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Abstract

Most practical control problems must deal with constraints imposed by equip-

ment limitations, safety considerations or environmental regulations. While

it is often beneficial to maintain operation close to the limits in order to max-

imize profit or meet stringent product specifications, the violation of actuator

constraints during normal operation can result in serious performance degra-

dation (sometimes instability) and economic losses. This thesis is concerned

with the development of control strategies for multivariable systems which

systematically account for actuator constraints while guaranteeing closed-

loop stability as well as graceful degradation of non-linear performance.

A novel anti-windup structure is proposed which combines the efficiency of

conventional anti-windup schemes with the optimality of model predictive

control (MPC) algorithms. In particular, the classical internal model control

(IMC) law is enhanced for optimal performance by incorporating an on-line

optimization. The resulting control scheme offers both stability and per-

formance guarantees with moderate computational expense. The proposed

optimizing scheme has prospects for industrial applications as it can be im-

plemented easily and efficiently on programmable logic controllers (PLC).
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Chapter 1

Introduction

1.1 Background

Most practical control problems must deal with constraints imposed by equip-

ment limitations, safety considerations or environmental regulations. While

it is often beneficial to maintain operation close to the limits in order to max-

imize profit or meet stringent product specifications, the violation of actuator

constraints during normal operation can result in serious performance degra-

dation (sometimes instability) and economic losses. This thesis is concerned

with the development of control strategies for multivariable systems which

systematically account for actuator constraints while guaranteeing closed-

loop stability as well as graceful degradation of nonlinear performance.

The thesis derives motivation from the oil and gas upstream industry where

the surface facilities include processes such as crude oil separation, gas com-

pression, natural gas liquids (NGL) extraction, storage and power generation

systems. Due to economic reasons, safety concerns or environmental regula-

tions, most of these processes are fitted with control systems with objectives

such as maintaining levels in a separator to avoid spillage, preventing liquid
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carry-over into gas compressors, maintaining the hot-oil system temperature

and maintaining quality products from extraction units to meet sale spec-

ifications. These control systems must deal with constraints imposed by

equipment and actuator limits (such as control valves, motors and pumps),

stringent product specifications, safety limits or environmental regulations

from relevant government environmental protection agencies.

These requirements often mean the deployment of advanced control method-

ologies other than the conventional Proportional-Integral-Derivative (PID)

control loops. One key feature of advanced control methodologies, such as

model predictive control (MPC) and the novel optimizing internal model

control (IMC) structure proposed in this thesis, is that constraints are sys-

tematically accounted for during the controller design and implementation.

This allows operation closer to the constraints and hence increased profit.

Under the same operating conditions, classical PID controls would require

frequent operator interventions such as re-adjustment of set-points, repo-

sitioning of valves and dampers etc. This inefficient operation would often

result in poor performance and economic losses.

Within the upstream sector, the few advanced control packages in use are

generally considered as "black boxes" . They usually require vendors special-

ists for installation, troubleshooting and tuning. This thesis provides some

insights into the development of such advanced control packages and proposes

more efficient implementation strategies.

Over the last two decades, control design for processes under actuator con-

straints such as saturation nonlinearities has received significant attention

leading to advances in optimizing control methodologies such as model pre-

dictive control (MPC) [10; 11; 12; 13] and anti-windup schemes [6; 2; 14;

8; 5; 15; 16; 17; 18]. On the other hand, internal model control (IMC) is

an attractive control design strategy for inherently stable plants [19; 2]. It

provides an open-loop framework for checking closed-loop stability and also

highlights the inherent performance limitations due to model uncertainties,
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non-minimum phase plant characteristics and actuator constraints. Internal

model control has also been shown to be optimally robust to additive type

uncertainties for input constrained systems [20; 21].

This thesis seeks to harness these attractive features of the internal model

control structure for an effective anti-windup design with guaranteed closed-

loop stability as well as an acceptable level of performance, but with online

optimization included in the control structure. The proposed optimizing

anti-windup combines the efficiency of conventional anti-windup with the

optimality properties of MPC while requiring considerably less computational

effort.

1.2 Research Approaches to Constrained In-

ternal Model Control

Constrained control generally refers to control systems with input, output or

state constraints. The research within this field primarily focuses on other-

wise linear systems. Meanwhile, internal model control refers to a family of

controllers that involve the explicit use of the plant model within the control

formulation. The strength of such a control structure has long been identi-

fied and was consolidated in the series of papers by Morari and co-workers

[22; 23; 24]. The concept is based on finding an inverse of the plant which is

then augmented with a linear filter that can be tuned for trade-off between

robustness and performance. For constrained systems, the controller must

be designed to account for the effects of such constraints. Two approaches to

constrained internal model control that have received considerable research

attention are:

• Predictive Internal Model Based Control and

• Internal Model Control anti-windup Schemes
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It well known that predictive internal model based control algorithms explic-

itly account for the effects of constraints a priori during control formulation

[24]. The control inputs are computed in an open-loop fashion such that the

output response predicted using the model of the plant has some desirable

characteristics. In general, the control algorithm attempts to compute an

approximate inverse of the plant via the solution of an online constrained

optimization problem [25; 26]. Out of the many computed future control

moves, only the first is applied to the plant. The whole computation is re-

peated again during the next sampling time. The computational and storage

requirements of the receding horizon control can be extensive, restricting the

application of such predictive algorithms to slow processes with many appli-

cations in the chemical and petrochemical industries. Robust MPC design

techniques also increase the controller computational burden enormously and

often result in very conservative solutions or in an infeasible control problem

[27]. Recent advances in computing power and efficient solution algorithms

have brought predictive control within the reach of electro-mechanical sys-

tems [28]. However, tuning for robustness and performance are still obtained

in an obscure fashion with limited physical interpretations. The link between

predictive internal model control and other forms of predictive algorithms is

well discussed in the survey paper [29]. Model-state formulation of internal

model predictive control was considered in [30]. A state-space interpretation

of the predictive internal model control with stability considerations was de-

veloped in [31].

IMC anti-windup approaches follow the two-step control design methodology

[6]. The linear controller is first designed, neglecting the effects of actuator

nonlinearities, such that the control loop has desirable characteristics. The

linear controller is then compensated or conditioned to account for the effects

of control input constraints. The standard IMC structure introduced in [22]

has been shown to possess some inherent anti-windup characteristics when

the plant and the model are driven by the same saturated control signal.

In this case, the control loop is effectively open loop; stability may not be

an issue but the performance may be seriously degraded. Other IMC anti-
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windup schemes have been developed to deal with the performance degrada-

tions. Popular IMC-based anti-windup designs are discussed in [1; 2]. The

IMC anti-windup structure has also appeared in different guises such as in

the model-based anti-windup schemes [32; 14], the two-degrees of freedom

IMC anti-windup [33] and the mismatch anti-windup scheme of [34]. Many

popular anti-windup schemes [35; 36; 37; 38; 21] also have the IMC as special

cases.

An additional category is the family of controllers based on gain scheduling

and control rescaling (static or dynamic). The concept of rescaling was first

introduced into internal model control as a directionality preservation heuris-

tic in [6]. A similar idea was used in [39; 40] and in the context of nonlinear

systems in [41].

This thesis explores the two main streams of research to constrained con-

trol highlighted above and proposes a new convex synthesis procedure with

both closed-loop stability and performance guarantees. In particular, the

proposed optimizing anti-windup synthesis procedure provides a framework

for combining the optimality of an online optimization with the efficiency of

conventional anti-windup offline convex synthesis at moderate computational

expense. When directionality is an issue, especially for highly ill-conditioned

plants, the optimizing anti-windup framework offers a systematic way of in-

corporating such directional characteristics into the control synthesis. The

effectiveness of the proposed anti-windup synthesis procedure as compared

to several existing schemes is demonstrated using simulated examples.
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1.3 Outline of the Thesis

The thesis is arranged into nine chapters. Chapter 2 covers the preliminar-

ies and analysis tools necessary for the discussion of the main contributions

contained in chapter 3 through to chapter 8. The conclusion and recommen-

dations for future research are presented in chapter 9. The outline of the

thesis is as follows:

Chapter 3: A comprehensive review of the internal model control structure

and its relation to the general anti-windup design framework is carried

out. In particular, all existing linear anti-windup schemes are parame-

terized in terms of the internal model controller and the right coprime

factorization of the plant. This parameterization allows the extension

of existing anti-windup techniques to the synthesis of IMC anti-windup

with both stability and performance guarantees while retaining its in-

tuitive appeal.

Chapter 4: A systematic approach to anti-windup synthesis based on the

internal model control structure is proposed for open loop stable input

constrained multivariable plants. The anti-windup design is defined

solely in terms of the plant’s inner and outer factors without introduc-

ing independent dynamics into the closed-loop. The anti-windup syn-

thesis is directly linked to some closed-loop sensitivities which provide

insights into the effectiveness of many LMI-based anti-windup tech-

niques. The trade-off between stability robustness and performance is

captured through a simple weight structure that determines the closed-

loop bandwidth of interest.

Chapter 5: A unified theory of all existing optimal directionality compen-

sation schemes is developed in terms of a standard quadratic program

(QP). It is shown that the QP is equivalent to a modified QP in paral-

lel with a feedthrough link. The equivalent representation can be used

to obtain a decoupled control structure suitable for both analysis and
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synthesis. It is further noted that both QPs are sector-bounded, mono-

tone non-decreasing, slope restricted and odd. Hence, a general class

of multipliers such that the Zames-Falb multipliers can be employed to

establish the stability of existing directionality compensation schemes.

Chapter 6: An optimizing anti-windup incorporating directionality com-

pensated is synthesized with stability and performance guarantees. The

proposed synthesis approach incorporates a priori information about

the input saturations and the directional nature of the plant into the

control computation to guarantee closed-loop stability and a given level

of performance. As compared to existing saturating anti-windup syn-

thesis methods, the introduction of the directional characteristics of

the plant into the synthesizing framework offers an additional degree

of freedom in the anti-windup optimization.

Chapter 7: A robust synthesis of optimizing anti-windup subject to infinity-

norm bounded uncertainties is presented using the integral quadratic

constraints (IQC) approach. The IQC theorem allows the combination

of static nonlinearities such as the QP-based directionality compensa-

tion with infinity-norm bounded uncertainties in one framework. Aside

from allowing the incorporation of robustness in a less conservative

manner, the design approach offers a systematic way of dealing with

implementation issues arising from the presence of an algebraic loop in

the resulting interconnection.

Chapter 8: A novel two-stage anti-windup structure is proposed for in-

put constrained multivariable control problems. The two-stage scheme

uses a relatively simple quadratic program strategy within the internal

model framework to optimize both the transient and the steady state

behaviours of the closed-loop systems during input saturations. A ro-

bust stability test is described for the two-stage anti-windup scheme us-

ing the passivity theorem and interpretations in the integral quadratic

constraint (IQC) framework.
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1.4 Contributions of the Thesis

The main contributions of this thesis are summarized as follows:

Chapter 6: The synthesis approach of chapter 6 is novel. As compared to

existing optimizing anti-windup schemes [42; 43; 44; 7; 8], the design

approach is particularly attractive in that it allows the incorporation

of the plant’s directional characteristics into the anti-windup synthesis

to guarantee closed-loop stability as well as improved nonlinear per-

formance. The anti-windup design is cast as a convex optimization

problem over linear matrix inequality constraints using a decoupled

structure similar to that proposed in the literature for anti-windup

schemes with simple saturation.

Chapter 7: A robust synthesis of optimizing anti-windup subject to infinity-

norm bounded uncertainties such as those arising from unmodeled or

neglected dynamics is developed. In particular, the synthesis approach

of [21; 45] is applied to the optimizing anti-windup design problem.

Apart from allowing the incorporation of robustness in a less conserva-

tive manner, an additional advantage is that the resulting scheme offers

a systematic way of dealing with algebraic loops and well-posedness of

the arising interconnection as compared to [46].

Chapter 8: A novel two-stage internal model control (IMC) anti-windup

structure is proposed for open loop stable multivariable plants. The de-

sign is based on the online solution of two low-order quadratic programs

(QP) at each time step which addresses both transient and steady state

behaviours of the system. The proposed two-stage structure allows for

optimal closed-loop performance over a much wider operating range as

compared to existing optimizing anti-windup schemes. Since it does

not require the receding horizon computation of MPC, the two-stage

IMC offers a computationally less intensive and more transparent (in

terms of tuning for robustness) alternative to MPC algorithms.
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Almost all the material discussed in chapters 3, 4 and 5 is established in the

literature. Nevertheless, the interpretation and insights offered in chapter 4

using the two-degree of freedom internal model control appear to be novel."

1.5 Publications

Conference papers

1. Adegbege A.A. and Heath W.P., Two-Stage Multivariable Anti-Windup

Design for Internal Model Control. In Proceedings of the 9th Interna-

tional Symposium on Dynamics and Control of Process Systems. Leu-

ven, Belgium, July 5-7, 2010.

2. Adegbege A.A. and Heath W.P., Stability Conditions for Constrained

Two-Stage Internal Model Control. In proceedings of the 49th IEEE

Conference on Decision and Control, Atlanta, December 15-17, 2010.

3. Adegbege A.A. and Heath W.P., Anti-Windup Synthesis for Optimiz-

ing Internal Model Control. To be presented at the 50th IEEE Con-

ference on Decision and Control and European Control Conference,

Orlando, Florida, December 12-15, 2011.

Journal papers

1. Adegbege A.A. and Heath W.P., Internal Model Control Design for

Input Constrained Multivariable Processes, AIChE Journal, vol. 57,

no.12, pp. 3459-3472, 2011.

The discussions in chapter 8 are based on journal paper 1. The contribu-

tion in chapter 6 is under review for a journal while that of chapter 7 is

in preparation for publication. Parts of chapters 5 and 8 were presented at
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conferences 1 and 2 respectively. The conference paper 3 to be presented at

the CDC/ECC conference in December, 2011 is partly based on chapter 6.
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Chapter 2

Preliminaries

This chapter introduces basic mathematical tools and selected background

materials relevant for use in subsequent chapters. General references are cited

in each section which contain more comprehensive treatment of the topics.

2.1 Function Spaces and Operators

The mathematical concepts of systems and operator theory are important

for performance specifications and stability analysis in control engineering.

Generally, systems are represented as operators and their input and output

signals as functions from appropriate vector spaces. The operator norms

provide a natural way of quantifying sizes of system which is fundamental to

systems theory.
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2.1.1 Normed and Inner Product Spaces

Our primary interest is norms defined on spaces of functions which map from

R
n to C

m or R
m where R denotes the set of real numbers and C complex

numbers. The most frequently appearing function spaces in control engi-

neering are the lmp and Lmp (p ≥ 1) which are used to describe discrete-time

and continuous-time function spaces respectively. The subscript p in Lmp (lmp )

refers to the type of p-norm used to define the space, while the superscript

m is the dimension of the signal. The infinite time axis is denoted as T ⊂ R

with T typically being R, Z, R+ or Z+ where R+ denotes the set of non-

negative real numbers and Z+ denotes the set of nonnegative integers. The

notations as Lp(−∞, 0], Lp[0,−∞) and Lp(−∞,∞) will be used to explicitly

define what time axis is used for continuous time spaces while lp(Z+) and

lp(Z) will be used for discrete time spaces. We first define some vector norms.

Definition 1. For a vector x ∈ C
m or Rm, the p−norm is defined as follows;

|x|p =

(
m∑

i=1

|xi|p
)1/p

for 1 ≤ p < ∞ and (2.1)

|x|∞ = max
1≤i≤m

|xi| for p = ∞. (2.2)

The spatial norm defined in (2.1) is the Euclidean norm when the subscript

p = 2. Whenever the subscript p in the left hand side of (2.1) is suppressed,

we will assume by default the Euclidean norm |x| = |x|2. We also define the

following generalization of the Euclidean norm.

Definition 2. Let W = W T ∈ R
m×m be positive definite. The W-norm is

defined as

|x|W =
(
xTWx

)1/2
x ∈ R

m. (2.3)

When W is restricted to be diagonal i.e. W = diag(wi), wi ∈ R | wi > 0, i =

1 · · ·m , the W-norm reduces to the weighted Euclidean norm defined as

|x|W =

(
m∑

i=1

wix
2
i

)1/2

. (2.4)
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Definition 3. The Lmp (−∞,∞) is the vector space of piecewise continuous

functions f : R → R
m such that

||f ||p =
(∫ ∞

−∞
|f(t)|ppdt

)1/p

for 1 ≤ p < ∞ and (2.5)

||f ||∞ = ess sup
t∈R

|f(t)|∞ for p = ∞. (2.6)

Definition 4. The lmp (Z) is the vector space of discrete time functions f :

Z → R
m such that

||f ||p =

(
∞∑

t=−∞

|f(t)|pp
)1/p

for 1 ≤ p < ∞ and (2.7)

||f ||∞ = sup
t∈Z

|f(t)|∞ for p = ∞. (2.8)

In most cases, any normed vector space, such as Lmp or lmp , will be generally

denoted by Lm
p . The vector space Lm

p can be given additional structure,

although more restrictive, by equipping it with an inner product. A vector

space with an inner product is called inner product space. The norm on inner

product spaces can be defined in terms of the inner product

‖f‖ =
√

〈f, f〉.

A complete inner product space is called a Hilbert space. Examples of Hilbert

spaces are Lm2 [0,∞) and lm2 (Z+), which consist of all square integrable and

Lebesgue measurable functions defined on the intervals R+ and Z+ with the

inner products defined as

〈f, g〉 =
∫ ∞

0
f(t)∗g(t)dt for f, g ∈ Lm2 [0,∞) and

〈f, g〉 =
∞∑

t=0

f(t)∗g(t) for f, g ∈ lm2 (Z+)

for the discrete and continuous time respectively. We denote Hilbert spaces

by H in order to distinguish their special structure from the normed vector

space L. The following definition provides the link between time domain
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inner product space and the frequency domain inner product space.

Definition 5. The Hilbert spaces lm2 (Z+) and Lm2 [0,∞) have inner product

defined respectively as

〈f, g〉 =
∞∑

t=0

f(t)∗g(t) =
1

2π

∫ π

−π
f̂ ∗(jω)ĝ(jω)dω =

〈
f̂ , ĝ

〉
and

〈f, g〉 =
∫ ∞

0
f(t)∗g(t)dt =

1

2π

∫ ∞

−∞
f̂ ∗(jω)ĝ(jω)dω =

〈
f̂ , ĝ

〉
.

Here, f̂ and ĝ denote the Fourier transforms of f and g, defined as

f̃(jω) = lim
N→∞

N∑

t=0

f(t)e−jωt for all ω ∈ [−π, π] and

f̃(jω) = lim
T→∞

∫ T

0
f(t)e−jωtdt for all ω ∈ R

for the discrete and continuous time respectively.

This bilateral transform that relates L2 spaces in the frequency domain to

the L2 spaces in the time domain is what is called Parseval’s relation or

Plancherel theorem.

2.1.2 Operators

An operator G is a mapping from one normed space into another. We only

consider the case where the input and the output spaces are the same i.e.

G : Lm
2 → Ln

2 . The operator is said to be biased if G(0) 6= 0 and unbiased

if G(0) = 0. We will always assume the latter for our future developments.

We will also adopt the shorthand notation G(f)=Gf for mapping of a linear

operator.

Definition 6. Let α, β ∈ R and f, g ∈ Lm
2 . An operator G : Lm

2 → Ln
2

1. is linear if

G(αf + βg) = αG(f) + βG(g). (2.9)
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2. is bounded if the induced norm

||G||i,2 = sup
f 6=0

||G(f)||2
||f ||2

(2.10)

is finite. Furthermore, for linear and bounded operators, the induced

norms satisfy the important submultiplicative rule

‖G1G2‖i,2 ≤ ‖G1‖i,2 ‖G2‖i,2 .

3. is Lipschitz if there exists a k ∈ R+ such that

‖G(f) −G(g)‖2 ≤ k ‖f − g‖2 . (2.11)

4. has a Hilbert adjoint denoted by G∗ : Ln
2 → Lm

2 if it is linear, bounded

and such that

〈Gf, g〉 = 〈f,G∗g〉 . (2.12)

The adjoint exists uniquely and satisfies ||G∗||i,2 = ||G||i,2. The opera-

tor is self-adjoint if G∗ = G.

Definition 7 (Extended Spaces). Let f : T → C
m, the extended space Lm

e

is defined as

Lm
e = {f : T → C

n | ‖fT‖ < ∞ ∀T ≥ 0} .

Here, fT is a truncation defined by

fT (t) =




f(t) when t ≤ T (t, T ∈ T ),

0 when t > T.

Definition 8. An operatorG : Lm
e → Lm

e is said to be causal (non-anticipative)

if

fTG(fT )(t) = fTG(f)(t) ∀T ∈ T .

We can think of the operators as mathematical objects that represent our

system. Let Rn×m
p denote the space of rational proper transfer functions,
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then the operator G ∈ Rn×m
p : Lm

e → Ln
e has a state space realization which

is often denoted by


 A B

C D


. G is said to be stable if all the eigenvalues of

A are in the open left half-plane or equivalently for discrete systems, if they

are strictly inside the unit disk.

We use the standard notation RHn×m
∞ ⊂ Rn×m

p for the space of stable real-

rational transfer functions of size n by m, and RHn×m
2 ⊂ RHn×m

∞ for the

space of stable, strictly proper, real-rational transfer functions of size n by

m.

A comprehensive treatment on functional analysis may be found in [47; 48].

Other literature that could be consulted are [49; 50; 51].

2.2 Static and Sector-bounded Nonlinearities

We consider a class of nonlinearities which are static or memoryless and sat-

isfy some sector or conic conditions. This class of nonlinearities has received

much attention in stability analysis and control synthesis for linear systems

subject actuator constraints such as the anti-windup compensation problem.

A nonlinear function φ(u, t) : Rm × T → R
m is said to be memoryless or

static if the output at any instant of time t is uniquely determined by its

input at that instant.

Definition 9. A nonlinear function φ : Rm → R
m with φ(0) = 0 is said to be

monotone nondecreasing, slope-restricted to the interval [a, b] and bounded

by c > 0 if the following inequalities are respectively satisfied

C1: [φ(x) − φ(y)]T (x− y) ≥ 0 ∀x, y ∈ R
m

C2: [φ(x) − φ(y) − a (x− y)]T [φ(x) − φ(y) − b (x− y)] ≤ 0 ∀x, y ∈ R
m

C3: |φ(x)|2 ≤ c|x|2 ∀x ∈ R
m.
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The nonlinearity φ is odd if φ(−x) = −φ(x) ∀ x ∈ R
m.

Definition 10 (Sector-Bounded Nonlinearity (e.g.[52; 53])). Let φ(u, t) :

R
m × T → R

m be a memoryless (possibly time varying) nonlinearity and

K = K1 −K2 = KT for some K1, K2 ∈ R
m×m. We say φ (u, t) belongs to the

sector [K1, K2], or simply φ (u, t) ∈ [K1, K2] if

[φ(u, t) −K1u]T [φ(u, t) −K2u] ≤ 0 ∀u ∈ R
mand t ∈ T . (2.13)

In this thesis, we consider a class of static nonlinearities belonging to the

sector [0, I]. For this case, the nonlinearities satisfy the stronger sector con-

dition

φ(u)TW [φ(u) − u] ≤ 0 ∀u ∈ R
m, (2.14)

where W = W T > 0. This generalized sector condition allows the treatment

of coupled nonlinearities common in optimizing control such as the in opti-

mal directionality compensation schemes [7; 8] and the MPC [54]. Details of

such nonlinearities will be discussed subsequently. A special case is when the

nonlinearity is decoupled (i.e. ψi(u) = ψi(ui)) with each component ψi(ui)

inscribed in the sector [0, 1]. In this case, W is also restricted to be diago-

nal. This is the most widely used sector condition in anti-windup literature

(e.g.[15; 21]). In this thesis, we explore the extra freedom in allowing W to be

non-diagonal and its impact on the anti-windup synthesis and performance.

In what follows, we consider some popular examples of static nonlinear op-

erators.
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2.2.1 Saturation and Deadzone

Definition 11. A saturation function sat(.) is defined as

sat(u) =





umax when u > umax,

u when umin ≤ u ≤ umax,

umin when u < umin.

(2.15)

We only consider the case when the saturation is symmetrical i.e. umax > 0

and umin = −umax. The usefulness of this function is that it represents one of

the simplest definitions of saturation that exist in the literature. In addition,

any arbitrary saturation function can be put into the standard normalised

form (umin = −1, umax = 1) by appropriate scalings on the input and output

signals. The ideal deadzone function is defined as

dz(u) =





u− umax when u > umax,

0 when umin ≤ u ≤ umax,

u− umin when u < umin.

(2.16)

The ideal deadzone is a natural complement of the ideal saturation in the

sense that

sat(u) + dz(u) = u. (2.17)

The definitions in (2.15) and (2.16) imply that both functions sat(.) and

dz(.) define bounded operators on L2 and satisfy

‖sat(u)‖2

‖u‖2

≤ 1,
‖dz(u)‖2

‖u‖2

≤ 1 ∀u ∈ L2. (2.18)

We now extend the definition to the multivariable case where u = [u1, · · · , um]T ∈
Lm

2 .

Definition 12 (Multivariable Saturation Function). A memoryless nonlinear

operator Sat(.) : Rm → R
m is said to be a saturation function if

39



1. it is decentralised i.e. Sat(u) = [sat1(u1), · · · , satm(um(t))]T and

2. each component sati(ui) satisfy the definition in (2.15).

