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ABSTRACT The camera-Lidar sensor fusion plays an important role in autonomous navigation
research. Nowadays, the automatic calibration of these sensors remains a significant challenge in mobile
robotics. In this article, we present a novel calibration method that achieves an accurate six-degree-of-
freedom (6-DOF) rigid-body transformation estimation (aka extrinsic parameters) between the camera and
LiDAR sensors. This method consists of a novel co-registration approach that uses local edge features in
arbitrary environments to get 3D-to-2D errors between the data of both, camera and LiDAR. Once we have
3D-to-2D errors, we estimate the relative transform, i.e., the extrinsic parameters, that minimizes these errors.
In order to find the best transform solution, we use the perspective-three-point (P3P) algorithm. To refine the
final calibration, we use a Kalman Filter, which gives the system high stability against noise disturbances.
The presented method does not require, in any case, an artificial target, or a structured environment, and
therefore, it is a target-less calibration. Furthermore, the method we present in this article does not require
to achieve a dense point cloud, which holds the advantage of not needing a scan accumulation. To test our
approach, we use the state-of-the-art Kitti dataset, taking the calibration provided by the dataset as the ground
truth. In this way, we achieve accuracy results, and we demonstrate the robustness of the system against very
noisy observations.

INDEX TERMS Camera-LiDAR, extrinsic calibration, target-less calibration, sensor fusion, mobile robots.

I. INTRODUCTION
Environment perception is an essential stage of autonomous
navigation systems [1]. A large number of works focused on
perception tasks, such as semantic segmentation [2], object
tracking [3], or Simultaneous Localization And Mapping
(SLAM) [4], [5], use both LiDAR and cameras to capture
the environment information. Due to the sensors comple-
mentarity, it is interesting to combine both sources. To fuse
the camera and the LiDAR data, we need to calibrate a
six-degree-of-freedom (6-DOF) rigid-body transformation,
aka extrinsic parameters, that relates both sensors. The accu-
rate extrinsic parameter estimation is a current challenge in
mobile robotics, because, due to the multi-modal nature of
these sensors, the representation space of the data is signif-
icantly dissimilar, which makes it very hard to co-register
information between both.

The most widespread methodology for camera-LiDAR
extrinsic calibration is the target-based. In this case, known
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artificial targets are usually used, like a chessboard [6] or any
other object with known geometry, and observable by both
sensors. In this way, it is possible to estimate the rigid-body
transformation between the two sensors by detecting the same
object from the two viewpoints. However, this approach has
twomain drawbacks: First, it is very time-consuming in terms
of the experimental process. And, second, due to the lack
of known artificial targets, it assumes that the calibration is
static while the robots are navigating in the environment.
This assumption can be applicable in indoor navigation cases,
where a mobile robot usually circulates on very smooth
ground, and, thus, the sensors do not suffer significant distur-
bances that may lead to miscalibration. However, in outdoor
environments, navigation conditions are often more adverse,
and, due to uneven terrain, the calibration may vary over
time. In this case, it would be interesting to have an algo-
rithm that calculates the extrinsic parameters automatically
and, therefore, without the need for known artificial targets
[7]. In the AUROVA group at the University of Alicante,
we are developing a research line in autonomous navigation
in unstructured outdoor environments [8], [9]; for this reason,
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we have focused our current work on the last-mentioned
calibration approach.

In this article, we present a novel automatic calibration
method of camera-LiDAR extrinsic parameters. This method
requires neither an artificial target (target-less calibration) nor
an environment structuration. The new approach proposed
is based on the co-registration of the points that present
discontinuity features in the LiDAR measurement space with
the points that describe the intensity of edges in the image.
We performed the co-registration of points with a single laser
scan, which allows applying the calibration method indepen-
dent of any localization system. Then, we use a combination
of Perspective-three-Points (P3P) and M-estimator sample
consensus (MSAC) to estimate the relative transform that
minimizes 3D-to-2D errors generated in the co-registration
stage. With this method, the parameter estimation depends
mainly on the number of points reliably co-registered. For
this reason, and due to the high noise component found in
unstructured outdoor environments, we consider each param-
eter estimation as a noisy observation in a dynamic system.
These observations will update the state (current calibration)
of a Kalman filter, depending on their reliability. The concrete
contributions of this work are listed below:
• Our main contribution is a target-less calibration method
for unstructured and arbitraries outdoor environments,
which does not require, in any case, a localization system
to accumulate laser scans in a dense point cloud.

• The presented method includes a novel algorithm for
camera-LiDAR points co-registration. Our algorithm is
based on maximizing the alignment of local features.
On one hand, discontinuities features in the LiDAR
points, and on the other hand, edge features in the image.
We perform the alignment by search the best (in terms
of an objective function) translation, rotation, and scale,
of LiDAR local feature points.

• We use the Kalman filter to dynamically update the cur-
rent calibration, taking the calibrations estimated by the
proposed method as observations. Besides, we provide
a methodology to characterize the observation’s noise.

The outline of the rest of this article is as follows: In
Section II, we review the previous main work on the subject,
with particular attention to those focused on target-less cali-
bration.We explain in detail the proposedmethod in this work
in Section III, with a high-level division into three differen-
tiated parts. In Section IV, we describe the filter modeled to
refine the final calibration. We show experimental results in
Section V, including filter noise modeling, as well as quan-
titative results against ground-truth. Finally, in Section VI,
we present the main conclusions obtained from this work.

