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1. Introduction 

 

Most industrial processes have multiple variables in nature, and this fact increases as 

result of the high demand on product quality and the required energy integration. Multi-

input multi-output (MIMO) systems consist of several measurement and control signals, 

which often present complicated couplings between them. To cope with this problem, 

control engineers traditionally use single-loop PID controllers because these controllers 

can be easily understood and implemented [1]. These decentralized approaches can 

work properly when the interactions in different channels of the process are modest [2-

5]. However, a MIMO process can be much more difficult to control with strong 

interactions between the channels. Therefore, the decoupling performance obtained 

from traditional and well-established single-loop PID tuning technologies are not 

satisfactory. In fact, major leading controller manufactures rank the poor decoupling of 

multivariable systems as one of the principal control problems in the industry [6]. In 

these cases, a full matrix controller (centralized control) is advised. To design a 

centralized control, two different approaches are common in the literature: a decoupling 

network combined with a diagonal decentralized controller, or a pure centralized 

strategy. 

 

Figure 1 shows the general decoupling control system, where G(s), D(s) and C(s) are 

the n-dimensional process matrix, the decoupler matrix and the diagonal control matrix, 

respectively. D(s) is designed to minimize the process interactions in such a way that 

the controller C(s) sees the apparent process G(s)·D(s) as a set of n completely 

independent processes. This arrangement allows for independent control of the loops 

using single-input single-output (SISO) controllers. 

 

INSERT HERE FIGURE 1 

 

Over the years, decoupling control has been addressed in the literature [1, 6, 7]. Some 

decoupling schemes are static [8], and others are dynamic [9-14]. Static decoupling 

guarantees complete decoupling only for low frequencies, which may not be sufficient 

for a good performance. Dynamic decoupling reduces or eliminates the interactions in a 

wider range of frequencies. 

 

Most decoupling approaches use the conventional decoupling scheme depicted in 

Figure 1. In this case, the design of the decoupler network for an n×n process is 

obtained from expression (1) generally by specifying n elements of the decoupler D(s) 
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or the n desired transfer functions of the apparent process Q(s), which is defined as the 

diagonal matriz diag(q1, q2, ..., qn). 

 
-1D(s) = G (s)·Q(s)      (1) 

 

The main problem of this methodology is the fact that the complexity of decoupler 

elements and apparent processes increases for high-dimensional MIMO processes, 

which may require model reductions. An alternative decoupling method, called inverted 

decoupling, maintains very simple apparent processes and decoupler elements 

independently of the system size [14]. In addition, inverted decoupling presents several 

practical advantages on implementation [15]. Nevertheless, the method also has an 

important disadvantage: because of stability problems, it cannot be applied to processes 

with multivariable right half plane (RHP) zeros, that is, RHP zeros in the determinant of 

the process transfer matrix G(s). In this case, the decoupling scheme of Figure 1 would 

be required despite its disadvantages. 

 

On the other hand, Figure 2 represents a pure centralized control system with K(s) being 

the n-dimensional full matrix controller. K(s) works as the only block to control the 

different measurement signals and to reduce the interactions. In recent years, several 

methodologies were developed for this design [16-23]. Most of them propose to find a 

K(s) such that the closed loop transfer matrix G(s)·K(s)·[I + G(s)·K(s)]
-1

 is decoupled 

over some desired bandwidth. This goal can be achieved if the open loop transfer matrix 

G(s)·K(s) is diagonal. Therefore, these techniques are very similar to those used to 

design decoupler networks. The complexity of the resultant controller elements of K(s) 

can be very different depending on the methodology. For instance, in [19], a full-

dimensional non-PID is obtained from a recursive least square optimization problem. In 

[20], an analytical decoupling control strategy is proposed on the basis of the H2 optimal 

performance specifications. Nevertheless, PID controllers have dominated applications 

for more than 60 years. They are preferred over more advanced controllers in practical 

applications unless PID controls cannot meet the specifications. Therefore, the resultant 

controller K(s) in several methodologies [16, 21, 22, 23] is a multivariable PID control. 

 

 

INSERT HERE FIGURE 2 

 

Although model predictive control (MPC) is becoming the standard technique to solve 

multivariable control problems in the process industry, several authors [10, 19, 21] 

claim that MPC is mostly used on a higher level to provide setpoints to the PID 

controllers that are operating on the basic level. The MPC is operating in a supervisory 

mode with sampling times that are longer than the sampling times in the PID controllers 

at the lower level. Dealing with the interaction at the MPC level can be difficult because 

the bandwidths of the MPC loops are limited. Therefore, the centralized control using 

multivariable PID controllers or decoupler networks is an interesting alternative strategy 

in the process industry. 

 

This work focuses on one of the most extended forms of conventional decoupling called 

simplified decoupling, in which n elements of the decoupler are set to unity. This 

approach received considerable attention in both control theory and industrial practice 

for several decades. However, like most other methodologies, it focuses on systems 

with two inputs and two outputs (TITO systems). In this case, the simplified decoupling 



D(s) is given by expression (2), obtaining the decoupled apparent process Q(s) in 

expression (3). The authors have found very few published works in which simplified 

decoupling is applied to processes that are larger than a 2×2 system; in cases where the 

system is larger than 2×2, the decoupler elements set to unity are always the diagonal 

ones as found using expression (4) [24]. 
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  (4) 

 

In this work, further research regarding simplified decoupling was performed focusing 

on stable processes with possibly RHP zeros and time delays. Furthermore, its 

formulation was developed and generalized to n×n processes while the realizability 

conditions were presented. Various possible configurations were shown depending on 

the decoupler elements that are set to unity, where expressions (2) and (4) are only one 

of the choices. In addition, the formulation of a purely centralized control is achieved as 

a variation of simplified decoupling and its corresponding decentralized controller. 

Finally, a centralized PID control is obtained by controller reduction. 