Definition 13 (Multivariable Deadzone Function). The deadzone function

Dz : Rm → R
m is defined as

Dz(u) = u− Sat(u) ∀u ∈ R
m, (2.19)

where Dz(.) and Sat(.) are the component-wise multivariable saturation and

deadzone functions defined respectively as

Sat(u) =




sat1(u1)

sat2(u2)
...

satm(u1)




and Dz(u) =




dz1(u1)

dz2(u1)
...

dzm(u1)



. (2.20)

The notations Sat(.) and Dz(.) are used to denote the multivariable sat-

uration and deadzone functions respectively to distinguish them from the

scalar-valued functions sat(.) and dz(.). Note that the operators Sat(.) and

Dz(.) both belong to the sector [0, I] and satisfy the stronger sector condition

(2.14) with diagonal and positive definite W .

2.2.2 Quadratic Program

Definition 14. A Quadratic Program QP is a minimization problem of the

form

v∗ = arg min
v

1

2
vTHv + vTx

subject to Lv ≤ b

and Mv = d

(2.21)
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where H = HT ∈ R
m×m, L ∈ R

n×m and M ∈ R
p×m. The problem is convex

if H ≥ 0. A vector v∗ = (v∗
1, · · · v∗

m) is called optimal, or a solution of the

problem, if it has the smallest objective value among all vectors that satisfy

the constraints. If such a vector exists, the problem is said to be feasible

and v∗ is a feasible solution, otherwise the problem is infeasible. Solving

the QP (2.21) means either finding an optimal v∗ solution if one exists, else

proving that no feasible solution exists or that there is no bounded optimum.

The QP formulations that naturally arise in optimizing anti-windup and

model predictive control takes the form of (2.21). Such QPs have been shown

to satisfy some sector bound conditions [54]. This property is stated in the

following lemma.

Lemma 1 (QP as a Sector Bounded Nonlinearity [54]). Let ψ(x) : Rm → R
m

be given by the quadratic program problem (2.21). If H has full rank and 0

is always feasible, then ψ satisfies

ψ(x)THψ(x) − ψ(x)Tx ≤ 0 ∀x. (2.22)

This is a generalized sector-bound condition and the QP can be represented

as belonging to the sector [0 I] after two linear transformations. Detailed

proof can be found in [54].

Remark 1. The saturation and deadzone functions can be given quadratic

program interpretations. This relationship was explored to generalize stabil-

ity results for Lur’e-type systems to MPC in [55; 56]. Similar observation

has also been made that algebraic loops normally encountered in static anti-

windup synthesis correspond to the solution of a particular class of quadratic

program [57]. These observations as well as the generalized sector-bound re-

sults [54] will be explored further later in this thesis.

Further details on general memoryless nonlinearities may be found in [52; 58]

and [59] for quadratic programs.
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2.3 Linear Matrix Inequalities

Definition 15 (Linear Matrix Inequalities). A linear matrix inequality (LMI)

is an inequality, in the free variables x = (x1, · · · xm) ∈ R
m, that for fixed

symmetric matrices F = (F0, · · ·Fm) with Fi = F T
i ∈ R

n×n has the form

F (x) = F0 +
m∑

i=1

xiFi > 0. (2.23)

F (x) is said to be affine in the decision variables x = (x1, · · ·xm). The

LMI (2.23) is a convex constraint on x. Although the definition (2.23) may

seem restrictive, it can represent a wide variety of convex constraints. In

particular, the matrix constraints or matrix decision variables that arise in

many control applications such as the Lyapunov inequality, can be expressed

in the form (2.23) in terms of its components.

Nonlinear inequalities can be converted to LMI form by using the Shur com-

plements.

Definition 16 (Schur Complements). Let Q(x) = Q(x)T , R(x) = R(x)T

and S(x) depend affinely on x, then LMI


Q(x) S(x)

S(x)T R(x)


 > 0 (2.24)

is equivalent to the matrix inequality

R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0 (2.25)

or equivalently,

Q(x) > 0, R(x) − S(x)TQ(x)−1S(x) > 0. (2.26)

Another property which has found application in the conversion of nonlinear
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inequalities, such as Bilinear Matrix Inequalities (BMIs), to LMIs is congru-

ence transformation.

Definition 17 (Congruence Transformation). Let S ∈ R
n×n and R ∈ R

n×n

be given. Then S and R are said to be congruent, if there exists a non

singular matrix P such that the following relation holds

R = P TSP. (2.27)

Lemma 2 (Congruence Transformation). Given that R ∈ R
n×n and S ∈

R
n×n are congruent and P is non-singular, then

R > 0 if and only if P TRP > 0. (2.28)

Proof. if R > 0, then xTRx > 0 ∀x ∈ R
n x 6= 0. Since R and S are

congruent, there exists a non-singular P such that S = P TRP . Because P is

non singular, we can write y = Px 6= 0 ∀y 6= 0 such that xTRx = yTP TRPy.

Hence R > 0 if and only if P TRP > 0.

In other words, definiteness of a matrix is preserved under congruence trans-

formation. This implies for example, that some rearrangements of matrix

elements do not change the feasible set of an LMI. This property is very use-

ful for eliminating bilinear terms in matrix inequalities that arise sometimes

in control synthesis problems. A useful reference covering the theory of LMI

and its application to control is [60].
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2.4 Fractional Representation of Transfer Func-

tions

In this section, we develop some basic tools based on factorization theory on

rational transfer function which will play an important role in the control

synthesis of this report. A detailed treatment of the topic can be found in

[61; 62; 49; 50]

2.4.1 Coprime Factorization

Definition 18. Two transfer function matrices M ∈ RHm×p
∞ and N ∈

RHn×p
∞ are said to be right coprime if there exist Xr ∈ RHp×m

∞ and Yr ∈
RHp×n

∞ such that

XrM + YrN = I. (2.29)

If in addition, M is both square and invertible in RH∞, and

P = NM−1 (2.30)

for some P ∈ Rn×m
p , then NM−1 is said to be a right coprime factorization

of P .

Similarly, two transfer function matrices M̃ ∈ RHq×n
∞ and Ñ ∈ RHq×m

∞ are

said to be left coprime if there exist Xl ∈ RHn×q
∞ and Yl ∈ RHm×q

∞ such that

M̃Xl + ÑYl = I. (2.31)

If in addition, M̃ is both square and invertible in RH∞, and

P = M̃−1Ñ (2.32)

for some P ∈ Rn×m
p , then M̃−1Ñ is said to be a left coprime factorization
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of P .

Remark 2. Right-coprime factorizations are unique up to right-multiplication

by a unit in RH∞ (A transfer function matrix Q is a unit in RHp×p
∞ if

Q,Q−1 ∈ RHp×p
∞ ). If P = NM−1 is a right-coprime factorization , then

P =
{
NQ−1

}{
MQ−1

}−1
(2.33)

is also a right-coprime factorization. Furthermore, all real rational right-

coprime factorizations of P can be generated from any given right coprime

factorization in this way. Similarly, left-coprime factorizations are unique up

to left-multiplication by a unit in RHq×q
∞ .

2.4.2 Inner-Outer Factorization

Definition 19. A transfer function Gi is called inner if Gi ∈ RHn×p
∞ and

Gi(jw)∗Gi(jw) = I, for all w. If in addition Gi is square, then Gi is said

to be all-pass. Similarly, Go ∈ RHp×m
∞ is outer if, Go has a full row rank

∀ Re s > 0 (or if its transmission zero is inside the unit disk for discrete

equivalent). If for some G ∈ RHn×m
∞ , G = GiGo is said to be inner-outer

factorization of G if Gi is inner and Go is outer.

The adjective “inner Gi” indicates that all the zeros of Gi lie inside the right

half-plane while “outer Go” indicates that Go has all its zeros outside the

right half-plane. Note that Gi inner implies that Gi is a tall matrix (has

at least as many rows as columns) and Go outer implies that Go is a wide

matrix (has at least as many columns as rows). A useful property of an inner

matrix is that it preserves inner product

〈Gif,Gig〉 = 〈f, g〉 ∀ f, g ∈ Lp
2. (2.34)
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It follows that Gi preserves norm

‖Giv‖2 = ‖v‖2 ∀v ∈ Lp
2. (2.35)

Remark 3. It is well known that every transfer function matrix in RH∞

has an inner-outer factorization [61]. An inner matrix is unique up to pre-

multiplication by a unit in RH∞.

2.5 Uncertainty Descriptions

Figure 2.1: General plant uncertainty description

We consider the general framework of Fig. 2.1 where G̃ is the generalized

plant which includes both the nominal plant G22 and the interconnection

structure specifying how uncertainty enters the plant. G̃ and ∆ are con-

sidered as bounded operators on L2[0,∞). G̃ maps [qT∆, u
T ]T to [pT∆, y

T ]T

according to


p∆

y


 =

G̃︷ ︸︸ ︷
G11 G12

G21 G22




q∆

u




q∆ = ∆p∆.

(2.36)

Assuming that (I − G11∆)−1 is non-singular, the map from v to y is given

by

y = [G22 +G21∆(I −G11∆)−1G12]v. (2.37)
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In general, ∆ is not known exactly. We however restrict discussion to ∆ ⊂ ∆

where ∆ is a set of bounded linear operators on L2. A number of uncertainty

descriptions can be put into the general form of Fig. 2.1 by simply choosing

the form of the operator G and the uncertainty set ∆. These are usually

classified as unstructured and structured uncertainty descriptions.

2.5.1 Unstructured Uncertainties

We consider first, the unstructured uncertainty class where the set ∆ is the

unit ball in operator space i.e.

∆ = {∆ ∈ RH∞ : ‖∆‖∞ ≤ 1} . (2.38)

The most common unstructured uncertainty descriptions are the additive and

the multiplicative uncertainties. These uncertainty descriptions are suited for

representing high-frequency errors arising from unmodeled dynamics, reso-

nance, parasitic coupling or a host of other unspecified effects. Others are

the inverse multiplicative and matrix fractional uncertainties. Inverse multi-

plicative uncertainty is used to characterize errors arising from low-frequency

parametric uncertainty while the coprime-factor uncertainty description pro-

vides for the combination of multiplicative and inverse multiplicative un-

certainties in one framework and for dealing with the cross-over from low-

frequency to high-frequency errors.

The additive uncertainty description [G = G22 +W1∆W2] or the input mul-

tiplicative uncertainty [G = G22(I +W1∆W2)] description can be put into

the general form of Fig. 2.1 by setting

G̃ =


 0 W2

W1 G22


 or G̃ =


 0 W2

G22W1 G22


 (2.39)

respectively. Here W1 and W2 are frequency dependent stable transfer func-

tions or weightings.
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Similarly, right coprime-factor uncertainty [G = (N + ∆N)(M + ∆M)−1] can

be obtained by setting

G̃ =


0 −M−1 M−1

I −NM−1 NM−1


 (2.40)

where the nominal plant is expressed as the right coprime-factor G22 =

NM−1 and ∆ =


 ∆N

∆M


. Similar expressions can be obtained for the left

coprime-factor uncertainty.

2.5.2 Structured Uncertainties

Sometimes, it is beneficial to impose additional structure on the perturbation

set ∆, in addition to a norm bound. The interconnection in Fig. 2.1 can be

chosen so that ∆ is block diagonal and such that it takes the form

∆ = {diag(∆1, · · · ,∆k) with ∆i ∈ RH∞ : ‖∆i‖∞ ≤ 1} . (2.41)

For example, suppose we choose

G̃ =




0 −M−1 M−1

0 −M−1 M−1

I −NM−1 NM−1


 (2.42)

in the general form of Fig. 2.1. Then we have again the right coprime factor

description. Note that we have imposed additional structure on ∆ than in

the unstructured representation in section 2.5.1 above. Here, ∆ takes the

form 
∆N 0

0 ∆M




with p∆ and q∆ appropriately partitioned. This is an example of structured

uncertainty description.

48



The discussion here is by no means exhaustive, extensive treatment can be

found be in [49; 50; 63].

2.6 Integral Quadratic Constraints

Definition 20 (Integral Quadratic Constraints [64; 65]). A bounded opera-

tor ∆ : Lm
2 → Lm

2 is said to satisfy the Integral Quadratic Constraints (IQC)

defined a bounded and self-adjoint operator Π or simply ∆ ∈ IQC(Π) if the

following inequalities holds

〈
u
v


 ,Π


u
v



〉

≥ 0 ∀ v = ∆(u), u ∈ Lm
2 . (2.43)

In principle, the operator Π can be any measurable hermitian valued function

Π(jw) : jR → C
2m×2m satisfying Π(jw) = Π∗(jw) ∀w.

If ∆ has the block-diagonal structure ∆ = diag[∆1,∆2] and ∆i satisfies the

IQC defined by

Πi =


Πi(11) Πi(12)

Π∗
i(12) Πi(22)


 for i = 1, 2

then, the diagonal operator ∆ satisfies the IQC defined by

Π =




Π1(11) Π1(12)

Π2(11) Π2(12)

Π∗
1(12) Π2(22)

Π∗
2(12) Π2(22)




(2.44)

where (2.44) represents the diagonal augmentation of the operators Πi, i =

1, 2.

The theory of IQCs has recently received prominent attention in robust con-

trol. Many classical robust control tools and concepts such as small gain,
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passivity, circle criterion, Popov’s criterion and Zames-Falb multiplier can

be conveniently expressed by IQCs. The IQC theory also provides a frame-

work for combining plant uncertainties and nonlinearities for both robust

analysis and synthesis. Detailed discussions on the theory of IQCs can be

found in [64; 65; 50].
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Chapter 3

Internal Model Control and

Anti-windup

3.1 Introduction

Internal Model Control (IMC) is an attractive control design strategy for in-

herently stable plants [19; 2]. It provides an open-loop framework for checking

closed-loop stability and also highlights the inherent performance limitations

due to model uncertainties, non-minimum phase plant characteristics and ac-

tuator constraints. It offers intuitive tuning for robustness via a simple filter

structure which can be given physical interpretations. However for saturat-

ing systems, the internal model control structure has received much criticism

for its poor performance [39; 2; 34; 4]. Although closed-loop nominal stabil-

ity can be guaranteed in certain situations, the nonlinear performance may

be excessively sluggish especially when the plant has lightly damped modes,

slow dynamics or non-minimum phase zeros [6]. This closed-loop perfor-

mance degradation is not surprising as the original internal model control

structure was never intended as an anti-windup scheme. However, several

authors have considered various enhancements of the standard IMC, includ-
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ing predictive elements [66; 67], anti-windup capability [6; 2; 33] and online

optimization for coordinating actuators subject to constraints [9; 68]. In this

chapter, we provide a brief review of the IMC structure evolution. We also

introduce the concept of modern anti-windup architectures where the IMC

structure arises as a special case.

For subsequent discussions, we consider a class of stable and linear systems

described by

y = Gu+ d (3.1)

where G is a rational transfer function matrix and y, d ∈ Lp, u ∈ Lm are

the Laplace transform (or discrete equivalent, Z-transform) of the output

signal y(t), the manipulated input signal u(t) and the output disturbance

d(t) signal respectively. In this chapter we assume G is known. The nominal

unconstrained linear controller denoted as K (for error feedback controller)

or Q (for internal model controller) is assumed to have been designed to

meet some acceptable nominal stability and performance criteria. The plant

is subject to control input saturations described in Def. 12. In general, the

treatment is developed such that it can be applied for both continuous and

discrete time cases. Thus the equations will not specify the domain unless

it is necessary. For compactness of expressions, we will also not differentiate

between a signal and its Laplace (or Z-) transform counterparts except when

it becomes necessary to make such a distinction.

3.2 The Internal Model Control Structure Evo-

lution

The standard internal model control (IMC) structure introduced in [22] is

illustrated in Fig. 3.1 where G,G22 and Q denote the plant, the model of

the plant and the IMC controller respectively. The design of Q for optimal

performance and robustness is well discussed in the literature [19; 2]. With
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Figure 3.1: The standard IMC structure

Figure 3.2: The IMC structure with saturating actuator without anti-windup

Figure 3.3: The conventional IMC anti-windup structure

Figure 3.4: The modified IMC anti-windup structure
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the assumption of perfect model i.e. G = G22, the closed loop equations are

given by

u = Q (r − d)

y = GQr + (I −GQ) d.
(3.2)

The stability of G and Q guarantees nominal stability of the unsaturated

closed loop system [19]. However, for saturating system where the actual

plant input is v(t) = sat(u(t)), the standard IMC implementation of Fig 3.2

can lead to significant performance degradation and nominal stability is no

longer guaranteed [19]. In this case, the plant and the model are driven by

different inputs. The resultant model-plant mismatch is shown in the closed

loop equation (3.3).

u = Q (r − d) +QG(u− v). (3.3)

A first step towards avoiding the state mismatch between the plant and the

model is the conventional IMC anti-windup structure of Fig. 3.3 [19; 2].

Although closed loop nominal stability is guaranteed when there is no model

mismatch, the nonlinear performance may be excessively sluggish especially

when the plant has lightly damped modes, slow dynamics or non-minimum

phase zeros [6]. This closed-loop performance degradation is not surprising

as the saturation effect on the plant output is not fed back directly to the

controller. The closed loop equation (3.4) shows that the controller only

acts on the error between the reference signal r and the output disturbance

estimate d̃.

u = Q
(
r − d̃

)

y = Gv + d.
(3.4)

One way of achieving a graceful performance degradation for saturating sys-

tems is by using the modified IMC anti-windup structure of Fig. 3.4 [2]. The
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unsaturated controller Q is factorized as

Q = (I +Q2)
−1Q1 (3.5)

such that Q2 is strictly proper and in feedback interconnection with the non-

linearity. It is also important that there are no unstable pole-zero cancella-

tions between the factors Q1 and (I+Q2)
−1. This is necessary for the internal

stability of the closed-loop system. Assuming no plant-model mismatch, the

closed loop equations are given by

u = Q1 (r − d) −Q2v

y = Gv + d.
(3.6)

Here, the controller not only acts on the error between the reference signal

and the output disturbance but it is also fed directly with information on

the saturating control actions. When the system is away from saturation

(i.e. v = u), equation (3.6) reduces to the closed loop equations for the

implementation in Fig. 3.1. For a given Q, there are different ways of

assigning Q1 and Q2. It is imperative that appropriate choices are made to

achieve a good nonlinear performance while ensuring stability. The following

cases of controller factorizations ofQ are discussed in the literature [2; 7; 9; 1].

Option 1. Q1 = Q(∞), where Q(∞) = lim
s→∞

Q (s) or lim
z→∞

Q (z).

This factorization was proposed in [1]. The performance in this case can be

greatly improved, but stability of the closed-loop system is not guaranteed.

This choice cannot be used directly if Q is non-minimum phase. If Q is

non-minimum phase and Q1 is chosen as Q(∞), then Q2 must be unstable.

A naive application may result in closed-loop instability. For strictly proper

plants, this choice corresponds to the Hanus conditioning techniques [69; 2; 7].

Consider the classical unity feedback system of Fig. 3.5 where K1 and K2 are
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assigned based on the Hanus conditioning as

K1 = K(∞) (3.7)

K2 = K1K
−1 − I (3.8)

and K is the classical feedback controller. The equivalence of the factoriza-

tion in the modified IMC structure of Fig. 3.4 and the classical feedback sys-

tem of Fig. 3.5 can be established by assigningK1 = Q1 andK2 = Q2−Q1G22

where K and Q are related by K = Q(I −G22Q)−1. It also follows that if

G22 is strictly proper, then K(∞) = Q(∞). The performance for this choice

may suffer when K(∞) or Q(∞) is not diagonal.

Figure 3.5: The classic feedback control structure with anti-windup

Option 2. Q1 = ΛQ+ (I − Λ)Q (∞).

Here, Λ = λI is a diagonal weighting matrix and λ ∈ [0, 1]. The choice of

λ = 1 results in the conventional IMC structure(Q2 = 0, Q1 = Q) which

chops off the control input resulting in performance deterioration (sluggish

response) but nominal stability is guaranteed [19; 6]. On the other hand,

the choice of λ = 0 corresponds to the factorization proposed in [1] where

Q1 = Q(∞) and Q2 = Q1Q
−1 − I. The performance in this case is often

improved, but nominal stability of the closed-loop system is not necessarily

guaranteed. A trade-off between performance and stability can therefore be

achieved by appropriate choice of λ, provided Q is minimum phase [2].

Option 3. Q1 = fAGQ.

Here, fA is a non-causal filter that must be chosen such that fAGQ is minimum

phase and fAG|s=∞ or fAG|z=∞ is I. This is the factorization proposed in [2]
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where fA is such that Q1 solves implicitly an optimization problem. Similar

factorization was suggested in [43] as an extension of the Hanus conditioning

technique in the context of discrete-time systems. It should be noted that

the choice fA = G−1 is equivalent to choosing λ = 1 in option 2 above.

Although the factorization options 2 and 3 provide useful ways of parame-

terizing the IMC anti-windup, they could be quite restrictive. The design of

fA is based on intuition and may require a modification to the plant model

to achieve a decoupled response for directional plants [2; 43]. On the other

hand, parametrization in terms λ reduces the anti-windup design to a line

search over the interval [0, 1] while imposing the stability and the perfor-

mance constraints. This search space is very limited. Moreover, the choice

λ = 0 does not represent an extreme choice for the maximum achievable

nonlinear performance. A more systematic way of parameterizing the IMC

anti-windup can be achieved via the coprime factorization of the nominal

plant or the nominal controller. In this case, the IMC anti-windup design

can be reduced to a convex search over the space of all the right coprime

factors of the linear plant [34; 21] or its dual space of all the left coprime

factors of nominal feedback controller [35; 36; 5]. This option is pursued

further throughout this thesis.

Figure 3.6: The complete IMC anti-windup structure

For the sake of generality, we consider the complete IMC anti-windup struc-

ture Fig. 3.6. This structure extends the two-degree of freedom internal

model control [19; 35] to the anti-windup design problem. The extra degree

of freedom is introduced through the inclusion of the disturbance rejection

filter Q3. This configuration has the advantage that the anti-windup com-
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pensation, disturbance rejection and servo-tracking can be designed quasi-

independently [70; 33]. The structure is particularly superior to the modified

IMC structure when the reference signal r and the disturbance signal d have

different dynamic characteristics or when the plant has significant time de-

lays. For the latter case, the disturbance filter Q3 often takes the form of

a predictor [66; 31; 67] that projects the disturbance estimate d̃ forward in

time to compensate for any dead-time characteristics at the plant output.

Detailed treatment of the different design choices for Q3 is discussed in [67].

The anti-windup plus delay compensation scheme of [71] may also be inter-

preted in the complete IMC framework of Fig. 3.6. For the linear case and

assuming no modeling errors, the closed-loop equation of the complete IMC

structure reduces to

u = Q(r −Q3d)

y = GQr + (I −GQQ3)d.
(3.9)

The extra design choice may be used to design Q3 such that the adverse

effect of unmeasured disturbance on closed-loop performance is attenuated.

It also follows from (3.9) that the stability of the closed-loop is guaranteed

if the nominal plant G, the nominal IMC controller Q and the disturbance

filter Q3 are all stable.

For the constrained case, the closed-loop equations reduce to

u = Q1(r −Q3d) −Q2v

y = Gv + d

v = Sat(u).

(3.10)

The closed-loop is stable provided all the elements G, Q1, Q2, Q3 as well

as the nonlinear loop (the feedback interconnection of the saturation nonlin-

earity and Q2) are stable. Note that setting the disturbance filter Q3 = I

recovers the modified IMC structure of Fig. 3.4. If in addition, we have

Q1 = Q and Q2 = 0, then the conventional IMC structure of Fig. 3.3 is

recovered.
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In this thesis, we will not explore the design parameter Q3 as the inclusion

of such an independent dynamic will lead to an overall controller of higher

order than the plant. This may also results in control implementation issues.

Since the linear or nominal system is already assumed to be well-designed in

the sense that the closed loop has acceptance performance for unsaturated

control inputs, we will only focus on anti-windup compensation design for

saturating systems. Hence, we will only consider the design parameters Q1

and Q2 and assume that Q3 = I.

We now consider an example to illustrate the effects of the different IMC con-

troller factorizations on the nonlinear performance of an input-constrained

multivariable system.

Example 1. Consider the following example taken from [2] where

G(s) =
10

100s+ 1


 4 −5

−3 4


 (3.11)

with |ui| ≤ 1, i = 1, 2 and a step reference input of [0.63 0.79]T .

The classical IMC controller design for a step input is

Q(s) =
100s+ 1

10(20s+ 1)


4 5

3 4


 (3.12)

and the corresponding unity feedback controller is

K(s) =
100s+ 1

200s


4 5

3 4


 (3.13)

Following the development in [2], the plant model is slightly modified as

G̃(s) =
10

100s+ 1


 4 −5

0.1s+1
−3

0.1s+1
4


 (3.14)

in order to satisfy the requirement of fAG(s)|s=∞ = I. The non-causal filter

fA is then designed for G̃(s) such that fAG̃(s)|s=∞ = I where fA = 2.5(s+1)I.
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The factorization of Q(s) is obtained as Q1 = fAG̃Q.

Fig. 3.7 shows the plant output responses for the unsaturated standard IMC,

the saturated standard IMC without anti-windup and the conventional IMC

anti-windup structures. This illustrate the performance degradation due to

problems of control windup associated with input constrained MIMO plants.

Fig. 3.8 shows the plant responses when the modified IMC structure is used

with the different factorizations for Q in options 1 through 3. In this exam-

ple, it happens that Q(∞) = K(∞) and thus the resulting plant responses

using the factorization schemes of [69] and [1] are the same. The factoriza-

tion option 3 [2] gives the best performance. This scheme will be used as

benchmark for comparing other anti-windup methodologies to be discussed

subsequently in this thesis.
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(b) Plant output response y(2)

Figure 3.7: Example 1-Plant output responses: solid- unsaturated IMC,
dashed- saturated IMC and dashdot-conventional IMC anti-windup scheme
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(b) Plant output response y(2)

Figure 3.8: Example 1-Plant output responses for different Q factorizations:
solid- unsaturated IMC, dotted- Option 1, dashdot-Option 2 with λ = 0.7
and dashed-Option 3

3.3 Internal Model Control Design for Non-

minimum Phase Systems

The anti-windup IMC structure in figure 3.4 is problematic when the IMC

controller is non-minimum phase. Consider the factorization of Q into Q1

and Q2 where we require

Q = (I +Q2)
−1Q1. (3.15)

If we choose Q1 based on option 2 above i.e. Q1 = λQ+ (I − λI)Q (∞),

then Q2 = λ(Q (∞)Q−1 − I). It follows that if Q is non-minimum phase, Q2

is unstable for λ 6= 0.