II. RELATED WORK
A large number of camera-LiDAR extrinsic calibration works
are target-based. With this methodology, a known artificial
target is used to be detected by both sensors. In [10]–[14],
the authors use a chessboard as a target. Planar marks are also
used in [15], but in this case, the drawing pattern presented

is different. Other types of marks with different geometric
shapes are also often used, such as spheres [16], triangles
[17] or polygons [18], [19]. Cost functions are usually used
to estimate extrinsic parameters, which minimize reprojec-
tion errors between the target detected with the LiDAR and
projected on the image plane, and the target detected on the
image itself. In [20], the authors use a function based on least
squares. In other cases, such [21], the relative transformation
between the current camera position and the desired position
is used employing a 3D-to-2D motion transformation based
on Perspective-n-Points (PnP) algorithms [22].

Currently, the main challenges in mobile robotics are
autonomous navigation and scene understanding in out-
door environments. These conditions often cause unfavorable
situations for extrinsic calibrations. For this reason, there
are currently different works focused on target-less calibra-
tion methods. Within this methodology, we can distinguish
two categories: motion-based and feature-based calibrations.
Motion-based calibrations have the advantage of not needing
any initial guess for method convergence, although they are
usually less accurate. In contrast, feature-based calibrations
need an initial guess for the method convergence, although,
in this case, we generally get more accurate results.

Motion-based calibration methods estimate odometry with
each sensor separately, and simultaneously estimate extrinsic
parameters that minimize the error between calculated paths
[23]–[25]. In [26], the authors estimate the parameters by
solving the homogeneous transform equations AX = XB,
where (A,B) are the estimated trajectories with each sen-
sor, and X are the extrinsic parameters to calibrate. This
type of calibration has the advantage that it does not need
an initial guess for the algorithm convergence. However,
the final results are often imprecise due to scale problems
in visual odometry. In [27] the authors use a camera-motion
estimation as a refinement stage in motion-based calibration.
In the recent paper [28], the authors present a hybrid method
that requires a motion-based calibration to obtain an initial
guess and then adjusts the parameters more precisely using
feature-based calibration.

As mentioned above, feature-based calibration needs an
initial guess for convergence. However, we consider that this
is not a very hard requirement since, usually, the approxi-
mate measurements of the components, where we mount the
sensors on the robot, are available. Besides, we can make
a software hand-fitting adjustment, leaving the fine-tuning
to calibration algorithm. Some works in this category use
global features from the image and the laser data in order to
maximize an objective function (global-feature-based). In a
seminal work [7], the authors use an objective function that
maximizes alignment between the edges in the image and the
discontinuities in the LiDAR scans. There are other different
works in this line focused on improving the arrangement of
the edges [29]–[31]. For example, in the recent work [32],
the authors also use a cost function based on Gaussian Mix-
ture Models (GMM) to maximize edge alignment. Another
global-feature-based approach use an objective function that
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FIGURE 1. Example of camera-LiDAR sensor fusion. Each point measured in 3D space with the LiDAR is projected onto the image plane using the
extrinsic parameters [R|t]. In the representation on the right side, we show an example of a camera image in grayscale, where we can see the
projected LiDAR points in color. The objects measured with the LiDAR and with the camera, respectively (for example, the cyclist) do not coincide
point by point in the image plane. This misalignment is an example of the miscalibration effect. The parameters [R|t] that align these objects in the
image plane as precisely as possible will be what we will consider as the system calibration.

maximizes the Mutual Information (MI) between the inten-
sity of the LiDAR measurements and the intensity of lumi-
nance in image [33]. From this seminal work, other variants
arise to improve the primary method, e.g., in [34], the authors
use a Bagged Least-Squares Mutual Information (BLSMI)
for smoothing objective function to avoid local minimums in
highly noisily outdoors environments. In [28], the authors use
this method for fine-tuning after calculating an initial guess
using motion-based calibration.

Local-feature-based is another approach for calibration,
which first performs a co-register of LiDAR features with
image features, and then minimizes reprojection errors to
estimate extrinsic parameters. This approach has the advan-
tage of being able to detect inliers during feature point
co-registration. Therefore, a frame with image regions that
are not appropriate to the co-registration may contain local
information that is useful in other areas of that image, in oppo-
site to the global-feature-based approach, in which an unfa-
vorable local region in image may generate an imprecise
parameter estimation. However, local-feature-based has the
disadvantage that it is tough to implement without known
targets. Many of the research works that perform it use geo-
metric primitives, like planes or straight lines, to co-register
LiDAR points with points in the image. In [35], the authors
use road structuring in urban areas, which would limit cal-
ibration to these kinds of environments. Instead, in [36],
[37], the authors use the co-registration of modeled straight
lines in both spaces. In these cases, the problem is that the
environment must be highly structured to contain enough
geometric primitives.

In this article, we present a method focused on a
local-feature-based calibration approach by co-registering
edge feature points between LiDAR and camera data. In this
case, we don‘t require geometric primitives or any other
kind of environment structuring. Furthermore, our method
does not require to accumulate LiDAR scans to obtain a
denser representation of the environment. This fact involves

the great advantage of not needing any localization system,
which would introduce additional complexity to the complete
system. However, this does not mean that the method neces-
sarily works in a single scan, since we can use the informa-
tion from different time points to accumulate co-registration
errors, or for calibration filtering. For the extrinsic parameter
estimation, we use a combination of P3P (algorithm based on
PnP [38], [39]) and MSAC [40], which allows detecting the
number of inliers in matches. This information enables quan-
tifying the noise in the estimated calibration. Thanks to this
noise quantification, we implement a Kalman filter [41] to
update the current calibration depending on the measurement
reliability.

