Cloud Computing has been also encouraged by the success of the virtualization, which is one of the most promising and efficient techniques to consolidate system's utilization on one side, and to lower power, electricity charges and space costs in data centers on the other. In the last few years, there has been a remarkable growth in the number of data centers, which represent one of the leading sources of increased business data traffic on the Internet. An effect of the growing scale and the wide use of data centers is the dramatic increase of power consumption, with significant consequences both in terms of environmental and operational costs. In addition to power consumption, also carbon footprint of the Cloud infrastructures is becoming a serious concern, since a lot of power is generated from non-renewable sources. Hence, energy awareness has become one of the major design constraints for Cloud infrastructures. In order to face these challenges, a new generation of energy-efficient and eco-sustainable network infrastructures is needed. In this thesis, a novel energy-aware resource orchestration framework for distributed Cloud infrastructures is discussed. The aim is to explain how both network and IT resources can be managed while, at the same time, the overall power consumption and carbon footprint are being minimized. To this end, an energy-aware routing algorithm and an extension of the OSPF-TE protocol to distribute energy-related information have been implemented

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book

    Energy-efficient Nature-Inspired techniques in Cloud computing datacenters

    Get PDF
    Cloud computing is a systematic delivery of computing resources as services to the consumers via the Internet. Infrastructure as a Service (IaaS) is the capability provided to the consumer by enabling smarter access to the processing, storage, networks, and other fundamental computing resources, where the consumer can deploy and run arbitrary software including operating systems and applications. The resources are sometimes available in the form of Virtual Machines (VMs). Cloud services are provided to the consumers based on the demand, and are billed accordingly. Usually, the VMs run on various datacenters, which comprise of several computing resources consuming lots of energy resulting in hazardous level of carbon emissions into the atmosphere. Several researchers have proposed various energy-efficient methods for reducing the energy consumption in datacenters. One such solutions are the Nature-Inspired algorithms. Towards this end, this paper presents a comprehensive review of the state-of-the-art Nature-Inspired algorithms suggested for solving the energy issues in the Cloud datacenters. A taxonomy is followed focusing on three key dimension in the literature including virtualization, consolidation, and energy-awareness. A qualitative review of each techniques is carried out considering key goal, method, advantages, and limitations. The Nature-Inspired algorithms are compared based on their features to indicate their utilization of resources and their level of energy-efficiency. Finally, potential research directions are identified in energy optimization in data centers. This review enable the researchers and professionals in Cloud computing datacenters in understanding literature evolution towards to exploring better energy-efficient methods for Cloud computing datacenters

    Recovery of carbon stocks after wildfires in boreal forests : a synthesis

    Get PDF
    Book of abstracts Cool forests at risk? The Critical Role of Boreal and Mountain Ecosystems for People, Bioeconomy, and ClimatePeer reviewe

    Book of abstracts of the 2nd International Conference of TEMA: mobilizing projects

    Get PDF
    Based on its Human Capital and Capacities, the Centre for Mechanical Technology and Automation (TEMA) embraces a mission aiming to contribute to a sustainable industry, with specially focus on the surrounding SMEs, and to the wellbeing of society. Sustainable manufacturing aims to contribute to the development of a sustainable industry by developments and innovations on manufacturing engineering and technologies, to increase productivity, improve products quality and reduce waste in production processes. Technologies for the Wellbeing wishes to contribute to the wellbeing of society by the development of supportive engineering systems focusing on people and their needs and intending to improve their quality of life. TEMA intends to maximize its national and international impact in terms of scientific productivity and its transfer to society by tackling the relevant challenges of our time. TEMA is aware of the major challenges of our days, not only confined to scientific issues but also the societal ones, (a strategic pillar of the Horizon 2020 program), at the same time placing an effort to have its research disseminated, in high impact journals to the international scientific community. (...)publishe
    corecore