Therefore, for a non-minimum phase multivariable plant G, it is desirable to

an IMC controller such that Q is both biproper and minimum phase. The

recommended IMC design technique is to factorize the plant into an all-pass

part G+ and a minimum phase part G− as

G = G+G− (3.16)
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where G+ contains all the non-minimum characteristics of G. The IMC

controller is then obtained as

Q = G−1
− f (3.17)

where f is a low pass diagonal filter. There are generally different methods for

achieving the factorization in (3.16). We present a brief overview of different

factorization algorithms in the literature [72; 23; 19; 73].

Method 1. Dynamic decoupling [72]. The discrete-time equivalent is pre-

sented in [23; 19]. In this method, the system is factorized into all-pass and

minimum phase part as

G+(s) = diag





k∏

i=1

− 1
ρi
s+ 1

1
ρi
s+ 1

, · · · ,
k∏

i=1

− 1
ρi
s+ 1

1
ρi
s+ 1



 (3.18)

where ρi (i = 1, . . . , k) are the non-minimum zeros of G(s). The IMC con-

troller is then obtained as Q = G−1G+f. This method generally leads to the

introduction of RHP zeros not originally present in the system G(s) [19] and

hence the resulting Q may be non-minimum phase.

Method 2. Interactive IMC Control [72; 23]. Suppose the square system

G(s) has only one RHP zero ρ, the effect of the RHP zero can be shifted to

one output considered to be of least importance. This is usually achieved

by choosing a triangular structure for G+. Consider a two-input two-output

system, shifting the effect of the RHP zero to the first output results in the

following lower triangular factorization

GL.T
+ (s) =




1 0

αs
1
ρi
s+1

− 1
ρi
s+1

1
ρi
s+1


 . (3.19)

An upper triangular factorization results when the effect of the RHP zero is
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shifted to the second output as

GU.T
+ (s) =




− 1
ρi
s+1

1
ρi
s+1

βs
1
ρi
s+1

0 1


 . (3.20)

The off-diagonal factors α and β are computed as follows (see [72] for detailed

discussions)

α =
−2ĝj1(ρ)

ρĝj2(ρ)
for arbitrary j

β =
−2ĝj2(ρ)

ρĝj1(ρ)

where ĝji represents the (j, i) elements of the inverse of G(s).

A similar triangular structure for G+ can be obtained by using the concept

of the generalized interactor matrices [74]. The idea of controller interac-

tor matrices has also been used in the conditioning anti-windup design for

feedback controllers with non-minimum characteristics [75; 7].

Method 3. IMC design based on reduced order of the model after Wang

et al [76]. Here, a model reduction algorithm is used to find a second-order

rational transfer function plus dead-time model. The aim is that this model

should be a good approximation to the controller. For example, the reduced

order for det(G), the determinant of G, is represented as

det(G̃) =
b2s

2 + b1s+G(0)

a2s2 + a1s+ 1
e−Ls (3.21)

where L is an unknown time delay and its obtained by minimizing the error

between det(G) and det(G̃) over all possible range of L. The original literature

contains algorithm for obtaining L.

The desired decoupled closed loop response is obtained asH(s) = diag{hii(s)}
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with

hii(s) = e−(τ(det(G̃))−τi)s
∏

ρǫZ+

det(G̃)

(
ρ− s

ρ+ s
)ηz(det(G̃(s)))−ηi(z)fi(s)

τi = min
j|Gij 6=0

τ(Gij)

ηi(z) = min
j|Gij 6=0

ηz(G
ij)

where fi(s) is the ith loop IMC filter, adj (G) = [Gji], τ(.) is the time delay

of (.), ηz(.) is the number of non-minimum zeros of (.) and Z+
det(G̃)

is the set

of unstable zeros of (.).

The IMC controller can be obtained as

Qii =
Gii

detG̃
hii (3.22)

Qji =
Gij

detG̃
hii ∀i, j (j 6= i). (3.23)

As illustrated in [73], this method is most useful for plants with multiple

time delays but at the expense of introducing time delays and non-minimum

phase zeros in the IMC controller. Hence, it is problematic for anti-windup

design.

Method 4. All-Pass factorization in terms of Blaschke products [77; 49].

Consider the square system G(s) with ρi (i = 1, . . . , k) RHP zeros and as-

sociated input and output zero directions ηi and ξi, respectively. Then G(s)

can be factored as

G(s) = G−(s)Bk(s) · · · B1(s) (3.24)

where G−(s) is the minimum phase factor and Bi(s) corresponds to the all-

pass factor associated with ρi. Bk(s) · · · B1(s), known as the Blaschke prod-

ucts [77] and G−(s) are given as

Bi(s) = I − 2Re(ρi)

s+ ρ̄i
ηiη

∗
i (3.25)

G− = C(sI − A)−1B(k) +D. (3.26)
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The Bk(s) is computed from the following iterative procedure starting with

B(0) = B

B(i) = B(i−1) − 2Re(ρi)ξiη
∗
i for i = 1, · · · , k.

This factorization scheme is applicable to strictly proper systems (i.e. plants

having the feedthrough term D = 0) and does not introduce non-minimum

phase zeros into the IMC controller (3.17).

Method 5. Inner-Outer Factorization.

Any rational proper system G(s) can be factorized as

G(s) = GiGo (3.27)

where Gi is inner i.e. Gi(jw)∗Gi(jw) = I, for all w and Go is outer i.e. Go is

stable and minimum phase. Numerical procedures exist in the literature (e.g.

[19; 49; 78]) for obtaining the state space realizations for the factorization in

(3.27). A particular inner-outer factorization algorithm is given as follows.

Inner-Outer Factorization Algorithm [19]

Let G ∈ RH∞ be bi-proper with no zeros on the imaginary axis and

with a minimal state-space realization

G =


 A B

C D


 . (3.28)

Then, a particular inner-outer factorization of G is given by

Gi =


 A+BR−1Fo BR−1

C + QFo Q


 , Go =


 A B

−Fo R


 (3.29)

where Fo is chosen according to Fo = −(QTC+ (BR−1)TX) with X as

the stabilizing solution of the algebraic Riccati equation

(A−BR−1QTC)TX+X(A−BR−1QTC)−X(BR−1)(BR−1)TX = 0,

D = QR is the QR factorization of D into an orthogonal matrix Q
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(QTQ = I) and an upper triangular matrix R.

Compared with (3.16), G+ = Gi and G−(s) = Go. This implies that the

IMC controller (3.17) obtained through this scheme is minimum phase. The

inner-outer factorization algorithm above requires G to be bi-proper. If G

is strictly proper (i.e. D = 0), a common practice is to set D = ǫI where

ǫ is chosen small to obtain a satisfactory result. IMC control design based

on this scheme has successfully been applied to the quadruple coupled-tank

system (e.g. [79]).

In summary, it is desirable in standard anti-windup designs for internal model

control that the nominal IMC controller be minimum phase. However, de-

signing a minimum-phase IMC controller for plants with non-minimum phase

zeros may demand that certain level of interactions be tolerated in the closed

loop response. The all-pass based factorization methods 4 and 5 discussed

above provide means for achieving this compromise. In particular, the inner-

outer factorization scheme will be further exploited for the design of multi-

variable IMC anti-windup control for non-minimum phase systems.

3.4 Anti-windup Design Methods: A Study

of Structure and Configurations

The underlying principle of anti-windup schemes for linear systems with sat-

urating actuators is to provide a mechanism for modifying the control during

saturation so as to account for the detrimental effects of input nonlinearities.

The aim of such modifications is mainly to recover as much as possible the lin-

ear performance or to provide graceful performance degradation when there

are actuator saturations. In the early anti-windup compensation schemes,

modifications of the control were usually carried out in an ad-hoc fashion

and based on intuition. These early schemes (see [35; 32] for a survey) pro-
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vide problem-specific solutions to the anti-windup design challenge and often

lack a rigorous theoretical basis as well as stability and performance guar-

antees. There have been attempts to unify these primitive schemes into a

general framework suitable for stability analysis [35; 32; 14]. Recently, new

anti-windup designs results have appeared in the literature which provide

rigorous stability analysis and performance guarantees [80; 34; 5; 15; 16; 21].

These generally fall into the class of anti-windup [18] where the anti-windup

design problem is reduced to linear matrix inequalities (LMI) formulation of

convex optimization problem. Some of these modern anti-windup schemes

are discussed within the general anti-windup framework of Fig. 3.9.

Figure 3.9: The general anti-windup framework

Let the nominal or unconstrained control have the following state-space re-

alization

K ∼
ẋk = Akxk +Bww +Byy

u = Ckxk +Dww +Dyy,

then the compensated or augmented controller K in Fig. 3.9 can be expressed

as

K ∼
ẋk = Akxk +Bww +Byy +Bξ2ξ2

u = Ckxk +Dww +Dyy +Dξ2ξ2 − ξ1.
(3.30)

In this general framework, the difference between the unsaturated control u
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and the saturated control v is fed through a compensating filter Λ to generate

the two conditioning signals ξ1 and ξ2. The input w denotes the exogenous

signals which may include the reference signal, the disturbance signal and

the effects of measurement noise while z is the performance signal to which

a performance criterion is usually associated. Typically, the performance is

specified in terms of the minimization of some L2 gain from the exogenous

input w to the performance output z [5; 15]. Other performance specifications

have been adopted depending on the goal of the anti-windup design [36; 16;

81; 46].

The anti-windup design problem then reduces to the problem of finding ap-

propriate control modifications such that a) the nominal closed-loop remains

unmodified if there are no input saturations b) the closed-loop stability is

ensured during control input saturations; c) the nonlinear performance dur-

ing saturations is optimized by minimizing appropriate performance crite-

rion; and d) the linear performance (which is assumed desirable) is recovered

swiftly after a period of saturation. These anti-windup design objectives were

first formalized in [37].

Many of the existing anti-windup appear as special cases of the general anti-

windup framework of Fig. 3.9 depending on the choice of the filter Λ and on

how the conditioning signals ξ1, ξ2 are injected into the linear control. There

are following cases;

Full Authority Anti-windup In this case, the anti-windup compensator

can inject signals directly to the states and to the output of the pre-

designed linear controller. This corresponds to setting Bξ2 = I and

Dξ2 = 0 in (3.30). This configuration characterizes most of the early

classical anti-windup schemes which were unified into the coprime-

factorization framework [35]. The full authority configuration was also

employed in [5; 15] and incorporating robustness in [82] to develop

LMI-based synthesis procedure with global stability and performance

guarantees.
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External Anti-windup Here, the anti-windup compensator can only af-

fect both or either of the input or the output of the linear controller.

This corresponds to setting Bξ2 = By and Dξ2 = Dy in (3.30). This

is a stricter condition as the anti-windup compensation can no longer

directly modify the states of the unconstrained controller. This situa-

tion naturally arise when anti-windup compensator is to be retrofitted

into an existing embedded control application or where the controller

in implemented using analogue hardware (e.g. [83]).

Static Anti-windup For static anti-windup schemes, Λ is taken to be con-

stant gain which must be synthesized such that the linear controller is

conditioned during saturations while guaranteeing closed loop stability.

The compensating filter Λ in Fig. 3.9 assumes the following form

ξ =


ξ1

ξ2


 =


Λ1

Λ2


 ũ. (3.31)

The first attempt at synthesizing a globally stabilizing anti-windup

compensation with guaranteed performance level employed the static

anti-windup configuration [80; 5].

Dynamic Anti-windup Here, Λ is taken to be a linear and time-invariant

filter which modifies the system behavior during saturations and it

is such that the linear performance is recovered as fast as possible.

Including the dynamics, the compensating filter assumes the following

form

Λ ∼
ẋaw = Λaxaw + Λbũ

ξ = Λcxaw + Λdũ.
(3.32)

Popular dynamic anti-windup schemes [6; 2; 3; 38; 33] may also in-

terpreted using the generic anti-windup configuration [14]. When the

order of the filter (3.32) is equal to the order of the plant, the anti-

windup compensation is referred to as full-order dynamic anti-windup

compensation. Anti-windup compensations with order less than the
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order of the plant have also appeared in the literature [16; 84]. These

are generally referred to as low-order anti-windup

We now consider the coprime-factorization parametrization of anti-windup

schemes and how it relates to the internal model control-based anti-windup

structures [6; 2].

3.4.1 Coprime-Factor based Anti-windup Schemes

For the subsequent discussion, we consider the one-degree of freedom nominal

controller represented as

K ∼

 Ak Bk

Ck Dk


 .

We assume that the nominal controller K stabilizes the plant G. Since the

plant G is also assumed stable, we can write [77]

Q = K(I +GK)−1 = (I +KG)−1K (3.33)

where Q is the stable internal model controller. This assumption follows the

design approach of modern anti-windup schemes where the nominal controller

is assumed to have been designed to induce desirable properties including

nominal stability and performance (see e.g. [16; 21]). In what follows, we

establish the link between the coprime-factor based anti-windup parameter-

izations and the modified internal model control anti-windup structure.

3.4.1.1 Left-Coprime factor based Anti-windup parametrization

Using the static configuration corresponding to (3.31), Kothare et al [35]

parametrize almost all existing linear anti-windup controllers in terms of the
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Figure 3.10: Anti-windup framework based on left-coprime factorization

left-coprime factorization of the nominal controller K = V −1U where U and

V have the following state-space representations

[
V U

]
=


 Ak + J1Ck J1 Bk + J1Dk

J2Ck J2 J2Dk


 (3.34)

J1 = −Λ1(I + Λ2)
−1 (3.35)

J2 = (I + Λ2)
−1. (3.36)

Here, J1 is to be designed such that Ak+J1Ck is stable and J2 is non-singular.

The design parameter J1 can be assigned almost arbitrarily provided the pair

(Ck, Ak) is observable. The resultant anti-windup system is represented in

Fig. 3.10 where the compensated controller is given by K = [I − V U ] and

the closed-loop equation is

u = Ue− (V − I)v. (3.37)

Comparing this with the closed-loop equation for the modified IMC anti-

windup where

u = Q1e− (Q2 −Q1G)v, (3.38)

we have that Q1 = U and Q2 = V −1(I+KG)−I. Substituting for (I+KG)

in the second term using the relation in (3.33), we have following equivalence

Q1 = U

Q2 = UQ−1 − I.
(3.39)
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A generalization of the static anti-windup configuration [35] was proposed in

[36] which permits a dynamic anti-windup compensation. Given an initial

arbitrary left-coprime factorization of the nominal controller K = V −1U , the

anti-windup design problem is reduced to finding a free parameter R such

that the compensated controller is given by K = [I − Ṽ Ũ ] with

Ũ = RU

Ṽ = RV
(3.40)

where R is a unimodular transfer function matrix (i.e R is a stable unit and

has a stable inverse R−1). This parameterization extends the fixed-order

left-coprime factorization of [35] to all possible coprime factorizations of the

controller. This extra degree of freedom allowed the anti-windup design

problem to be formulated in the H∞ design framework [36]. The downside

however, is that the order of the extra parameter R is appended to the order

of the linear controller to give the order of the augmented controller. This

could lead to a significant increase in the overall controller order with its

associated implementation issues. This parameterization was extended to

incorporate uncertain plants in [85].

3.4.1.2 Right-Coprime factor based Anti-windup parametrization

Figure 3.11: Anti-windup framework based on right coprime factorization

An anti-windup structure introduced in [34] is shown in Fig. 3.11. This

structure corresponds to the external anti-windup configuration where most
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of the existing linear anti-windup schemes are interpreted in terms of a linear

dynamic filter M . The filter M is designed independently of the nominal

controller such that desired closed-loop nonlinear characteristics are induced.

Among the different design choices available for M , it has been shown that

a suitable choice is based on the coprime-factor of the nominal plant G [81].

Writing the closed-loop equation for Fig. 3.11 gives

u = (M +KGM)−1Ke− [(M +KGM)−1 − I]v (3.41)

where e is the error between the reference signal r and the plant output

y. Comparing with the modified IMC structure of Fig. 3.3 with closed-loop

equation (3.38), we have the following equivalence

Q1 = M−1Q

Q2 = M−1 − I.
(3.42)

It follows trivially that when M = I, the anti-windup structure of Fig. 3.11

recovers the conventional IMC structure of Fig. 3.3 whereQ1 = Q and Q2 = 0

[6]. Typically, M is chosen as part of the right coprime factorization of the

plant G = NM−1 (e.g. [16]) with


M
N


 =




A+BF B

F I

C +DF D


E (3.43)

where F is such that A + BF is Hurwitz and E is a non-singular constant

matrix.

If we choose the left-coprime factorization of the nominal controller K =

V −1U and the right-coprime factorization of the nominal plant G = NM−1

such that the following Bezout identity is satisfied

VM + UN = I, (3.44)

then the two coprime-factorization based anti-windup parameterizations of
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[35] and [34] are equivalent. It is desirable, but not necessary, to have the

design parameters J2 and E to be identity so as to eliminate algebraic-loops

in the controller implementation. The design freedom of choosing E 6= I

has recently been investigated in [86] and exploited in [81; 45]. Special prop-

erties such as inner N (i.e. N(jw)∗N(jw) = I, ∀w) can also be obtained

by choosing F and E appropriately. Such properties may prove very useful

when designing IMC-based anti-windup compensator for systems with non-

minimum phase characteristics as will be discussed in the chapter 4. A similar

anti-windup parameterization to that of the modified IMC in (3.42) is the

Youla parameterization based anti-windup configuration [87; 88]. The IMC

anti-windup design of [2] may also be interpreted in terms of the parametriza-

tion of (3.42) where the non-causal filter fA is now chosen as fA = N−1. This

interpretation provides insights into the design of the filter fA which was not

clear in [2] except that it satisfies some technical conditions.

From (3.39) and (3.42), we can see that the modified IMC anti-windup de-

sign can be interpreted as choosing a particular left-coprime factorization of

the nominal controller K or a particular right-coprime factorization of the

nominal plant G.

3.5 Summary

We have shown the inherent anti-windup characteristics of the internal model

control structures. The link between the IMC anti-windup design and the

coprime-factor based anti-windup schemes allows the parameterization of all

existing linear anti-windup schemes for stable plants in terms of the internal

model controller. This parametrization provides a way for extending the

existing modern anti-windup synthesis techniques to the design of IMC anti-

windup while retaining the its transparent tuning for robustness as well as its

simple characterization of the trade-off between stability and performance.
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Chapter 4

Anti-windup Design for

Multivariable Internal Model

Control: LMI Approach

4.1 Introduction

Internal model control (IMC) is a preferred control design choice for inher-

ently stable plants due to its transparent tuning for robustness [19]. The

IMC structure has been shown to possess some intrinsic anti-windup char-

acteristics for saturating systems [6; 89] while also preserving the robustness

of the unsaturated control loop to additive type norm-bounded uncertain-

ties [16; 20]. However, nonlinear performance may be excessively sluggish

especially when the plant has lightly damped modes, slow dynamics or non-

minimum phase zeros. This performance degradation has led to a number of

enhancements to the internal model control to improve the nonlinear perfor-

mance [1; 2; 90; 33]. The IMC anti-windup designs in [1] and [2] are particu-

larly useful when the IMC controller Q is minimum-phase. Internal stability

problems may arise if the IMC controller Q has non-minimum phase zeros.
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Although not always desired, there are various reasons why the nominal IMC

controller may include non-minimum phase zeros. For instance, the classical

decoupling IMC design procedures for square multivariable plants with non-

minimum zeros often introduces extra non-minimum zeros in the closed-loop

dynamics such that the resulting IMC controller Q is non-minimum phase

[72; 74].

It is standard in the anti-windup literature to express the saturated loop in

terms of a feedback interconnection involving a deadzone nonlinearity and

a feedthrough term (e.g. [34; 5; 36]). With this equivalent representation,

the effects of the input saturations can be considered as a fictitious distur-

bance signal at the input [36] or the output [34] of the linear plant. The

anti-windup design may therefore be considered as design strategy for reject-

ing this fictitious disturbance. This interpretation allows the extension of

existing classical linear control design methods for disturbance rejection (e.g

[91]) to the anti-windup design problem.

The main contribution of this chapter is the synthesis of dynamic anti-windup

for open-loop stable plants using the internal model control structure and its

interpretations in terms of the existing schemes. The anti-windup compen-

sation is defined solely in terms of the plant and its inner-outer factors as

opposed to similar schemes (e.g. [36; 33]) where independent dynamic ele-

ments are introduced leading to increased controller order. The synthesizing

LMI has a similar structure to that in [21], but the treatment here provides

insights into the effectiveness of such LMI-based anti-windup scheme. As

compared to other dynamic compensation techniques (e.g. [3; 37; 34; 38]),

the approach considered here offers a systematic way of anti-windup design

while taking advantage of the attractive features of internal model control

structure.

The rest of the chapter is structured as follows. In section 4.2, the anti-

windup design is posed as a disturbance rejection control problem. Using the

modified internal model control structure, loop sensitivities are derived that
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capture the effects of the input saturations on closed loop stability and perfor-

mance. In section 4.3, the stability of the proposed IMC anti-windup design

is established through the multivariable circle criterion. Closed-loop stabil-

ity check is reduced to the feasibility of a linear matrix inequality (LMI). An

optimal solution of the anti-windup problem which guarantees both closed-

loop stability and a given level of performance is discussed in section 4.4.

The performance objective is specified in terms of an induced L2 gain which

is directly linked with the behaviour of the closed-loop system under sat-

uration. Finally in section 4.5, a simulated case-study example is used to

demonstrate the effectiveness of the proposed method and to compare its

performance with several existing anti-windup schemes in the literature.

4.2 IMC Anti-windup Based on Inner-Outer

Factorization

Figure 4.1: IMC anti-windup with deadzone nonlinearities.

We consider the modified internal model control structure of Fig. 3.4 where

the anti-windup design reduces to that of finding appropriate factorization of

the nominal internal model controller Q into Q1 and Q2 such that nonlinear

performance is enhanced while guaranteeing closed-loop internal stability.

At the same time, the desired linear performance is to be recovered when

there are no input saturations i.e. Q1 and Q2 are constrained to satisfy

Q = (I + Q2)
−1Q1 during linear operation. Using the fact that saturation
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and deadzone nonlinearities are related through the identity(e.g. [34; 5; 36])

Dz(u) = u− Sat(u) (4.1)

where Dz(.) and Sat(.) represent the deadzone and saturation functions re-

spectively, the modified IMC anti-windup structure of Fig. 3.4 can be equiv-

alently represented as Fig. 4.1. Assuming no plant-model mismatch, the

closed-loop equations are given by




y

u

û


 =




GQ I −GQ −G(I +Q2)
−1

Q −Q (I +Q2)
−1Q2

Q −Q −(I +Q2)
−1







r

d

dz




dz = Dz(u).

(4.2)

The effect of the input nonlinearities on both closed-loop performance and

stability can be judged from the contributions of the sensitivities functions

Tydz
, Tudz

and Tûdz
from dz (assumed to be a fictitious disturbance signal

without the non linearities) to y, u and û respectively. These sensitivities

are obtained from (4.2) as

Tydz
= −G(I +Q2)

−1 (4.3)

Tudz
= (I +Q2)

−1Q2 (4.4)

Tûdz
= −(I +Q2)

−1. (4.5)

Tudz
plays an important role in determining the closed-loop stability as it

represents the loop transfer function matrix around the static nonlinearity.

Tûdz
and Tydz

on the other hand represent the difference between the de-

sired linear performance and the degraded nonlinear performance as they

capture respectively the effects of the nonlinearity on the input and output

of the plant G. The three sensitivities Tydz
, Tudz

and Tûdz
all contain the

term (I + Q2)
−1 which also appears in the factorization of the IMC con-

troller Q [cf. [36; 33] where the sensitivities are expressed in terms of an

additional independent design parameter]. The sensitivity function Tûdz
is

of primary importance in judging the performance of the anti-windup design
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as it governs the disturbance rejection properties of the equivalent structure

Fig. 4.1 to the fictitious disturbance signal dz due to the effect of the input

nonlinearity.

To achieve a good nonlinear performance and closed-loop stability, the anti-

windup design needs to realize the following aims.

1. The sensitivities Tydz
= −G(I + Q2)

−1 and Tûdz
= −(I + Q2)

−1 must

be small in some sense. This is to ensure that the effect of the fictitious

disturbance due to input nonlinearities on the plant’s input and output

is lessened.

2. The factor Q2 is chosen such that any non-minimum phase zeros of

Q appears only in Q1. This is necessary to ensure internal stability

of the closed-loop system. This requirement also implies that there

are no unstable pole-zero cancellations between Q1 and (I +Q2)
−1. A

further implication is that any non-minimum phase zeros of G or Q

appears in the sensitivity Tydz
which places a fundamental limitation

on the achievable performance of the anti-windup design depending on

the location of such non-minimum phase zeros.

3. The slow poles of G are canceled from the sensitivity Tydz
= −G(I +

Q2)
−1. The slow poles of G will induce sluggish response of Tydz

to

the fictitious disturbance signal. This requirement is desirable for good

performance since it will ensure swift recovery of linear performance

after a period of control input saturations.

Suppose the plant admits an inner-outer factorization G = GiGo where Gi is

inner (i.e. Gi(jw)∗Gi(jw) = I, ∀w) and Go is outer(i.e. Go is minimum phase

and invertible). Suppose further that Go has a right coprime factorization

Go = NoM
−1
o . Then a natural way of achieving the above objectives is by

choosing (I + Q2)
−1 as Mo. With this choice, we have that Tydz

= −GiNo

and Tûdz
= −Mo. It follows that the poles of G do not appear in Tydz

as

the poles of Gi are the stable mirror image of the non-minimum phase zeros
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of G. It is easy to show that this choice is equivalent to the right coprime

factor paramterization of (3.42) as follows.