III. TARGETLESS EXTRINSIC CALIBRATION METHOD
For camera-LiDAR sensor fusion, it is necessary to project
each point measured by the LiDAR on the image plane
defined by the camera intrinsic parameters. We show below
(1) the expression to transform from 3D coordinates in the
LiDAR frame system to 2D coordinates in the image plane.uv

1

 = K
[
R|t
]CL


x
y
z
1


L

(1)

where K is the intrinsic parameters of the camera [42],[
R|t
]CL is the six-degree-of-freedom (6-DOF) rigid-body

transformation, t = (tx , ty, tz) is the translation vector, and
R = f (θx , θy, θz) is the rotationmatrix. The superscripts in (1)
indicate the frame in which the variables are expressed, where
C represents the camera frame, L represents the LiDAR
frame, and CL represents the LiDAR to camera frame tran-
sition. We show an example of LiDAR points projection on
the camera image plane in Fig. 1. In this example, given a
poorly calibration, the same objects captured by both sensors
do not coincide in the image plane. Then, we can define the
problem as the estimation of

[
R|t
]CL that allows the objects
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FIGURE 2. We can divide the proposed calibration method into three stages. In the first stage, we perform the data preprocessing of each
sensor and the projection of the LiDAR points in the image plane. The second stage receives the processed data and co-register the LíDAR
feature points with points from the features in the image, thus obtaining the 3D-to-2D matches and its errors. In the third stage, we estimate
extrinsic parameters using the PnP-based P3P algorithm and perform inlier detection using MSAC, which is a variant of RANSAC.

captured in the environment to be aligned as accurately as
possible. From now, for the sake of clarity, we define the
extrinsic parameter vector as 2CL

= (tx , ty, tz, θx , θy, θz).
Where

[
R|t
]CL
= f (2CL). Like any feature-based method,

we consider that we have an 2CL
0 , aka initial guess. In this

way, poor initialization can potentially affect the algorithm
convergence. However, it is usually not complicated to pro-
vide an initial guess that favors convergence by using the
physical measurements of the robot or by using a software
hand-fitting.

We divide our method into three clearly defined stages
(Fig. 2). In the first stage, we preprocess the data to obtain
the edges features in the image, and discontinuities features
in the LiDAR point cloud (Section III-A). In the second one,
we co-register the edge features between both spaces,
employing edge alignment maximization using separate clus-
ters, i.e., at object level (Section III-B). Finally, in the last
stage, we estimate the relative motion transform, from which
we can infer 2̂

CL
, which minimizes the 3D-to-2D error

obtained in the previous one, using the P3P+MSAC algo-
rithm (Section III-C). To illustrate the method description,
we show pseudocode in Algorithm 1 that describes step by
step the data processing in each stage.

A. SENSOR DATA PREPROCESSING
1) CAMERA IMAGE PROCESSING
For each camera image (I), we must calculate the edge inten-
sity value of each of its pixels. In outdoor environments,
we often find areas with high lighting intensity, causing other
areas of the same image to become very shaded, thus losing
the edge definition. To improve the contrast of shaded areas,
we apply histogram equalization to I in the first step of image
preprocessing. In the top-right image in Fig. 3, we show the
effect of applying this equalization and how the shaded areas
become more defined. Due to both LiDAR and camera sen-
sors can see objects from different points of view, the edges
of these objects may not coincide exactly. For this reason,
we apply a Gaussian filter to the equalized image to widen
the edges, in other words, the filter helps to smoothing the
objective function for maximizing edge alignment. With this
filter, we do not improve alignment efficiency but we help
the convergence of the algorithm (Fig. 3 bottom-left). Finally,
we apply the gradient operator Sobel to a filtered image to
obtain E, which contains the edge intensity information of I.

To cover all possibilities in alignment with LiDAR disconti-
nuities, we consider both horizontal and vertical edges in the
Sobel operator application. We show in bottom-right image
of Fig. 3, an example of E achieved from an image I in an
arbitrary environment.

2) LiDAR POINT CLOUD PROCESSING
Assuming that the LiDAR point cloud PL is layered, we base
our filtering method on the one described in [7]. According
to our filter definition expressed in (2), for each element
pi ∈ PL , we calculate its corresponding di ∈ d, that is, its
discontinuity intensity associated.

di = max(ri−1 − ri, ri+1 − ri, 0) (2)

where ri = |pi| is the range value, that is, the euclidean
distance to i-th point, and ri−1 and ri+1 are the neighbours of
ri that are in the same scan layer. Then, we project this value
of discontinuity intensity on the image plane described by the
camera intrinsic parametersK, and the initial guess, by using
(1), obtaining, as a result, the image D. This image contains
a channel with the depth information of each pi projected on
the image plane, and a second channel with the corresponding
di value calculated in (2). As an example, we show in the top
image in Fig. 4 a point cloud PL in an arbitrary environment.
The corresponding projection in image D is shown in the
bottom image in Fig. 4, in which the intensity of the green
color component is proportional to the discontinuity intensity
at the point.