 

The paper is structured as follows. Section 2 presents the general formulation of 

simplified decoupling for n×n processes and the different possible configurations. Then, 

the realizability conditions are stated, followed by the derivation of the variation of 

centralized control by simplified decoupling. Some expressions for the 2×2 and 3×3 

processes are shown. Section 3 describes some design and practical considerations 

related to the proposed methodologies, such as the decoupler approximation method, the 

reduction to multivariable PID control and the anti-windup implementation schemes. In 

Section 4, the performance of the proposed decoupling methodologies is tested and 

compared with other methods using several simulation examples and a real quadruple 

tank process. Finally, conclusions are given in Section 5. 

 

 

2. The methodology 

 

2.1. General simplified decoupling 

 

Given a multivariable process G(s) and following the decoupling control system 

depicted in Figure 1, it is possible to obtain a decoupler network D(s) from (1) after 

specifying a diagonal apparent process Q(s). It is assumed that the process G(s) may 

have RHP zeros and multiple time delays, but it does not have unstable poles in the left 

half plane. Hereafter, Laplace variable s is omitted. The expression of the entire 

decoupler matrix D(s) is obtained as follows: 
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where |G(s)| is the determinant of G(s), adjG(s) is the adjugate matrix of G(s), that is, 

the transpose of the cofactor matrix of G(s), and adjGij(s) is the adjG(i,j) element, that is 

equivalent to the cofactor corresponding to gji(s). To force the diagonal elements of D(s) 

in (5) to be unity, it is necessary to select the apparent process given by (6). This 

apparent process is the inverse of the diagonal elements of adjG(s) multiplied by |G(s)|. 

The decoupler in (7), which is the same decoupler obtained from (4), is then obtained.  
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Nevertheless, this is only one possible configuration. In n×n processes, one decoupler 

element can be selected for each column to be set to unity because the decoupler 

elements of the same column are multiplied by the same apparent process qj(s) 

according to (5). Therefore, in n×n processes, there are n
n
 possible choices of D(s). To 

name these n
n
 possibilities, the authors propose a notation in which the indicated 

number corresponds to the row with the selected element. For instance, in a 3×3 

process, configuration 1-2-3 means that elements D(1,1), D(2,2) and D(3,3) are chosen 

to be set to unity; as another example, configuration 3-1-1 means that elements D(3,1), 

D(1,2) and D(1,3) are selected. 

 

Each configuration has a different set of decoupler elements, which is interesting 

because some choices can result in non-realizable decoupler elements. Thus, the 

configuration can be selected depending on the realizability. However, additional 

criteria can be proposed because each configuration is also related to a specific apparent 

process Q(s). For instance, in this work, the configuration is selected depending on the 

performance limitations of the corresponding apparent processes qi(s), checking 

different aspects like undershoot (%), overshoot (%) and settling time. There are n
n
 

different Q(s) as result of combinations of n elements (one chosen by column among n 

options in each column). For the k column, there are only n possible qk(s); therefore, the 



total number of different qi(s) is n×n. In a 3×3 process, there will be 9 different qi(s) to 

be checked, and there will be 27 different sets according to the possible combinations. 

 

From (5), it is possible to obtain the general expressions of the simplified decoupling for 

n×n processes. If the configuration {p1-p2-…-pj-…-pn-1-pn} is chosen, the decoupler 

elements and apparent processes are given by (8) and (9), respectively. 
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After determining the decoupler network and the apparent processes, the parameters of 

the decentralized control C(s) can be tuned independently for the corresponding qj(s). 

Therefore, the existing SISO PID tuning methods [25-27] can be applied directly to 

guarantee the stability and performance of each loop. However, if the decoupled 

processes are very complex, it can be necessary to reduce the apparent processes or to 

use high-order controllers. 

 

As a result, the proposed general simplified decoupling control is performed in three 

steps: 

 

1- Select a configuration: that is, select the n elements of D(s) to be set to unity, one for 

each column but not necessarily the diagonal ones. 

2- Compose the decoupler elements of D(s) using (8). 

3- Design the n controllers of the diagonal control C(s) for the corresponding decoupled 

processes (9) using SISO design methods. 

 

The decoupler is independent of the specifications, in such a way that different designs 

can be tested with the same D(s) matrix and redesigning the n controllers of C(s). This 

aspect is an advantage of this approach. In addition, the decoupler D(s) has n elements 

equal to one and this fact simplify its practical implementation.  

 

2.2. Decoupler realizability 

 

The realizability requirement for the decoupler is that all of its elements must be proper, 

causal and stable. For processes with time delays, non-minimum-phase zeros or 

different relative degrees, direct calculation of the decoupler can lead to elements with 

prediction, RHP poles or negative relative degrees. According to (8), the expression of a 

decoupler element is the division of two adjugate elements of the same column; 

therefore, there are three aspects to take into account and inspect in each column of 

adjG(s): time delays, relative degrees and RHP zeros. Moreover, one element in each 

column of D(s) will be equal to one (as intended from simplified decoupling). 

 

For a given configuration {p1-p2-…-pj-…-pn-1-pn}, the following three conditions must 

be fulfilled for each column j for the configuration to be realizable initially: 

 

; jijkj i k p        (10) 

; jijkj i k pr r        (11) 



; jijkj i k p        (12) 

 

where i j is the time delay of adjGij, rij is its relative degree and ij  its RHP zero 

multiplicity. Expression (12) must be satisfied for the different RHP zeros of the same 

column. 

 

When non-realizability is originated for each column by only one of these three aspects, 

there will be another realizable configuration with n unitary elements. However, if non-

realizability in a column comes from several factors, it is possible that no configuration 

is initially realizable. Although configurations without extra dynamics can be preferred, 

every configuration may be forced to become realizable by multiplying each 

problematic column j of D(s) by a minimum extra dynamics nj(s). It is equivalent to a 

new decoupler matrix DN(s)=D(s)·N(s), where N(s) is a diagonal matrix with the 

necessary extra dynamics. The only configurations that cannot become realizable are 

those that need to be divided by a zero adjugate element. 