Lemma 3. Let G ∈ RH∞ be bi-proper with no zeros on the imaginary axis

and with a minimal state-space realization G =


 A B

C D


 . Suppose G =

GiGo where Gi is inner and Go is outer with Go = NoM
−1
o a right coprime

factorization where No,Mo ∈ RH∞, then G has the fractional representation

G = NM−1 where N = GiNo and M = Mo. Furthermore, M and N are

coprime and admit the following state space realizations


M
N


 =


 Mo

GiNo


 =




A+BF B

F I

C +DF D


 (4.6)

where F is the state feedback gain associated with the coprime factorization

of Go such that A+BF is Hurwitz.

Proof. Let the factors Gi and Go be computed from (3.29) as

Gi =


 A+BR−1Fo BR−1

C + QFo Q


 , Go =


 A B

−Fo R


 (4.7)

where D = QR is a QR factorization of D and Fo is such that Fo = −(QTC+

(BR−1)TX) with X a stabilizing solution of the algebraic Riccati equation

(A−BR−1QTC)TX +X(A−BR−1QTC) −X(BR−1)(BR−1)TX = 0.

Let the factors No and Mo be computed from Go as


Mo

No


 =




A+BF B

F I

RF − Fo R


 . (4.8)

The state space realization for N is obtained by carrying out the cascade
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operation of Gi and No

GiNo =




A+BR−1Fo BR−1(RF − Fo) B

0 A+BF B

C + QFo DF − QFo D


 (4.9)

followed by a state similarity transformation using


 I I

0 I




This is exactly the coprime factorization of [21].

The IMC anti-windup design then reduces to finding an appropriate right

coprime factorization of the outer factor Go of the plant G such that the

closed-loop system of Fig. 4.1 is stable and the nonlinear performance is en-

hanced. This can be reduced to a convex search over linear matrix inequality

constraints.

4.3 Stability and Performance Analysis

In this section, we demonstrate a sector bound condition for the stability

of the proposed IMC anti-windup via the multivariable circle criterion [52].

The following definition is important for the derivation of the stability result.

Definition 21 (Strictly Positive Realness[52]). A square transfer function

matrix G is strictly positive real if;

1. G is asymptotically stable.

2. G(jw) +G∗(jw) is positive definite ∀w

3. G(∞) +G(∞)T > 0.
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Lemma 4 (Strictly Positive Realness[60]). For a given stable transfer func-

tion matrix G with state-space matrices G =


 A B

C D


 , the following are

equivalent

1. G is strictly positive real.

2. ∃X = XT > 0 satisfying the quadratic matrix inequality

ATX +XA+ (XB − CT )(D +DT )−1(XB − CT )T < 0.

3. ∃X = XT > 0 such that the LMI


A

TX +XA XB − CT

BTX − C −(D +DT )


 < 0

is feasible.

4.3.1 Unconstrained Stability

For an unconstrained system (i.e u = Sat(u)), the closed-loop equation re-

duces to


y
u


 =


GQ I −GQ

Q −Q




r
d


. (4.10)

Internal stability of the closed-loop is guaranteed if both the plant G and the

controller Q are stable [19].

4.3.2 Constrained Stability

It is known that both Dz(.) and Sat(.) belong to the sector [0, I] [52]. The

nominal stability of the closed-loop system of Fig. 4.1 can be assessed through
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the multivariable circle criterion [52].

From equation (4.2), the transfer function from the fictitious disturbance dz

to the unconstrained input u is given by

Tudz
= I −M (4.11)

where M is defined in (4.6). The state-space realization of Tudz
is obtained

as

Tudz
=


 A+BF B

−F 0


 . (4.12)

The anti-windup structure of Fig. 4.1 is asymptotically stable if I − Tudz
is

strictly positive real (SPR). This stability condition can be reduced to an

LMI feasibility problem via lemma 4. We now state the following stability

result.

Theorem 1. Given a stable plant G with coprime factorization of (4.6) and a

stable IMC controllerQ, the closed-loop in Fig. 4.1 with closed-loop equations

(4.2) is asymptotically stable if ∃P = P T > 0 such that the following LMI

with variables P and L is satisfied


AP + PAT +BL+ LTBT B − LT

BT − L −2I


 < 0. (4.13)

Proof. The closed-loop in Fig. 4.1 is asymptotically stable if I − Tudz
is

strongly positive real or equivalently (using lemma 4 )


XA+ ATX +XBF + F TBTX XB − F T

BTX − F −2I


 < 0. (4.14)

By a simple congruence transformation using diag(X−1, I) and defining P =

X−1, L = FP in equation (4.14), we obtain the LMI in (4.13).

Remark 4. The stability result of (4.13) is slightly restrictive because we

have not exploited the weighting matrixW associated with the sector bounded
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condition (2.14). We will remove this restriction in section 4.4. A stronger

stability condition may also be obtained by introducing multipliers such as

the Popov and Zames-Falb [92] [see [93] for discussion involving static mul-

tipliers].

The anti-windup design objective is not only to guarantee the closed-loop

stability but also to ensure graceful closed-loop performance degradation in

the presence of control input nonlinearities. As earlier discussed, Tydz
and

Tûdz
must be small in some sense for good performance. Since dz also depends

on u through the nonlinearity, the performance objective may be realized by

minimizing the L2 gain from u to the channels yd and ûd representing the

outputs of the filters Tydz
and Tûdz

respectively. It follows from (4.2) that

yd = y − ylin and ûd = û − ulin where ulin and ylin denote the intended

unconstrained control input and plant output respectively. The signals yd

and ûd thus represent the deviations between the constrained and the un-

constrained control input and plant output respectively. Ideally, we will like

to make Tûdz
= 0 to achieve the best performance. However, this choice

may create an ill-posed algebraic loop around the nonlinearity which may

cause closed-loop instability. This is because the loop transfer function ma-

trix around the nonlinearity can be expressed as Tudz
= I − Tûdz

. If we set

Tûdz
= 0, then Tudz

= I and the nonlinear loop reduces to the interconnec-

tion of a deadzone nonlinearity in feedback with the identity. Such a loop

may not have any solution or have many solutions. On the other hand, the

choice Tûdz
= I guarantees closed-loop stability but any slow poles of G will

appear in Tydz
, which may degrade closed-loop performance. In essence, Tûdz

is shaped as a sensitivity function whose magnitude approaches zero at high

frequencies while Tydz
is to be shaped as a complementary sensitivity func-

tion whose magnitude approaches unity at high frequencies. The trade-off

arises because Tûdz
and Tydz

are not independent of each other. Hence the

trade-off between stability and performance must be accounted for during

the anti-windup design to reach the best compromise. This can be achieved

through an appropriate choice of performance objective.
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In frequency-based anti-windup designs [36; 33], the trade-off between sta-

bility and performance is addressed through appropriate choice of frequency-

dependent weightings for shaping the filters at closed-loop bandwidth of in-

terest. In [36; 80], the anti-windup design problem is cast as a standard

H∞ optimization problem. In [2], the nonlinear performance is optimized

in terms of the 1-norm of the instantaneous difference between the filtered

version of the constrained and the unconstrained responses i.e f [y − ylin]. A

more common approach is to define the the performance objective in terms

of optimization of the L2 gain from some exogenous input to the desired

output [37; 5; 94; 15; 16]. This is the approach we adopt here. We will like

to minimize a weighted combination of the two maps u → yd and u → ûd.

This can be represented as ensuring

∥∥∥∥∥∥
W

1
2
s yd

W
1
2
p ûd

∥∥∥∥∥∥
2

< γ ‖u‖2 (4.15)

where Wp and Ws are weighting matrices which are chosen to capture the

trade off between performance and stability robustness. The parameter γ

is the L2 gain which will be used to indicate the performance level of the

anti-windup design. The weights Wp and Ws can be used to determine the

closed-loop bandwidth of interest as well as the low frequency gains of the

anti-windup sensitivities as illustrated with the simulation example in section

4.5.

4.4 Anti-windup Synthesis Via Linear Ma-

trix Inequalities

In this section, we incorporate the performance criterion (4.15) into the anti-

windup design. From (4.2) and using the coprime factorization of (4.6), the
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mapping from u to yd and ûd admit the following state space realizations




ẋ

yd

ûd


 =




A+BF B

−(C +DF ) −D
−F −I





 x
dz




dz = Dz(u).

(4.16)

Theorem 2 (L2 gain performance criterion). Given a stable plant G with co-

prime factorization of (4.6), a stable IMC controller Q and diagonal weights

Wp > 0 and Ws > 0 such that G and Q are interconnected as shown in

Fig. 4.1 with closed-loop equations (4.2). Suppose there exists positive def-

inite quadratic function V (x), diagonal matrix W > 0 and γ > 0 such that

for all t,

˙V (x) + yTdWsyd + ûTdWpûd − γ2uTu+ 2dTzW (u− dz) < 0 (4.17)

for all x, dz and u satisfying (4.16). Then the L2 gain of the map from u to

yd and ûd in Fig. 4.1 is less than γ. Moreover, condition (4.17) is equivalent

to the existence of P = P T > 0 such that the following LMI with variables

P , L, diagonal matrix W > 0 and scalar α = γ2 > 0




PAT + AP + LTBT +BL B 0 PCT + LTDT LT

BT −2W W DT I

0 W −αI 0 0

CP +DL D 0 −W−1
s 0

L I 0 0 −W−1
p




< 0

(4.18)

is satisfied. A suitable choice of F is given as F = LP−1 where L and P are

feasible solutions of (4.18).

Proof. With a Lyapunov function choice of V (x) = xTRx with R = RT > 0,
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condition (4.17) reduces to




RÃ+ ÃTR + C̃TWsC̃ + F TWpF RB + C̃TWsD + F TWs 0

BTR +DTWsC̃ +WpF DTWsD +Wp − 2W W

0 W −γ2I


 < 0

(4.19)

for all [xT dTz uT ]T 6= 0 where Ã = A + BFo and C̃ = C + DFo. By

applying Schur complements, a change of variable γ2 to α and a congruence

transformation using diag(R−1, I, I, I), (4.19) reduces to




ÃR−1 +R−1Ã B 0 R−1C̃T R−1F T

BT −2W W DT I

0 W −αI 0 0

C̃R−1 D 0 −W−1
s 0

FR−1 I 0 0 −W−1
p




< 0. (4.20)

Defining P = R−1, L = FP in (4.20) as well as substituting for Ã and C̃

gives the LMI result (4.18).

Remark 5. The LMI (4.18) has a similar structure to LMI (23) in [21],

although the details are different. The interpretation in terms of the in-

ternal model control allows for the explicit trade-off between stability and

performance while providing a clear indication of the limitations imposed

on the achievable closed-loop performance. The choice of performance crite-

rion is such that fast poles are prevented from appearing in the anti-windup

compensator. With appropriate choice of weightings, the designer has some

control on the locations of the closed loop poles and hence the transient

response.
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4.5 Simulation Example

To allow comparison of the design method to other dynamic anti-windup

compensations as well as IMC-based schemes, we consider the case-study

example of [2].

Example 2. We consider again the case-study example of [2]. In chapter

3, we illustrated for this problem the performance degradation associated

with control windup when the control inputs are constrained as |ui| ≤ 1,

i = 1, 2 using the standard IMC (uncompensated) and the conventional IMC

anti-windup structures. The input and output responses are shown again

in Fig. 4.2 for set-point change from [0 0]T to [0.63 0.79]T at time t = 0.

The uncompensated system results in large oscillations in the plant outputs.

For conventional IMC, the saturation effectively chops off the control input

resulting in performance deterioration.
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Figure 4.2: Unconstrained (dotted), Uncompensated (dashed) and Conven-
tional IMC (Solid)

To improve the behaviour of the system, a dynamic anti-windup compensa-

tion is designed based on the discussion in section 4.4. Solving the LMI (4.18)

with the weights Ws and Wp set as the identity, we obtain an optimal gain
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Figure 4.3: IMC anti-windup of [1] (dotted), Modified IMC of [2] (dash-
dotted), Dynamic compensation of [3] (dashed) and Proposed method (solid)

matrix F as

F =


−0.4897 0.6153

0.6153 −0.7974


 (4.21)

and an L2 gain of γ = 1. Fig. 4.3 shows the responses of the proposed

anti-windup design compared to other IMC-based and dynamic anti-windup

compensation schemes [1; 2; 3; 5; 15]. The proposed scheme results in an

enhanced performance with output responses which are close to the uncon-

strained responses and does not exhibit the significant overshoot associated

with those of [1; 3]. In fact, the dynamic compensation in [3] results in no

better performance than the conventional IMC anti-windup design. This

can be explained from the control responses of Fig. 4.3b where both con-

trol inputs for the two schemes are kept saturated for some time resulting

in directional change of the control input vector. The overshoot in the out-

put responses in Fig. 4.3a can be attributed to this directionality change of

control input vector [see chapter 5 for detailed discussions on directionality

compensators design for multivariable plants]. On the other hand, the modi-

fied IMC scheme in [2] is such that the input directions are maintained. This

is usually achieved through the choice of an appropriate non-causal linear

filter. It is important to note that while the schemes [1; 2; 3] are such that

the nonlinear performance is somewhat enhanced, they do not necessarily

89



provide any guarantee for internal stability of the overall closed-loop system.
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Figure 4.4: The proposed IMC anti-windup output response with weights
Wp = 0.00001, Ws = 1 (dash-dotted), The proposed IMC anti-windup out-
put response with weights Wp = 1, Ws = 1 (Solid) and The proposed IMC
anti-windup output response with weights Wp = 1, Ws = 0.00001 (dashed)

We illustrate the trade-off between performance and stability robustness by

adopting different weightings in the LMI constraints (4.18). For example,

when performance is not a major concern, the weighting Wp can be chosen

very small such that only stability is emphasized in the solution of (4.18).

As shown in Fig. 4.4, when Wp = 0.00001, the conventional IMC response

is recovered. In this instance, the feedback gain F is small (in the order

of 10−3) and the L2 gain obtained is γ = 17.78. On the other hand, when

Ws = 0.00001, the modified IMC response of [2] is recovered. In this case,

the performance is greatly improved with F of the order of 102 and an L2

gain of γ = 1. Figs. 4.5 through 4.7 depict the singular value plots for the

sensitivities Tûdz
and Tydz

for three cases of weight selections: Case 1 (Wp =

0.00001, Ws = 1), Case 2 (Wp = 1 Ws = 1) and case 3 (Wp = 1,Ws =

0.00001).

Considering case 1, Tûdz
is almost all-pass with gain approximately unity

over the frequency range. Here, the filter Tûdz
cannot reject the fictitious
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Figure 4.5: Singular value plots for the anti-windup filters Tûdz
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with
weights selection (Wp = 0.00001, Ws = 1)
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Figure 4.6: Singular value plots for the anti-windup filters Tûdz
, Tydz

with
weights selection (Wp = 1, Ws = 1)

disturbance due to the control input nonlinearity and hence its associated

performance is poor. In case 2, Tûdz
is shaped as a sensitivity function but

the bandwidth of Tydz
is limited to (between 0.01-1 rad/s) and hence the

frequency range for which good performance is achievable is small. In the

91



Singular Values

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

10
−4

10
−2

10
0

10
2

10
4

−120

−100

−80

−60

−40

−20

0

Figure 4.7: Singular value plots for the anti-windup filters Tûdz
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last case, the bandwidth Tydz
is improved to allow for larger frequency band-

width (between 1-100 rad/s) for which good control is obtainable. The low

frequency gain of Tûdz
is also reduced while its high frequency gain is unity.

These characteristics explain the good performance obtained in this case.

The trade-off however is that the low-frequency gain of the complementary

sensitivity function Tydz
is also reduced.

Finally, we compare the proposed IMC-based anti-windup method to other

optimal schemes [5; 4]. Since performance improvement is the driving force

in these methods, we will emphasize performance in the solution of (4.18)

by choosing Ws very small (Ws=0.000001). As noted in [4], the static and

dynamic anti-windup solutions for this example are the same and are both

equivalent to the static anti-windup solution of [5]. Fig. 4.8 shows the output

responses of the proposed IMC-based method and the optimal schemes [5;

4]. The responses of the other optimal schemes [5; 4] are more sluggish

on both channels when compared to the unconstrained response. This is

expected as the performance criteria used in these schemes are more general

and do not relate directly to the swift recovery of linear performance after
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Figure 4.8: Unconstrained (Solid), Optimal anti-windup of [4; 5] (dash-
dotted) and Proposed method (dotted, red)

a period of saturation. The first channel in the proposed method has a

good behaviour at the expense of poor transient behaviour at the second

channel. This is also what occurs when recovery of linear performance on

one channel is emphasized over the other (e.g. [5]). As noted in [6], the

initial inverse response is a symptom of another problem which is associated

to the directional characteristics of the plant. The subject of directionality

compensation design is exhaustively covered in subsequent chapters of this

thesis.

4.6 Summary

We have developed a simple and systematic approach to anti-windup design

based on the IMC structure. The proposed method combines the attractive

features of classical IMC with enhanced nonlinear performance without in-

troducing independent dynamics into the closed-loop. The trade-off between

robust stability and performance is captured via static weights in the syn-
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thesizing LMI. These weights are shown to have similar role to the frequency

dependent weights in H∞ control synthesis or loop shaping.
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Chapter 5

Directionality Compensation

for Multivariable Anti-windup

Designs

5.1 Introduction

Figure 5.1: General anti-windup structure with directional compensation

For multivariable or multi-input multi-output (MIMO) systems, the presence

of control input saturation introduces additional problems due to directional

change in control action [39; 40; 42; 17] also known as process directionality

[8] alongside the widely known controller windup phenomenon. These two

problems, control windup and process directionality, can result in substantial
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closed-loop performance degradation if not separately accounted for during

the controller design [39; 42]. It has become, however, a common practice to

incorporate an additional artificial nonlinearity (directionality compensator)

in multivariable anti-windup designs to address the problem of directional-

ity change in control action [39; 69; 6; 42; 41; 7; 44; 8; 95; 9; 96; 68; 97].

Such directionality compensators often take the form of dynamic optimiza-

tion problems that are solved online either implicitly ([2; 43]) or explicitly

([7; 44; 95]) during control computation. When the control policy is obtained

by an explicit solution of online optimization problem at each time step, the

resulting scheme is termed optimizing anti-windup (for example [55; 54; 97]).

One class of strongly directional multivariable systems which has received

extensive treatment in the literature (for example [98; 99; 6; 100; 77; 19]) is

the class of ill-conditioned systems (those having large condition numbers or

with gains that depend on both the input directions and magnitudes). Such

systems are known to exhibit high sensitivities to model uncertainties and

input nonlinearities/uncertainties [77; 19].

As shown in Fig. 5.1, the directionality compensator denoted as AN (ar-

tificial nonlinearity) is applicable to systems irrespective of the control or

anti-windup structure and it is such that the input saturation nonlinearities

are never violated. Generally, the saturating system is augmented with an

additional compensation which modifies the system’s behaviour during satu-

ration to ensure graceful performance degradation and swift recovery of the

desired linear performance.

In this chapter, a brief review of some of the existing directionality compen-

sator designs is presented within the IMC framework of Fig. 5.2.
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Figure 5.2: Modified IMC anti-windup with an artificial nonlinearity

5.2 The Modified Internal Model Control

The Modified IMC Anti-windup (MIA) structure [2] of Fig. 3.4 can be con-

sidered as a special case of the scheme in Fig. 5.1 where the directionality

compensator AN is the identity. However, in order to preserve the output

direction, the authors [2] recommend the choice Q1 = fAGQ where the non-

causal filter fA must be designed to satisfy the following conditions:

Condition 1. The filter fA must be diagonal in order not to introduce any

change of output direction.

Condition 2. The filter fA must be such that fAG is bi-proper and fAG|s=∞ =

I or fAG|z=1 = I. This is to ensure thatQ2 is strictly proper which guarantees

that there is no algebraic loop in the interconnection of Fig. 5.2.

Condition 3. For minimum phase Q, the filter fA must be chosen such that

Q1 = fAGQ is both minimum phase and stable to guarantee internal stability

of the closed loop system.

The requirements of conditions 1 and 2 may be sometimes restrictive. This is

because the design choice fA satisfying both conditions may require that the

plant model G be diagonal or that the off-diagonal transfer function compo-

nents of G have higher relative orders than the diagonal components. This

is not always the case in multivariable systems where the dynamics are usu-

ally coupled across input channels and all the transfer function components
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of G have the same relative orders. This is typical of chemical processes

such as the distillation column model considered in the example. In order to

get around this problem, fA is usually designed for a slightly modified plant

model such that both conditions 1 and 2 are satisfied. This may also raise

robustness issues except for the case when the controller can be detuned to

ensure that the closed-loop is robust.

5.3 Direction Preservation

In the Direction Preservation (DP) approach of [39; 6], the constrained con-

trol action is obtained by scaling down the controller outputs so that the u

and v have same direction in the event of saturation. The nonlinearity block

AN in Fig. 5.2 is defined as

AN(u) = min
{

sat(ui)
ui

}
u, i = 1, . . . ,m. (5.1)

The artificial nonlinearity is such that the component of u which most vio-

lates its corresponding constraints is fixed at the constraint while all other

components are scaled so that they satisfy their respective constraints. In

this case, subsequent saturation will have no effect since its input ur always

remains in the linear region i.e. (Sat(ur) = ur). This approach to direction-

ality compensation is not necessarily the best choice as the scaled control

input ur may not be the closest possible to the unconstrained control input

u. It does also not take into account the plant’s directional characteristics[6].

Schemes that result in ur which minimizes u−ur along the plant’s high gain

direction will generally perform better. These schemes are discussed subse-

quently. However, the concept of directional preservation has been shown

to be beneficial for some class of constrained multivariable control problems

such as the ill-conditioned systems [39; 6]. The directionality preservation

heuristics can also be combined with the modified IMC scheme of [2] as shown

in [41].
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5.4 Optimization based Conditioning Tech-

niques

A number of Optimization based Conditioning Techniques (OCT) have ap-

peared in the literature [42; 44; 7]. All these are extensions of the conditioning

techniques originally discussed in [69] which is based on the concept of re-

alizable reference wr. When a controller output is infeasible, a realizable

control input ur is obtained by solving an online optimization problem such

that the realizable reference wr is as close as possible to the actual process

set-point r. The development of optimization based conditioning technique

below follows that of [7] due to its ease of implementation.

Consider the modified IMC structure of Fig. 5.2. The realizable reference

denoted as wr is the reference input which would yield the realizable control

signals ur instead of the control signals u, achievable if there were no non-

linearities. Assuming no plant-model mismatch, the closed loop equation is

given by

u = Q1 [r − d] −Q2u
r. (5.2)

The expression relating the realizable control input to the realizable reference

is obtained as

ur = Q1 [wr − d] −Q2u
r. (5.3)

Subtracting (5.2) from (5.3) yields the following relationship between the

control signals and the reference signals

ur = u+Q1 [wr − r] . (5.4)

We note here that the choice of Q1 could follow any of the options earlier

discussed in section 3.2. But for the purpose of keeping uniformity with the

development in [7], we adopt the Hanus conditioning technique Q1 = K(∞)
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[69]. Hence (5.4) can be rewritten as

ur = u+Dk [wr − r] or equivalently as

wr = r +D−1
k [ur − u]

(5.5)

where Dk is the nonsingular feedthrough matrix of controller K i.e. Dk =

K(∞). The intention is to make wr as close as possible to r while not

violating the constraints imposed by the actuators. This can be posed as a

quadratic program (QP) involving the minimization of a quadratic objective

function J(wr−r) subject to linear inequality constraints [42; 7]. A particular

quadratic criterion is given as

J(wr − r) = (wr − r)TQ(wr − r) (5.6)

where Q is a diagonal positive definite weighting matrix. Its choice should

take into account the relative importance of achieving the objectives repre-

sented by each component of r. The constraints on the control input can be

expressed in compact matrix form as

Lur ≤ b (5.7)

where L = [−Im Im]T and b = [−umin1 , . . . ,−uminm , umax1 , . . . , umaxm ]. Using

equation (5.5), the inequality constraints can be expressed as

LDk(w
r − r) + Lu ≤ b (5.8)

Both the objective function and the constraint are convex and therefore the

optimization problem always has a feasible solution which can be obtained

via numerical means. Explicit or closed form solutions via the Karush-Kuhn-

Tucker(KKT) conditions are discussed in [42; 69; 7].

Equations (5.6) and (5.8) can be expressed in the standard form as

min
wr

{
1

2
(wr)THwr + fTwr

}
subject to : Crw

r ≤ g (5.9)

100



where H = 2DT
k QDk, f = −Hr, Cr = LDk and g = b + LDkr − Lu. Since

the parameter g depends on a time varying signal u, the optimization must

be carried out at every sample time instant.

The optimization criterion (5.6) can also be expressed in terms of the realiz-

able control input ur such that the optimization problem becomes

min
ur

{
1

2
(ur)T Ĥur + f̂Tur

}
subject to : Lur ≤ b (5.10)

where Ĥ = 2(D−1
k )TQD−1

k and f̂ = −Ĥu.

This scheme is applicable to systems with biproper nominal controller and

will outperforms the Hanus conditioning technique [69] when the controller

feedthrough Dk term is non-diagonal. If Dk is diagonal, then the Hessian

matrix Ĥ in (5.10) is also diagonal. In this case, the scheme recovers the

performance of the original Hanus conditioning technique [69] since the op-

timal solution of the QP (5.10) is identical to saturating or clipping the

control.