B. CO-REGISTRATION OF CAMERA-LIDAR POINTS
To perform edge alignment at the object level, we do a cluster-
ing at D points, first in the depth dimension, and then, in two
dimensions of the image plane. In this way, we can mitigate
the effect of distortions produced by miscalibration on the
LiDAR points projected. Some of these clusters represent
clearly defined objects that provide us a lot of contours favor-
able for the co-registration. In contrast, other clusters present
widely scattered points that provide poor information. To rule
out these latter cases, we quantified the entropy in each cluster
to exclude ones that present a high degree of disorder in his
distribution. For entropy measurement, we used the formula-
tion described in [43]. We show the clustering computation
described, in line 16 of Algorithm 1, where D is the depth
and discontinuities image, and C = (C1,C2, . . . ,Cm) are
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Algorithm 1 Targetless Extrinsic Calibration Method
1: Inputs
2: I := Grayscale image.
3: PL := Point cloud. {Where PL = (p1,p2, . . . ,pn), and pi is a 3D point.}
4: 2CL

0 ∈ R6×1
:= Initial guess.

5: K := Intrinsic parameters.
6:

7: Outputs

8: 12̂
C
∈ R6×1

:= Estimated calibration parameters.
9:

10: Step A: Sensor data preprocessing
11: E = GetImageEdges(I);
12: d = GetPointDiscontinuities(PL); {Where d = (d1, d2, . . . , dn), and di is a discontinuity intensity}
13: D = ProjectPonitsOnImagePlane(PL ,d,2CL

0 ,K);
14:

15: Step B: Co-registration of camera-Lidar points
16: C = ObjectClustering(D); {Where C = (C1,C2, . . . ,Cm)}
17: V = SelectClustersReferenceVectors(C); {Where V = (Ev1, Ev2, . . . , Evm)}
18: U = SelectAllPosibleEdgesVectors(E); {Where U = (Eu1, Eu2, . . . , Euk )}
19: for i = 1: m do
20: for j = 1: k do
21: Cij = ClusterPointsTransform(Ci, Evi, Euj));
22: Jj = ObjectiveFunction(Cij,E);
23: end for
24: j = FindIndex(J = Maximum(J))
25: C∗i = ClusterPointsTransform(Ci, Evi, Euj));
26: end for
27: C∗ := Transformated clusters. {Where C∗ = (C∗1,C

∗

2, . . . ,C
∗
m)}

28:

29: Step C: Relative transform estimation
30: PC = 3DTo2DCorrespondence(C∗,PL ,2CL

0 ); {Where PC = (PC1 ,P
C
2 , . . . ,P

C
m)}

31: 12̂
C
= RelativeTransformEstimation(C∗,PC ,K);

FIGURE 3. Image preprocessing for data readiness for the co-registration stage. Top-left: Original image taken in grayscale. Top-right: Original image
after applying histogram equalization. The central part that looked very dark in the original image now shows a higher contrast. Bottom-left: Result of
applying a Gaussian filter to the equalized image. Thanks to this process, the image edges are wider so that the alignment is not too restrictive.
Bottom-right: Final result of the process that provides the image E. For this process, we apply the Sobel gradient operator in order to obtain the edge
intensity at each point of the image.

clusters calculated. Each Ci ∈ C contains the location and
the intensity discontinuity of each own point. The number of
clustersm is variable and depends on the number of objects in

the environment and their spacing. Fig. 5 top shows in yellow
points several examples of clusters calculated in an arbitrary
environment.
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FIGURE 4. LiDAR point cloud preprocessing for data readiness for point co-registration. Top: 3D representation of an original point cloud captured with a
LiDAR sensor in an arbitrary environment. Bottom: The same point cloud after applying the filtering described in (2). We project the discontinuity intensity
values d with a proportional green color intensity on the image D. We have made the projection of the points on the image plane using the initial guess.

FIGURE 5. Example of a co-registration of the LiDAR points with points in the image. Top: In these five images, we show the points belonging to different
clusters Ci projected in the image (yellow points), for a data sequence with some miscalibration. In this case, the same objects captured by both sensors
do not coincide in the image plane. Bottom: In these five images, we show, in green color, the points belonging to the clusters C∗i obtained from the best
transformation calculated by maximizing (6). After applying this transformation, we can see the alignment of the objects in the image plane. In these
cases, we can define the reprojection errors by the distance between each yellow point with its corresponding transformed green point.

For each Ci ∈ C cluster, we select a pair of its own points,
which is considered as a reference vector of these cluster:
Evi = (ui2−ui1 , vi2−vi1 ), where (u, v) are coordinates in image
plane. The criteria for a pair of points selection is not quite

relevant. Only a minimum and maximum range of separation
between the pair of points have to be taken into account.
The calculation of cluster reference vectors is computed in
line 17 of Algorithm 1, where V = (Ev1, Ev2, . . . , Evm) is a set
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Algorithm 2 Reference Vector Calculation for E
1: function SelectAllPosibleEdgesVectors(E)
2: ε := Edge intensity threshold (configurable parameter).
3: n := Number of pixels in E graters than ε.
4: k = 0;
5: for i = 1: n do
6: for j = 1: n do
7: (u1, v1) = GetPixelCoordinate(E(i));
8: (u2, v2) = GetPixelCoordinate(E(j));
9: Euk = (u2 − u1, v2 − v1);
10: U = Append(U, Euk );
11: k = k + 1;
12: end for
13: end for
14: return U;
15: end function

of vectors. Moreover, we can describe E as a set of reference
vectorsU = (Eu1, Eu2, . . . , Euk ) arising from all possible k pairs
of points that presents a certain edge intensity. In Algorithm 2,
we show a pseudocode that illustrates the procedure to obtain
these reference vectors. This pseudocode is computed in line
18 of Algorithm 1.