 

If there are no realizability problems in column j, the N(j,j) element is equal to unity. If 

the non-realizability comes from an element with a non-causal time delay, an additional 

time delay nj  is inserted in the corresponding diagonal element of N(s) to obtain 

realizability. If the non-realizability comes from Nz RHP zeros, which have become 

unstable poles, the following element with njx  being corresponding multiplicity of the 

zero zx would be used in N(s): 

 

1

njηx
Nz

x

*
x x

s z

s z

  
 

 
       (13) 

 

where zx* is the complex conjugate of zx. If it comes from a properness problem, a 

simple stable and fast pole with the adequate multiplicity rnj can be inserted as follows: 
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To achieve realizability for a given configuration, the minimum extra dynamics that are 

necessary in each column j is given by the following expressions: 
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When extra dynamics is inserted in a column to obtain realizability, the general 

expression of the decoupler elements is given by (16). All elements of the same column 

j are multiplied by nj(s), and the previous unitary element is now equal to nj(s). 

Additionally, the elements of the decoupled process Q(s) are all affected in the same 

way as given by (17). 
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After obtaining the necessary extra dynamics for each configuration, the following 

method is proposed to determine the most proper configurations and reduce alternatives 

(it is repeated by each column): 

 

1. Calculate the n different possible apparent processes qnj(s) for the column j. 

2. In general, RHP zeros involve performance limitations in the bandwidth of the closed 

loop response and inverse response, so configurations that need extra dynamics like (13) 

are initially discarded, because according to (17) it will be included in the corresponding 

qnj(s). 

3. Determine undershoot, overshoot and settling time of the n different qnj(s) of the 

column j under study. The preferred choices are those apparent processes with smaller 

undershoot and overshoot in the response and smaller settling time, in order to achieve a 

faster and good closed loop response using PID controllers. Therefore, the apparent 

processes with undershoot or overshoot over 30% are discarded. If there are several 

qnj(s) with similar undershoot and overshoot, that with smaller settling time is selected. 

If there are several options with similar settling time among this last set, the apparent 

process with less extra dynamics is chosen. 

 

2.3. Centralized control by simplified decoupling 

 

The previous general simplified decoupling control system, depicted in Figure 1, 

consists of a decoupler D(s) with a unitary element for each column, combined with a 

diagonal controller C(s). This control strategy is equivalent to a multivariable controller 

K(s) using the pure centralized control scheme shown in Figure 2. From this scheme 

and from (16), the matrix and element expressions of K(s) can be expressed as (18) and 

(19).   

 

K(s) = D(s)·C(s)    (18) 
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The proposed variation approaches the centralized design for n×n processes by n SISO 

designs and n·(n-1) transfer function calculations. In particular, this variation includes 

the decoupling approach proposed in [19] when the n elements equal to one in D(s) are 

the diagonal ones. 

 

The n controllers cj can have any structure. In this work, however, the PID structure is 

proposed in such a way that well-known PID tuning rules [25-27] can be used. In 

addition, a PID reduction is carried out for each controller element after obtaining the 

other n·(n-1) elements of K(s). As a result, a centralized PID control K
PID

(s) is obtained. 

This PID reduction process is explained later in Section 3. 

 

2.4. Expressions of simplified decoupling for 2×2 and 3×3 processes 

 



In this section, the different expressions of the proposed method for 2×2 processes are 

presented using the general equations (8), (9) and (19). Table 1 summarizes the four 

possible configurations, and shows the different decoupler networks D(s), the 

centralized controllers K(s) and the apparent processes Q(s). In 3×3 processes, there are 

27 (3
3
) configurations according to the three elements of D(s) chosen to be set to unity. 

Table 2 shows three of these configurations, in which |G(s)| and adjG(s) are given by 

(20) and (21), respectively. 

 

 

INSERT HERE TABLE 1 

 

INSERT HERE TABLE 2 
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  (21) 

 

From Table 2 and expressions (20) and (21), it can be concluded that the decoupler 

elements or apparent processes in 3×3 systems are much more complex than those 

obtained in 2×2 processes. Consequently, a reduction may be advisable for the design 

and implementation of the control system. 

 

2.5. Stability 

 

The first condition for stability that the final controller K(s) must fulfill is that all of its 

elements must not have RHP poles. Once the stability of the controller is assured, 

internal stability of the closed loop system can be verified if and only if all elements in 

matrix (22) have all their poles in the left-half plane with no RHP pole-zero cancellation 

in G(s)·K(s) [24]. 
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In this case, S(s) is the sensitivity transfer function matrix written as [I+G(s)·K(s)]
-1

. 

K(s) can represent the pure centralized control or the decentralized controller in series 

with the decoupler according to (18). 

 

As mentioned previously, the elements of D(s) and Q(s) obtained using simplified 

decoupling are more complex than those obtained using inverted decoupling. Processes 

with time delays generally need some approximation to be implemented, which is an 

important disadvantage over inverted decoupling. Therefore, inverted decoupling is 

preferable when applicable. However, it cannot be applied to processes with RHP zeros 

in the determinant of the G(s) because these RHP zeros should appear in the apparent 

process. Fortunately, simplified decoupling can be applied in these cases because |G(s)| 



and the consequent RHP zeros are directly included in the apparent decoupled process 

Q(s) according to (9) or (17). 

 

 

3. Design and practical considerations 

 

3.1. Approximation of |G(s)| and adjG(s) 

 

To carry out the proposed methodologies in multivariable time delay systems, it is 

usually necessary to approximate the expressions of the determinant of the process 

|G(s)| and its adjugate matrix adjG(s). Although the process dynamics are simple, direct 

calculations using equations like (20) or (21) can give rise to non-rational expressions 

that are very complicated and difficult to implement (as shown in (23)): 
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Therefore, before continuing with the design methodology, it is more preferable to 

approximate such elements by rational transfer functions plus a possible time delay. 

Because it is easy to obtain the frequency response of |G(jw)| and adjG(jw) from the 

process frequency response G(jw), a parametric approximation in the frequency domain 

is proposed. Several techniques can be used for this purpose. Some are based on least 

squares estimators [28]; others, such as the prediction error method (PEM), are based on 

an iterative estimation method that minimizes the prediction errors to obtain maximum 

likelihood estimates. 

