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Abstract

This brief paper addresses the implementation and well-posedness aspects of multivariable algebraic loops which arise nat-
urally in many anti-windup control schemes. Using the machinery of linear complementarity problems, a unified framework
is developed for establishing well-posedness of such algebraic loops. Enforcing well-posedness is reduced to a linear matrix
inequality feasibility problem that can be solved during the anti-windup design stage. Several existing anti-windup implemen-
tations appear as special cases of the unified framework presented in this brief paper.

Key words: Multivariable Algebraic loop; Anti-windup; Linear Complementarity Problem; Directionality Compensation;
Constrained Control.

1 Introduction

Many constrained control problems involve dealing
with algebraic loops comprising the feedback inter-
connection of a static nonlinearity and a linear term
[11,15,29,20,4]. Such algebraic loops constitute delay-
free circuits which may yield infinitely many solutions
or no solution [31,9]. When a solution exists and it is
unique, the algebraic loop is said to be well-posed (e.g.
see [31,11,12,15,25,22,20]); the presence of an ill-posed
algebraic loop can result in serious problems during
practical implementation of control. Even when the al-
gebraic loop is well-posed, numerical implementation
may not be straightforward in real-time applications
[28,12].

Recently, a number of ad-hoc strategies have been sug-
gested to deal with specific cases of algebraic loop mani-
festations. In [28], the algebraic loop is broken by the in-
troduction of a delay element. As shown, such strategies
can result is serious performance degradation and may
even induce closed-loop instability. As hinted in [11], a
low-pass filter may be inserted into the loop to avoid
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any implementation issue but at the expense of perfor-
mance loss. In addition, the order of the resulting anti-
windup is twice that of the unfiltered compensation, and
the filter time constants have to be carefully chosen to
avoid closed-loop instability. Implementation aspects of
this strategy are discussed in [19]. Following a different
approach, numerical algorithms have been suggested in
[26,29,20].

In this brief paper, we present a framework for address-
ing both the well-posedness and the numerical imple-
mentation of static algebraic loops using the machin-
ery of linear complementarity problems (LCP)[6]. Suffi-
cient conditions for well-posedness are derived in terms
of certain matrix classes which are well established in
the mathematical programming literature. We show that
many existing anti-windup designs correspond to partic-
ular implementations of the algebraic loop. Some prelim-
inary results have been presented in [1,3]; here we pro-
vide formal proofs of the two main results (Proposition
5 and Proposition 7). In addition we include simulation
results which demonstrate both the simplicity of on-line
implementation of LCP solvers and the benefits offered
by such a generalized framework. Finally, we comment
on a simple procedure for the fast computation of alge-
braic loops. We discuss implementation issues, and in
particular how the Lemke algorithm [5,6] can be tailored
to various practical cases.
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The notation employed throughout the brief paper is
standard. However, following [6], a positive (semi) defi-
nite real matrix is not necessarily symmetric. For x, y ∈
Rm, the notation x > (≥) y is used to mean xi > (≥) yi
for i = 1, · · · ,m.

2 Problem Formulation

We consider the feedback interconnection of Fig. 1 which
comprises a linear time invariant (LTI) subsystem de-
noted by P and a static algebraic loop subsystem. This
block diagram is general, since H must be invertible
to ensure well-posedness [31]; it provides a convenient
structure for studying varieties of linear anti-windup sys-
tems. In this case, the subsystem P comprises the dy-
namics of the plant, the linear controller and the anti-
windup compensation (for dynamic anti-windup). The
LTI system is described by the state-space equations:

ẋ = Ax+B1w +B2û, (1a)

z = C1x+D11w +D12û, (1b)

v = C2x+D21w +D22û, (1c)

where x ∈ Rnp is the state,w ∈ Rnw is an external input,
z ∈ Rnz is an external output associated with some
performance criterion, and û, v ∈ Rm denote the second
input and output of P . The algebraic loop subsystem is
described by the following implicit relations:

û = sat(u), (2a)

u = Hv − (H − I)û, (2b)

where H ∈ Rm×m is an invertible (not necessarily sym-
metric) matrix and sat(u) is a decentralized saturation
nonlinearity satisfying

sat(u) =
[

sat1(u1) · · · satm(um)
]
, (3a)

where

sati(ui) =


umax
i ; ui > umax

i ,

ui; umin
i ≤ ui ≤ umax

i ,

umin
i ; ui < umin

i ,

(3b)

with umin
i ≤ 0 and umax

i ≥ 0 for all i = 1, · · · ,m.

We assume that in the absence of saturation (i.e. when
the algebraic loop subsystem is replaced with an iden-
tity), the unconstrained system is well-posed and has
been designed to guarantee asymptotic stability. In this
case, well-posedness implies that the matrix (I−D22)−1

exists. Note that the feedthrough term from û to v in (1)
may be subsumed into the algebraic loop to obtain

Fig. 1. Generalized Structure for Systems Incorporating
Static Algebraic Loops


ẋ = Ax+B1w +B2û,

z = C1x+D11w +D12û,

ṽ = C̃2x+ D̃21w,

(4a)

{
û = sat(u),

u = H̃ṽ − (H̃ − I)û,
(4b)

where C̃2 = (I−D22)−1C2, D̃21 = (I−D22)−1D21 and

H̃ = H(I − D22). Thus well-posedness of the overall
system reduces to that of the algebraic loop subsystem.