Given Evi ∈ V and Euj ∈ U, it is possible to define the
translation (3), rotation (4), and scaling (5) that transform,
in the 2D image plane, all the points of the i-th cluster given
by Evi to the space defined by Euj.

Etij = (ui1 − uj1 , vi1 − vj1 ) (3)

αij = arccos
EviEuj
|Evi||Euj|

(4)

wij =
|Euj|
|Evi|

(5)

Then, to find the best alignment of a particular object in
Ci with entire E, we must find the best transformation from
Evi to all Euj ∈ U, in terms of an objective function. In prac-
tice, a high value of k might cause execution times to be
excessively large. However, since an initial guess is available,
the choice of reference vectors can be relaxed for each cluster,
performing the search in a limited range of αij andwij, as well
as a convergence area defined byEtij limitations. In lines 19-26
of Algorithm 1, we show the pseudocode that illustrates the
edge alignment procedure, where the objective function that
must be maximized (see line 22) computes the following
expression:

J =
n(c)∑
l=1

elcl (6)

where cl ∈ Cij are the discontinuity intensity values of the
cluster, and el ∈ E are the edge intensity values in E in which
the cl points are projected. The output of this co-registration
stage is a set of C∗i ∈ C∗ that contains Ci points transformed
to a location where we maximize the edge alignment. To
illustrate this edge maximization, we show several examples

of Ci clusters in the top image of Fig. 5, while the bottom
image of the same figure shows the clusters C∗i aligned with
E after applying to them the transformation computed by the
Step B shown in Algorithm 1.

C. 3D-TO-2D RELATIVE TRANSFORM ESTIMATION
We define reprojection errors as the distances in pixels
between the points Ci and C∗i (Fig. 5). Then, the estimation
of the extrinsic parameters will be the one that minimizes
these errors. In this work, we use the 3D-to-2D relative
motion estimation, from its current position defined by2CL

0
to the position that minimizes reprojection errors. For now on,
we name this relative translation as12C .We assume that, for
each clusterCi, the correspondences of each point withPL are
available. Then, we can define the i-th clusters represented
in the lidar space (L) as PLi . We use the next transformation
in order to express the points in the camera frame using the
current calibration: PCi = [R|t]CL0 PLi . Furthermore, the points
C∗i on the image plane area also available, and these define the
locations where we ’desire’ to project PCi . To obtain a unique
transform, wemerge all clusters; then, henceforth, we remove
the subscript i. In this way, making use of (1), it is possible to
define the following expression:

C∗ = K1[R|t]CPC (7)

where 1[R|t]C = f (12C ). We know all the elements of the
expression (7) in the absence of 1[R|t]C , which represents
the relative movement in the calibration space. To obtain the
best solution of (7), we use the P3P [38] algorithm based
on PnP, which requires a minimum of 3 inliers to perform
the estimation. Also, we use a variant of RANSAC (MSAC
[40]) to detect inliers in estimation. With all this informa-
tion, we can obtain a handy quality measure to update the
calibration filter that we will describe in the next section.

IV. CALIBRATION FILTERING
Once 1[R|t] has been estimated, it is time for the correction
stage of [R|t], which is given by:

[R|t]n = [R|t]01[R|t]n (8)

where n subscript indicates the time sequence index in the
complete calibration system. As we show in (8), in the case
of an unfavorable estimation of 1[R|t] = f (12), the cur-
rent calibration would suffer an unwanted deviation. This
scenario will occur continuously in outdoor environments
because the real world is noisy. For this reason, we apply
a Kalman filter so that the final calibration shows stable
behavior, and we only update this calibration to the extent of
the quality of the results obtained from the method explained
in Section III. Below we describe, first, our Kalman filter
model and, second, the proposed methodology for noise
observations characterization.

A. KALMAN FILTER MODEL
In this subsection, we describe the Kalman filter proposed
to filter the final calibration state using the observations
obtained through our method. Therefore, we consider, for
now on, the output of the method described in Fig. 2 as
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FIGURE 6. Complete calibration system. The blue block represents the method for obtaining extrinsic parameters, as shown in Fig. 2.
We consider the output of this block as observation in a dynamic system that we filter with a Kalman filter (orange block). The yellow
block represents the observation’s noise model described in Section IV-B. The initial guess is the calibration with which the whole
process starts, that is, [R|t]0 = f (20). Expression (8) is applied in the update calibration block to obtain the current n-th calibration.

an observation in a dynamic system defined as: Y ∼

N (12obs, 6obs). Then, we model the final calibration as
6-dimensional state defined as X ∼ N (12stt , 6stt ).
The Kalman filter proposed is based on a constant

propagation model:

12̂sttn = 12sttn−1 (9)

This model does not have propagation additive noise.
Then, the prediction stage of the Kalman filter is not com-
puted, therefore 12stt and 6stt will remain constant as long
as we do not receive observation in the system. Although in
the future, we could add an additive noise according to some
criteria, such as perturbations caused by terrain, so that 6stt
can grow over time if we don’t receive observations.

We define the observation model as:

12̂obsn = 12̂sttn + δobsn (10)

where δobsn ∼ N (0, 6obsn ) is the observation noise. We will
describe the way to characterize this noise in Section IV-B,
where we define the covariance matrix as a function of
inlier detection in relative transform stage of our calibration
method.