 

In this work, a simple linear least square approximation is proposed in the frequency 

range of interest as an example. The lowest frequency is chosen two decades below the 

smallest absolute value of the real part of the different poles and zeros of G(s); the 

highest frequency is chosen two decades above the greatest one. The procedure is 

shown in the following steps. 

 

3.1.1. Previous information 

 

To facilitate the approximation, the following previous information about the function is 

obtained from the Bode plots of its frequency response and from G(s): 

 

a) External time delay. A general expression for the non-zero element of adjGij(s) or 

|G(s)| is [6]: 
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where k(s) is a non-zero scalar rational transfer function that is obtained as a product of 

some process transfer functions gij(s); the corresponding time delay k is the sum of the 

time delays of these transfer functions gij(s). Therefore, the time delay for (s) is 

defined as follows 

 

1,...,( ( )) min ( )k M ks      (25) 



 

From the time delay matrix of G(s), the corresponding time delays of |G(s)| and adjG(s) 

can then be derived. For instance, assuming non-zero elements, the time delay of 

adjG11(s) in (21) would be 

 

11 1 2 22 33 23 32(adjG ) ( , )= ( (g )+ (g ), (g )+ (g ))τ min α α min τ τ τ τ   (26) 

 

b) Relative degree. This value can be calculated from the high frequency roll-off of the 

module Bode plot. If the relative degree is rd, the rate of roll-off will be -20·rd 

dB/decade. Even though this rate is not exactly constant because of the non-rational 

nature of the function to be approximated, a general trend can be estimated. 

 

c) Original poles. |G(s)| and adjG(s) are the result of the sums and products of different 

elements of G(s), respectively as shown in (20) and (21) for 3×3 systems. Thus, 

assuming that there are no pole-zero cancellations after these operations, the poles of 

|G(s)| and adjGij(s) can be calculated. The integrators (poles in s=0) will be removed 

from the frequency response before the approximation. 

 

d) Number of RHP zeros. After removing the previous external time delay and 

integrators from the frequency response, the number of RHP zeros can be estimated 

from the phase shift in the phase Bode plot if the phase at high frequencies tends or 

oscillates around a constant value. Assuming that the relative degree rd, the low 

frequency phase 0 and high frequency phase end are known, the number of RHP zeros 

Nz in this case can be obtained from (27):  
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As an example, Figure 3 shows the Bode plots of the irrational transfer function in (23) 

after removing the external time delay of three units and the stationary gain equal to -

0.0038. The corresponding approximation is also shown. As previously commented, the 

rate of roll-off at high frequencies is not entirely constant; however, a trend of 

approximately -40 dB/decade can be observed, and a relative degree equal to 2 is 

obtained as previously explained. Similarly, the phase at high frequencies oscillates; in 

this case, it oscillates around a constant phase of -360º. Therefore, expression (27) 

indicates that the approximation model should have a RHP zero. 

 

INSERT HERE FIGURE 3 

 

Nevertheless, the high frequency phase at several instances does not tend to a constant 

value and the previous estimation was not valid because of the irrationality of some 

functions that were to be approximated. Therefore, Nz is assumed to be zero and the 

existence of RHP zeros will depend on the approximation. 

 

Before carrying out the least square approximation, the time delay and possible 

integrators are removed from the frequency response data in order to simplify the 

approximation. Additionally, this new response is divided by its stationary gain; this 

results in the new frequency response H(jw) to be approximated. Then, using the 

previous information about relative degree, number of RHP zeros, original poles and 



integrators, the simplest parametric model and the more complex parametric model for 

the approximation of H(jw) are calculated. 

 

The approximation method is applied to the simplest model. If the method does not 

produce a good fit, the orders are progressively increased until a good fit is obtained or 

the most complex model is reached. In the latter case or when unstable models are 

obtained, the tolerance for a good fit is relaxed, and the process is restarted. After 

achieving a good estimated model N(s)/D(s), the removed time delay, stationary gain 

and possible integrators are added back in. 

 

3.1.2. Approximation method 

 

Assuming that the frequency response H(jw) is intended to be approximated by a model 

N(s)/D(s) with orders p and q in the numerator and denominator respectively, the 

corresponding rational transfer function to be estimated with unitary stationary gain, is 

given by 
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   (28)  

 

The proposed weighted linear least square method tries to minimize the following cost 

function J in (29), where W(jw,) given in (30) is a weighting function to minimize the 

relative error criterion [28]. 

 
M

2

k k k k

k=1

min J= W(jw ,β)· H(jw )·D(jw ,β) - N(jw ,α)    (29)  

 

i

k i-1

k k

1
W(jw ,β )=

H(jw )·D(jw ,β )
   (30)  

 

The measurement used to determine whether the estimated model is “good” is the mean 

squared error (MSE). If the MSE is under the pre-specified tolerance, the approximation 

model is acceptable. Initially, the tolerance is 10
-5

. 

 

For instance, the minimum orders of denominator and numerator model in the case of 

expression (23) according to its information obtained previously should be three and 

one, respectively; in addition, the two values coincide with the maximum model orders. 

After removing the time delay and stationary gain and applying the proposed method, 

the approximated model with Bode plots depicted in Figure 3 is obtained. It shows a 

good fit in comparison with the corresponding original frequency response with a MSE 

of 8.39·10
-5

. Then, the final model in (31) is obtained after adding back the time delay 

and the original stationary gain. 

 

-3s

3 2

(-0.0038)(-7.54s+1)
(s) e

(143.4s +131.1s +20.93s+1)
apM    (31) 

 

3.2. Model reduction of D(s) and Q(s) 

 



After approximation, |G(s)| and all of elements of adjG(s) are expressed as a rational 

transfer function plus time delay. Therefore, the realizability of each configuration {p1-

p2-…-pj-…-pn-1-pn} can be analyzed, determining the necessary extra dynamics with 

(15). Then, the elements of D(s) and Q(s) can be obtained using (16) and (17), 

respectively. However, in some cases, the order of these elements can be too high and a 

model reduction may be necessary for simpler implementation. In this work, we 

proposed a known model reduction technique based on balanced residualization. It is 

only applied to the rational part of the transfer function, which preserves the same time 

delay. 