In this brief paper, we are concerned with the characteri-
zation and the practical implementation of all the differ-
ent manifestations of algebraic loops of the form of (2) in
linear anti-windup compensations. Using the framework
of linear complementarity problems, we develop enforce-
able sufficient conditions under which a unique solution
exists and we construct a simple procedure for real-time
implementation of the algebraic loop.

3 Main Results

To state our main results, we give an alternative descrip-
tion of the algebraic loop which exploits the Karush-
Kuhn Tucker (KKT) optimality condition of the satu-
ration function [24]. We then characterize the class of
matrix H for which the algebraic loop (2) is not only
solvable but has a unique solution (i.e. well-posed).

Lemma 1 Define L ∈ Rm×2m and 0 ≤ b ∈ R2m as:

L = [I − I], b = [(umax)T (−umin)T ]T , (5)

where umax and umin are the upper and lower bounds
of (3) respectively. There exists a non-negative λ ∈ R2m

such that the input-output characteristics of the algebraic

2



loop subsystem (2) satisfy the following conditions:

Hû−Hv + Lλ = 0, (6a)

LT û− b ≤ 0, (6b)

λT (LT û− b) = 0. (6c)

PROOF. See the appendix.

To test the feasibility of (6), we might seek vectors û ∈
Rm (free) and λ ∈ R2m (restricted) for a given input
vector v ∈ Rm, and fixed parameters L, b and H. Note
that v and û are respectively the input and the output
vectors of the algebraic loop subsystem (2). The alge-
braic loop description (6) comprises linear equations, lin-
ear inequalities and complementarity conditions and is
generally termed a mixed LCP (mLCP) [32,6]. It is this
description that we exploit in the following results. We
describe in Definition 2 the class of P-matrices and the
class of positive stable matrices [7], and in Definition 3
the Linear Complementarity Problem (LCP)[6].

Definition 2

(1) A matrix H ∈ Rm×m is a P-matrix if all of its
principal minors are positive.

(2) A matrix H ∈ Rm×m is said to be
(a) diagonally dominant if

|Hii| ≥
∑
j 6=i

|Hij |, i = 1, . . . ,m. (7)

(b) strictly diagonally dominant if strict inequality
holds for all i.

(3) A matrix H ∈ Rm×m is said to be
(a) positive stable if there exists a symmetric posi-

tive definite matrix X such that HX is positive
definite.

(b) diagonally positive stable if there exists a
positive-diagonal matrix X such that HX is
positive definite.

Definition 3
Given a vector q ∈ Rl and a matrix Q ∈ Rl×l, the
LCP(q,Q) is to find a vector λ ∈ Rl such that

λ ≥ 0, q +Qλ ≥ 0, (8a)

λT (q +Qλ) = 0. (8b)

The LCP(q,Q) is said to be feasible if there exists a vector
λ satisfying (8a). It is solvable if vector λ also satisfies
(8b). The LCP (q,Q) is trivially solvable if q ≥ 0.

The algebraic loop system (6) can be described as a vari-
ant of the standard LCP problem. Here, we are interested

in a class of monotone LCPs where Q is (not necessarily
symmetric) positive semi-definite. For such a class, the
LCP(q,Q) can have multiple solutions. Suppose Q can
be partitioned into blocks of matrices as Q = LTH−1L.
We have the following solvability results.

Lemma 4 Let H ∈ Rm×m be a P-matrix, and let L ∈
Rm×2m and 0 ≤ b ∈ R2m be structured according to (5).
Define Q = LTH−1L and q = b− LT v where v ∈ Rm is
arbitrary. The following statements hold:

(1) the LCP(q,Q) is feasible;
(2) if λ∗ solves the LCP(q,Q), then (q+Qλ∗) is unique,

and λ∗ is also unique provided b > 0.

PROOF. See the appendix.

We now state our main well-posedness results.

Proposition 5 Let sat(·) : Rm → Rm be defined as (3)
and supposeL ∈ Rm×2m and 0 ≤ b ∈ R2m are structured
according to (5). If H ∈ Rm×m is a P-matrix, then the
following statements hold:

(1) the algebraic loop formed by the feedback intercon-
nection of û = sat(u) and u = Hv − (H − I)û is
well-posed for any input vector v ∈ Rm;

(2) for any two solutions û1 and û2 of the algebraic loop
corresponding to the inputs v1 and v2, the solution
map is Lipschitz continuous; i.e. there exist a posi-
tive constant c such that:

(û1 − û2)TH(v1 − v2) ≥ c
∥∥û1 − û2∥∥2 . (9)

PROOF. See the appendix.

Remark 6 Proposition 5 provides a useful test for
checking well-posedness and for certifying the Lipschitz
property of algebraic loops. It also implies that stan-
dard analysis tools [8,13] can be employed to assess the
stability of feedback interconnections comprising non-
conventional nonlinear structures such as the algebraic
loop subsystem (2).