Given the proposed model (9)(10), we can compute the
current state of the system as:

12sttn = f (12sttn−1 ,12obsn , 6sttn−1 , 6obsn ) (11)

6sttn = f (6sttn−1 , 6obsn ) (12)

where (11) and (12) compute the innovation, Kalman gain,
and state correction stages of the Kalman filter only each time
in which we receive an observation.

At the beginning of the process, we don‘t have the confi-
dence of the initial guess, i.e., we don‘t have a value of 6stt0
associated to 12stt0 . For this reason, we can initialize the
filter with a high covariance 6stt0 so that it converges as we
compute the observations Y ∼ N (12obs, 6obs). Once we
initiate the filter process, we should take into account that
high values in state covariance6stt are commonly associated
with a wrong state, and useful observations are usually asso-
ciated with low magnitudes in 6obs. In these cases, the filter
relies more on observation than in the previous state. Then
a set of useful observations along the time can attract step

by step the estimations to a fine state. In opposite cases,
we observe a different behavior, because when we reached a
fine state, the state covariance 6stt usually takes low values,
and the filter does not rely on lousy observation with high
components in 6obs. This behaviour is what brings high sta-
bility to the system. We consider the system calibrated when
we reach a state covariances below a particular configurable
value. This threshold defines how precisely we think the
system converges. But even if we consider the system cali-
brated, the filter should still work since we orient our method
to online operation, where, as we have already mentioned,
the system may suffer from disturbances that the calibration
must correct. We define as transitory phases those parts of the
process in which the system can find miscalibrated. In the
results section, we quantify these transitory parts by mea-
suring the number of data frames that the system needs to
converge to a stationary phase. We show the block diagram
of the complete calibration system in Fig. 6, which includes
both the method described in Fig. 2 and the Kalman filter
proposed in this section.

B. OBSERVATION’s NOISE CHARACTERIZATION
As we mentioned in previous Section, we can express the
results of our calibrationmethod as observations in a dynamic
system: Y ∼ N (12obs, 6obs), where:

12obs = (1tx ,1ty,1tz,1θx ,1θy,1θz) (13)

6obs = diag(σ 2
x , σ

2
y , σ

2
z , σ

2
θx
, σ 2
θy
, σ 2
θz
) (14)

where each σ 2 is the variance associated to each observation
variable in 12obs. Due to the noise from the system affects
with a different distribution, on the one hand, to translation,
and, on the other hand, to the rotation, we can redefine (14)
as:

6obs = diag(σ 2
t , σ

2
t , σ

2
t , σ

2
θ , σ

2
θ , σ

2
θ ) (15)

To characterize noise, we should calculate σ 2
t and σ 2

θ

depending on the reliability of the calibration observation.
As mentioned in the method description, we observe in our
experiments that exist relationships between the percent-
age of inliers detected in the 3D-to-2D relative transform
estimation and the accuracy of the calibration estimation.
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Algorithm 3 Noise Filter Modeling
1: function NoiseFilterModeling(D,2GT )
2: D := Camera-LiDAR data D = (D1,D2, . . . ,DM ).
3: 2GT := Ground truth calibration.
4: et := Translation error vector et = (et1 , et2 , . . . , et100 ).
5: eθ := Rotation error vector eθ = (eθ1 , eθ2 , . . . , eθ100).
6: σt := Translation st. deviation σt = (σt1 , σt2 , . . . , σt100 ).
7: σθ := Rotation st. deviation σθ = (σθ1 , σθ2 , . . . , σθ100 ).
8: c := Counter vector c = (c1, c2, . . . , c100).
9: (et , eθ , c) = InitializeToZero (et , eθ , c);
10: (σt , σθ ) = InitializeToZero (σt , σθ );
11: for i = 1: M do
12: (12,N ,NIN ) = CalibrationMethod(Di,2GT );
13: εt = |(1tx ,1ty,1tz)|;
14: εθ = |(1θx ,1θy,1θz)|;
15: j = Round((NIN /N )× 100);
16: cj = cj + 1;
17: etj = etj + εt ;
18: eθj = eθj + εθ ;
19: end for
20: et = et/c;
21: eθ = eθ/c;
22: (σt , σθ ) = FitExponentialFunction(et , eθ );
23: return σ 2

t , σ
2
θ ;

24: end function

Then, we can consider the rate of inliers in co-registered
points as reliability measurements. In Algorithm 3, we show
how to model these relationships using a ’training’ set of data
D, and a ground truth calibration 2GT . In the ideal case,
if we compute our method (line 12 in Algorithm 3) using the
ground truth calibration as an initial guess, we should obtain
12 , 0. Then, with this scenario, we can consider 12 as a
measure of the accuracy of our method, which can be express
as a function of the percentage of inliers. In Algorithm 3,
line 15, we compute the inliers rate, where N indicates the
amount of 3D-to-2D co-registered points, and NIN are the
number of inliers in the relative transform estimation stage.
We express the relationships between accuracy and inliers
rate in Algorithm 3 as vectors et and eθ . Then, we fit an
exponential function to these data to cover all possibilities
of the inliers rate. Finally, we sample this exponential func-
tion in σ 2

t and σ 2
θ vectors. These vectors are the output of

Algorithm 3 and are the noise model that we use in the
Kalman filter process. As we can see in the yellow block
in Fig. 6, each time we receive an observation in the filtration
process, we can compute inliers rate j, and then, by consulting
σ 2
tj and σ

2
θj
modelled, we can compute 6obs.