5.5 Optimal Directional Compensator

In order to improve on the performances of both the modified IMC and

direction preservation schemes, the optimal dynamic compensator (ODC)

was proposed in [8]. This scheme is based on the solution of the following

optimization problem.

min
ur

|Cur − Cu|2Q (5.11)

subject to the constraints

umin ≤ uri ≤ umax i = 1, . . . ,m

101



where Q is a diagonal positive definite matrix whose diagonal elements de-

pend on the relative orders of each of the controlled output and C is the

characteristic (or decoupling) matrix of the plant. The optimization prob-

lem in 5.11QP1 is such that its optimal solution minimizes the Euclidean

norm of the difference between the constrained and the unconstrained plant

outputs subject to the input saturation constraints. The characteristic ma-

trix C describes the transient behaviour of the system [101] and it is defined

for a square system as

C = lim
s→∞

[diag{srm}G] or lim
z→∞

[diag{zrm}G]

where ri = min(ri1, ri2, . . . , rim) and ri,j is the relative order of output yi with

respect to manipulated input uj.

In this approach, the characteristic matrix C contains information about

the directional nature of the plant [101]; thus the constrained optimization

of (5.11) is such that the components of ur−u in the high gain plant direction

are minimized. However, since the characteristic matrix only characterizes

the initial response of the plant (i.e. the sensitivity of plant to input changes

over a very short time), the optimality of the solution is only guaranteed over

the transient period [8]. For system where the non-singular characteristic ma-

trix C is diagonal or can be made diagonal by row or column rearrangements,

the optimal directionality compensator is identical to clipping min
û

|û− u|2

[8] as obtained from using the conventional IMC approach.

5.6 Optimal Steady State Scheme

The optimal steady state scheme was proposed in [9] within the context of

cross-directional control. This scheme is based on the steady state structural

property of the plant and guarantees optimal steady state performance by

102



solving the following optimization problem.

min
ur

|Kpu
r − Kpu|2Q (5.12)

subject to the constraints

umin ≤ uri ≤ umax i = 1, . . . ,m (5.13)

where Q is a diagonal positive definite matrix and Kp is the steady state gain

G(0) (or G(1) for discrete systems). The steady state gain can be obtained

from the plant’s state space matrices as G(0) = D − CA−1B for G(s) (or

G(1) = D + C(I − A)−1B for G(z)) provided A (or I − A) is non-singular.

This scheme may lead to a degraded transient performance especially when

Kp is significantly different from C. This is because steady state gain only

characterizes the infinite-time response of the plant. For both the ODC and

the OSS schemes, the underlying assumption is the non-singularity of the

plant’s structural matrices; the characteristic matrix C and the steady state

gain Kp respectively.

5.7 Simulation Examples

In this section, the performances of the different directionality compensator

schemes earlier discussed are compared using the modified IMC structure as

a benchmark.

Example 3. Consider example 1 again. This example has become a bench-

mark for comparing anti-windup schemes [5; 4] and directionality compen-

sators [6; 2; 8; 7; 41]. The plant’s minimum relative order per channel are

r1 = 1 and r2 = 1. The characteristic matrix C, the steady state gain Kp and

the K(∞)−1 are given as

C =


 0.4 −0.5

−0.3 0.4


 , Kp =


 40 −50

−30 40


 and K(∞)−1 =


 8 −10

−6 8


 .
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Observe that in this case

C =
1

100
Kp and K(∞)−1 =

1

5
Kp

so that the directionality compensators of (5.10) and (5.11) are equivalent

and effectively meet the criterion for optimal nominal steady state perfor-

mance of (5.12). This is depicted in Fig. 5.3 where the step responses for the

optimization based conditioning technique (OCT) [7], the optimal directional

compensator (ODC) [8] and the optimal steady state (OSS) [9] have exactly

the same responses. As compared to the responses in Fig. 3.7 obtained from

the conventional IMC anti-windups schemes, the directional compensators

result in improved nonlinear performance. This is because the structural

matrices are non-diagonal. Here, it happens that the modified IMC results

in the best response on the second output channel (y2). A tighter control of

the second channel can be achieved with the optimization-based schemes by

adjusting the weighting matrix Q which has been set to be the identity in

the simulations.

Example 4. This example is taken from [8] where the state space model of

the process is given as


ẋ1

ẋ2


 =


−0.01 −0.0002

−0.5 −0.03




x1

x2


+


0.25 0

0 4




u1

u2





y1

y2


 =


1 0

0 1




x1

x2




(5.14)

with |u1| ≤ 0.12 and |u2| ≤ 0.12 and a set point change of [0.85 2.2]T .

The plant can be represented in continuous-time as

G(s) =




0.25(s+0.03)
s2+0.04s+0.0002

−0.0008
s2+0.04s+0.0002

−0.125
s2+0.04s+0.0002

4(s+0.01)
s2+0.04s+0.0002


 (5.15)
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(d) Constrained input(u2)

Figure 5.3: Example 3: solid- MIA [2], dashdot- DP [6], OCT [7], ODC [8]
and OSS [9] produce same response
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The classical IMC controller design for a step input is

Q(s) =




4s+0.04
5s+1

0.0008
2s+1

0.125
5s+1

0.25s+0.0075
2s+1


 (5.16)

and the corresponding error feedback controller is

K(s) =




4s+0.04
5s

0.0008
2s

0.125
5s

0.25s+0.0075
2s


 (5.17)

The controller Q(s) is factorized based on the modified IMC approach as

Q1 = fAGQ and Q2 = fAG− I with

fA =


4(s+ 1) 0

0 0.25(s+ 1)


 (5.18)

Here, fA is chosen to satisfy the conditions 1, 2 and 3 in section 5.2. The

minimum order per row is given by r1 = 1, r2 = 1 and the plant structural

matrices are

Kp =


 37.5 −4

−625 200


 , C =


0.25 0

0 4


 , and K(∞)−1 =


0.8 0

0 0.125




Since the characteristic matrix C and the matrix K(∞)−1 are both diago-

nal, the OCT and the ODC schemes will yield identical solutions to that of

clipping the control inputs (as obtainable with the conventional IMC anti-

windup). This is illustrated in Fig. 5.4 where the OCT and the ODC schemes

result in similar responses to the modified IMC (MIA). As the steady state

gain Kp is significantly different from the characteristic matrix C, the OSS

scheme resulted in a degraded transient response and with no better steady

state performance than the DP and the MIA schemes. However, when the

set-point change is set to [0.85 2.2]T such that some of the constraints are

violated in steady states, the steady state performances of both the ODC
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and the OCT schemes deteriorate significantly while the direction preserv-

ing (DP) scheme and the optimal steady state scheme (OSS) yield improved

steady-state performances. This is illustrated in Fig. 5.5.
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(d) Constrained input(u2)

Figure 5.4: Example 4: solid- MIA [2], dotted- DP [6], dashdot- OCT [7] and
ODC [8] produce same response and dashed- OSS [9]

In table 5.1, we categorize the directionality compensation schemes according

to their performance characteristics during the transient and the steady state

stages when one or more of the input constraints are active. It is apparent

that none of the schemes guarantees optimal performance at both phases.

The table suggests that the optimal directionality compensation over a wider

range of operation may be obtained from the combination of two or more of

the existing schemes. Details of this is covered in chapter 8.
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Figure 5.5: Example 4: solid- MIA [2], dotted- DP [6], dashdot- OCT [7] and
ODC [8] produce same response and dashed- OSS [9]
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5.8 Quadratic Program for Optimizing Anti-

windup

As discussed in the preceding sections, the online optimization problem that

is solved by optimizing anti-windup control can be expressed in the form of

a positive definite quadratic program (QP)

QP1 :
v∗ = arg min

v

1

2
vTHv − vTHu

subject to Lv � b
(5.19)

where H = HT > 0 ∈ R
m×m. The fixed terms L ∈ R

2m×m and b ∈ R
2m in

the inequality constraints are respectively obtained as

L =


−Im
Im


 and b =


−umin
umax


 (5.20)

with umin =
[
umin1 , · · · , uminm

]T
and umax =

[
umax1 , · · · , umaxm

]T
.

In contrast to Model Predictive Control (MPC) algorithms, QP1 does not

require any horizon (prediction or control). In a sense, the optimizing anti-

windup combines the efficiency of conventional anti-windup with the opti-

mality properties of MPC while requiring considerably less computational

effort. The quadratic program (QP1) has the following attractive properties:

Table 5.1: Performance comparison of multivariable anti-windup schemes

Modified
IMC

Direction
Preservation

Conditioning
Technique

Optimal Dy-
namic Com-
pensation

Optimal
Steady State

Transient
performance

Optimal Poor Optimal Optimal Poor

Steady State
performance

Poor Good Poor Poor Optimal
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1. It can be solved efficiently online [59; 7; 28].

2. Since the constraints are expressed as upper and lower bounds on the

control inputs, the vector b in (5.19) can be obtained such that b ≥ 0.

This guarantees that the convex feasible region contains the origin. If

we set the quadratic program (5.19) as ψ(u), it then follows trivially

that ψ(0) = 0 [54]. If further we have that umin = −umax, then ψ is

also odd.

3. The positive definiteness of H guarantees the uniqueness of the optimal

solution v∗ [59]. If H is also diagonal, then the optimal solution is given

by v∗ = Sat(u) [8; 43]. For optimizing anti-windup, the hessian matrix

is such that H = HT
r Hr where Hr is usually defined in terms of the

plant’s non-singular structural properties (see [8; 68]).

4. For the unconstrained case, the optimal solution corresponds to the

unconstrained control input i.e. (v∗ = u). Hence, for small signals,

the QP does not interfere with the linear performance of the control

structure.

5. Given properties 2 and 3 above, then QP1 is sector-bounded (see lemma

1) satisfying

ψ(u)TH (ψ(u) − u) ≤ 0 ∀u ∈ R
m. (5.21)

Condition (5.21) is a generalized sector condition. A special case is

when the nonlinearity is decoupled (i.e. ψi(u) = ψi(ui)) with each

component ψi(ui) inscribed in the sector [0, 1]. This corresponds to

diagonal H.

6. Given properties 2 and 3, then the quadratic program QP1 is bounded.

It is also monotone nondecreasing and slope-restricted to the interval

[0, 1] as will be shown in lemma 6 below.

It is standard in saturating anti-windup synthesis literatures to express the

saturated loop in terms of feedback interconnection involving a deadzone

nonlinearity and a feedthrough term ([34; 5; 16; 102]). We note that the
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quadratic program in optimizing anti-windup can be similarly expressed as a

corresponding nonlinearity satisfying a sector-bound condition together with

a feedthrough term. The information from the plant’s structural characteris-

tics and the quadratic program can then be incorporated into the optimizing

anti-windup synthesis to guarantee closed-loop stability as well as improved

nonlinear performance. We now show that the quadratic program ψ(.) is

equivalent to a feedthrough term in parallel to a related quadratic program

as shown in Fig. 5.6.

Figure 5.6: Directionality compensator expressed a deadzone-like QP

Lemma 5. Let the quadratic program (5.19) be set as v = ψ(u) and let

w = φ(u) be the quadratic program

QP2 :
φ(u) = arg min

w

1

2
wTHw

subject to Lu− Lw � b.
(5.22)

Then the interconnection of w = φ(u) with v = u − w is equivalent to

v = ψ(u). Furthermore, φ(.) belongs to same sector as ψ(.).

Proof. The Karoush-Kuhn-Tucker (KKT) conditions [59] for φ are given by

Hw − LTλ = 0,

Lu− Lw − b+ s = 0,

s � 0, λ � 0, λT s = 0.

(5.23)
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If we substitute w = u− v into (5.23), we obtain

Hv −Hu+ LTλ = 0,

Lv − b+ s = 0,

s � 0, λ � 0, λT s = 0.

(5.24)

The conditions in (5.24) are exactly the KKT conditions for ψ. Now, pre-

multiplying the first KKT condition in (5.23) by wT and substituting gives

wTHw − uTHw = −bTλ ≤ 0. (5.25)

This can be expressed as φ(u)TH(φ(u) − u) ≤ 0. This is the generalized

sector condition that is also satisfied by ψ(u) [cf. (5.21)].

We now show in the spirit of [103] that φ(.) is bounded, monotone nonde-

creasing and slope restricted.

Lemma 6. Let φ be given by (5.22) with H = HT > 0 ∈ R
m×m and fixed

terms L ∈ R
2m×m and b � 0 ∈ R

2m. Then the nonlinearity φ is monotone

nondecreasing (C1), slope restricted to the interval [0, 1] (C2) and bounded

by 1 (C3).

Proof. C1: Substituting for x and y in the first condition of the KKT con-

ditions for φ gives

[φ(x) − φ(y)]T H (x− y)

= [φ(x) − φ(y)]T
[
Hφ(x) + LTλ(x) −Hφ(y) + LTλ(y)

]

= [φ(x) − φ(y)]T H [φ(x) − φ(y)] + [φ(x) − φ(y)]T
[
LTλ(x) − LTλ(y)

]

= [φ(x) − φ(y)]T H [φ(x) − φ(y)] + [s(y) − s(x)]T [λ(x) − λ(y)]

= [φ(x) − φ(y)]T H [φ(x) − φ(y)] + s(y)Tλ(x) + s(x)Tλ(y)

≥ 0.

(5.26)
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C2: Rearranging the second to the last equation of (5.26) gives

[φ(x) − φ(y)]T H [φ(x) − φ(y)] − [φ(x) − φ(y)]T H (x− y)

= −
[
s(y)Tλ(x) + s(x)Tλ(y)

]

≤ 0.

(5.27)

C3: Setting y = 0 in (5.26) and (5.27), we have respectively

φ(x)THx ≥ 0 (5.28)

φ(x)THφ(x) − φ(x)THx ≤ 0. (5.29)

Cauchy-Schwarz inequality gives

|φ(x)THx| ≤
√
φ(x)THφ(x)

√
xTHx. (5.30)

Combining (5.28), (5.29) and (5.30), we have

φ(x)THφ(x) ≤ φ(x)THx ≤
√
φ(x)THφ(x)

√
xTHx (5.31)

which implies that

√
φ(x)THφ(x) ≤

√
xTHx (5.32)

or alternatively

|Hrφ(x)|2 ≤ |Hrx|2 (5.33)

since H = HT
r Hr.

The following result shows that the available class of IQCs for the nonlinearity

φ is no different from those of ψ. We first recall available IQCs satisfied by

ψ.
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Lemma 7. Let the quadratic program (5.19) be set as v = ψ(u) with b � 0

and H = HT ≥ 0.

(i) Then for all u ∈ Lm
2 and Λ = λI with λ > 0,

〈v,ΛH[u− v]〉 ≥ 0. (5.34)

(ii) Further, let z ∈ L1 satisfy ||z||1 < g for some g ∈ R and let ψ be odd or

let z(t) ≥ 0 ∀t. Then for all ∈ Lm
2 ,

〈v, g[Hu−Hv]〉 ≥ 〈v, z ∗ [Hu−Hv]〉 . (5.35)

Proof. For (i) see [54]; for (ii) see [103].

The inequalities in lemma 7 may be expressed in the standard IQC form of

section 2.6 (see also [64]) using Π with the following structure

Π =


Π11 Π12

Π21 Π22


 ,Π11 = 0, Π21 = Π∗

12 and Π22 = −(Π12 + Π21) ≤ 0. (5.36)

Specifically, we have Π12 = ΛH, Π22 = −2ΛH for inequality (5.34) and

Π12 = (g−Z∗)H, Π22 = −(2g−Z−Z∗)H for inequality (5.35) with Z being

the Fourier transform of z.

Theorem 3. Let Π : L2m
2 → L2m

2 be a self adjoint operator of the form of

(5.36) and let ψ : Rm → R
m and φ : Rm → R

m be the quadratic programs de-

fined by (5.19) and (5.22) respectively. Suppose that ψ satisfies ψ ∈ IQC(Π),

then φ also satisfies φ ∈ IQC(Π).

Proof. Let us define uψ =


 u

ψ(u)


, uφ =


 u

φ(u)


 and T =


I 0

I −I


 so that

T = T−1. We have that uφ = Tuψ. If ψ ∈ IQC(Π), then 〈uψ,Πuψ〉 ≥ 0 holds

by the IQC definition. We also have the following equivalence

〈uφ,Πuφ〉 = 〈Tuψ,ΠTuψ〉 =
〈
uψ, T

TΠTuψ
〉
. (5.37)
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Given any Π of the form of (5.36), we have T TΠT = Π∗. Since Π is self-

adjoint, it follows that 〈uψ,Πuψ〉 ≥ 0 implies 〈uφ,Πuφ〉 ≥ 0.

5.9 Summary

We have presented a review of some of the existing multivariable anti-windup

schemes [2; 6; 7; 8; 54] for directionality compensation. While the MIA [2],

the OCT [7] and the ODC [8] schemes offer superior dynamic performances

compared with those of the DP [6] and the OSS [9], their performances

deteriorate significantly in steady state especially when the constraints are

active in steady state. From the discussions, the following two points become

apparent;

i. No existing scheme offers an ideal solution for all scenarios. In par-

ticular, the synergy of the ODC and the OSS schemes may result in

a compensation that can offer an equally optimal performances over a

much wider operating range.

ii. It may be possible to develop a formal methodology for optimizing

multivariable anti-windup performance while guaranteeing system sta-

bility. Using the properties 5 and 6, results from absolute stability

theory can be extended to the optimizing framework to derive rigorous

stability criterion as well as performance optimization.

These two issues are further investigated in subsequent chapters of this thesis.

In particular, chapter 6 addresses item (ii) where we develop convex synthesis

procedure for constrained multivariable systems with input nonlinearities

expressed by a quadratic program. In chapter 8, we develop the two-stage

IMC anti-windup algorithm which combines the optimality of both the ODC

and the OSS schemes in one framework.
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Chapter 6

Optimizing Anti-windup

Synthesis

6.1 Introduction

The optimizing anti-windup control falls into a class of compensator com-

monly termed directionality compensation. The computation of the con-

trol involves the online solution of a low-order quadratic program in place

of simple saturation. Simple optimizing anti-windup strategies exist in the

literature but they are generally without stability and performance guaran-

tees (e.g. [7; 8]). While the synthesis of non-optimizing anti-windup with

both stability and performance guarantees has been studied extensively (see

[5; 102; 15; 104; 16; 94; 18]), there have been few studies on the synthe-

sis of optimizing anti-windup schemes with closed-loop stability guarantee.

Most optimizing anti-windup schemes have focused on performance optimiza-

tion in the presence of input constraints without consideration of closed-loop

stability. The design of directionality compensators is usually carried out

independently of the control design and with the assumption that the result-

ing optimizing structures inherit the stability of the unsaturated loop. An
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exception is [54] where sector-bound result (multivariable circle criterion) is

extended to demonstrate the stability of optimizing anti-windup. In [93; 68],

we employed the theory of Integral Quadratic Constraints (IQCs) to develop

a sufficient robust stability condition for optimizing anti-windup subject to

any infinity-norm-bounded uncertainty.

In this chapter, we develop new synthesis procedures for optimizing anti-

windup control applicable to open-loop stable multivariable plants where the

input nonlinearities are expressed by a quadratic program. We exploit the

equivalence of the quadratic program to a feedthrough term in parallel with

a deadzone-like nonlinearity that satisfies a sector-bound condition. This

allows for LMI-based synthesis using a decoupled structure similar to that

proposed in the literature for anti-windup schemes with simple saturations.

As compared to existing optimizing anti-windup schemes [42; 43; 44; 7; 8], the

design approach is particularly attractive in that it allows the incorporation

of the plant’s structural and directional characteristics into the anti-windup

synthesis to guarantee closed-loop stability as well as improved nonlinear

performance. The design procedure exploits the extra degree of freedom in

the anti-windup computation which have been hitherto considered difficult in

saturating anti-windup synthesis [86]. This design freedom, usually termed

the stability multiplier in saturating anti-windup design, is either not used,

lost during computation [5; 16], chosen almost arbitrarily [15] or mainly

used to eliminate algebraic loops [21] or to convexify the synthesizing matrix

inequalities [46; 45]. Here, we exploit the extra design freedom through the

directionality compensator. We demonstrate the effectiveness of the design

compared to several schemes using both a highly ill-conditioned benchmark

example and an example where the plant has lightly damped modes.

The rest of the chapter is structured as follows: In section 6.2, the opti-

mizing anti-windup problem is formulated using the internal model control

structure. In section 6.3, we show that the online quadratic program solved

by the anti-windup can be decomposed into a related nonlinearity and a

feedthrough link. We also note that both the original quadratic program
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and the transformed quadratic program belong to the same sector after linear

transformations. These observations allow the extension of existing results to

the optimizing anti-windup. We construct a sufficient stability condition for

the optimizing anti-windup based on results from passivity and IQC theory.

We also specify appropriate performance criteria which relate directly to the

optimizing anti-windup behaviour during and after saturation. In section

6.4, we present two results for optimizing anti-windup synthesis. The first

guarantees closed-loop stability via a quadratic Lyapunov criterion. The sec-

ond result guarantees both closed-loop stability and a level of performance.

The performance criterion is such that the recovery of linear performance

after a period of control input saturations is hastened. Finally, in section

6.5, we demonstrate the superiority of the design method over several ex-

isting schemes using a highly ill-conditioned distillation column benchmark

example and a plant with lightly damped modes. Such plants are generally

known to be difficult to control and the effects of control input saturations

can result in serious performance degradation.

6.2 Problem Formulation

Figure 6.1: IMC anti-windup with a quadratic program as directionality
compensator

We consider the modified internal model control anti-windup structure of Fig.

6.1 where G and G22 represent the plant and the nominal plant dynamics re-
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spectively. The nominal IMC controller Q is assumed to have been designed

to meet some nominal stability and performance specifications [19]. As pre-

viously discussed in section 3.4.1, the anti-windup compensators Q1 and Q2

to be synthesized are parameterized in terms of the coprime factorization of

the nominal plant as

Q1 = M−1Q (6.1)

Q2 = M−1 − I (6.2)

where M is part of the right coprime factorization of the plant G = NM−1

with the state space realizations


M
N


 =




A+BF B

F I

C +DF D


 . (6.3)

The anti-windup design problem reduces to finding an appropriate right co-

prime factorization of the nominal plant via the free design parameter F

which must be chosen such that A+BF is Hurwitz. When there are no sat-

urations, we require that Q1 and Q2 are constrained to be Q = (Q2 + I)−1Q1

such that the linear controller and performance are recovered. The quadratic

program is as defined in (5.19). It serves the purpose of a directionality com-

pensator. Its Hessian matrix is fully characterized by the plant’s structural

properties such as the characteristic matrix or the steady-state gain. As

discussed in chapter 5, such structural matrices determine the directional

nature of the plant output either during the transient condition or during

steady states. The problem we seek to tackle is summarized as follows:

Problem: Given a stable plant G, a nominal internal model controller Q

which meets certain linear performance specifications and a non-singular

matrix H which contains the directional characteristics of the plant,

synthesize the anti-windup compensatorQ1 andQ2 such that the closed-

loop system of Fig. 6.1 is stable, has a guaranteed level of nonlinear

performance and recovers the linear performance when there are no
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control saturations (i.e. v = u).

Using lemma 5, the optimizing anti-windup can be redrawn with the original

quadratic program (5.19) replaced with a deadzone-like quadratic program

(5.22). With further algebraic manipulations and the assumption of per-

fect model, the optimizing anti-windup can be represented in a decoupled

architecture as shown in Fig. 6.2[cf. [34]]. This equivalent representation

Figure 6.2: Decoupled Architecture for the Optimizing IMC anti-windup

is attractive as it decouples the optimizing anti-windup structure into the

nominal linear system, the nonlinear loop involving a QP and the distur-

bance filter. The behaviour of the closed-loop system during saturation is

then closely related to the nonlinear loop and disturbance filters. For sta-

ble systems, the equivalent nominal classical feedback controller K can be

obtained from the relation K = (I − QG)−1Q. Using this in Fig. 6.2 and

setting (I+Q2)
−1 = M , we obtain a decoupled structure in M which may be

interpreted as the single transfer function parameterization of anti-windup

schemes with simple saturations [34]. The emphasis here is that the nonlin-

earity is allowed to take a more general structure as compared to existing

saturating anti-windup schemes where the nonlinearity is implicitly assumed

to be decentralized or decoupled.
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6.3 Stability and Performance Analysis

From the decoupled architecture of Fig. 6.2, it is evident that the nominal

stability of the optimizing anti-windup depends on the stability of the consti-

tuting sub-systems. The linear sub-system is internally stable if the plant G

and the IMC controller Q are both stable [19]. With the assumption that Q

has been designed to meet some specified nominal stability and performance

requirements, the stability of the optimizing anti-windup is then determined

by the stability of the nonlinear loop. The stability of such interconnections

involving a class of nonlinearities has been widely studied using results from

small gain, passivity, multiplier and IQC theories (See [36; 92] for saturating

anti-windup). Properties 5 and 6 of the quadratic program in section 5.8

allow the extension of such results to the optimizing anti-windup. Here, we

exploit the structure of the quadratic program (5.22) to construct sufficient

stability conditions for the optimizing anti-windup. After carrying out two

linear transformations (φ(u) = H−1
r ϕ(x) and u = H−1

r x where H = HT
r Hr)

followed by loop transformations, the nonlinear loop can be redrawn as shown

in Figs. 6.3 and 6.4 respectively.

Figure 6.3: Nonlinear loop with quadratic program ϕ ∈ sector [0, I]

It then follows from passivity result or the multivariable circle criterion [54]

that a sufficient condition for asymptotic stability of the nonlinear-loop is
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Figure 6.4: Nonlinear loop with quadratic program ϕ ∈ sector[0, I] trans-
formed to ϕ̃ ∈ sector [0,∞] via loop transformation

that HM is strictly positive real (SPR). This condition is stated as

HM +M∗H > 0 (6.4)

for all frequency. Stronger stability results may be obtained by introducing

multipliers such as those discussed in [103; 105] into the nonlinear loop of

Fig. 6.4. Typically, the stability multipliers are such that the positivity of

the nonlinearity is preserved. The nonlinear loop is then stable if WHM is

SPR. This can be stated as

WHM +M∗HW ∗ > 0. (6.5)

where W is the stability multiplier. When W is restricted to be a constant

positive definite diagonal matrix, the stability condition (6.5) reduces to a

scaled version of the multivariable circle criterion (6.4) which corresponds to

the sector condition of property 5 in section 5.8.