In the sequel, we provide enforceable condition as a
feasibility problem involving linear matrix inequalities
(LMI). The result relies on the relationship between the
class of diagonally positive stable matrices [7] and the
class of P-matrices [6]:

Proposition 7 Let sat(·) : Rm → Rm be defined as (3)
and supposeL ∈ Rm×2m and 0 ≤ b ∈ R2m are structured
according to (5). Let H ∈ Rm×m be fixed.
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(1) If there exists a positive-diagonal matrixX such that

HX +XHT (10)

is positive definite, the algebraic loop formed by the
feedback interconnection of û = sat(u) and u =
Hv − (H − I)û is well-posed for any input vector
v ∈ Rm.

(2) If there exists a positive-diagonal matrixX such that

HiiXi >
∑
j 6=i

|Hij |Xj , i = 1, . . . ,m, (11)

the algebraic loop formed by the feedback intercon-
nection of û = sat(u) and u = Hv − (H − I)û is
well-posed for any input vector v ∈ Rm.

PROOF. See the appendix.

Remark 8 The conditions in Items 1) and 2) of Propo-
sition 7 are generalizations of the classes of (not necessar-
ily symmetric) positive definite matrices and strictly row
diagonally dominant matrices respectively. From item 1),
we have that a diagonally positive stable matrix belongs to
the class of P-matrices and from item 2), that a strictly
row diagonally dominant matrix with positive diagonal
entries is diagonally positive stable and hence belongs to
the class of P-matrices.

Remark 9 Existing well-posedness results in the liter-
ature may be considered special cases of Proposition 7.
For example, LMI (10) is exactly the condition in [28]
for numerical robustness of the algebraic loop. Similar
conditions are derived in [11,12] to guarantee solvability
of such algebraic loops. In particular, the LMI condition
of [12, Theorem 1] is feasible if and only if the LMI con-
dition of Proposition 7, part (1) is feasible - i.e. the con-
ditions for well-posedness are equivalent; while [12] con-
siders a more general class of nonlinearity and quantifies
the rank of an associated Lipschitz nonlinearity, Propo-
sition 7, part (2) provides a stronger condition for well-
posedness.

On the other hand, [20] contains an explicit solution of
the algebraic loop which requires that a certain matrix be
strictly diagonally dominant. The method may be consid-
ered a special case of Proposition 7 (LMI (11)), but [20]
provides no clear guideline on how the condition may be
enforced during the anti-windup design stage.

4 Algebraic Loops in Anti-windup Control Im-
plementations

The goal of anti-windup designs for linear systems with
saturating actuators is to provide a mechanism for mod-
ifying the control actions during saturation so as to min-
imize its detrimental effects on closed-loop performance.

The aim of such modifications is mainly to recover as
much as possible the linear performance or to provide
graceful performance degradation when there are actu-
ator saturations [33]. Let the plant be described by the
following state-space realization:

ẋg = Agxg +Bgww +Bgûû, (12a)

z = Czxg +Dzww +Dzuû, (12b)

y = Cyxg +Dyww +Dyuû, (12c)

and the uncompensated controller by:

ẋk = Akxk +Bk(w − y), (13a)

u = Ckxk +Dk(w − y), (13b)

where xg ∈ Rng and xk ∈ Rnk are the states, y ∈ Rny

is the plant output, and the controller output u ∈ Rm

and the plant input û ∈ Rm are related as û = sat(u). A
standard assumption in anti-windup designs is that in
the absence of saturation (i.e. when u = û), the inter-
connection of (12) and (13) is well-posed and internally
stable. Well-posedness of the unconstrained loop implies
that the following matrices are well-defined:

∆1 = (I +DyuDk)−1and ∆2 = (I +DkDyu)−1. (14)

Several well-known anti-windup schemes can be inter-
preted in terms of the algebraic loop structure of Fig. 1.
The mLCP characterization in section 3 provides a
framework for establishing well-posedness, and for easy
and efficient online resolution of algebraic loops. Here,
we highlight some manifestations of algebraic loops in
linear anti-windup implementations and also note that
the design freedom available through the algebraic loop
feedback gain H is routinely used to equip the anti-
windup for enhanced performance. We consider four
types of anti-windup augmentations as follows:

4.1 Static Anti-windup [22]

The anti-windup structure of [18,22] is shown in Fig. 2
where the difference between the unsaturated control
u and the saturated control û is fed through a com-
pensating static filter Λ to generate two conditioning
signals ξ1 and ξ2. Using the anti-windup augmentation
ξ1 = Λ1(u − û) and ξ2 = Λ2(u − û), and the substitu-
tions H1 = Λ1(1−Λ2)−1 and H2 = (1−Λ2)−1, the aug-
mented controller (i.e. the map from the tracking error
e = w− y to the plant input û) can be decomposed into
a linear system and an algebraic loop as follows:{

ẋk = (Ak +H1Ck)xk + (Bk +H1Dk)e−H1û,

v = Ckxk +Dke,{
û = sat(u),

u = H2v + (I −H2)û,
(15)
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Fig. 2. The Unified Anti-windup Framework

Note that the existence of ∆2 = (I+DkDyu)−1 guaran-
tees the well-posedness of the linear portion and the al-
gebraic loop subsystem is well-posed ifH2 is a P-matrix.
In the generalized feedback structure of Fig. 1, we have

