11,868 research outputs found

    Average Sensitivity of the Knapsack Problem

    Get PDF
    In resource allocation, we often require that the output allocation of an algorithm is stable against input perturbation because frequent reallocation is costly and untrustworthy. Varma and Yoshida (SODA\u2721) formalized this requirement for algorithms as the notion of average sensitivity. Here, the average sensitivity of an algorithm on an input instance is, roughly speaking, the average size of the symmetric difference of the output for the instance and that for the instance with one item deleted, where the average is taken over the deleted item. In this work, we consider the average sensitivity of the knapsack problem, a representative example of a resource allocation problem. We first show a (1-?)-approximation algorithm for the knapsack problem with average sensitivity O(?^{-1}log ?^{-1}). Then, we complement this result by showing that any (1-?)-approximation algorithm has average sensitivity ?(?^{-1}). As an application of our algorithm, we consider the incremental knapsack problem in the random-order setting, where the goal is to maintain a good solution while items arrive one by one in a random order. Specifically, we show that for any ? > 0, there exists a (1-?)-approximation algorithm with amortized recourse O(?^{-1}log ?^{-1}) and amortized update time O(log n+f_?), where n is the total number of items and f_? > 0 is a value depending on ?

    Knapsack: Connectedness, Path, and Shortest-Path

    Full text link
    We study the knapsack problem with graph theoretic constraints. That is, we assume that there exists a graph structure on the set of items of knapsack and the solution also needs to satisfy certain graph theoretic properties on top of knapsack constraints. In particular, we need to compute in the connected knapsack problem a connected subset of items which has maximum value subject to the size of knapsack constraint. We show that this problem is strongly NP-complete even for graphs of maximum degree four and NP-complete even for star graphs. On the other hand, we develop an algorithm running in time O(2twlogtwpoly(min{s2,d2}))O\left(2^{tw\log tw}\cdot\text{poly}(\min\{s^2,d^2\})\right) where tw,s,dtw,s,d are respectively treewidth of the graph, size, and target value of the knapsack. We further exhibit a (1ϵ)(1-\epsilon) factor approximation algorithm running in time O(2twlogtwpoly(n,1/ϵ))O\left(2^{tw\log tw}\cdot\text{poly}(n,1/\epsilon)\right) for every ϵ>0\epsilon>0. We show similar results for several other graph theoretic properties, namely path and shortest-path under the problem names path-knapsack and shortestpath-knapsack. Our results seems to indicate that connected-knapsack is computationally hardest followed by path-knapsack and shortestpath-knapsack.Comment: Under revie

    Generalized Assignment via Submodular Optimization with Reserved Capacity

    Get PDF
    We study a variant of the generalized assignment problem (GAP) with group constraints. An instance of (Group GAP) is a set I of items, partitioned into L groups, and a set of m uniform (unit-sized) bins. Each item i in I has a size s_i >0, and a profit p_{i,j} >= 0 if packed in bin j. A group of items is satisfied if all of its items are packed. The goal is to find a feasible packing of a subset of the items in the bins such that the total profit from satisfied groups is maximized. We point to central applications of Group GAP in Video-on-Demand services, mobile Device-to-Device network caching and base station cooperation in 5G networks. Our main result is a 1/6-approximation algorithm for Group GAP instances where the total size of each group is at most m/2. At the heart of our algorithm lies an interesting derivation of a submodular function from the classic LP formulation of GAP, which facilitates the construction of a high profit solution utilizing at most half the total bin capacity, while the other half is reserved for later use. In particular, we give an algorithm for submodular maximization subject to a knapsack constraint, which finds a solution of profit at least 1/3 of the optimum, using at most half the knapsack capacity, under mild restrictions on element sizes. Our novel approach of submodular optimization subject to a knapsack with reserved capacity constraint may find applications in solving other group assignment problems

    Maximizing a Submodular Function with Bounded Curvature under an Unknown Knapsack Constraint

    Full text link
    This paper studies the problem of maximizing a monotone submodular function under an unknown knapsack constraint. A solution to this problem is a policy that decides which item to pack next based on the past packing history. The robustness factor of a policy is the worst case ratio of the solution obtained by following the policy and an optimal solution that knows the knapsack capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature BB of the submodular function. For the extreme cases c=0c=0 corresponding to a modular objective, it matches a previously known and best possible robustness factor of 1/21/2. For the other extreme case of c=1c=1 it yields a robustness factor of 0.35\approx 0.35 improving over the best previously known robustness factor of 0.06\approx 0.06

    Maximizing a Submodular Function with Bounded Curvature Under an Unknown Knapsack Constraint

    Get PDF
    This paper studies the problem of maximizing a monotone submodular function under an unknown knapsack constraint. A solution to this problem is a policy that decides which item to pack next based on the past packing history. The robustness factor of a policy is the worst case ratio of the solution obtained by following the policy and an optimal solution that knows the knapsack capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature c of the submodular function. For the extreme cases c = 0 corresponding to a modular objective, it matches a previously known and best possible robustness factor of 1/2. For the other extreme case of c = 1 it yields a robustness factor of ? 0.35 improving over the best previously known robustness factor of ? 0.06

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack

    Get PDF
    The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA\u2705]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA\u2709] and it admits a QPTAS [Adamaszek and Wiese, FOCS\u2713; Chuzhoy and Ene, FOCS\u2716]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA\u2704]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA\u2715]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f\u27(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC\u2717]

    Constant Approximation for kk-Median and kk-Means with Outliers via Iterative Rounding

    Full text link
    In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1+ϵ7.081+ϵ)(\alpha_1 + \epsilon \leq 7.081 + \epsilon)-approximation algorithm for kk-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen [Chen, SODA 2018]. For kk-means with outliers, we give an (α2+ϵ53.002+ϵ)(\alpha_2+\epsilon \leq 53.002 + \epsilon)-approximation, which is the first O(1)O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1\alpha_1- and (α1+ϵ)(\alpha_1 + \epsilon)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 88 [Swamy, ACM Trans. Algorithms] and 17.4617.46 [Byrka et al, ESA 2015]. The natural LP relaxation for the kk-median/kk-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any ϵ>0\epsilon > 0

    Revisiting sparse dynamic programming for the 0/1 Knapsack Problem

    Get PDF
    2019 Spring.Includes bibliographical references.The 0/1-Knapsack Problem is a classic NP-hard problem. There are two common approaches to obtain the exact solution: branch-and-bound (BB) and dynamic programming (DP). A socalled, "sparse" DP algorithm (SKPDP) that performs fewer operations than the standard algorithm (KPDP) is well known. To the best of our knowledge, there has been no quantitative analysis of the benefits of sparsity. We provide a careful empirical evaluation of SKPDP and observe that for a "large enough" capacity, C, the number of operations performed by SKPDP is invariant with respect to C for many problem instances. This leads to the possibility of an exponential improvement over the conventional KPDP. We experimentally explore SKPDP over a large range of knapsack problem instances and provide a detailed study of the attributes that impact the performance. DP algorithms have a nice regular structure and are amenable to highly parallel implementations. However, due to the dependence structure, parallelizing SKPDP is challenging. We propose two parallelization strategies (fine-grain and coarse-grain) for SKPDP on modern multi-core processors and demonstrate a scalable improvement in the performance
    corecore