 

First, a minimal realization (A, B, C, D) of the transfer function to be reduced is 

calculated. Then, this is balanced by a state similarity transformation, resulting in a 

balanced realization. Next, the ordered Hankel singular values i of this balanced 

realization are computed. In a balanced realization, the value of each i is associated 

with a state xi of the balanced system. The size of the Hankel singular value i measures 

the contribution of each state xi to the input-output behavior. Thus, if 1 2σ σ , the state 

x1 affects the input-output behavior much more than x2 (or any other state) because of 

the ordering of i [24]. Then, these small Hankel singular values signal states can be 

safely removed to simplify the model.  

 

In this work, the state xi and the following ones can be removed if 1 iσ σε· , where ε is 

a given tolerance factor (for example 10). Once the number of states to be discarded is 

determined, the simplification is performed by a balanced residualization (setting the 

derivatives of all these states to zero). This method is called a singular perturbation 

approximation of a balanced system. The method has been selected because it preserves 

the steady-state gain of the system, and it has a better performance than other techniques 

at low and medium frequencies [24]. 

 

3.3. Controller reduction to multivariable PID 

 

As previously mentioned in subsection 2.3, all of the controller elements of K(s) given 

by (19) must be approximated by PID controllers to achieve a centralized PID control. 

The PID structure used in this work is the parallel form of (32), where KP is the 

proportional constant, KI the integral constant, KD the derivative constant and TF is the 

derivative filter constant. Although the parameters have little physical interpretation in 

this form, it is the most flexible structure that allows independency between the 

different control actions. 

 

PIDk (s)
1

I D
P

F

K K s
K

s T s
  


  (32) 

 

The PID controller can be obtained using the approximation method described in 

subsection 3.1. However, the authors propose to remove the integrator of the controller 

element kij(s) and apply the model reduction to the inverse of this result m(s) instead of 

reducing the controller element. The new stationary gain k0, as shown in (33), would be 

identified with the integral constant KI. 

 

   0
0 0

k k(s)·s = m(s)
s s
lim lim
 

   (33) 

 



Without the integrator and after dividing by k0, the frequency response of the inverse of 

m(s) should be approximated according to (34): 
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2

2 1 2P F D P
F

I I
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  (34) 

 

In this way, the PID gains after approximation can be identified as follows 

 

P 1 1 0

I 0

D 2 0 1 1 1 0

F 1

K =(a -b )·k

K =k

K =a ·k -b ·(a -b )·k

T =b

  (35) 

 

For PI approximation, KD and TF are removed; therefore, the coefficients b1 and a2 

would be zero. Both PI and PID approximations are obtained, the one with the best fit is 

chosen. 

 

There are multivariable processes that are too complex to be controlled by a 

multivariable PID control; the controllers would at least have difficulties fulfilling very 

restrictive specifications in decoupling and loop performances. In these cases, the 

specifications should be relaxed to make the response more sluggish; alternatively, 

higher order controllers should be used [6]. 

 

3.4. Anti-windup implementation schemes 

 

From an implementation point of view, it is important to consider how to solve practical 

problems such as wind-up, which can cause the controller to perform poorly in the 

presence of control signal constraints. For SISO PID controllers, different anti-windup 

schemes are explained in [29], such as the back-calculation method. Nevertheless, it is 

more difficult to find wind-up solutions for the multivariable case. A possible anti-

windup scheme for simplified decoupling is described in [30]. It can be used for the 

proposed simplified decoupling plus decentralized PID control D(s)·C(s). 

 

In a multivariable PID control system K
PID

(s) in which all of its elements have PID 

structures, each manipulated variable is composed by the sum of several PID actions. In 

this case, the wind-up problem becomes difficult to handle; in addition, the contribution 

of each PID controller to the corresponding process input is difficult to coordinate when 

saturation occurs. For a multivariable PID control system with two inputs and two 

outputs, the anti-windup scheme depicted in Figure 4 is proposed. Although no 

commercial solution uses this scheme, it can be implemented using function blocks of a 

distributed control system (DCS). 

 

The key idea is to use only one integrator for each manipulated variable so that the 

back-calculation method can be easily implemented in order to avoid wind-up. To do 

so, the different integral actions associated with the same manipulated variable are 

collected. On the other hand, the proportional and derivative actions (PD) remain 

separated. 

 



For instance, the unsaturated control signal u1 would be calculated according to (36), 

where ei is the error signal. When the control signal is saturated while u1 is different 

from u1_SAT, the real process input u1_SAT works as tracking signal through the gain KR1. 

Then, the back-calculation method will make the integrator act in consequence to 

reduce this difference. Similar actions can be performed on the other control signal u2.  

 

INSERT HERE FIGURE 4 
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The gain constant KR can be tuned by trial and error; however, we propose to tune it 

according to (37) at the first attempt. Even though this anti-windup scheme is presented 

for TITO control systems, it can be extended to higher number of inputs and outputs. 

 

Ri IijK ( K ) j; [4, 20]β·max β    (37) 

 

 

4. Examples 

 

In this section, the proposed methodology is applied to three simulated processes with 

different dimensions. Additionally, the effectiveness of the methods is verified in a real 

quadruple tank plant. Inverted decoupling cannot be applied to any of these processes 

because of the existence of multivariable non-minimum zeros. Therefore, the use of the 

proposed methods is justified. 

 

4.1. Example 3×3: Depropanizer column 

 

The process is a depropanizer column to separate propane from the feed that comes 

from deethanizer column [6], and it is given by a 3×3 transfer function matrix in (38).  
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  (38) 

 

Because of the time delays of (38), it is necessary to approximate |GD(s)| and the 

elements of the adjugate matrix adjG(s) into rational transfer functions plus time delay 

to apply the proposed methodologies. After this approximation, the extra dynamics N(s) 

needed to achieve realizability for the different configurations are obtained according to 

(15) and the nine possible apparent processes qi(s) are obtained with (17). The only 

configuration without extra dynamics is the configuration 3-3-3. Nevertheless, using the 

criteria proposed in section 2.2, configuration 1-2-3 with extra dynamics given by n11(s) 



= e
-0.5s

, n22 (s) = e
-1.5s

 and n33(s) = 1 should be selected because it is the configuration 

with smaller undershoots in its corresponding qi(s). The decoupler network D(s) and 

apparent processes qi(s) calculated with (16) and (17) resulted in (39) and (40), 

respectively. 
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 (39) 
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  (40) 

 

The parameters of the decentralized PID controller are tuned independently for the 

corresponding qi(s) according to [26]. A gain margin of 3 and a phase margin of 60º are 

used as specifications in the three loops. The parameters of the resulting PID controllers 

are listed in Table 3. The decoupler D(s) plus the decentralized control C(s) is the 

proposed simplified decoupling control for GD(s). 