A =

[
Ag 0

−B̃Cy Ã

]
, B1 =

[
Bgw

B̃D̃

]
, B2 =

[
Bgu

−B̃Dyu −H1

]
,

C1 =
[
Cz 0

]
,
[
D11 D12

]
=
[
Dzw Dzu

]
,

C2 =
[
−DkCy Ck

]
,
[
D21 D22

]
=
[
DkD̃ −DkDyu

]
,

and H = H2 where Ã = Ak +H1Ck, B̃ = Bk +H1Dk

and D̃ = I −Dyw. Note that here, the generalized plant
has a feedthrough term D22 = −DkDyu. Subsuming

this into the algebraic loop as for (4), we have C̃2 =

(I +DkDyu)−1C2, D̃21 = (I +DkDyu)−1D21 and H̃ =
H2(I +DkDyu). It then follows from Proposition 5 that

the overall interconnection is well-posed if H̃ is a P-
matrix. Note that this condition is not more restrictive
than the case of no feedthrough term. In fact, since by
assumption the inverse of (I+DkDyu) exists, a sufficient

condition for H̃ to be a P-matrix is thatH2 is a P-matrix
(e.g. see [16, Theorem 3.2]).

Remark 10 Observe that H1 appears only in the linear
subsystem of (15) and H2 appears only in the algebraic
loop. This separation between H1 and H2 suggests that
the anti-windup design can be carried out in two stages:
first, chooseH1 such that the overall closed-loop system is
stable and then choose H2 such that the algebraic loop is
well-posed and to enhance closed-loop performance (see
[2] for detailed discussion on this subject).

4.2 Dynamic Anti-windup [11]

Here the anti-windup augmentation of Fig. 2 comprises
a dynamic filter Λ described as:

ẋaw = Λ1xaw + Λ2(u− û), (16a)[
ξ1

ξ2

]
=

[
Λ31

Λ32

]
xaw +

[
Λ41

Λ42

]
(u− û), (16b)

where ξ1 and ξ2 are the conditioning signals, and xaw ∈
Rnλ is the state. Using the above augmentation, and the

Fig. 3. The Extended Weston-Postlethwaite Anti-windup
Framework

substitutions H1 = Λ41(1 − Λ42)−1, H2 = (1 − Λ42)−1

and H3 = Λ2(1− Λ42)−1, the augmented controller can
be decomposed into a linear system and an algebraic
loop as follows:

[
ẋk

ẋaw

]
=

[
Ak +H1Ck Λ31 +H1Λ32

H3Ck Λ1 +H3Λ32

][
xk

xaw

]

+

[
Bk +H1Dk

H3Dk

]
e−

[
H1

H3

]
û,

v =
[
Ck Λ32

] [ xk
xaw

]
+Dke,{

û = sat(u),

u = H2v + (I −H2)û,
(17)

where e = w− y is the tracking error. In the generalized
feedback structure of Fig. 1, we have

A =


Ag 0 0

−B̃Cy Ã Λ31 +H1Λ32

−H3DkCy H3Ck Λ1 +H3Λ32

 , B1 =


Bgw

B̃D̃

H3DkD̃

 ,

B2 =


Bgu

−BkDyu −H1∆−12

−H3∆−12

 ,
[
C1

C2

]
=

[
Cz 0 0

−DkCy Ck Λ32

]
,

[
D11 D12

D12 D22

]
=

[
Dzw Dzu

DkD̃ −DkDyu

]
and H = H2,

where Ã = Ak +H1Ck, B̃ = Bk +H1Dk, D̃ = I −Dyw

and ∆2 is as defined in (14). Similar to the static anti-

windup case, the interconnection is well-posed if H̃ =
H2(I +DkDyu) is a P-matrix.

4.3 Extended Weston-Postlethwaite Dynamic Anti-
windup [20]

The linear conditioning block in Fig. 3 acts as the anti-
windup mechanism and contains M which comes from
right coprime factorization of the plant transfer function
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from û to y (denoted as G22 = NM−1). The factoriza-
tion is described as follows [20]:

ẋm = (Ag +BguF )xm +BguEũ, (18a)

ud = Fxm + (E − I)ũ, (18b)

yd = (Cy +DyuF )xm +DyuEũ, (18c)

where xm ∈ Rna is the state of G22, ud and yd are the
conditioning signals, F is such that Ag + BguF is Hur-
witz and E is an invertible matrix. Using this compensa-
tion, the augmented controller can be decomposed into
a linear system and an algebraic loop as follows:

[
ẋk

ẋm

]
=

[
Ak −Bk∆1DyuCk −Bk∆1Cy

Bgu∆2Ck Ag −Bgu∆2DkCy

][
xk

xm

]

+

[
Bk∆1

Bgu∆2Dk

]
e+

[
Bk∆1Dyu

−Bgu∆2Dk

]
û,

v =
[
Ck −(DkCy + (I +DkDyu)F )

] [xk
xm

]
+Dke,{

û = sat(u),

u = E−1∆2v + (I − E−1∆2)û,
(19)

where e = w − y is the tracking error, and ∆1 and ∆2

are as defined in (14). Note that (19) takes the form of
(2) and by assumption the inverses E−1, ∆1 and ∆2 all
exist. In the generalized feedback structure of Fig. 1, we
have the following parameters:

A =
Ag 0 0

−Bk∆1Cy Ak −Bk∆1DyuCk −Bk∆1Cy

−Bgu∆2DkCy Bgu∆2Ck Ag −Bgu∆2DkCy

 ,

B1 =


Bgw

Bk∆1D̃

Bgu∆2DkD̃

 , B2 =


Bgu

0

−Bgu

 ,
[
C1

C2

]
=

[
Cz 0 0

−∆2DkCy ∆2Ck −(∆2DkCy + F )

]
,

[
D11 D12

D21 D22

]
=

[
Dzw Dzu

∆2DkD̃ 0

]
and H = E−1.

where D̃ = I −Dyw. It follows from Proposition 5 that
the interconnection is well-posed if E−1 is a P-matrix,
and provided ∆1 and ∆2 are well-defined.