Note that the stability condition (6.4) or (6.5) is without reference to a

particular factorization scheme for the nominal internal model control Q.

Possible factorization options are discussed in [2; 1]. These options are known

to lead to improved nonlinear performance at the expense of guaranteed

closed loop stability. We will incorporate the above stability result into the

choice of the compensators Q1 and Q2 for optimizing anti-windup of Fig. 6.1.
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Another advantage of the decoupling structure of Fig. 6.2 is that it allows

the specification of performance criterion which is directly related to the anti-

windup behaviour during and after saturation [16]. The map from ulin to

yd represents how the fictitious disturbance signal yd due to the presence of

control input nonlinearity affects the output of the intended linear system.

Specifically, we would like to minimize the L2 gain of the map ulin → yd

so that the adverse effects of the input nonlinearity is mitigated while the

recovery of unconstrained performance is as fast as possible after saturation.

6.4 Anti-windup Compensator Synthesis

The results in this section extend the synthesis approach of [16; 106] to the

optimizing anti-windup. Here, we consider a multi-objective synthesis ap-

proach which addresses a) closed-loop stability through a Lyapunov-based

stability criterion; b) nonlinear performance by minimizing the L2-norm of

the difference between the constrained output y and the unconstrained (nom-

inal) output ylin via the quadratic program (5.19) or (5.22); and c) recovery

of linear performance through the minimization of the L2 gain of the map

ulin → yd in Fig. 6.2.

Let the right coprime factors of the plant G = NM−1 admit the state space

realizations represented in (6.3). The mappings from w → (u − ulin) and

ulin → yd in Fig. 6.2 are respectively obtained as


 ẋ

u− ulin


 =


 A+BF B

−F 0




x
w


 (6.6)




ẋ

u− ulin

yd


 =




A+BF B

−F 0

C +DF D





x
w


 with (6.7)

w = φ(u). (6.8)
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Theorem 4 (Synthesis with Lyapunov stability criterion). Given a stable

plant G with coprime factorization (6.3), a stable Q and a given H such that

the sector condition of lemma 5 is satisfied. Suppose there exist positive

definite quadratic function V (x) and τ > 0 such that for all t,

V̇ (x) + 2τwTH(u− w) < 0 (6.9)

for all x, u, ulin and w satisfying (6.6). Then the optimizing anti-windup in

Fig. 6.2 is stable. Moreover, condition (6.9) is equivalent to the existence of

P = P T > 0 such that the following LMI in P , L and α > 0


AP + PAT +BL+ LTBT αB − LTH

αBT −HL −2αH


 < 0. (6.10)

is satisfied. A suitable choice of F is given as F = LP−1 where L and P are

feasible solutions of LMI (6.10).

Proof. Choosing V (x) as V (x) = xTXx with X = XT > 0, the expression in

(6.9) is a direct application of S-procedure to V̇ (x) < 0 and the sector condi-

tion wTH(u−w) ≥ 0 ∀ τ > 0. Condition (6.9) is guaranteed ∀ [xT wT ]T 6= 0

with ulin = 0 if (6.11) is satisfied.


XA+ ATX +XBF + F TBTX XB − τF TH

BTX − τFH −2τH


 < 0. (6.11)

By a simple congruence transformation diag(X−1, τ−1I) and defining P =

X−1, α = τ−1, L = FP in equation (6.11), we obtain the LMI in (6.10).

Remark 6. The main result of theorem (6.2) is that existing optimizing

anti-windup schemes such as those in [7; 8; 43] can now be equipped with

stability guarantees for all nonlinearities of the form of (5.19) and satisfying

the generalized sector condition 5.21. By construction, the Hessian matrix

H is always positive definite and often assumes a non-diagonal structure

(property 3 of section 5.8). The LMI result (6.10) can also be obtained by

applying the positive real lemma (e.g. [60]) to the stability condition (6.5)

124



with W set as τI. We note that similar sufficient stability result based

on the KKT conditions of the associated input nonlinearities have earlier

been suggested in the literature [55; 54; 56] but only for posteriori stability

checks. Here, the information from the QP (5.19) is incorporated into the

synthesizing LMI such that closed loop stability is assured.

Theorem 5 (Synthesis with L2-gain performance). Given a stable plant

G with coprime factorization (6.3), a stable Q and a given H such that the

sector condition of lemma 5 is satisfied. Suppose there exists positive definite

quadratic function V (x), τ > 0 and γ > 0 such that for all t,

V̇ (x) + yTd yd − γ2uTlinulin + 2τwTH(u− w) < 0 (6.12)

for all x, u, ulin and w satisfying (6.8). Then the L2 gain of the map from

ulin to yd in Fig. 6.2 is less than γ. Moreover, condition (6.12) is equivalent

to the existence of P = P T > 0 such that the following LMI in P , L, α > 0

and γ > 0




AP +BL+ PAT + LTBT αB − LTH 0 PCT + LTDT

αBT −HL −2αH H αDT

0 H −γI 0

CP +DL αD 0 −γI



< 0.

(6.13)

is satisfied. A suitable choice of F is given as F = LP−1 where L and P are

feasible solutions of LMI (6.13).

Proof. With a Lyapunov function choice of V (x) = xTY x with Y = Y T > 0,

condition (6.12) reduces to




Y Ã+ ÃTY + C̃T C̃ Y B + C̃TD − τF TH 0

BTY +DT C̃ − τHF DTD − 2τH τH

0 τH −γ2I


 < 0 (6.14)

for all [xT wT uTlin]T 6= 0 where Ã = A+BF and C̃ = C +DF . By applying
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Schur complement, change of variables Y = γX, τ = γβ and congruence

transformation using diag(X−1, β−1I, I, I), (6.14) reduces to




ÃX−1 +X−1ÃT β−1B −X−1F TH 0 X−1C̃T

β−1BT −HFX−1 −2β−1H H β−1DT

0 H −γI 0

C̃X−1 β−1D 0 −γI



< 0. (6.15)

Defining P = X−1, α = β−1, L = FP in (6.15) as well as substituting for Ã

and C̃ gives the LMI result (6.13).

Remark 7. The key feature of this theorem is the freedom in choosing H

which may now assume a more general non-diagonal structure as compared

to existing anti-windup schemes. The appropriate choice of H is made based

on the plant characteristics, giving the designer more control on the anti-

windup design as well as offering insights into the anti-windup computation.

When H is taken to be diagonal or the identity, the LMI (6.13) reduces to the

synthesizing LMI result commonly found in saturating anti-windup designs.

So, anti-windup design schemes of [5; 16; 86; 21; 46] may be considered as

special cases of the result (6.13).

Remark 8. The feasibility of LMI (6.13) is sufficent for the feasibility of

LMI (6.10) since the LMI (6.10) is a principal submatrix (upper left 2×2

block) of LMI (6.13). On the other hand, LMI (6.13) is feasible if and only if

LMI (6.10) is feasible and γ is sufficiently large (as seen from the lower right

2×2 block of LMI(6.13)). Note that there is always a choice of F such that

LMI (6.13) is feasible. Choosing F = 0 implies M = I and hence Q2 = 0.

In this instance, LMI (6.13) reduces to a version of the bounded real lemma

(e.g. [60]) and the L2 gain computed corresponds to the H∞ norm of the

stable plant G.
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6.5 Simulation Example

In order to demonstrate the effectiveness of the proposed anti-windup syn-

thesis method, we first consider an ill-conditioned example typical of dis-

tillation column control [19; 77]. This is a well-studied problem because of

the strong directionality and interaction that exist in the plant dynamics as

well as its high sensitivities to diagonal input nonlinearities and uncertain-

ties. We compare four anti-windup approaches, namely the modified IMC

anti-windup [2], the static anti-windup [5], the dynamic anti-windup design

without directionality compensation [106] and the anti-windup scheme with

directionality compensation of theorem 5. The second example demonstrates

the superiority of the proposed method compared to existing optimization-

based anti-windup when applied to plants with lightly damped modes. For

this example, we compare the conventional IMC anti-windup [6], the dy-

namic anti-windup without directionality compensation [106], the optimal

anti-windup with directionality compensation [7] and the proposed scheme

based on theorem 5. Note that we did not include the static anti-windup

of [5] for this example as the synthesizing LMI was infeasible. Table 6.1

shows the L2 gains attainable using three different anti-windup techniques.

The proposed scheme combines the optimality of an online optimization with

the efficiency of convex dynamic anti-windup synthesis leading to superior

responses as shown in the simulations of Figs. 6.5 and 6.6.

Table 6.1: Performance levels γp for different anti-windup (AW) schemes

Static AW [5] Dynamic AW [21] Proposed AW Scheme
Example 1 3.8200 1.9708 1.9708
Example 2 Infeasible 200.6473 200.6471

Example 5. The nominal plant model is given by the transfer function

matrix

G(s) =
1

75s+ 1


0.878 −0.864

1.082 −1.096


 (6.16)

with both inputs constrained as |ui| ≤ 100, i = 1, 2. In the absence of control

input saturations, the linear controller is designed to achieve a completely
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decoupled closed-loop response represented as follows

GF (s) =
1

1.43s+ 1
I.

The classical IMC controller design for a step input is

Q(s) =
75s+ 1

(1.43s+ 1)


39.94 −31.49

39.43 −32.00


 (6.17)

and the corresponding unity feedback controller is

K(s) =
75s+ 1

1.43s


39.94 −31.49

39.43 −32.00


 . (6.18)

We chose H = HT
r Hr with Hr as the characteristic matrix of the plant (in

the notion of [8]). We have

Hr =


0.012 −0.012

0.014 −0.015


 .

For the modified IMC anti-windup design [2], the plant model is slightly

modified as

G̃(s) =
1

75s+ 1




0.878 −0.864
0.1s+1

1.082
0.1s+1

−1.096


 (6.19)

and the compensator Q1 is designed as Q1 = fAG̃Q where

fA =


85.42(s+ 1) 0

0 −68.43(s+ 1)


 . (6.20)

Figs 6.5 shows the input and output responses of the nominal plant to a set-

point change from [0 0]T to [0.99 0]T at time t = 10 and from [0.99 0]T

to [0.99 0.01]T at time t = 50 respectively for the different control configu-
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Figure 6.5: Example 5-Input and output Responses of the proposed anti-
windup scheme as compared with existing schemes

Table 6.2: Legend for the responses in Figs. 6.5a through 6.5d

System Line Type
Unconstrained Bold
Modified IMC [2] Dotted
Dynamic anti-windup [106] Dashed
Static anti-windup [5] Dashdotted
Proposed anti-windup [Theorem 5] Solid

rations listed in Table 6.2. Note that the unconstrained case requires a very

aggressive control action during transient condition to achieve the decoupled

response. The modified IMC anti-windup [2] has an improved transient re-

sponse on one channel at the expense of a more sluggish output response

on the other. This is not unexpected as the anti-windup compensator is

designed to instantaneously minimize the 1-norm of a filtered difference be-

tween the unconstrained and the constrained outputs which is based on a
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related plant model. In addition, there are no design guidelines for the filter

which is chosen purely based on intuition and has nothing to do with the

plant’s characteristics. The dynamic anti-windup of [106] results in a slug-

gish transient response. This is because the scheme does not compensate for

the effects of plant’s directionality. It only chops off the control inputs lead-

ing to degraded response. Since the LMI synthesis resulted in a compensator

with a very fast pole (requiring a very high sampling frequency), we have

constrained the poles to a region comparable to those of the unconstrained

controller poles for ease of implementation. The proposed scheme not only

results in an improved time domain response but also attains a lower L2 gain

when compared with the static anti-windup scheme of [5]. The L2 gain of

the scheme [21] is the same as that obtained with proposed scheme.

Example 6. We consider another example with a pair of lightly damped

modes at −0.01 ± j0.01. The plant has the following dynamics

G(s) =
s+ 0.001

s2 + 0.02s+ 0.0002




0.25 −0.08

−0.125 4


 (6.21)

with |ui| ≤ 0.2, i = 1, 2 and set-point changes from [0 0]T to [0.99 0.03]T

at time t = 0 corresponding to the plant low-gain direction. In the absence of

control input saturation, the linear controller is designed to cancel the plant’s

lightly damped dynamics and to achieve a completely decoupled closed-loop

response given by

GF (s) =




1
5s+1

0

0 1
2s+1


 .

Since the plant is both stable and of minimum phase, we obtain the classical

IMC controller using Q = G−1GF and the corresponding unity feedback

controller from the relationK = (I−QG)−1Q. For this plant, Hr is computed

as

Hr =


 0.250 −0.080

−0.125 4.000



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Figure 6.6: Example 6-Input and output Responses of the proposed anti-
windup scheme as compared with existing schemes

Table 6.3: Legend for the responses in Fig. 6.6a through 6.6d

System Line Type
Unconstrained Bold
Conventional IMC anti-windup[6] Dotted
Dynamic anti-windup [106] Dashed
Optimal anti-windup (with QP)[7] Dashdotted
Proposed anti-windup (with QP) [Theorem 5] Solid

Fig. 6.6 shows the responses of the plant for different anti-windup schemes

for a set-point is change from [0 0]T to [0.99 0.03]T at time t = 0 which

corresponds to the plant’s low-gain direction. Note that for this example, the

static anti-windup scheme [5] is infeasible which implies that there is no static
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anti-windup gain that can guarantee the quadratic stability of the closed-loop

using the static anti-windup scheme. The poor transient responses associated

with the conventional IMC can be attributed to the effects of directionality [6]

since the scheme just chops off the control inputs. The dynamic anti-windup

[21] results in an improved response as compared to the conventional IMC.

While the problem of directionality is solved by incorporating directionality

compensator in the optimal anti-windup scheme of [7], the proposed scheme

recovers the linear performance faster and it is closest to the unconstrained

response.

6.6 Summary

We have presented a multivariable optimizing anti-windup design which

guarantees closed-loop stability while compensating for both windup and

directionality change in the control input vector. The simulated examples

demonstrate the benefits that ensue: both from introducing directionality

compensation into an anti-windup structure and from applying our proposed

design procedures. The results are especially beneficial when the plant is

ill-conditioned or has lightly damped modes. The method allows an explicit

trade-off between stability and performance. We are currently investigating

how significantly the balance is shifted when we replace input saturations

with a quadratic program. We have also restricted our discussions to the

nominal case where there are no model uncertainties. We will remove this

restriction in the subsequent chapters by incorporating robustness norm-

bounded uncertainty into the anti-windup framework.
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Chapter 7

Robust Optimizing

Anti-windup Synthesis: An

Integral Quadratic Constraint

Approach

7.1 Introduction

In optimizing anti-windup schemes, an additional nonlinearity is incorpo-

rated to account for problems associated with plant or control directionality.

Most optimizing anti-windup schemes derive from the optimization-based

conditioning techniques [69; 42] which were developed to deal with the is-

sues of control windup and directionality. In chapter 5, we noted that the

quadratic program associated with the optimizing anti-windup is equivalent

to an interconnection of a related quadratic program with a feedthrough link.

This allows an LMI-based synthesis using a decoupled structure similar to

those proposed for anti-windup schemes with simple saturations. In chapter

6, we developed a synthesis procedure for the optimizing anti-windup based
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on the assumption that the plant is perfectly modeled. Here, we remove

such assumptions and incorporate plant uncertainties into the anti-windup

development.

The main contribution of this chapter is the robust synthesis of optimiz-

ing anti-windup subject to H∞-norm bounded uncertainties such as those

arising from unmodeled or neglected dynamics. In particular, we apply the

synthesis approach of [21; 45] to the optimizing anti-windup design problem.

Aside from allowing the incorporation of robustness in a less conservative

manner, the design approach captures the directional characteristics of the

plant into the anti-windup design giving the synthesizing LMIs an extra de-

gree of freedom. An additional pay off is that the resulting scheme offers

a systematic way of dealing with algebraic loops and well-posedness of the

arising interconnection as compared to [46; 57].

The rest of the chapter is structured as follows. In section 7.2, we define

the robust optimizing anti-windup design problem using the internal model

control architecture. In section 7.3, the problem is reformulated in the IQC

framework. We state a sufficient LMI-based condition which guarantees both

closed-loop stability and a specified level of performance. In section 7.4, the

synthesis problem is reduced to the feasibility of two LMI constraints. In

section 7.5, we suggest a practical implementation method for the algebraic

loop arising from the anti-windup interconnection. We note that optimality

condition of the directionality compensator necessarily guarantees the well-

posedness of the closed-loop interconnection.
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7.2 Problem Statement and Formulation

7.2.1 Unconstrained System

We denote the state-space realizations associated with the nominal plant G22

as

G22 ∼

 A B

C D


 . (7.1)

The nominal unconstrained linear controller denoted as K (for feedback con-

troller) or Q (for internal model controller) is assumed to have been designed

to meet some acceptable nominal stability and performance criteria [19]. This

implies that Q is such that the nominal closed-loop system

ylin = G22Qr + (I −G22Q)d

ulin = Q(r − d)
(7.2)

is internally stable. The signals ylin and ulin are the nominal unconstrained

(linear) plant output and control input respectively. The exogenous sig-

nals r and d represent the reference and the disturbance signals respectively.

The IMC controller Q can be considered the special case of the Youla-

parametrization of all stabilizing controllers K for stable plant G where K

and Q are related by K = Q(I −G22Q)−1.

7.2.2 Uncertainty Description

The plant uncertainty is assumed to be described by additive-type uncer-

tainties such that the actual plant G can be expressed as

G = G22 +W∆r. (7.3)
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where ∆r is a bounded operator satisfying ‖∆r‖∞ ≤ 1/γr and W is a known

frequency dependent stable transfer functions or weighting. We will represent

the state space realization of QW as

QW ∼

 Aq Bq

Cq Dq


 . (7.4)

7.2.3 Coprime Factorization Representation

Let the coprime factorization of the nominal plant G22 = NM−1 be given by

the following state space realization


M
N


 ∼




A+BF BE

F E

C +DF DE


 (7.5)

where F must be chosen such that A+BF is Hurwitz and E is any arbitrary

invertible matrix (e.g. [81]). In the subsequent sections, the anti-windup

synthesis problem is reduced to a convex search (in terms of F and E) over

the space of all right-coprime factors of the nominal plant satisfying the

design objectives.

7.2.4 Nonlinearity Characterization and Directional-

ity Compensation

For the optimizing anti-windup framework, the nonlinearity is assumed to

take the form of the positive definite quadratic program (QP) as in (5.19).

The nonlinearity termed the directionality compensator belongs to a gen-

eral class of coupled multivariable nonlinearities satisfying the generalized

sector condition (2.14). As earlier discussed in chapter 3, H can be cho-

sen differently depending on the overall design objectives and it allows the
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incorporation of the plant’s directional characteristics into the anti-windup

design. We consider the optimizing anti-windup structure of Fig. 6.1. The

transfer function matrices Q1 and Q2 are the anti-windup compensations to

be designed and are related to the nominal IMC controller through

Q = (Q2 + I)−1Q1. (7.6)

Figure 7.1: IMC anti-windup with a quadratic program as directionality
compensator

As earlier discussed in section 5.8, the input nonlinearity is equivalent to

feedthrough term in parallel to a related quadratic program denoted as φ(.)

in (5.22). Using this equivalent representation, the optimizing anti-windup

of Fig. 6.1 can be restructured into the decoupled architecture of Fig. 7.1

where the signals q∆ and yd can be considered as fictitious disturbance signals

perturbing the nominal plant output due to the presence of plant uncertainty

∆r and the nonlinearity φ. In the spirit of [21] for saturation nonlinearities,

we choose Q2 such that (I+Q2)
−1 = M where M is part of the right coprime

factorization of (7.5). Then, the loop transmission around the nonlinearity
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φ(.) becomes (I −M). The factorizations of Q can then be obtained as

Q1 = M−1Q

Q2 = M−1 − I.
(7.7)

We now state the optimizing anti-windup synthesis problem.

Problem Definition: Given a stable nominal plant G22 which admits a

right coprime factorization (7.5), a stable nominal Q and an admissible plant

perturbation level γr, synthesize optimizing anti-windup compensators Q1

and Q2 such that for all nonlinearities of the form (5.19) with fixed H =

HT > 0, L and b > 0, the interconnection of Fig. 7.1

(i) is well-posed,

(ii) is stable,

(iii) has an L2 gain performance level of less than γp, and

(iv) recovers the linear performance when there are no control saturations

(i.e. when u = Sat(u)).

Remark 9. Well-posedness may not be an issue if we choose the constant

matrix E in (7.5) as the identity. With this restriction, the algebraic loop

in Fig. 7.1 disappears and well-posedness is guaranteed by the uniqueness of

the solution of the quadratic program represented by φ. Similarly, the choice

of F = 0 corresponds to the conventional IMC structure (Q1 = Q, Q2 = 0)

which guarantees closed-loop stability provided G22 and Q are both stable.

There is therefore always a choice of compensator that ensures items (i)

and (ii) of the problem definition. However, we require E to convexify the

matrix inequalities in the synthesis procedure of section 7.4. We will therefore

explore the flexibilities in the choice of F and E via a convex search to

synthesis the optimal compensators Q1 and Q2 which guarantees both closed-

loop stability and a given level of performance.
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Remark 10. The satisfaction of items (iii) and (iv) of the problem definition

depend on the properties of the nonlinearity, the choice of performance cri-

terion and the channels to which the performance is associated. Since in the

unconstrained case, the optimal solution corresponds to the unconstrained

control input i.e. (v∗ = u), therefore the QP does not interfere with the

linear performance of the control structure for small signals. The recovery of

linear performance is thus expected when there are no input saturations.

7.3 An Integral Quadratic Constraints Ap-

proach to Robust Stability and Perfor-

mance Analysis

Figure 7.2: Standard feedback interconnection for robust stability and per-
formance analysis

We consider the standard feedback interconnection of Fig. 7.2 with the input-

output map


p
z


 =


Pqp Pwp

Pqz Pwz




q
w


 (7.8)

q =∆̃(p) (7.9)

so that the linear time invariant generalized plant P admits the following
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Figure 7.3: Equivalent feedback interconnection

state-space representation

P ∼




ẋ

p

z


 =




Ap Bqx Bwx

Cxp Dqp Dwp

Cxz Dqz Dwz







x

q

w


 . (7.10)

The map from w to z represents the channel with which we would like to

associate some performance criterion. Among various possible choices of

performance measures, we will consider the induced L2 gain. In particular, we

want to make the effects of the nonlinearity φ on both the input and output

of the plant G to be as small as possible. From the decoupled representation

of Fig. 7.1, we have the following mappings

yd = −G(1 +Q2)
−1qφ

uz = ulin −QWq∆.

The map from qφ to yd dictates how the nonlinearity φ affects the plant out-

put while the map from q∆ to uz represents the combined effects of both the

nonlinearity φ and the uncertainty ∆r at the plant input. It is therefore,

natural to specify the performance objective in terms of the L2 gain from

ulin to the output of the disturbance filter yd. Such a specification has been

observed to be central to the anti-windup design problem [36; 16] for the sat-
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urated case. We note that the framework of Fig. 7.2 allows the specification

of different performance objectives such as for disturbance rejection [46] or

the more general criteria [5; 15]. The requirement that the induced L2 gain

of the map from w to z be less than γp is equivalent to checking that the

interconnection of Fig. 7.3 is stable for all unstructured ∆p which is norm

bounded by γp. ∆p can therefore be absorbed into the block diagonal ∆ for

the purpose of performance analysis as is standard (e.g. [64]).

Let us define p = [pT∆, p
T
φ ]T , q = [qT∆, q

T
φ ]T and ∆ = diag(∆r, φ,∆p). Then,

we can write the input-output map of Fig. 7.3 as




p∆

pφ

yd


 =




−QW −(1 +Q2)
−1 I

−QW (1 +Q2)
−1Q2 I

0 −G22(1 +Q2)
−1 0







q∆

qφ

ulin


 (7.11)

q =∆(p). (7.12)

7.3.1 Available IQCs for the uncertainties (∆r, ∆p) and

the nonlinearity ψ.

The norm-bound condition q∆ = ∆rp∆, ||∆r||∞ ≤ 1/γr on the plant uncer-

tainty ∆r can be equivalently stated as requiring ‖p∆‖2 −γ2
r ‖q∆‖2 ≥ 0. This

can be expressed in the IQC notation as ∆r ∈ IQC(Π∆r
) with

Π∆r
=


I 0

0 −γ2
r I


 . (7.13)

Similarly, the L2 gain performance condition in terms of the fictitious oper-

ator ∆p satisfying ‖z‖2 − γ2
p ‖w‖2 ≥ 0 can be expressed as ∆p ∈ IQC(Π∆p

)

with

Π∆p
=


I 0

0 −γ2
pI


 . (7.14)
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As earlier discussed in sections 2.2 and 5.8, the input-output map of the

nonlinearity φ(.) satisfies the generalized sector condition

λqTφH(qφ − pφ) ≤ 0 (7.15)

for a positive scalar λ > 0. This can be stated as ψ ∈ IQC(Πψ) with

Πφ =


 0 λH

λH −2λH


 . (7.16)

The block diagonal operator ∆ formed by the combination of ∆r, φ and ∆p

i.e. ∆ = diag(∆r, φ,∆p) satisfies the IQC defined by

Π∆ =


Π∆11 Π∆12

Π∗
∆12

Π∆22


 (7.17)

where

Π∆11 =




I 0 0

0 0 0

0 0 I


 ,Π∆12 =




0 0 0

0 λH 0

0 0 0


 and (7.18)

Π∆22 =




−γ2
r I 0 0

0 −2λH 0

0 0 −γ2
pI


 . (7.19)

It is also possible to introduce weighting matrices Wr and Wp in the IQC

definitions for ∆r and ∆p respectively to reflect the relative importance of

robustness and performance [46]. With this, the top-left partition of (7.17)

can be expressed as

Π∆11 =




Wr 0 0

0 0 0

0 0 Wp


 . (7.20)

The IQC approach of [64] can be extended to perform robust performance

analysis for the standard feedback interconnection of Fig 7.3. We first state
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the IQC theorem.