 

The elements of the centralized control by simplified decoupling K(s) are obtained 

according to (19). The elements are then approximated in PID controller using the 

method described in subsection 3.3. The resulting PID parameters of K
PID

(s) are 

collected in Table 3. This is the proposed multivariable PID control by simplified 

decoupling (MV-PID). 

 

INSERT HERE TABLE 3 

 

To verify the nominal control system performance, the closed loop system responses are 

shown in Figure 5. There are unit step changes at t = 0 s in the first reference, at t = 

2000 s in the second reference, and at t = 4000 s in the third one; at t = 6000 s, there is a 

0.1 step in all process inputs at the same time as input disturbance. The IAE of each 

loop is obtained as performance indices and collected in Table 3. For comparison, other 

control methodologies are also shown in the figure including the centralized non-PID 

control of Wang in [6] and a multiloop PID controller. The multiloop PID controller is 

tuned according to Lee’s method [4] to achieve similar performance: a gain margin of 3 

and a phase margin of 60º in each loop. According to the relative gain array (RGA), the 

chosen pairing has been y1-u2, y2-u3 and y3-u1. The PID parameters are shown in Table 

3 with the corresponding IAE indices. 

 

INSERT HERE FIGURE 5 

 

There is no practically difference between the two proposed methodologies. Both 

perform better than the multiloop PID control that has very important interactions in 

outputs y2 and y3. The response of the proposed methods is quite similar to that of 

Wang’s controller; however, the proposed methods produce smaller IAE. In addition, 



the complexity of the proposed multivariable PID control is much simpler than that of 

Wang’s control Kw(s). 

 

To evaluate the robustness of the proposed controllers, a μ-analysis is performed in the 

presence of diagonal multiplicative input uncertainty. To achieve robust stability, the 

necessary and sufficient condition [24] is  

 

  RS I I-W (s)T (s) 1        (41) 

 

where μ is the structured singular value (SSV) and TI(s) (equal to 

K(s)·G(s)·(I+K(s)·G(s))
-1

) is the input complementary sensitivity function. WI(s) and 

WP(s) are the diagonal weights for uncertainty and performance, respectively. To 

evaluate whether the closed loop system will respect the desired performance even in 

the presence of diagonal multiplicative input uncertainty, the necessary and sufficient 

condition [24] is 
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In this example, the selected weights are 

 
(0.009s+0.15)

(s)  (s) 
0 0045 1

(s/2.75+0.00075)
(s)  (s) 

I I

P P

W w ·I
. s

W w ·I
s

 


 

  (43) 

 

The weight wI(s) can be loosely interpreted as the process inputs increase by up to 200% 

uncertainty at high frequencies and by almost 15% uncertainty in the low frequency 

range. The performance weight wP(s) specifies integral action and a maximum peak for 

(S)σ  of MS = 2.75. Figure 6 shows the SSV for robust stability (RS) and robust 

performance (RP) for the different controllers under conditions (41) and (42). The RS is 

smaller than one for all frequencies, indicating that the systems will remain stable in 

spite of an uncertainty of 15% on each process input. The peak values are shown in 

Table 3. Although Wang’s controller has the smallest value, the peak values of the 

proposed methods are very close to Wang’s value. The RP analysis shows that both 

proposed methods satisfy the RP condition (42) in a similar way. For the other 

controllers, the performance will deteriorate at frequencies around 0.01 rad/s, where the 

peaks appear. These values are also collected in Table 3. The multiloop PID controller 

has a good RS; however, it shows the worst robust performance that is due to the strong 

interactions in the second and third loops. 

 

INSERT HERE FIGURE 6 

 

4.2. Example 4×4: Alatiqi distillation column 

 

In this example, three different configurations of simplified decoupling are designed and 

compared. The transfer function matrix GA(s) for the Alatiqi column system case 1 (A1 

4×4) in [31] is given by (44). Because of the time delays of GA(s), it is once again 

necessary to approximate |GA(s)| and the elements of adjG(s) into rational transfer 



functions plus time delay. The 16 different apparent processes qi(s) are calculated 

according to (17) in order to analyze the possible configurations. 
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The three configurations to be compared are 3-3-3-2, 1-1-3-1 and 1-2-2-3. According to 

the criteria proposed in section 2.2, configuration 3-3-3-2 should be chosen because it 

has the smallest overshoots and settling times in its corresponding apparent processes 

qi(s). Its extra dynamics is given by n11(s) = e
-0.99s

, n22(s) = e
-2.3s

, n33(s) = e
-2.3s

 and n44(s) 

= e
-3.8s

/(0.2s+1). No realizable configurations are available without extra dynamics; 

however, the configuration 1-1-3-1 is selected because it only needs an extra time delay 

associated with the third input. Therefore, its extra dynamics is given by n11(s) = 1, 

n22(s) = 1, n33(s) = e
-2.33s

 and n44(s) = 1. The third configuration 1-2-2-3 is selected as a 

bad case for the criteria of section 2.2. The associated apparent processes have the larger 

overshoots and settling times. In addition, an element with a RHP zero like (13) is 

needed to achieve realizability. The extra dynamics for this configuration is n11(s) = 1, 

n22(s) = e
-2.49s

/(0.2s+1), n33(s) = e
-2.49s

·(-50.15s+1)/((0.2s+1)·(-50.15s+1)) and n44(s) = e
-

2.3s
. 