4.4 Directionality compensation[23,27]

A class of anti-windup designs generally referred to as di-
rectionality compensation incorporates an artificial non-

Fig. 4. Anti-windup with Symmetric Algebraic Loop ex-
pressed as Quadratic Program

linearity to deal with issues of input saturations and di-
rectionality in multivariable systems [23,27]. The artifi-
cial nonlinear typically takes the form of the following
convex quadratic program (QP):

arg min
û

1

2
ûTHû− ûTHv subject to LT û ≤ b, (20)

where H is symmetric positive definite, L = [I −I] and
b = [(umax)T (−umin)T ]T . Note that the KKT optimal-
ity conditions for (20) are exactly the algebraic loop de-
scription given by (6) but with a symmetric positive def-
inite matrix. In this case, we can make a stronger state-
ment about the well-posedness of the algebraic loop.

Corollary 11 Let H ∈ Rm×m be a symmetric matrix
and suppose the mLCP defined by (6) has a solution
(û∗, λ∗). Then û∗ is the unique global solution of the
quadratic program (20) if and only if H is a P-matrix.

PROOF. See the appendix.

Remark 12 The implication of Corollary 11 is that
when H is symmetric positive definite, the algebraic loop
of Fig. 1 can be substituted by a QP whose unique solution
coincides with the unique solution of the algebraic loop.

The resulting anti-windup structure usually takes the
form of Fig. 4 where the linear controller K has been
factored into K1 and K2 and with K2 wrapped around
the quadratic program [2]. Depending on the factoriza-
tion scheme adopted, different directionality compensa-
tion techniques can be realized. For example choosing
K1 and K2 as the left coprime factors of K recovers the
static anti-windup [22] and the factorization in section
4.1. However, choosing K1 = Dk, K2 = K1K

−1− I and
H = D−Tk D−1k recovers the conditioning scheme [23]. In
this case, the augmented controller becomes:{

ẋk = (Ak −BkD
−1
k Ck)xk +BkD

−1
k û,

v = Ckxk +Dke,{
û = sat(u),

u = D−Tk D−1k v + (I −D−Tk D−1k )û.

(21)

This also corresponds to choosing H1 = −BkD
−1
k and

H2 = D−Tk D−1k in the static anti-windup scheme. Fi-
nally, choosing K1 = K, K2 = 0 and H = CTC where
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Fig. 5. One-Degree of Freedom Anti-windup Structure

C defines some directional characteristics of the plant,
corresponds to the optimal directionality scheme of [27].
Standard design procedures are discussed in [2] and with
robustness considerations in [4]. The quadratic program-
ming formulation (20) has the advantage that it can be
easily implemented online. There are many efficient al-
gorithms such as the gradient projection methods [26]
that are well-suited for its online solution. An explicit
but suboptimal algorithm is discussed in [23].

4.5 Anti-windup without Algebraic loop [18]

Many anti-windup systems can be interpreted within
the one-degree of freedom framework of Fig. 5 where
the conditioning signal is injected only to the state of
controller K or the Weston-Postlethwaite structure of
Fig. 3 where the linear conditioning is governed by:

ẋm = (Ag +BguF )xm +Bguũ, (22a)

ud = Fxm, (22b)

yd = (Cy +DyuF )xm +Dyuũ. (22c)

These anti-windup systems can be easily restructured
into the generalized framework of Fig. 1 with H fixed
as the identity i.e. H = I. For the static case where
ξ = Λ(u− û), the anti-windup corresponds to choosing
H1 = Λ and H2 = I in the discussion of section 4.1. For
the dynamic case where

ẋaw = Λ1xaw + Λ2(u− û), (23a)

ξ = Λ3xaw + Λ4(u− û), (23b)

the anti-windup corresponds to choosingH1 = Λ4,H2 =
I, H3 = Λ2, Λ3 = Λ31 and Λ32 = Λ42 = 0 in the dis-
cussion of section 4.2. Finally, using the augmentation
(22), the anti-windup corresponds to choosing D22 =
−DkDyu and E = I in the discussion of section 4.3. In
all cases, there are no algebraic loops arising from the
anti-windup augmentations and the existence of ∆1 and
∆2 guarantee well-posedness of the interconnections.

