857 research outputs found

    Adaptive control of plants with input saturation: an approach for performance improvement

    Get PDF
    In this work, a new method for adaptive control of plants with input saturation is presented. The new anti-windup scheme can be shown to result in bounded closed-loop states under certain conditions on the plant and the initial closed-loop states. As an improvement in comparison to existing methods in adaptive control, a new degree of freedom is introduced in the control scheme. It allows to improve the closed-loop response when actually encountering input saturation without changing the closed-loop performance for unconstrained inputs.Diese Arbeit präsentiert eine neue Methode für die adaptive Regelung von Strecken mit Stellgrößenbegrenzung. Für das neue anti-windup Verfahren wird gezeigt, dass die Zustände des Regelkreises begrenzt bleiben, wenn dessen initiale Werte und die Regelstrecke bestimmte Bedingungen erfüllen. Eine Verbesserung im Vergleich zu existierenden Methoden wird durch die Einführung eines zusätzlichen Freiheitsgrades erzielt. Dieser erlaubt die Verbesserung der Regelgüte des geschlossenen Regelkreises, wenn das Eingangssignal sich in der Limitierung befindet, ohne diese sonst zu verändern

    Nonlinear constrained and saturated control of power electronics and electromechanical systems

    Get PDF
    Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems

    Multivariable PID control by decoupling

    Get PDF
    This paper presents a new methodology to design multivariable PID controllers based on decoupling control. The method is presented for general nĂ—n processes. In the design procedure, an ideal decoupling control with integral action is designed to minimize interactions. It depends on the desired open loop processes that are specified according to realizability conditions and desired closed loop performance specifications. These realizability conditions are stated and three common cases to define the open loop processes are studied and proposed. Then, controller elements are approximated to PID structure. From a practical point of view, the windup problem is also considered and a new anti-windup scheme for multivariable PID controller is proposed. Comparisons with other works demonstrate the effectiveness of the methodology through the use of several simulation examples and an experimental lab process

    Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    Get PDF
    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation

    Centralized Inverted Decoupling Control

    Get PDF
    This paper presents a new methodology of multivariable centralized control based on the structure of inverted decoupling. The method is presented for general nĂ—n processes, obtaining very simple general expressions for the controller elements with a complexity independent of the system size. The possible configurations and realizability conditions are stated. Then, the specification of performance requirements is carried out from simple open loop transfer functions for three common cases. As a particular case, it is shown that the resulting controller elements have PI structure or filtered derivative action plus a time delay when the process elements are given by first order plus time delay systems. Comparisons with other works demonstrate the effectiveness of this methodology through the use of several simulation examples and an experimental lab process

    Centralized multivariable control by simplified decoupling

    Get PDF
    This paper presents a generalized formulation of simplified decoupling to nĂ—n processes that allows for different configurations depending on the decoupler elements set to unity. To apply this decoupling method, the realizability conditions are stated. Then, from the previous decoupling in combination with a decentralized control, the formulation of a centralized control by simplified decoupling is developed. After reducing the controller, this last proposed method is modified to a multivariable PID control. From an implementation point of view, the windup problem is addressed for these methods, and an anti-windup scheme for multivariable PID controllers is proposed. Comparisons with other works demonstrate the effectiveness of these methodologies, through the use of several simulation examples and an experimental lab process

    Control strategies for systems with limited actuators

    Get PDF
    This work investigates the effects of actuator saturation in multi-input, multi-output (MIMO) control systems. The adverse system behavior introduced by the saturation nonlinearity is viewed here as resulting from two mechanisms: controller windup - a problem caused by the discrepancy between the limited actuator commands and the corresponding control signals, and directionality - the problem of how to use nonlimited actuators when a limited condition exists. The tracking mode and Hanus methods are two common strategies for dealing with the windup problem. It is seen that while these methods alleviate windup, performance problems remain due to plant directionality. Though high gain conventional antiwindup as well as more general linear methods have the potential to address both windup and directionality, no systematic design method for these schemes has emerged; most approaches used in practice are application driven. An alternative method of addressing the directionality problem is presented which involves the introduction of a control direction preserving nonlinearity to the Hanus antiwindup system. A nonlinearity is subsequently proposed which reduces the conservation inherent in the former direction-preserving approach, improving performance. The concept of multivariable sensitivity is seen to play a key role in the success of the new method
    • …
    corecore