Theorem 6 (IQC Theorem [64]). Let P be a stable transfer function matrix

and let ∆ be a bounded causal operator, then the feedback interconnection

of P and ∆ is stable if the following conditions hold:

(i) the interconnection of P and τ∆ is well-posed for all τ ∈ [0, 1];

(ii) τ∆ satisfies the IQC defined by Π∆ for all τ ∈ [0, 1];

(iii) there exists ǫ > 0 such that


P (jw)

I




∗

Π∆(jw)


P (jw)

I


 ≤ −ǫI for all w ∈ R. (7.21)

Since Π∆11 ≥ 0 and Π∆22 ≤ 0, the IQC defined by Π∆ is also satisfied by

τ∆ ∀ τ ∈ [0, 1] [64]. Hence, the dependence of item (ii) on τ in the IQC

stability theorem 6 can be eliminated.

We state a time-domain equivalent result as follows:

Theorem 7. Let P be a stable linear time invariant system with the state-

space realization of (7.10) and let ∆ = diag(∆r, φ,∆p) be a bounded operator

satisfying the IQC condition defined by Π∆ (7.17) where Π∆11 ≥ 0 and

Π∆22 ≤ 0. Assume that:

(i) the interconnection of P and τ∆ is well-posed for all τ ∈ [0, 1];

(ii) there exist a positive definite matrix R = RT and positive scalars

(γr, γp, λ) such that for all x, q, w satisfying (7.10), the following ma-

trix inequality holds;




ATpR +RAp RBqx RBwx

BT
qxR 0 0

BT
wxR 0 0


+ Π̃ < 0 (7.22)
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with

Π̃ =




Cxp Dqp Dwp

Cxz Dqz Dwz

0 I 0

0 0 I




T


Π∆11 Π∆12

ΠT
∆12

Π∆22







Cxp Dqp Dwp

Cxz Dqz Dwz

0 I 0

0 0 I




where Π∆11 , Π∆12 and Π∆22 are as defined in (7.17).

Then, the feedback interconnection of P and ∆ is stable for all w ∈ L2 and

the L2-gain from w to z is less than γp.

Proof. Using the state-space realizations for P in (7.10) and the IQC fre-

quency condition (7.21), the matrix inequality condition (7.22) follows di-

rectly from the application of KYP lemma [107].

Remark 11. The stability condition (7.22) can also be obtained via the

existence of a quadratic function of the form V (x) = xTRx with R > 0 and

γp > 0, λ > 0 such that for all t,

V̇ (x) + λqTφH(pφ − qφ) + (pT∆p∆ − γ2
r q
T
∆q∆) + (zT z − γ2

pw
Tw) < 0 (7.23)

for all x and w satisfying (7.10). Since the second and third terms are always

non-negative by the IQC definitions of (7.13) and (7.16). Using the fact that

V (x) is positive definite for all x 6= 0, the integration of (7.23) from 0 to t

with initial conditions x(0) = 0 reduces to

‖z‖2 − γ2
p ‖w‖2 ≤ 0 (7.24)

which implies that the L2-gain from w to z does not exceeds γp [60]. The

matrix inequality constraint (7.22) follows from the substitutions of x, q and z

from (7.10) into the condition (7.23) and after some algebraic manipulations.

We will use the analysis result of theorem 7 for the synthesis of suitable

anti-windup compensation that guarantees both closed-loop stability and a
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given level of performance. The discussions on well-posedness and real-time

implementation of the resulting optimizing control are covered in section 7.5.

7.4 LMI-Based Synthesis

We now state the main result for robust optimizing anti-windup synthesis.

Theorem 8. Consider the system of Figure 7.1 where G22 ∈ RHny×nu

∞ ,

Q ∈ RHnu×ny

∞ and W ∈ RHny×ny

∞ are the nominal plant, the IMC controller

and the frequency dependent weighting respectively. Let G22 have the co-

prime factorization (7.5) and Let H = HT > 0 be given such that for all

nonlinearities of form (5.22), condition (7.15) holds. Suppose there exist a

positive definite matrix R and positive scalars (γr, γp, λ) such that for all

x, q, w satisfying (7.10)

Ψ + ΓTΘTΩ + ΩTΘΓ < 0 (7.25)

where

Ψ =




AToR +RAo RBo + λC̄T
o H̃ 0 C̄T

o CT
o

BT
o R + λH̃C̄o λ(H̃D̄o + D̄T

o H̃) − γ2
r Ĩ λĤ D̄T

o 0

0 λĤT −γ2
pI ÎT 0

C̄o D̄o Î −W−1
r 0

Co 0 0 0 −W−1
p




Θ = [F E] (7.26)

Ω =
[
Ω1R λΩ2H̃ 0nu

Ω2 Ω3

]
and (7.27)

Γ =
[
Γ1 Γ2 0(n+nu)×nu

0(n+nu)×(nu+ny) 0(n+nu)×ny

]
(7.28)

145



with

Ao =


 Aq 0nq×n

0n×nq
A


 , Bo =


 Bq 0nq×nu

0n×ny
0n×nu


 , C̄o =


0ny×nq

0ny×n

−Cq 0nu×n


 ,

D̄o =


0ny×ny

0ny×nu

−Dq 0nu×nu


Co =

[
0ny×nq

−C
]
,

Ω1 =
[
0nu×nq

BT
]
,Ω2 =

[
0nu×ny

−Inu

]
,Ω3 = −DT ,

Γ1 =


 0n×nq

In

0nu×nq
0nu×n


 ,Γ2 =


 0n×ny

0n×nu

0nu×ny
Inu


 , H̃ =


 Iny

0ny×nu

0nu×ny
H


 ,

Ĩ =


 Iny

0ny×nu

0nu×ny
0nu×nu


 , Î =


0ny×nu

Inu


 , Ĥ =


0ny×nu

H


 .

(7.29)

Then there exists a plant-order anti-windup compensator of the form (7.7)

which

(i) guarantees the well-posedness of the interconnection,

(ii) renders the closed loop system stable with an L2 gain from w to z less

than γp for all ∆ satisfying the IQC defined by (7.17).

Furthermore, letR be partitioned asR =


R11 R12

RT
12 R22


. Then (7.25) is solvable

for Θ if and only if the following LMIs in variables αr, αp, R11 and R with

αr = γ2
p and αp = γ2

p hold.




ATq R11 +R11Aq R11Bq 0 −CT
q

BT
q R11 −αrIny

0 −DT
q

0 0 −αpInu
Inu

−Cq −Dq Inu
−W−1

r



< 0 (7.30)
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and




ATCLR +RACL RBCL RB̂CL CT
cl

BT
CLR −αrIny

0 DT
cl

B̂T
CLR 0 −αpInu

−DT

Ccl Dcl −D −W−1
p



< 0 (7.31)

with

ACL =


 Aq 0

−BCq A


 , BCL =


 Bq

−BDq


 , B̂CL =


 0

B




CCL =
[
DCq −Cp

]
, DCL = DDq.

(7.32)

Proof. Using (7.4) and the coprime-factor based realizations for Q2, we ob-

tain a particular state-space realizations for P as

P ∼




Ap Bqx Bwx

Cxp Dqp Dwp

Cxz Dqz Dwz


 =




Aq 0 Bq 0 0

0 A+BF 0 BE 0

−Cq −F −Dq −E I

−Cq −F −Dq I − E I

0 −(C +DF ) 0 −DE 0




(7.33)

with Ap ∈ R
(nq+n)×(nq+n), Bqx ∈ R

(nq+n)×(ny+nu), Bwx ∈ R
(nq+n)×nu ,

Cxp ∈ R
(2nu+ny)×(nq+n), Cxz ∈ R

ny×(nq+n), Dqz ∈ R
(2nu+ny)×(2nu+ny) and

Dwz ∈ R
ny×nu . Substituting (7.33) into the condition (7.22), we obtain the

147



following inequality




ATpR +RAp RBqx + λC̄T
h H̃ 0 C̄T

h CT
xz

BT
qxR + λH̃C̄h λ(H̃D̄h + D̄T

h H̃) − γ2
r Ĩ λĤ D̄T

h DT
qz

0 λĤT −γ2
pI ÎT 0

C̄h D̄h Î −W−1
r 0

Cxz Dqz 0 0 −W−1
p




< 0

(7.34)

with C̄h =


 0 0

−Cq −F


 and D̄h =


 0 0

−Dq −E


 .

Making the following substitutions in (7.34)

Ap = Ao + ΩT
1 ΘΓ1, Bqx = Bo + ΩT

1 ΘΓ2, C̄h = C̄o + ΩT
2 ΘΓ1

D̄h = D̄o + ΩT
2 ΘΓ2, Cxz = Co + ΩT

3 ΘΓ1, Dqz = ΩT
3 ΘΓ2,

(7.35)

we obtain the matrix inequality in (7.25). From the projection lemma [108],

the matrix inequality (7.25) is solvable for Θ if and only if W T
Γ ΨWΓ < 0 and

W T
Ω ΨWΩ < 0 hold. Here, WΓ and WΩ are orthogonal matrices that form the

bases for the null spaces of Γ and Ω respectively. Let us define Ω = Ω0T with

T = diag(R, H̃, Inu
, Inu

, Inu
) and WΩo = TWΩ. Then, the second solvability

condition W T
Ω ΨWΩ < 0 can be equivalent expressed as W T

ΩoT
−1ΨT−1WΩo < 0

where WΩo forms the basis for the null space of Ωo. The null space bases WΓ

148



and WΩo are respectively computed as

WΓ =




Inq
0nq×n 0 0 0 0 0 0

0 0 Iny
0 0 0 0 0

0 0 0 0nu
Inu

0 0 0

0 0 0 0 0 Inu
0 0

0 0 0 0 0 0 Iny
0

0 0 0 0 0 0 0 Iny




T

(7.36)

WΩo =




Inq
0 0 0 0 0 0 0

0 In 0 B 0 0 0 0

0 0 Iny
0 0 0 0 0

0 0 0 0 Inu
0 0 0

0 0 0 0 0 Iny
0 0

0 0 0 −Inu
0 0 Inu

0

0 0 0 −D 0 0 0 Iny




T

(7.37)

Using these orthogonal matrices and after some algebraic manipulations, the

conditions W T
Γ ΨWΓ < 0 and W T

ΩoT
−1ΨT−1WΩo < 0 reduces to the LMI

constraints of (7.30) and (7.31) respectively.

7.5 Algebraic-Loop: Well-posedness and prac-

tical Implementation

The anti-windup design problem involves dealing with the algebraic loop of

Fig. 7.4. The presence of such an algebraic loop, if not well-posed, can result

in serious problems during practical implementation of control. Even when

the algebraic loop is well-posed, numerical implementation is not straight for-

ward in real-time applications. We consider an approach for well-posedness

which generalizes the results of [15; 16; 46] to cases where the nonlinearity is

coupled (i.e. non-diagonal). From the perspective of numerical computation,

algorithms based on fixed-point iterations have been suggested in [8; 57] for
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such a multivariable algebraic loop. We note that an optimal solution can be

obtained by solving directly the KKT equations associated with such an al-

gebraic loop. This corresponds to a particular convex optimization for which

efficient solutions are well established (e.g.[109; 110]).

The algebraic loop of Fig. 7.4 is well-posed or has a well-defined state model

if the equations

ẋ = (A+BF )x+BEw

u = uz − Fx+ (I − E)w

w = φ(u)

(7.38)

with

φ(u) = arg min
1

2
wTHw

subject to Lu− Lw ≤ b,
(7.39)

have a unique solution ud for every (x, uz). We consider here, sufficient

conditions under which a solution exists and the uniqueness of such a solution.

Let us define ud = ûd + ũd and x̃ = ũd + u, then (7.39) can be decomposed

Figure 7.4: Algebraic loop involving a quadratic program and a dynamic
feedback

into (7.41) and (7.40) denoted as the inner and the outer loop as follows
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Outer Loop :




x = (A+BF )x+BEw

ûd = Fx
(7.40)

Inner Loop :





w = φ(u)

u = x̃− ũd

ũd = (E − I)w.

(7.41)

Figure 7.5: Algebraic loop decomposition into static and dynamic loops

Since the algebraic loop is now restricted to the static inner loop, checking

the well-posedness of the algebraic loop of Fig. 7.4 is equivalent to checking

the well-posedness of the inner-loop as depicted in Fig. 7.5. We further

observe that the static feedback link of the inner loop can be subsumed into

the feedforwad path containing the nonlinearity φ to obtain an equivalent

optimization problem which may be interpreted in the framework of linear

complementarity problems [110].

We briefly recall the linear complementarity problem definition and we define

some matrix classes required for our main result.

Definition 22 (Linear Complementary Problem (LCP)). Given a vector

q̃ ∈ R
m and a matrix M̃ ∈ R

m×m, find a vector z̃ ∈ R
m such that

z̃ ≥ 0, (7.42)

q̃ + M̃z̃ ≥ 0, (7.43)

z̃T (q̃ + M̃ z̃) = 0. (7.44)
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The LCP is said to be feasible if there exists a vector z̃ satisfying eqs. (7.42)

and (7.43).

Definition 23 (P0 and Adequate matrices).

i. A matrix M̃ ∈ R
m×m is said be a P0-matrix if its all principal minors

are nonnegative.

ii. A matrix M̃ ∈ R
m×m ∈ P0 is said to be

(a) column adequate if for each α ⊆ {1, . . . ,m},

[detM̃αα = 0] ⇒ [M̃•α has linearly dependent columns].

(b) row adequate if M̃T is column adequate.

(c) adequate if M̃ is both cloumn and row adequate.

The following lemmas give the existence and uniqueness results for LCP using

the above defined matrix classes.

Lemma 8. Let M̃ ∈ R
m×m be given, the following statements hold;

i. If the LCP(q̃,M̃) is feasible and M̃ is positive semi-definite, then it is

solvable.

ii. Let M̃ ∈ R
m×m be adequate and let q̃ ∈ R

m be arbitrary. If LCP(q̃,M̃)

is feasible, then there exist a unique vector w̃ and a vector z̃ satisfying

w̃ = q̃ + M̃z̃ ≥ 0, z̃ ≥ 0, w̃T z̃ = 0.

The proofs of items (i) and (ii) can be found in [110, Theorem 3.1.2 and

Corollary 3.5.6 respectively].
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Lemma 9. Given the LCP (q̃, M̃) in eqs. (7.42) to (7.44), define the following

convex QP problem

z∗ = arg min
z̃
z̃T (q̃ + M̃z̃) subject to (7.45)

q̃ + M̃z̃ ≥ 0 and (7.46)

z̃ ≥ 0. (7.47)

Then z∗ solves eqs. (7.45) to (7.47) if and only if (z∗, M̃z∗ + q̃) is a solution

of LCP (q̃, M̃) in eqs. (7.42) to (7.44).

The proof can be found in [109, Theorem 8.4].

Note that there is no restriction on whether M̃ is symmetric or not in both

lemmas lemmas 8 and 9. In general, M̃ can be any arbitrary real square

matrix and need not be symmetric. We now state the main result.

Theorem 9. Consider the system on Fig 7.5. Let φ(.) : Rm → R
m take the

form of (7.39) with H = HT > 0 and fixed terms L and b > 0. Let E ∈ R
m×m

be a (asymmetric) positive definite matrix. Then the algebraic loop formed

by the feedback interconnection of φ(.) and the static gain E−I is equivalent

to the LCP(q̃,M̃) where M̃ = LEH−1LT and q = b − Lx̃. Furthermore, let

M̃ be adequate. If the LCP(q̃,M̃) is feasible for any arbitrary q̃, then the

algebraic loop is well-posed for any x̃ ∈ R
m. The unique solution of the

algebraic loop is given by u = H−1LT z̃ where z̃ is the unique solution of the

LCP(q̃,M̃).

Remark 12. Before providing the proof of this result, we quickly note that

the matrix product EH−1 is positive definite(asymmetric). Recall that H

is symmetric and positive definite by construction while E is invertible and

enters the system via the particular choice of right coprime factorization

(7.5). The solvability condition (7.34) guarantees that ETH + HE > 0

∀λ > 0. This can be seen from the (2,2) element of (7.34) where

H̃D̄h + D̄hH̃ − γ2
r Ĩ =


 −γ2

r Ĩ −λD̄T
q H

−λHD̄q −λETH − λHE


 .

153



Since E is invertible, we can pre and post multiply ETH +HE by E−T and

E−1. We haveHE−1+E−TH > 0. The positive definiteness ofHE−1+E−TH

implies that HE−1 is positive definite [111]. If HE−1 > 0, then EH−1 > 0.

Proof. Since H = HT > 0, the necessary and sufficient Karoush-Kuhn-

Tucker (KKT) conditions [59] for φ are given by

Hw − LTµ = 0, (7.48)

Lu− Lw − b+ s = 0, (7.49)

s ≥ 0, µ ≥ 0, µT s = 0. (7.50)

From (7.41), we have u = x̃− (E − I)w. Substituting for u in (7.49) gives

Hw − LTµ = 0, (7.51)

Lx̃− LEw − b+ s = 0, (7.52)

s ≥ 0, µ ≥ 0, µT s = 0. (7.53)

Since H is nonsingular, we can eliminate (7.51) from the above set of condi-

tions by rewriting it as w = H−1LTµ and then substituting for w in (7.52)

to give

LEH−1LTµ+ b− Lx̃− s = 0, (7.54)

s ≥ 0, µ ≥ 0, µT s = 0. (7.55)

Substituting for z̃ = µ, q̃ = b−Lx̃, M̃ = LEH−1LT in eqs. (7.54) and (7.55)

and re-arranging gives the LCP(q̃,M̃).

Now we show feasibility. From Def. 22, the LCP(q̃,M̃) is feasible if there

exists a vector z̃ satisfying eqs. (7.42) and (7.43). For our case, it is easy to

construct such a z̃. Choose z1 ∈ R
m such that z1 ≥ 0 and z1 −HE−1x̃ ≥ 0.

Then choose

z̃ =


 z1

z1 −HE−1x̃


 . (7.56)
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By construction z̃ ≥ 0. Furthermore, LT z̃ = HE−1x̃ so that

q̃ + M̃z̃ = b− Lx̃+ LEH−1LT z̃

= b

≥ 0.

Note that this is sufficient for the LCP(q̃,M̃) to be solvable since M̃ is semi

positive definite (def. 1).

To show there is a unique solution, we need to show that M̃ is adequate. In

our case, M̃ ∈ R
2m×2m, so we must choose α ⊆ {1, . . . , 2m}. In addition, M̃

has the structure

M̃ = LEH−1LT =


 EH

−1 −EH−1

−EH−1 EH−1


 . (7.57)

Furthermore EH−1 itself is (asymmetric) positive definite and hence ade-

quate. Suppose α includes both i and i + m for some i. Then M̃•α has

linearly dependent columns. If α includes no such pairs, then M̃αα may be

obtained from a corresponding principal submatrix of EH−1 via permutation

and row/column scaling (by -1) since M̃αα = Lα•EH
−1(Lα•)

T . It follows

that in this case that M̃αα must be positive definite and the rows of Lα• are

linearly independent. Following similar argument, it follows that M̃T is also

column adequate due to symmetry. Hence, M̃ is adequate.

Finally, if we set w̃ = q̃ + M̃ and substitute for q̃ and M̃ , we have that

w̃ =b− Lx̃+ LEH−1LTµ and (7.58)

w =H−1LTµ. (7.59)

Hence w̃ = b−Lx̃+LEw. It follows that if w̃ is unique then w is unique.

Using the result of theorem 9, the algebraic loop of Fig. 7.4 can be redrawn

with the original quadratic program (7.39) replaced with a related convex

optimization eqs. (7.45) to (7.47) as shown in Fig. 7.6. Note that w∗, the
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unique solution of the algebraic loop, is recovered using w∗ = H−1LT z∗. The

well-posedness of the algebraic loop thus reduces to checking existence and

the uniqueness of the solution to the optimization problem involving φ̃(.).

Figure 7.6: Practical implementation

The implication of above result is that if the system of eqs. (7.51) to (7.53) is

solvable, any solution yields an optimal pair (w∗, µ∗) where w∗ is the optimal

solution of the algebraic loop. The solution is unique if M̃T is adequate.

If however, the system is not solvable, the algebraic loop does not have a

solution and the associated optimization problem eqs. (7.42) to (7.44) is

either infeasible or unbounded below.

Remark 13. When the nonlinearity φ(.) is decoupled such that H > 0 is

diagonal, well-posedness of the algebraic loop then requires only that the

constant matrix E be positive definite. In this case, the algebraic loop may

admit an explicit solution [46].

Remark 14. When H > 0 and E > 0 are both diagonal, the well-posedness

condition is trivially satisfied. In this case, E does not offer any extra degree

of freedom in the anti-windup design [86] except for its role in the convexifica-

tion of the synthesizing LMI. There is no algebraic loop in the interconnection

of Fig. 7.4 when E is the identity matrix.

Remark 15. When H > 0 and E > 0 are both non-diagonal, the well-

posedness of the algebraic loop is guaranteed by theorem 9. In this case,

the matrix H allows the incorporation of plant’s directional characteristics

into the anti-windup design. The anti-windup compensator search space is

also enlarged to include all the right coprime factorization parameterized
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by F and E in (7.5). Thus, E provides an extra degree of freedom in the

anti-windup design and computation.

Fig. 7.6 provides a convenient way of implementing the algebraic loop of

Fig. 7.4. In general, there are efficient algorithms for solving the LCP problem

eqs. (7.42) and (7.43). After that we have established that a unique solution

exists, the algebraic loop can be implemented using an efficient quadratic

program solver (for the QP formulation eqs. (7.45) to (7.47)). Several other

algorithms are available for solving the LCP problem. Some of these may be

found in [109; 110].

7.6 Summary

We have developed a robust synthesis procedure for optimizing anti-windup

subject to infinity-norm bounded uncertainties. The arising algebraic loop

in the anti-windup structure is expressed as a convex optimization problem.

The condition for well-posedness of the anti-windup interconnection reduces

to the condition for the existence and uniqueness of a solution to the opti-

mization problem.
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Chapter 8

Two-stage Internal Model

Control anti-windup: Design

and Stability Analysis

8.1 Introduction

Multivariable plants under input constraints such as actuator saturation are

liable to performance deterioration due to control windup and direction-

ality change. Anti-windup designs must therefore be augmented with dy-

namic compensators to account for process directionality in MIMO systems.

One major drawback to some of the existing directionality compensation

schemes[42; 7; 8] is that while they offer optimal dynamic behaviour, their

performances deteriorate significantly in steady state especially when the con-

straints are active. Schemes that guarantee optimal steady state behaviour

such as [9], may have poor transient characteristics.

In chapter 5, we provided a review of some of the existing directionality com-

pensation scheme and their interpretations in terms of a standard quadratic
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program. As observed, no single scheme offers an ideal solution for all sce-

narios in terms of transient and steady state performance in the presence

of control input saturations. In chapter 6, a formal methodology for anti-

windup design incorporating a quadratic program as input nonlinearity was

developed. This framework allows equipping several existing directionality

schemes with both closed loop stability and performance guarantees. In this

chapter, we present a two-stage internal model control (IMC) anti-windup

design for open loop stable plants. The design is based on the solution of

two low-order quadratic programs (QP) at each time step which addresses

both transient and steady state behaviours of the system.

We also develop tests for analyzing the robust stability of such systems

against any infinity-norm bounded uncertainty. We note that the controller

input-output mappings satisfy certain class of integral quadratic constraints

(IQCs) and so sufficient conditions can be developed for analyzing robust sta-

bility of the closed-loop system. In particular, the unconstrained case reduces

to the conventional IMC structure where the robust stability is guaranteed by

the small gain theorem. Simulated examples show that the two-stage IMC

has superior performance when compared to other existing optimization-

based anti-windup methods. The stability test is illustrated for a plant with

left matrix fraction uncertainty. We consider a scenario where the proposed

two-stage IMC competes favourably with a long prediction horizon model

predictive control (MPC).

The chapter is structured as follows. Section 8.2 contains the first contribu-

tion where we present the two-stage IMC anti-windup for not only dealing

with the performance degradation associated with control windup and direc-

tionality but also for ensuring steady state performance in input constrained

multivariable problem. In terms of nominal performance, the two-stage IMC

compares favourably with a long prediction horizon MPC while its computa-

tional requirement is equivalent to that of a single-horizon MPC. The perfor-

mance of the proposed approach is illustrated via two simulation examples

involving ill-conditioned plants. Section 8.3 contains the second contribution
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where sufficient robust stability tests are constructed for the two-stage IMC

anti-windup based on IQC theory. We illustrate the stability test with a

simulation example. The plant model has a left matrix fraction uncertainty

as well as a control input nonlinearity.

8.2 Two-Stage Multivariable Internal Model

Control anti-windup Structure

We consider the two-stage IMC anti-windup scheme of Fig. 8.1. The approach

is based on the solution of two quadratic programs (QP) termed the dynamic

QP and the steady-state QP. While the former addresses the transient be-

haviour of the plant and ensures that the constrained plant response is as

close as possible to the unconstrained plant response, the latter ensures opti-

mal steady state performance and it is based on steady state properties of the

plant. The idea of using a separate QP to calculate steady state set-points has

been previously introduced in MPC formulations [26; 10; 11; 112; 12]. Here,

we introduce the concept of set-point optimization into the internal model

control framework. When combined with the directionality compensation

previously discussed, we obtain the two-stage IMC anti-windup structure of

Fig. 8.1.