5 Algebraic Loop Computation

The mLCP problem can be solved using a number of al-
gorithms including projected iterative methods [21], in-
terior point algorithms [32] and pivoting schemes such
as the Lemke algorithm [6,5]. The Lemke algorithm is

Algorithm 1 Lemke Algorithm

1: q ← (b− LT v), Q← LTH−1L
2: if q ≥ 0 then
3: λ← 0
4: else
5: Create tableau [I,−Q,−e, q]
6: t← arg min qi
7: Pivot < λo, st >
8: while λo is a basic variable do
9: r ← arg min qi/ driving variable

10: Pivot < λt, sr >
11: driving variable ← λr
12: end while
13: λi ← qi
14: end if
15: û = v −H−1Lλ

particularly useful as it can be adapted for solving alge-
braic loops with either symmetric or asymmetric feed-
back gains. It is known to terminate at a unique solu-
tion, in a finite time, for the LCP (q,Q) when Q is a P-
matrix [6]. In our case, Q is not necessarily a P-matrix.
However, for the class of problems that we consider, Q
is structured in such a way that the problem can be de-
coupled into smaller LCPs each with a P-matrix.

5.1 Lemke Algorithm for Algebraic Loops

The Lemke algorithm applies to the LCP problem
LCP(q,Q). The first step involves introducing a non-
negative slack variable s into (8) to obtain

s = Qλ+ q, λ, s ≥ 0, λT s = 0. (24)

Next a dummy variable λo is introduced to ensure a
feasible start of the algorithm and such that

s = Qλ+ eλo + q, λ, s ≥ 0, λT s = 0, (25)

where e = [1 · · · 1]T ∈ Rl. The algorithm then follows a
series of complementary pivoting steps and terminates at
a solution when λo is no longer a basic variable [6]. Since
the algebraic loop description (6) can be reformulated
as the LCP(q,Q) with Q = LTH−1L and q = b− LT v,
it can be solved using the Lemke algorithm stated in
Algorithm 1. Here the solution û of the algebraic loop
(2) is recovered from λ, the unique solution of the LCP
using û = v −H−1Lλ.

Taking advantage of the structure of Q, the LCP can be
decoupled by partitioning q, s and λ as q = [qT1 qT2 ]T ,
s = [sT1 sT2 ]T and λ = [λT1 λT2 ]T to obtain the following
sub-problems.

Case 1: q1 ≥ 0 and q2 ≥ 0. Here, the solution is trivial:
λ1 = 0, λ2 = 0. For this case, û = v solves the
algebraic loop.
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Case 2: q1 indefinite and q2 ≥ 0. In this case, λ2 = 0 is
a solution since q2 ≥ 0. The problem to be solved
then reduces to

H−1λ1 + q1 = s1, (26a)

λ1 ≥ 0, s1 ≥ 0, λT1 s1 = 0. (26b)

Case 3: q1 ≥ 0 and q2 indefinite . Here λ1 = 0 because
q1 ≥ 0. This reduces the problem to

H−1λ2 + q2 = s2, (27a)

λ2 ≥ 0, s2 ≥ 0, λT2 s2 = 0. (27b)

Case 4: q1 and q2 indefinite. No parts of the problem
can be eliminated, so (24) must be completely
solved.

We note that for input-constrained control applications,
Case 4 is infrequent as only few constraints are violated
in most cases [5]. This is based on the fact that an input
ui can only violate either the lower bound umax

i or the
upper bound umin

i and not both at the same time. We
expect that the decoupling will result in reduced compu-
tation time, especially for large problems as compared
to the standard Lemke algorithm.

6 Simulation Example

We consider an example taken from [22] (also see [23])
where the plant and the corresponding unity feedback
controller transfer function models are given respectively
as:

G22(s) =
10

100s+ 1

[
4 −5

−3 4

]
,K(s) =

100s+ 1

200s

[
4 5

3 4

]
.

The plant’s inputs are constrained as −1 ≤ ui ≤ 1, i =
1, 2. The unconstrained controller has been designed to
track the reference input signalw = [0.63 0.79]T and the
performance output is selected as z = y − w. We simu-
late the system for two cases: first, anti-windup without
algebraic loop and second, anti-windup with algebraic
loop. For the former case, we fix H2 = I and following
[22] and [20], we compute H1 as:

[
−55.56 −40.48

−68.26 −55.56

][22]

, 104 ×

[
−1.17 1.50

1.50 −1.92

][20]

.

(28)

We then incorporate algebraic loops following the devel-
opments in [2,27,23] for directionality compensation,[22]
for static anti-windup and [20] for dynamic anti-windup.
The algebraic loop feedback gains (H2) obtained for the
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Fig. 6. Closed-loop Responses (Left-Channel 1, Right-Chan-
nel 2): Unconstrained-Solid(black), Saturated-Dotted (red),
Anti-windup without algebraic loop [22]-Dashed(black), An-
ti-windup with algebraic loop [22]-Dot-Dashed(blue)

different configurations are given respectively as:

[
0.25 −0.32

−0.32 0.41

][27]

,

[
100.00 −128.00

−128.00 164.00

][23]

,

[
237.15 −303.55

−303.55 388.92

][22]

and

[
0.0623 −0.0798

−0.0798 0.1022

][20]

.

It is straightforward to check that all the computed gains
are in the P-matrix class. Although these gains guar-
antee well-posedness, the closed-loop implementation of
the resulting algebraic loop may be problematic. This
is because the gains are ill-conditioned with condition
numbers in the 103-104 range. We overcome this issue
by solving the algebraic loop independently using Algo-
rithm 1 which is well-known to handle easily such classes
of problems.

