376 research outputs found

    Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard

    Full text link
    This paper presents a novel method for fully automatic and convenient extrinsic calibration of a 3D LiDAR and a panoramic camera with a normally printed chessboard. The proposed method is based on the 3D corner estimation of the chessboard from the sparse point cloud generated by one frame scan of the LiDAR. To estimate the corners, we formulate a full-scale model of the chessboard and fit it to the segmented 3D points of the chessboard. The model is fitted by optimizing the cost function under constraints of correlation between the reflectance intensity of laser and the color of the chessboard's patterns. Powell's method is introduced for resolving the discontinuity problem in optimization. The corners of the fitted model are considered as the 3D corners of the chessboard. Once the corners of the chessboard in the 3D point cloud are estimated, the extrinsic calibration of the two sensors is converted to a 3D-2D matching problem. The corresponding 3D-2D points are used to calculate the absolute pose of the two sensors with Unified Perspective-n-Point (UPnP). Further, the calculated parameters are regarded as initial values and are refined using the Levenberg-Marquardt method. The performance of the proposed corner detection method from the 3D point cloud is evaluated using simulations. The results of experiments, conducted on a Velodyne HDL-32e LiDAR and a Ladybug3 camera under the proposed re-projection error metric, qualitatively and quantitatively demonstrate the accuracy and stability of the final extrinsic calibration parameters.Comment: 20 pages, submitted to the journal of Remote Sensin

    Extrinsic Calibration and Ego-Motion Estimation for Mobile Multi-Sensor Systems

    Get PDF
    Autonomous robots and vehicles are often equipped with multiple sensors to perform vital tasks such as localization or mapping. The joint system of various sensors with different sensing modalities can often provide better localization or mapping results than individual sensor alone in terms of accuracy or completeness. However, to enable improved performance, two important challenges have to be addressed when dealing with multi-sensor systems. Firstly, how to accurately determine the spatial relationship between individual sensor on the robot? This is a vital task known as extrinsic calibration. Without this calibration information, measurements from different sensors cannot be fused. Secondly, how to combine data from multiple sensors to correct for the deficiencies of each sensor, and thus, provides better estimations? This is another important task known as data fusion. The core of this thesis is to provide answers to these two questions. We cover, in the first part of the thesis, aspects related to improving the extrinsic calibration accuracy, and present, in the second part, novel data fusion algorithms designed to address the ego-motion estimation problem using data from a laser scanner and a monocular camera. In the extrinsic calibration part, we contribute by revealing and quantifying the relative calibration accuracies of three common types of calibration methods, so as to offer an insight into choosing the best calibration method when multiple options are available. Following that, we propose an optimization approach for solving common motion-based calibration problems. By exploiting the Gauss-Helmert model, our approach is more accurate and robust than classical least squares model. In the data fusion part, we focus on camera-laser data fusion and contribute with two new ego-motion estimation algorithms that combine complementary information from a laser scanner and a monocular camera. The first algorithm utilizes camera image information to guide the laser scan-matching. It can provide accurate motion estimates and yet can work in general conditions without requiring a field-of-view overlap between the camera and laser scanner, nor an initial guess of the motion parameters. The second algorithm combines the camera and the laser scanner information in a direct way, assuming the field-of-view overlap between the sensors is substantial. By maximizing the information usage of both the sparse laser point cloud and the dense image, the second algorithm is able to achieve state-of-the-art estimation accuracy. Experimental results confirm that both algorithms offer excellent alternatives to state-of-the-art camera-laser ego-motion estimation algorithms

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, Innovación y Universidades | Ref. PID2019-108816RB-I0

    Targetless Camera-LiDAR Calibration in Unstructured Environments

    Get PDF
    The camera-Lidar sensor fusion plays an important role in autonomous navigation research. Nowadays, the automatic calibration of these sensors remains a significant challenge in mobile robotics. In this article, we present a novel calibration method that achieves an accurate six-degree-of-freedom (6-DOF) rigid-body transformation estimation (aka extrinsic parameters) between the camera and LiDAR sensors. This method consists of a novel co-registration approach that uses local edge features in arbitrary environments to get 3D-to-2D errors between the data of both, camera and LiDAR. Once we have 3D-to-2D errors, we estimate the relative transform, i.e., the extrinsic parameters, that minimizes these errors. In order to find the best transform solution, we use the perspective-three-point (P3P) algorithm. To refine the final calibration, we use a Kalman Filter, which gives the system high stability against noise disturbances. The presented method does not require, in any case, an artificial target, or a structured environment, and therefore, it is a target-less calibration. Furthermore, the method we present in this article does not require to achieve a dense point cloud, which holds the advantage of not needing a scan accumulation. To test our approach, we use the state-of-the-art Kitti dataset, taking the calibration provided by the dataset as the ground truth. In this way, we achieve accuracy results, and we demonstrate the robustness of the system against very noisy observations.This work was supported by the Regional Valencian Community Government and the European Regional Development Fund (ERDF) through the grants ACIF/2019/088 and AICO/2019/020

    Laser and Camera Intercalibration Techniques for Multi-Sensorized Vehicles

    Get PDF
    This thesis presents the topic of the extrinsic calibration of active and passive sensors which are used on modern intelligent vehicles to get a rich perception of the surrounding environment. An in-depth analysis of the intercalibration procedure was conduced with respect to the data fusion accuracy. Several laser and camera intercalibration procedure are presented and a new method based on triangular calibration target is detailed. Finally, a calibration procedure is proposed; tested on different prototypes (e.g., BRAiVE and VIAC vehicles) with different sensor suits
    corecore