V. EXPERIMENTS AND RESULTS
In this section, we present the experimental results achieved
through the application of the calibration method proposed
in this work. First, in Section V-A, we define the process of
noise modeling for the Kalman filter observations. Second,
in Section V-B, we show the quantitative results obtained

by applying the method to different kinds of environments
derived from the Kitti dataset [44], using the calibration
provided by this dataset as ground truth. Also, we com-
pare our results with other state-of-the-art works in the
Section V-C.
We achieve the results exposed in this section by accu-

mulating the co-registered points in the image plane every
10 frames. This frame number is a configurable parameter,
not a constrain of our method. Due to the accumulation is
done in the image plane, we don’t require any other process,
and we only need to store the 3D-to-2D co-registered points
for each 10 frames. From now on, we name these frame
groupings as samples.

A. NOISE FILTER MODELING
To model the observation noise for the experiments, we use a
’training’ set D that contains 560 samples of camera-LiDAR
data from the Kitty dataset, and the calibration provided by
the dataset as ground truth 2GT . Then, given D and 2GT ,
we can compute Algorithm 3 to fit the model as we described
in the previous section. In Fig. 7, we show the results of noise
modeling, where blue bars represent the values of et and eθ
obtained, respectively. The red lines drawn in Fig. 7 graphics
represent the sampled noise model for these experiments,
defined by σt and σθ . In Fig. 7, we can see that the noise
model covers all possible values of the inliers rate. In practice,
it is not quite like that, because the observations that present
an inliers percentage below 5% are first consider invalid and
then rejected.

B. METHOD VALIDATION
To test our method and its corresponding filtration system,
we use the Kitti dataset, in which a ground truth calibration
2GT is available. Then, using this calibration as initial guess,
we can define the computation of our system as:

[R|t]n = [R|t]GT1[R|t]sttn (16)

where1[R|t]stt0 = f (12stt0 ) is a normal distributed random
misscalibration. We inicialize the covariance matrix of the
state as6stt0 = f (σ 2

t0 , σ
2
θ0
), where σt0 = 0.5m and σθ0 = 0.8◦

are the standard deviations with which we have generated the
random misscalibration. Given this scenario, if we compute
the system shown in Fig. 6, when n increases, 12sttn should
tend to 0. In this way, we can evaluate our complete system
as far as the state converges to 0 for all state variables. For
this experiment, we select 300 samples from the Kitti dataset
that contains data from four different types of environments,
such as follows: campus, road, city, and residential.We divide
the evaluation test into 3 subsets of 100 samples each one,
and each subgroup contains data from the different types of
environments. For each set, we compute the whole process
shown in Fig. 6, initializing the process by causing a random
miscalibration, as we mentioned at the beginning of this
Section.

In Fig. 8 we show the value of the observations obtained
from each sample of the subset 1. These observations are the
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FIGURE 7. Noise model for the Kalman filter observations described in Section V-A. Left: noise model for the module of the
three orientation components r = |(θx , θy , θz )| = |(yaw,pitch, roll )|. Right: noise model for the module of the three
translation components t = |(x, y, x)|. These graphs have been obtained by processing 5,600 frames, by calculating the inlier
percentage and the error with respect to the ground truth of each 10 frames processed. The blue bars indicate the mean error
for each inlier percentage measured. The red lines describe the exponential function that fits the data.

FIGURE 8. Representation of each variables that make up the observations 12obsn for n = [0, . . . ,100]. The blue line
indicates the value that each variable takes at the instant n, the dashed lines mark the standard deviations associated with
each observation, and the red line indicates the value of the desired state, which is 0 in all the variables in this case. Due to
the noisy outdoor environments considered, the calibrations suffer a number of disturbances that must be filtered.

output of the method described in Section III. In this figure,
the dashed line represents the standard deviation obtained
in each measurement from the noise model described in
Section V-A, while the red line represents the desired state.
We can see that the method provides some calibrations trans-
lation close to 0, and, in these cases, the calibrations will
be useful. However, these observations would generate little
stable calibrations and with very abrupt variations along the
time. In contrast, as we show in Fig. 9, if we apply the
observations to the Kalman filter described in Section IV,
the state presents smooth evolution, and reduce its noise so
that more noisy observations will not cause miscalibration.
We can see in Fig. 9 how the filter transforms the noisy
information provided by the observations as a proper final
calibration. In Fig. 9, the dashed lines indicate the standard
deviation, and the red line indicates the desired state. In this

case, we can see that the evolution of the calibration presents
an initial transitory evolution until it converges to a particular
calibration, and, from that point, it offers an evolution of a
stationary nature.

We present the quantitative results for the translation and
rotation variables, respectively, in Tables 1 and 2. We achieve
these results from the evaluation of the complete method
shown in Fig 6, for each of the 3 data subsets. To test the
method behavior in terms of convergence, we measure the
number of samples in the transitory part of the process. Then,
we evaluate the mean of the error between the stationary part
of the state evolution against the ground truth for each state
variable. Also, we consider the standard deviation of the error
calculated above. This last calculation provides information
on the stability of the method in the stationary part of its
evolution.
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FIGURE 9. Representation of the time evolution of the state variables that make up 12sttn for n = [0, . . . ,100]. The blue line
indicates the value that each variable takes at time n, the dashed lines indicate the standard deviations associated with each
state, and the red line indicates the value of desired state, which in this case is 0 in all variables. This evolution arises from the
application of the Kalman filter described in Section IV, sequentially for each observation shown in Fig 8. The process presents
a transitory phase and a stationary phase in all cases. Furthermore, the system converges in all cases with very low errors and
high stability against noise.