For all the cases, the algorithms for solving the alge-
braic loops are implemented as S-function blocks in Mat-
lab and are then embedded within the Simulink mod-
els of the system. Fig. 6 shows the input and output
closed-loop responses using the anti-windup framework
in Fig. 2. Here the closed-loop responses with and with-
out algebraic loops are compared to those of the uncon-
strained system where control inputs are unlimited, and
the uncompensated constrained system. For this frame-
work, the static and the dynamic anti-windup result in
the same responses, so we show plots only for the static
anti-windup. Fig. 7 shows the closed-loop responses us-
ing the anti-windup framework in Fig. 3 with and with-
out algebraic loop as compared to the unconstrained
closed-loop response. Here, the simulation correspond-
ing to the anti-windup without algebraic loop requires
very high sampling, resulting in a ringing effect on the
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Fig. 7. Closed-loop Input Responses (Left-Channel
1, Right-Channel 2): Unconstrained-Solid (black), An-
ti-windup without algebraic loop-(not shown), Anti-windup
with algebraic loop[27]-Dot-Dashed(blue) and Anti-windup
with algebraic loop [20]-Dotted (red)

input response; hence it is not shown. It is well known in
the literature that this scheme tends to place the com-
pensator poles far to the left of the s-plane [30]. The
computedH1 matrices corresponding to [27] and [20] are
respectively given as:

[
−3.27 0.00

0.00 −3.27

][27]

and

[
−10.15 −0.10

−0.10 −10.10

][20]

. (29)

Comparing theH1 in (29) for anti-windup with algebraic
loops to those in (28) for anti-windup without algebraic
loop shows the conditioning effect of algebraic loops on
the anti-windup design.

These simulation results demonstrate the benefits that
accrue from incorporating algebraic loops into linear
anti-windup design. While no improved performance
over existing methods is guaranteed (e.g. [28,12,20]),
the new framework is general and its implementation is
particularly efficient in the LCP framework.
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7 Conclusion

We have presented a unified framework for addressing
multivariable algebraic loops both in terms of well-
posedness and practical implementation in linear anti-

windup control. Several existing well-posedness results
appear as special cases of the unified framework.

A Appendix: Proofs of Technical Results

Lemma 1: It is straightforward that any solution
ûi : i = 1, · · · ,m of the decentralized saturation defined
by (3) must satisfy:

(ûi − ui)


< 0; û = umax

i ,

= 0; umin
i ≤ ûi ≤ umax

i ,

> 0; ûi = umin
i .

(A.1)

Using KKT formalism (e.g.[10,24]), there exist La-
grangian multipliers λ1i , λ

2
i ; i = 1, · · · ,m such that the

following (necessary and sufficient) optimality condi-
tions hold:

ûi − ui + λ1i − λ2i = 0; i = 1, · · · ,m,
ûi − umax

i ≤ 0; − ûi + umin
i ≤ 0; i = 1, · · · ,m,

λ1i ≥ 0; λ1i (ûi − umax
i ) = 0; i = 1, · · · ,m,

λ2i ≥ 0; − λ2i (ûi − umin
i ) = 0; i = 1, · · · ,m.

(A.2)

Using L and b defined in (5) and λ = [(λ1)T (λ2)T ]T ,
the KKT conditions in (A.2) can be expressed in vector
form as

û− u+ Lλ = 0,

LT û− b ≤ 0,

λ ≥ 0; λT (LT û− b) = 0.

(A.3)

Substituting u = Hv − (H − I)û into (A.3) gives (6).

Lemma 4: Part 1 [Feasibility of solution]: Since H
is assumed to be a P-matrix (and hence nonsingular),
H−1 exists and a P-matrix (see [16]). For our case, it
is easy to construct a λ such that (8a) holds. Choose
λ1 ∈ Rm such that λ1 ≥ 0 and λ1 − Hv ≥ 0. Then
choose λ = [(λ1)T (λ1−Hv)T ]T . By construction λ ≥ 0.
Furthermore, Lλ = Hv so

q +Qλ = b− LT v + LTH−1Lλ = b ≥ 0. (A.4)

Hence λ is a feasible solution of the LCP(q,Q).

Part 2 [Uniqueness of solution]: Assume λ∗ solves
the LCP(q,Q). Then λ∗ and γ∗ = q + Qλ∗ satisfy (8).
Let λ be another solution of the LCP(q,Q) such that λ
and γ = q +Qλ also satisfy (8). Then we have

(λ∗ − λ)T (γ∗ − γ) = (λ∗ − λ)TQ(λ∗ − λ). (A.5)

By enforcing (8), we have that for all i = 1, · · · , 2m

0 ≥ (λ∗ − λ)i(γ
∗ − γ)i = (λ∗ − λ)i[Q(λ∗ − λ)]i. (A.6)
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Since H is a P-matrix and Q = LTH−1L, it follows that
Q is column sufficient i.e. the following implication holds

[di(Qd)i ≤ 0 ∀ i] =⇒ [di(Qd)i = 0 ∀ i]. (A.7)

See [6, Chapter 3.5] and [1, Lemma 2]. Thus by the col-
umn sufficiency of Q, we have Q(λ∗ − λ) = 0 and hence
the uniqueness of γ∗.