Figure 8.1: The two-stage IMC anti-windup

Because of the presence of saturation nonlinearities in the system, the output
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of the constrained system y differs from y′, the output of the unconstrained

system. In general, the control objective is to keep every output y of the

constrained system as close as possible to those of the unconstrained system

y′. We define the mapping

y′ = Pu and y = Pv (8.1)

where P represents the plant operator. The signals v and u are the con-

strained and the unconstrained control inputs respectively. Mathematically,

we seek a feasible control input v∗ that is a solution to the following con-

strained optimization problem

v∗ = arg min
v

|Pv − Pu|2Q (8.2)

subject to the constraints

umini ≤ vi ≤ umaxi i = 1, . . . ,m. (8.3)

Q is assumed to be diagonal positive definite matrix.

It should be noted that while the directionality compensation schemes dis-

cussed in chapter 5 attempted to solve the constrained optimization (8.2),

they have either proffered approximate solutions or solve related problems

by choosing the plant operator P either as the plant characteristic matrix C
[8] or as the steady state gain [9] or differently (e.g [43; 7]).

For square systems, the initial response of the system output to step change in

the input vector depends on the characteristics matrix C [101; 8]. Therefore,

to address the transient behaviour of the closed system, the plant operator

P can be chosen as the characteristic matrix C of the plant. Making this

substitution in (8.2) results in the following optimization problem

v∗ = arg min
v

|Cv − Cu|2Q (8.4)
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subject to the constraints

umini ≤ vi ≤ umaxi i = 1, . . . ,m.

The steady state aspect of the control problem is to determine appropriate

values of (ys and us) satisfying

ys = Kpus + d̃ (8.5)

where us is the steady state control input that makes the controlled variable

achieve ys in steady state. d̃ is the disturbance estimate obtained as the

difference between the measured plant output y and the model output ỹ.

Kp is the non-singular steady state gain of the plant. Ideally, ys = r. If,

however, the input constraints are active in steady state, then ys may not

attain the target prescribed by the reference signal r. The objective is then

to find feasible ys (or us) such that ys is as close as possible to r in some

sense and within the limit imposed by the input constraints.

The solution of the following quadratic program can be used to determine

a feasible steady state target ys that should be applied as shown in Fig. 8.1

such that the closed loop response in steady state ys is as close as possible

to r.

y∗
s = arg min

us,ys

|r − ys|2Qss
(8.6)

subject to the constraints

umini ≤ usi
≤ umaxi i = 1, . . . ,m

[
−Kp I

]

us
ys


 = d̃

where Qss is a diagonal positive definite matrix for penalizing deviations in

each of the controlled variables and their relative importance. The equality

constraint guarantees the steady state requirement of (8.5). If the set-point

target is achievable in steady state, the difference between the reference signal
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r and the current disturbance estimate d̃ is passed to the dynamic optimiza-

tion problem for computation of the control input v. If, on the other hand,

the steady state target is not achievable due to the violation of one or more of

the constraints in steady state, a feasible steady state target ys is computed

such that ys is as close as possible to the reference signal r. The difference

between the feasible steady state target and the current disturbance estimate

is then passed to the dynamic optimization problem.

The equality constraint can be eliminated from (8.6) to obtain an equivalent

optimization problem

u∗
s = arg min

us

∣∣∣r − d̃− Kpus
∣∣∣
2

Qs

(8.7)

subject to the constraints

umini ≤usi
≤ umaxi i = 1, . . . ,m.

This transformed problem optimizes over variable us and takes as input the

difference between the reference signal r and the disturbance estimate d̃. If

u∗
s is an optimal solution of (8.7), then the optimal solution y∗

s of the original

problem (8.6) is obtained via the steady-state model of (8.5).

The two artificial nonlinearities (8.4) and (8.7) may be re-written in the

standard quadratic program form as

v∗ = arg min
1

2
vTH1v − vTH1u

subject to Lv � b
(8.8)

u∗
s = arg min

1

2
uTsH2us − uTs H̃

T
2 (r − d̃)

subject to Lus � b
(8.9)

where H1 = H̃T
1 H̃1 and H2 = H̃T

2 H̃2 are symmetric positive definite hes-

sian matrices defined in terms of the plant structural properties i.e H̃1 = C
and H̃2 = Kp. The fixed terms L and b in the inequality constraints are
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respectively obtained as

L =


−Im
Im


 and b =


−umin
umax


 (8.10)

with umin =
[
umin1 , · · · , uminm

]T
and umin =

[
umax1 , · · · , umaxm

]T
. The

solutions v∗ and u∗
s of (8.8) and (8.9) are unique if the characteristics matrix

C and the steady gain Kp are respectively non-singular. We now summarize

the first contribution of this chapter in the following control algorithm.

Two-stage IMC anti-windup Control algorithm: Given an open-loop

stable plant G with a nominal model G22, and feasible optimal values v∗

and u∗ satisfying (8.8) and (8.9) respectively. The control law that achieves

combined optimal transient and steady-state performance for the two-stage

IMC anti-windup structure of Fig. 8.1 is given by

d̃ = y −G22v
∗

u∗
s = ψ2(r, d̃)

y∗
s = H̃2u

∗
s + d̃

u = Q1(y
∗
s − d̃) −Q2v

∗

v∗ = ψ1(u)

(8.11)

where ψ1 and ψ2 are nonlinear functions representing the quadratic programs

(8.8) and (8.9) respectively.

Without the constraints, the control law reduces to the unconstrained stan-

dard IMC control equation

d̃ = y −G22u

u = (I +Q2)
−1Q1(r − d̃)

(8.12)

Correct steady state behaviour is ensured by designing Q such that Q(0) =

G(0)−1 for G(s) or Q(1) = G(1)−1 for G(z). If constraints are active in

steady state, then optimal steady state behaviour is guaranteed by solving
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(8.9) subject to the constraints.

Remark 16. For the class of systems whose characteristics matrix C and

steady state gain Kp are similar, the optimization problem in (8.8) effectively

meets the steady state requirement of (8.9). Hence only (8.8) need be solved

to achieve both optimal transient and steady state responses in the presence

of control input saturation. This is illustrated by the following example.

Example 7. We consider example 4 again where the set-point change from

[0 0]T to [0.85 2.2]T is such that one of the constraints is violated in steady

states. The plant’s characteristics matrix and steady gain are respectively

given as

C =


0.25 0

0 4


 ,Kp =


 37.5 −4

−625 200


 .

We first compare the two-stage IMC anti-windup (TIMA) with the direc-

tionality compensations schemes previously discussed in chapter 5. Fig. 8.2

shows that the two-stage IMC scheme results in the closest closed loop per-

formance to the unconstrained case as compared to the other anti-windup

schemes. This is not surprising, as the plant is statically coupled and has a

steady state gain which is significantly different from the characteristic ma-

trix. The steady state QP (8.9) ensures optimal steady state behaviour with

the active constraint.

We also compare the performance of the two-stage IMC with a particular

MPC formulation [13]. We consider two MPC cases; a single horizon MPC

(prediction horizon Np = 1 and control horizon Nc = 1) and a long horizon

MPC (prediction horizon Np = 100 and control horizon Nc = 50). The closed

loop responses in Fig. 8.3 and Fig. 8.4 show that the two-stage IMC competes

favourably with a long horizon MPC while only requiring the computation

equivalent to that of a single horizon MPC [113]. It is however, envisaged

that a long horizon MPC will outperform the two-stage IMC especially when

there are high-order unmodeled dynamics in the system. The two-stage IMC

does not require the receding horizon computation of MPC and may serve
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Figure 8.2: Example 7: Two-stage IMC (TIMA) yields the closest perfor-
mance to the unconstrained case. DP [6] and OSS [9] schemes have im-
proved steady state behaviours but poor transient characteristics as opposed
to the OCT [7] and ODC [8] schemes both of which have optimal transient
behaviours but degraded steady state performances.

as a less computationally intensive and more transparent (in terms of tuning

for robustness) alternative to MPC.

8.3 Stability Analysis

We assume the plant is represented as in Fig. 8.5a where the generalized

plant G̃ maps [qT∆, v
T ]T to [pT∆, y

T ]T according to


p∆

y


 =


G11 G12

G21 G22




q∆

v




q∆ = ∆p∆

(8.13)

and ∆ ∈ RH∞ is an operator satisfying ||∆||∞ < 1.
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Figure 8.3: Example 7: Two-stage IMC (’+’) outperforms the single horizon
MPC (sMPC, ’o’) and yields similar reponse to long horizon MPC (lMPC,
’*’)
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Figure 8.4: Constrained input: Two-stage IMC (’+’), single horizon MPC
(sMPC, ’o’) and long horizon MPC (lMPC, ’*’)
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(a) Plant uncertainty (b) Feedback loop

Figure 8.5: General feedback interconnection for stability analysis

The transfer function from v to y is given by

y = [G22 +G21∆(I −G11∆)−1G12]v (8.14)

where G22 is the nominal model and G11, G12 and G21 are known transfer

functions. As noted in section 2.5, a number of unstructured uncertainty

descriptions (such as the additive, multiplicative and coprime factor type

uncertainties) can be put into this general form.

For the purpose of stability analysis, we consider the standard feedback inter-

connection of Fig. 8.5b where all exogenous inputs and output signals have

been ignored. M is a linear time invariant system operator and ∆̂ is a block

diagonal operator defined by

∆̂ = diag(ψ1, ψ2,∆) (8.15)

where ψi : Rm → R
m, i = 1, 2 is a static operator and ∆ ∈ RHn

∞ is some

unknown operator satisfying ||∆||∞ < 1. The input-output map is defined

by the equations

q = ∆̂(p), p = Mq. (8.16)

For the two-stage IMC anti-windup scheme, the nonlinearities defined by

(8.8) and (8.9) satisfy respectively ∀x the following generalized sector condi-
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tions (see also section 2.2).

ψ1(x)TH1ψ(x)1 − ψ1(x)TH1x ≤ 0, (8.17)

ψ2(x)TH2ψ(x)2 − ψ2(x)T H̃2x ≤ 0. (8.18)

We then have that ψ1 ∈ IQC(Πψ1) and ψ2 ∈ IQC(Πψ2) with

Πψ1 =


 0 H1

H1 −2H1


 Πψ2 =


 0 H̃2

H̃2 −2H2


 . (8.19)

It follows immediately that ψ1 ∈ IQC(β1Πψ1) and ψ2 ∈ IQC(β2Πψ2) for

β1, β2 > 0. We also have that ∆ ∈ IQC(αΠ∆) for α > 0 with

Π∆ =


αI

−αI


 . (8.20)

8.3.1 Robust Analysis of two-stage IMC anti-windup

Figure 8.6: Two-stage IMC anti-windup for stability analysis

In this section, we consider the robust stability analysis of the two-stage

IMC anti-windup scheme. Reorganising the two-stage structure of Fig. 8.1

in terms of the transformed steady-state quadratic program (8.9), we ob-

tain an equivalent structure of Fig. 8.6. The IMC controller Q is designed

a priori to meet some nominal performance specifications and then further

augmentations are introduced to deal with performance deterioration in the

face of control input saturations and model uncertainties. We analyze the

stability of the two-stage IMC anti-windup for three cases; a) the robust
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stability of the unconstrained structure, b) the constrained nominal stability

and c) the complete stability involving the input nonlinearities and the model

uncertainties.

8.3.1.1 Unconstrained Robust Stability Analysis

For the unconstrained case where Q = (I + Q2)
−1Q1, the two-stage IMC

anti-windup scheme reduces to the standard IMC without an anti-windup

compensation. In this case, the controller (8.11) reduces to

d̃ = y −G22q1

q1 = (I +Q2)
−1Q1(r − d̃) = Q(r − d̃).

(8.21)

The closed loop is completely described by

q∆ = ∆p∆

p∆ = (G11 −G12QG21)q∆ +G12Q(r − d).
(8.22)

Robust stability result for this case is standard and can be obtained via the

application of small gain theorem [19] or the IQC theorem [51].

Result 1: Given a stable plant G (8.13) in feedback interconnection with

controller (8.21). Assuming that the interconnection of G and τ∆̂ is well-

posed for all τ ∈ [0, 1]. Then the closed loop system is stable for all ||∆||∞ < 1

provided

||G11 −G12QG21||∞ < 1. (8.23)

Proof. From the closed-loop equation (8.22), we have M = G11 − G12QG21

and ∆̂ = ∆. The result follows from the application of IQC stability condition

of theorem 6.
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8.3.1.2 Constrained Nominal Stability Analysis

When the plant is assumed to be perfectly known (i.e. G22 = G), the two-

stage IMC anti-windup structure becomes a quasi-open loop system as the

outer loop in Fig. 8.6 represents a feedforward of the influence of disturbance

d and is not affected by the action of the manipulated variable. The only

remaining closed loop is the feedback around the nonlinearity ψ1. The overall

system is stable if and only if both the plant and the algebraic loop are stable.

The closed loop equations around the nonlinearity is given by

q1 = ψ1(p1)

p1 = −Q2q1 +Q1H̃2q2

q2 = ψ2(r − d)

(8.24)

Result 2: Given a stable plant G with G11 = 0,G12 = 0 and G21 = 0 in

feedback interconnection with controller of the form (8.11) with ψ1 and ψ2

satisfying the sector-bound conditions (8.17) and (8.18) respectively. Assum-

ing that the interconnection of G and τ ˆDelta is well-posed for all τ ∈ [0, 1].

Then the closed-loop anti-windup system is stable provided

β1(H1Q2 +Q∗
2H1 + 2H1) − β2

1

2β2

H1Q1Q
∗
1H1 > 0 (8.25)

for some β1, β2 > 0, for all ω.

Proof. From (8.24), we have

M =


−Q2 Q1H̃2

0 0


 and ∆̂ =


ψ1

ψ2



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with ψ1 and ψ2 satisfying the IQCs defined by (8.19). Π∆̂ then becomes

Π∆̂ =




0 β1H1

0 β2H̃2

β1H1 −2β1H1

β2H̃
T
2 −2β2H2



. (8.26)

The result follows from the application of IQC stability condition of theorem

6 followed by the application of Schur complements.

Remark 17. As noted in [51], the well-posedness requirement is generally

weak . In particular, for this case, well-posedness is guaranteed by the exis-

tence and uniqueness condition on the solution of the optimization problem

associated with the algebraic loop. (See also discussion on this in section

7.5).

8.3.1.3 Complete Stability Analysis of two-stage IMC anti-windup

Figure 8.7: Feedback interconnection for two-stage IMC anti-windup

The anti-windup structure of Fig. 8.6 is transformed into the general feedback

structure of Fig. 8.7 by defining

p =




p∆

p1

p2


 and q =




q∆

q1

q2


 (8.27)
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so that

∆̂ =




∆

ψ1

ψ2


 (8.28)

M =




G11 G12 0

0 −Q2 Q1H̃2

−G21 0 0


 . (8.29)

We have ∆ ∈ IQC(Π∆), ψ1 ∈ IQC(Πψ1) and ψ2 ∈ IQC(Πψ2) where Π∆, Πψ1

and Πψ2 are as defined in (8.20) and (8.19).

The ∆̂ defined in (8.28) satisfies the IQC ∆̂ ∈ IQC(Π∆̂) with

Π∆̂ =


Π∆̂

11 Π∆̂
12

Π∆̂
21 Π∆̂

22


 = daug(αΠ∆, β1Πψ1 , β2Πψ2) (8.30)

where

Π∆̂
11 =




αI

0

0


 , Π∆̂

12 =




0

β1H1

β2H̃2




Π∆̂
21 =




0

β1H1

β2H̃
T
2


 and

Π∆̂
22 =




−αI
−2β1H1

−2β2H2




for any choice of multipliers α, β1, β2 > 0. We note that the top left quadrant

of Π∆̂ is positive semi-definite (Π∆̂
11 ≥ 0) while the bottom right quadrant

of Π∆̂ is negative semi-definite (Π∆̂
22 ≤ 0) and so τ∆̂ ∈ IQC(Π∆̂) for all

0 ≤ τ ≤ 1.

We now state the stability result for the complete two-stage IMC anti-windup
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structure.

Result 3: Given a stable plant G (8.13) in feedback interconnection with

controller of the form (8.11) with ψ1, ψ2 and ∆ satisfying the IQC defined by

(8.19) and (8.20) respectively. Assuming that the interconnection of G and

τ∆̂ is well-posed for all τ ∈ [0, 1]. Then the closed loop anti-windup system

of Fig. 8.6 is stable provided


 X11 X12

X21 X22


 ≥ εI (8.31)

for some ε > 0, for all ω with

X11 = α(I −G∗
11G11) − β2

2
G∗

21G21

X21 = X∗
12 =

β1

2
H1Q1G21 − αG∗

12G11

X22 = β1(H1Q2 +Q∗
2 + 2H1) − αG∗

12G12 − β2
1

2β2

H1Q1Q
∗
1H1.

Proof. The two-stage IMC anti-windup structure of Fig. 8.6 can be trans-

formed into the general feedback interconnection of Fig.8.5b with M and ∆̂

defined in (8.29) and (8.28) respectively. IQC stability condition of theorem

6 reduces to




α(I −G∗
11G11) −αG∗

11G12 β2G
∗
21H̃2

−αG∗
12G11 β1(H1Q2 +Q∗

2H1 + 2H1) − αG∗
12G12 −β1H1Q1H̃2

β2H̃
T
2 G21 −β1H̃

T
2 Q

∗
1H1 2β2H2


 ≥ εI

(8.32)

The result follows after the application of Schur complements to (8.32) and

using the fact that the bottom right block is positive definite and thus its

inverse exists.

Note that X on the left hand sides of (8.31) is a partitioned hermitian matrix.
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The structure of X can be exploited to establish a relationship between the

robustness of the two-stage IMC anti-windup and the standard IMC anti-

windup with a QP. For the one-stage IMC anti-windup (i.e when we only

have one nonlinearity ψ1 in the system), the IQC stability condition is given

by 
 S11 S12

S21 S22


 ≥ εI (8.33)

with

S11 = α(I −G∗
11G11)

S21 = S∗
12 = β1H1Q1G21 − αG∗

12G11

S22 = β1(H1Q2 +Q∗
2H1 + 2H1) − αG∗

12G12.

Remark 18. Condition (8.33) is a necessary but not sufficient for (8.31) to

hold. The condition (8.31) can be expressed as X = S − Z > 0 where Z is

given as




β2

2
G∗

21G21
β1

2
G∗

21Q
∗
1H1

β1

2
H1Q1G21

β2
1

2β2
H1Q1Q

∗
1H1


 =

1

2β2


 β2G

∗
21

β1H1Q1



[
β2G21 β1Q

∗
1H1

]
≥ 0.

(8.34)

The positive definiteness of X implies that S is also positive definite. On the

other hand, X is positive definite if and only if S > 0 and S > Z.

Given a plant G, a nominal IMC controller Q and design parameters H1

and H2, checking for closed loop stability of the two-stage IMC anti-windup

reduces to checking that the frequency dependent condition (8.31) holds for

all frequency. This condition can be checked via frequency griding or by

checking an equivalent time-domain condition obtained by applying KYP

lemma to (8.31).
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Figure 8.8: Plant with matrix fraction uncertainty for simulation

8.4 Simulation Example

We now illustrate the stability test for the two-stage IMC anti-windup where

the plant nominal model has the following left matrix fraction factorization

D−1N such that the perturbed plant (see Fig. 8.8) can be expressed as

G = (D +WDL∆DWDR)−1(N +WNL∆NWNR). (8.35)

This can be put in the form of Fig.8.5a with

G̃ =




0 0 WNR

WDRD
−1WNL −WDRD

−1WDL WDRD
−1N

D−1WNL −D−1WDL D−1N


 (8.36)

and

∆u =


∆N

∆D


 , p1 =


pN
pD


 , q1 =


qN
qD


 (8.37)

where WDL, WDR, WNL and WNR are weighting transfer function matrices.

We will assume the uncertainties satisfy ||∆N ||∞ < 1 and ||∆D||∞ < 1 so

that ∆u ∈ IQC(Πu(αN , αD)) with

Πu(αN , αD) = diag(αNI, αDI,−αNI,−αDI) (8.38)

for any αN , αD > 0.

Example 8. We consider example 4 again. The conventional IMC anti-

windup designed for a step input based on option 1 discussed in chapter 3
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is

Q1 =


0.8 0

0 0.125




Q2 =
1

η


 0.19s+ 0.0058 −0.0032s− 0.00064

−0.03125s− 0.01563 0.47s+ .0048)




with η = s2 + 0.04s + 0.0002. For the two-stage design, we chose H̃1 and

H̃2 as the plant characteristic’s matrix and steady state gain respectively (as

discussed in section 8.2). We have

H̃1 =


0.25 0

0 4


 and H̃2 =


 37.5 −4

−625 200


 .
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Figure 8.9: Simulations in time domain; A-Unconstrained nominal system,
B-Perturbed unconstrained, C-Perturbed with a single stage IMC AW, D-
Perturbed with two-stage IMC AW

A time-domain simulation of the plant was carried out for a particular value

of model mismatch ∆N = ∆D = (0.1s+ 0.02)(s+ 0.06)−1 with infinity norm

of 0.33. The left fraction matrix nominal model for the plant was chosen

as G22 = D−1N with N = G22 and D = I. The uncertainty weights were

set as WNL = WDL = [1 1]T and WNR = WDR = [1 1]. The simulation

was carried out for a total of 160s. Step changes were made to the reference

inputs at time t = 120s and 140s respectively. Fig. 8.9 shows the output
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Figure 8.10: Eigenvalues of X evaluated ∀w ∈ [0, π] and with α = β1 =
β2 = 1

responses of both the perturbed and the unperturbed systems. To show that

the frequency dependent condition (8.31) is satisfied for all ω ∈ R, we check

that X(ejωTs) ≥ ǫI for some ǫ and for all ω ∈ [−π, π] where Ts is the sampling

time. Fig. 8.10 shows the eigenvalues plot of X(ejωTs) evaluated for ω ∈ [0, π]

for a case where all the multipliers were set as unity. We have only shown

the eigenvalues over the interval [0, π] because of symmetry of the plot.

8.5 Summary

We have demonstrated the effectiveness of the two-stage internal model con-

trol anti-windup in dealing with the performance degradation associated with

control windup and process directionality in input constrained multivariable

systems. The two-stage IMC anti-windup involves two low-order quadratic

programs that can be solved efficiently as compared to the intensive receding

horizon control computation of MPC algorithms. We have also shown that

sufficient robust stability conditions for the two-stage IMC anti-windup can

be constructed via the theory of IQCs. While we have limited our discussions

to a restricted class of static IQCs for describing the plant uncertainties and

input nonlinearities, stronger results may be obtained by allowing a larger

class of IQCs with dynamic multipliers such as those discussed in [103]. We

note that the overall performance of optimizing anti-windups can be im-
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proved without necessarily trading off on robustness as demonstrated via the

simulation examples.
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Chapter 9

Conclusion and

Recommendations for Future

Research

9.1 Conclusion

We have developed optimizing control strategies for open-loop stable mul-

tivarible systems with saturating actuators. The proposed control designs

combine the efficiency of conventional anti-windup schemes with the opti-

mality of model predictive control (MPC) algorithms. In particular, the

classical internal model control law was enhanced for optimal performance

by incorporating an online optimization. The resulting control scheme offers

both stability and performance guarantees with moderate computational ex-

pense.

The optimizing anti-windup framework provides an attractive alternative to

either the computationally expensive MPC algorithms or the conventional

anti-windup schemes. The choice of control design will typically be informed
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by some selection criteria such as the severity of constraints; the plant’s struc-

tural characteristics; the presence of lightly damped modes or non-minimum

phase zeros; process directionality and computational requirement. When

directionality is an issue, especially for highly ill-conditioned plants, the op-

timizing anti-windup framework of chapter 6 and 7 offers a systematic way

of incorporating such directional characteristics into the control synthesis.

In situations where operating near or on the constraints at steady state is

desirable or unavoidable, the novel two-stage architecture of chapter 8 offers

a means for optimizing performance while operating close to the constraints.

In terms of prospects for industrial applications, the optimizing anti-windup

of chapter 6 has been successfully implemented on a low-end/low-cost pro-

grammable logic controller (PLC) as a Master’s degree dissertation using a

customized algorithm for a two-input two-output multivariable plant.

9.2 Recommendations for Future Research

Potential areas of future research are highlighted as follows.

Research Direction 1. Comparison of MPC and IMC structure

Some connections have been identified between single-horizon MPC and cer-

tain anti-windup schemes [9; 113]. Existing results in this area include

[114; 115] where the authors have shown that there are cases where anti-

windup control policies are equivalent to those of MPC for constrained single-

input systems. A similar link has also been established between MPC and

saturated LQR [116]. More recently, it has been reported that MPC control

parametrization in terms of affine state or disturbance feedback is closely

related to the well known Youla parametrization and thus MPC can be re-

structured into the IMC framework [117; 31]. Exploring the relationships

between such classes of affine feedback policies and the IMC control law may

pave a way for importing the attractive robust features of IMC into MPC.

The two-stage IMC structure provides an opportunity to incorporate output
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constraints into the anti-windup design and thus allows for performance com-

parison between anti-windup schemes and MPC algorithms which explicitly

incorporates both input and output constraints.

Research Direction 2. Application

Implementation of MPC algorithms have been a major concern due to their

huge computational power requirement. Despite the potential benefits of

such advanced control algorithms (for example, allowing operation close

to the plant limits and dealing with problems of multi-loop interactions)

their deployment in the industry is often impeded by the limited computa-

tional power available in programmable logic controllers (PLCs). As a re-

sult, PLCs are restricted to low level control applications such as the on/off

and Proportional-Integral-Derivative (PID) control implementations. Fur-

ther exploration of the possibilities and limitations of these devices for the

implementation of the two-stage IMC structure will be of great interest.
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