TABLE 1. Quantitative results for translation for three different data
subsets. It can be seen how the number of transitory iterations is usually
low, except in some exceptions such as the subset 1. The errors obtained
are very low, and the standard deviation values indicate that the system
has good stability.

We can see that the number of transitory iterations is quite
variable in the results presented in Tables 1 and 2. This
variability is due to the fact that the transitory length depends
mainly on the noise in the first stack of observations. In other
words, the system will remain in a transitory regime until
we receive a set of low-noise observations. In some cases,
such as the variables y and roll of the subset 1, we can see
that the transitory phase is much larger than in other cases.
Nevertheless, if we see the evolution of these variables
in Fig. 9, previously the system has reached a semi-stable
state that we could consider as a pre-stationary regime.
We can also observe in both cases how the system converges
when we receive low-noise observations. We can consider
the average errors that we achieve as shallow, most of them
bellow 1cm in translation and bellow 0.05◦ in rotation. The
behavior presents a high degree of stability, which indicates
that the system does not suffer considerable disturbances in

TABLE 2. Quantitative results for rotation for three different data
subsets. In this case, convergence is somewhat slower than in the case of
translation. However, as in the case of translation, the errors are very low,
and the standard deviation values indicate that the system also has good
stability against rotation noise.

the face of very noisy observations when it has reached the
stationary regime.

C. METHOD COMPARISON
In the previous section, we have validated the behavior of
our method. In addition, in order to test how our work con-
tributes to the calibration field, we compare our approach
with other state-of-the-art ones, that we consider seminal
works. In Table 3, we show these works and a comparison
in terms of the implementation strategy. We should note that,
in the right column of Table 3, we show an indicator of the
execution mode for each work. We consider that the method
presents an execution mode capable of operating online when
the algorithm converges along different sample-times, what
allows us to track smooth deviations in calibration. As an
online example, the method proposed by Levinson & Thrun
[7] computes only one gradient step each sample-time. Then,
the edge maximization converges asymptotically. In contrast,
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TABLE 3. Comparison of our method with other state-of-the-art ones, in terms of the implementation strategy. We can distinguish, as the most
differentiating aspect, between methods that work in online mode, and those that do not. Our method is the only one that works with local features.

FIGURE 10. Experimental results for the comparison of our method with those proposed in Table 3. We can see that our method
significantly improves the results with respect to those proposed by Levinson & Thrun [7] and Pandey [33]. In contrast,
the results of Kang & Doh [32] are very close to ours, although with our method we achieved more precision in standard
deviation. Our method also has the advantage of being online, and it can be used in autonomous navigation applications.

the methods proposed by Pandey [33] and Kang & Doh [32]
need a set of samples and then compute the gradient descent
iteratively, at the same sample-time, until the algorithm con-
verges. We evaluated the different works using the Kitti
dataset in different environments. As in the previous section,
we have caused a (normal) random perturbation to a provided
calibration, then we have applied the different methods to
recalibrate the system. By using the ground truth, we have
able to measure errors and their standard deviations. For these
calculations in online methods, we computed 60 samples,
1 sample each time. And, for offline ones, we calculated
30 accumulated samples in a single calibration process.

In Fig. 10, we show the results obtained for each method.
If we compare our method with the other online approach,
we can see that we achieve a significant improvement in
results. This improvement tells us that the local features
strategy can benefit the system, as it can remove noisy parts
of the scene that provide poor information to the process.
In addition, we see that the results for the offline algorithms
improve those of Levinson & Thrun [7], especially in the case
of Kang & Doh [32]. Though its results are close to ours,
we get more accurate standard deviation values. Moreover,
although offline methods manage to converge using

30 samples, we consider the online use of our method a great
advantage, since once the transitory phase is over, we need
to compute only 1 sample every time-step to keep the sys-
tem calibrated. Instead, with the offline methods, we would
have to repeat the process with another 30 samples, which
makes thesemethods very difficult to implement for real-time
applications in mobile robotics.

VI. CONCLUSION AND FUTURE WORKS
In this article, we have presented a new method for
automatic extrinsic calibration between camera and LiDAR
sensors. We based our proposed approach on edge feature
camera-LiDAR co-registration in arbitrary environments.
Our method provides a first estimation of the parameters by
minimizing 3D-to-2D errors obtained in the co-registration
stage. Also, we have implemented a Kalman filter to smooth
the evolution of the final calibration. By using the proposed
complete calibration system, we have achieved shallow cali-
bration errors against the ground truth provided by the state-
of-the-art Kitti dataset. Furthermore, we have shown that
the method is robust to observations with a high degree of
noise, which provides an excellent stability for its online
implementation in autonomous navigation applications.
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Finally, we have compared our method with other
state-of-the-art works, thus demonstrating the contributions
of our work to the field of calibration.

As future work, we will address the implementation of the
calibration system in a real autonomous vehicle. Specifically,
in the BLUE vehicle owned by the AUROVA group to which
we belong. This research platform is equipped with a Velo-
dyne VLP16 LiDAR sensor and with a camera Realsense
D-435. Both sensors could be calibrated online with the
proposed method, also, taking into account potentials syn-
chronization problems in sensor fusion. Furthermore, we will
consider formalizing a noise model for state propagation in
the Kalman filter, since the level of uncertainty increases as
a function of the modeled noise in cases where there are no
observations for a particular time sample. Our ultimate goal
is to apply sensor fusion between the camera and LiDAR
for scene understanding by using unsupervised clustering
techniques.
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