 

Decoupler network D(s) and apparent processes qi(s) for these configurations are 

obtained following (16) and (17), respectively. For configuration 3-3-3-2, the results are 

shown in the D3332 matrix in (45) and (46). In a similar way, for configuration 1-1-3-1, 

the decoupler matrix D1131 and the apparent process are given by (47) and (48), 

respectively. The expressions (49) and (50) are the corresponding ones for configuration 

1-2-2-3. 
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In each configuration, the parameters of the decentralized PI controller are tuned 

independently for the corresponding qi(s) according to [26] using a phase margin of 60º 

as the specification in the four loops. The resulting PI parameters are listed in Table 4 

with the performance indices of the three different configurations. 

 

INSERT HERE TABLE 4 

 

The closed loop system responses (outputs and control signals) of the three cases are 

depicted in Figure 7. There is a unit step change in each reference every 400 min. All of 

them achieve almost perfect decoupling. Configuration 3-3-3-2 obtains the fastest 

responses with the smallest IAE indices. Configuration 1-1-3-1 has similar performance 

in the outputs y2 and y3, but its response is slower in outputs y1 and y4. Configuration 1-

2-2-3 shows the worst performance in outputs y1, y2 and y3 with very slow responses. 

Consequently, its IAE indices are higher than those of the other configurations. In 

addition, it presents the highest peaks in the control signals. 

 

INSERT HERE FIGURE 7 



 

To investigate the robustness of the three controllers, a μ-analysis similar to the 

previous example is performed. The selected weights are given by (51). Figure 8 shows 

the SSV for RS and RP for the different configurations. The RS is satisfied by all cases; 

however, the smallest peak value is obtained using configuration 3-3-3-2. The peak 

values of the other cases are shown in Table 4. The RP condition (42) is satisfied by 

configurations 1-1-3-1 and 1-2-2-3, and it is almost fulfilled by configuration 3-3-3-2, 

that presents a little peak of 1.02 around 0.1 rad/min. Nevertheless, at low frequencies, 

configuration 3-3-3-2 obtains the smallest values. 
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4.3. Nonlinear boiler-turbine model 

 

The boiler-turbine model developed in [32] is a third-order nonlinear multivariable 

system with great interactions, hard constraints and rate limits imposed on the actuators. 

The dynamics of the unit is given by (52) 
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where state variables x1, x2 and x3 denote the drum pressure (kg/cm
2
), power output 

(MW) and fluid density (kg/m
3
), respectively. The output y3 is the drum water level (m) 

regarding the operating reference level. The inputs u1, u2 and u3 are the valve positions 

for fuel flow, steam control, and feed-water flow, respectively. Because of actuator 

limitations, the control inputs are subjected to the constraints given in (53). 
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There are several typical operating points of the model in (52); however, the linear 

control design for the unit found in literature usually takes the linearized model at the 

operating point x
0
=[108 66.65 428]

T
, u

0
=[0.34 0.69 0.433]

T
 and y

0
=[108 66.65 0]

T
. The 

obtained linearized model GB(s) to carry out the design is given by (54). 



 

B

358 7 249 1 0 0113(34.58 1)(258.33 1)

398 6 1 (398 6 1)(10s+1) (398 6 1)s

139 1 44 96(1255 3 1) 0 0022(1428 6 1)(65.15 1)
G (s)

398 6 1 (398 6 1)(10s+1) (398 6 1)s

59 79 41 49

398 6 1 (398 6 1)(10s+1

. . . s s

. s . s . s

. . . s . . s s

. s . s . s

. .

. s . s

 

  

   


  

 

 

T

-0.0097(282.57 1)(2.03 1)

) (398 6 1)s

s s

. s

 
 
 
 
 
 
  
   

 (54) 

 

In this case with no time delays, it is not necessary to approximate |GB(s)| or adjG(s). 

According to the expressions in (15), two configurations (3-2-1 and 3-2-3) are realizable 

without extra dynamics. Because of necessary extra dynamics with RHP zeros like (13), 

configurations 1-b-c, a-1-c and a-3-c (with a, b, c being 1, 2 or 3) are discarded. The 

other possible apparent processes do not have serious problems about undershoot or 

overshoot; therefore, the settling time is the criterion to decide. Finally, configuration 2-

2-1 is preferred because that configuration is verified to have better performance with 

smaller settling times and simpler extra dynamics. Its extra dynamics are given by n11(s) 

= 1/(0.4s+1), n22(s) = 1 and n33(s) = 1. The corresponding decoupler network D(s) and 

apparent processes qi(s) are expressed in (55) and (56), respectively. The element D(2,1) 

has been approximated to unity and element D(2,3) to zero. 
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To finish the design of the proposed simplified decoupling control for GB(s), three PI 

controllers are tuned independently for the previous apparent processes. The tuning was 

performed according to [25] using closed loop time constants equal to 20, 10 and 20 

seconds. The PI parameters for the controllers are: 
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Subsequently, the elements of the centralized control K(s) are obtained according to 

(19) and reduced to PI controllers. The resulting PI parameters are: 

 



5

0 0512 0 0059 1 0684

9 810 0 0071 0

0 0259 0 0517 6 4104

0 0434 0 3751 26 71

0 245 0 71 0 1000

0 0048 0 5983 160 26

P

I

. . .

K . · .

. . .

. . .

K . . /

. . .



 
 

  
  

 
 

  
  

  (58) 

 

Next, we analyze the performance of the proposed multivariable PI controllers in 

simulation using the nonlinear model of the boiler-turbine in (52). In the simulation, the 

power output reference is increased from 66.65 to 120 MW at t=100 s; at t=1000 s, the 

drum pressure reference is increased from 108 to 120 kg/cm
2
. This test is performed 

assuming three different cases: first, the ideal case without input constraints is assumed; 

second, the case with input constraints in (53) and without anti-windup scheme is 

assumed; third, the case with input constraints in (53) and the anti-windup scheme 

proposed in subsection 3.4 for case 3×3 is assumed. 