To show the uniqueness of λ∗ when b > 0, observe that
λ∗ and λ are both solutions. The left part of (A.6) implies

λ∗i γi = λiγ
∗
i = 0 for i = 1, · · · ,m. (A.8)

Suppose we write b, λ∗, λ ∈ R2m as b = [(b1)T , (b2)T ]T ,
λ∗ = [(λ∗1)T , (λ∗2)T ]T and λ = [(λ∗1+α)T , (λ∗2+α)T ]T

for some α ∈ Rm. This, together with (A.8) leads to

(λ∗1 + α)i[b
1 − v +H−1(λ∗1 − λ∗2)]i = 0

(λ∗2 + α)i[b
2 + v −H−1(λ∗1 − λ∗2)]i = 0

λ∗1i [b1 − v +H−1(λ∗1 − λ∗2)]i = 0 and

λ∗2i [b2 + v −H−1(λ∗1 − λ∗2)]i = 0 for i = 1, · · · ,m.

After simple algebraic manipulation, we have

αi[b
1 + b2]i = 0 for i = 1, · · · ,m. (A.9)

If b1 > 0 and b2 > 0 then (A.9) requires α = 0 and hence
the uniqueness of λ∗.

Proposition 5; Part 1: Since H is assumed to be a P-
matrix (and hence nonsingular), we can eliminate (6a)
from (6) by rewriting it as

û = v −H−1Lλ. (A.10)

Substituting (A.10) into (6b) gives

LTH−1Lλ+ b− LT v ≥ 0, (A.11a)

λ ≥ 0; λT (LTH−1Lλ+ b− LT v) = 0. (A.11b)

Defining Q = LTH−1L and q = b−LT v in (A.11) gives
the LCP(q,Q). Let λ and λ∗ be any two solutions of the
LCP(q,Q). From Lemma 4 and the column sufficiency
of Q, we have

(L(λ∗ − λ))i[H
−1L(λ∗ − λ)]i = 0 for i = 1, · · · , 2m.

Since H−1 is a P-matrix, we must have L(λ∗ − λ) = 0
and hence the uniqueness of Lλ. It then follows from
(A.10) that û is the unique solution of the algebraic loop
for any v. Well-posedness of the algebraic loop follows.

Proposition 5; Part 2: Let ûi be the unique solution of
the algebraic loop (2) corresponding to vi for i = 1, 2. If

we introduce a slack variable s, (6) can be expressed as:

Hû−Hv + Lλ = 0, (A.12a)

s = b− LT û, (A.12b)

s ≥ 0, λ ≥ 0; λT s = 0. (A.12c)

From (A.12b), we have

(λ1−λ2)T (s1−s2) = −(λ1−λ2)TLT (û1− û2). (A.13)

Using (A.12a) in (A.13) yields

(λ1 − λ2)T (s1 − s2) = −(v1 − v2)THT (û1 − û2)

+ (û1 − û2)THT (û1 − û2).

Applying (A.12c) and re-arranging gives

(û1− û2)TH(v1− v2) ≥ (û1− û2)TH(û1− û2). (A.14)

Since H is a P-matrix, the following inequality holds
(see e.g. [6, pg 479])

max
i

ûTi [Hû]i ≥ c||û||2, for some c > 0. (A.15)

Combining (A.14) and (A.15), we deduce that

(û1 − û2)TH(v1 − v2) ≥ c||û1 − û2||2, (A.16)

from which the Lipschitz property of û as a function v
follows.

Proposition 7: We only need to show that any matrix
H ∈ Rm×m satisfying condition (10) or (11) is a P-
matrix. The conclusion then follows from Proposition 5.
We proceed as follows:

Part 1: Let X be a positive-diagonal matrix such that
(10) holds. Since HX + XHT is the symmetric part of
HX, and since a matrix is positive definite if and only if
its symmetric part is positive definite (e.g. see [17, Re-
mark 1]), it follows that H is diagonally positive stable
and so are all its the principal submatrices. From Lya-
punov theorem (e.g. see [7, Theorem 1]), all the eigen-
values of H and its principal submatrices have positive
real parts. As H is real, any complex eigenvalues appear
in conjugate pairs and thus all the principal minors of
H must be positive. We conclude that H is a P-matrix.

Part 2: Now let X be a positive-diagonal matrix such
that (11) holds. This condition implies that HX is
strictly diagonally dominant with positive diagonal en-
tries. It follows from the Gersgorin theorem [14, Theo-
rem 6.1.10] that all the eigenvalues of HX have positive
real part. This implies that H and all its principal sub-
matrices are diagonally positive stable. Following the
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same argument as for Part 1, we conclude that H is a
P-matrix.

Corollary 11: Since a positive definite matrix is a P-
matrix, it follows from Proposition 5 that the mLCP (6)
has (v∗, λ∗) as its unique solution ifH is symmetric posi-
tive definite. On the other hand, mLCP (6) describes the
necessary optimality conditions for û∗ to be a solution
of QP (20)[10]. Since H is positive definite, the objective
function of QP (20) is strictly convex. Hence, the KKT
optimality conditions are also sufficient and û∗ must be
global and unique.
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control. In F. Allgöwer and A. Zheng, editors, Nonlinear
Model Predictive Control, pages 163–179. Birkhäuser Verlag
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