 

Figure 9 shows the simulation results. In the ideal case, the references are reached very 

fast with practically perfect decoupling. However, after the first step change in the 

second reference, the second control signal u2 is out of range; the signal only returns to 

range when the second step change in the first reference takes place. In the second case, 

the first and second references are not reached after the first reference step change 

because the control signal u2 is saturated. This fact provokes windup in this signal, and 

after the second reference change at t=1000 s, u2 does not change until 2000 s later. 

Consequently, the time to reach the first reference is very late. This response is 

improved significantly over the implementation of the anti-windup scheme in Figure 4 

for the 3×3 case. Using this scheme, the second reference is not reached at the 

beginning; however, the control signal u2 reacts very quickly after the second references 

step because the windup problem has been avoided, and all of the references are reached 

sooner. Although simulations using the proposed simplified decoupling control 

D(s)·C(s) are not shown, similar responses are obtained in all cases. The anti-windup 

scheme is implemented according to scheme proposed in [30] for the case 3×3. 

 

INSERT HERE FIGURE 9 

 

4.4. Experimental process: quadruple tank system 

 

The experimental process is a quadruple tank plant [33] in the lab of the Computer 

Science Department of the University of Cordoba. The outputs are the level of the lower 

tanks, which are between 0 and 35 cm; the inputs are the flow references of the 

secondary control loops that regulate the operation of the pumps, which are between 0 

and 200 cm
3
/s. The plant was configured to show interaction problems with a 

multivariable RHP zero. The process was identified around the operation point h = [17 

18] cm and u = [135 135] cm
3
/s. The resultant model is given by (59). It has an RGA of 

-0.21 and a multivariable RHP zero at s = 1/164.67. 
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Because of the relative degrees, configuration 1-2 must be chosen to apply simplified 

decoupling without adding extra dynamics. Then, the following decoupler matrix (60) 

and apparent process (61) are obtained according to Table 1. In this case, approximation 

is not necessary for D(s). 
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After determining the decoupler network, the parameters of a decentralized PI controller 

are independently tuned for the corresponding qi(s) according to [26] using a phase 

margin of 60º as specification in both loops. In this way, the proposed simplified 

decoupling control is obtained. The centralized control by simplified decoupling K(s) is 

calculated according to (19), and its elements are approximated to PI controllers to 

achieve the proposed multivariable PI control by simplified decoupling (MV-PI). Only 

its off-diagonal elements need to be approximated to PI structure. The parameters of the 

resulting PI controllers for both methodologies proposed previously are shown in Table 

5. 

 

INSERT HERE TABLE 5 

 

Figure 10 shows the resultant response of the proposed controllers for a step of 4 cm in 

the references. For comparison, the response of a decentralized PI controller is also 

shown. This controller is tuned according to the iterative method in [2] using a phase 

margin of 60º as specification in both loops. According to the RGA, the chosen pairing 

is y1-u2 and y2-u1.The PI parameters are listed in Table 5. 
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With simplified decoupling, perfect decoupling is practically achieved. Using the 

proposed multivariable PI control there are some little interactions, while the 

decentralized control presents important couplings in both loops. However, the 

improved decoupling performance of both proposed methodologies is obtained at the 

expensive of closed loop bandwidth because the RHP zero imposes an upper limit on 

this bandwidth. For this reason, the decentralized control reaches the references faster. 

In this process, there is a trade-off between the undershoot in the response of the 

considered loop and the interaction with the other loop. 

 

 

5. Conclusions 

 

A generalization of simplified decoupling technique for n×n processes has been 

developed in this work. Different configurations can be demonstrated by a matrix 



formulation depending on the decoupler elements that are set to unity. Thus, it is 

possible to select the proper configuration considering different aspects such as the 

complexity of the corresponding decoupler elements or the response of apparent 

processes. The realizability conditions for each configuration were illustrated, and the 

expressions of simplified decoupling for 2×2 and 3×3 processes are shown in more 

detail. The general formulation of centralized control by simplified decoupling is 

derived from the previous methodology. Then, the centralized control is proposed as the 

second methodology after a reduction to multivariable PID control. 

 

Several design considerations, such as an approximation method and model reduction 

have been discussed in this work. In addition, anti-windup schemes for the developed 

methodologies have been proposed from a practical point of view. These schemes, 

which can be implemented in distributed control systems, have been tested in 

simulation. 

 

Although the proposed methodologies are more difficult than inverted decoupling to 

apply to high dimensional systems, their utilization is justified in those processes with 

multivariable RHP zeros because inverted decoupling cannot be applied. This has been 

illustrated with several simulation examples of sizes 3×3 and 4×4. Comparisons with 

other methods have demonstrated that the proposed methodologies achieve similar or 

better performance. Additionally, an experimental quadruple tank system was used to 

verify the effectiveness of these methodologies. 
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Table 1- Cases of 2×2 simplified decoupling
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Table 2 - Some cases of 3×3 simplified decoupling.
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Table 3 - PID parameters and indices for example 1



 

Configuration 
PI parameters 

IAE1 IAE2 IAE3 IAE4 μRS μRP 
Kp1 Kp2 Kp3 Kp4 Ti1 Ti2 Ti3 Ti4 

3-3-3-2 3.83 1.58 0.76 -0.009 32.8 30.8 12.1 0.77 29.5 30.8 19.6 24.1 0.18 1.02 

1-1-3-1 1.5 1.45 0.76 -0.104 40 26.5 12.1 15.2 46.8 31.2 20.7 41.5 0.23 0.96 

1-2-23 1.5 0.09 -0.002 0.27 40 5.2 2.4 14.6 48.2 48.3 49.63 30.9 0.21 0.96 

 

 

Table 4 - PID parameters and indices for example 2
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Table 5 - PI parameters for the quadruple tank process.



Figure 1. Block diagram of a decoupling control system.



Figure 2. Block diagram of a purely centralized control system.



Figure 3. Bode plots of expression (23) colour



Figure 4. Anti-windup scheme for a multivariable PID controller



Figure 5. Step response in example 1 colour



Figure 6. SSV for RS and RP in example 1 colour



Figure 7. Step response in example 2 colour



Figure 8. SSV for RS and RP in example 2 colour



Figure 9. Step response in example 3 colour



Figure 10. Step response in example 4 colour




