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Y cmammi npedcmasnenuil Hosuil nioxio 00 nepePopmynro8anus, w0 003-
60JISE 3IMEHWUMU CKIAOHICMY ATLOPUMMY PO32ANYHCEHHA | Mexc 0N eupi-
wenHs AHIUHOT YLoMUCeabHOI 3a0aUi npo proK3aK. Alzopumm po3zanyicen-
HSL 1 00MedNCeHNs 8 UILOMY CRUPAEMbCA HA 36UMATINY CMpPamezilo, AKA NOAL2A€
6 nepuiomy 0CNabNeHHI ULIOUUCENbHO20 3AB0AHHA 6 MOOeal JiHiliH020 Npo-
epamyeanns (JII). SAxwo onmumanvhe pimenus NiHiliHO20 NPOPAMYEAHHS
€ YINOMUCETIDHUM, MO € ONMUMATBHE DIUEHHS YLNOUUCETHOZ20 3A60aHHs. STKu0
onmumanvie pilleHHs NIHIH020 NPOZPAMYEAHHSA He € ULLOMUCETLHUM, MO 06U~
paemocs 3MiHHA 3 OPOOOBUM 3HAUEHHAM OJ1L CMEOPeHHA 080X nidzada4, max
wo wacmuna donycmumoi oonacmi 6ioxudaemocs 6e3 ycymenus 6yo0v-1K020
3 ModcueuUx uinovuceavHux piwens. Ipouec nosmoproemocs 0 6Cix 3min-
HUX 3 0p06O6UMU 3HAMEHHAMU, NOKU He GY0e 3HAU0eHO ULNoUUCeNbHE PIlleHHS.
Y yvomy nioxo0i aminna cyma i 000amxo6i oomedicenns eenepyromocs i dooa-
tomucs 00 6uxionoi 3adaui neped ii pimennam. J[nsa yb020 weuoKo 6usHAUAEMb-
¢ 00’exmuena mexca 3aoaui npo proxsax. Ilomim mesxca euxopucmosyemocs
0 2enepauii HaGopy Mexc IMIHHOL CYMU T HOMUPHLOX 000AMKOBUX 00MEIHCEHD.
Buxo0suu 3a mednci 3minnoi cymu, euxioni niozada4i 6yoyomvcs i Upiuy1omvcs.
Onmumanvie pimieHHs NOMIM 6UX00UMb AK Kpauje piuleHns 3 ycix niozaday
3 mouxu 30py 00’exmuenozo 3nauenus. IlIpononosana npoyedypa npuzsodumso
00 nidzadau, saKi Maroms MeHuLyY CKAAOHICMD 1 Jle2uie BUPTUYIOMbCL, HIdC 6UXT0-
Ha 3a0aua, 3 MouKu 30pyY KiabKocmi 2inok i noe’a3anux imepauii a6o nidzadau.

3aodaua npo proxsax — ye ocobausa Popma 3az2anvHoi NKIUHOI YinoUUCe b~
Hoi 3adaui. € 6azamo sudis 3adau npo proxzax. Bonu exmouaroms 6 cebe 3adaui
<HYNb-00UH>, <MHONCUHHOZ0 8UOOPY>, <OOMedNHCEHY >, <HEOOMedHcenY >, <K6da-
opamuuny >, «6a2amouinbosy >, «0a2amosuMipny >, <KoJNaAncy HYib-00un> ma
3a0dauy npo 06’conanns proxsaxie. 3adaui npo PrOK3AKU <HYAb-00UH> — mi,
6 axux 3minni npuiimaromo miavku 0 i 1. Ilpuuuna 6 momy, wo npedmem modice
oymu o6pano a6o ne o0pano. Mwumu crosamu, HeMae MOHCAUCOCME OMPUMA-
mu 0po0osi cymu a6o npedmemu. Lle natinpocmiwuii knrac 3aedans npo prox3a-
Ku, i 6iH €OuHUIL, AKUU MOJCe OYymu eupiuenuil 8 nOIHOMI 3a 00NOMO2010 AL20-
pummie 6HYMpiUHIX MO4OK i 8 NCe600NONIHOMIANLHOMY HACL 3a 0ONOMO2010
Memo0ie QUHAMIMH020 NPOZPAMYEAHHS. 3A0aui 3 MHONCUHHUM UGOPOM PIOK3A-
Ki6 — Ue Yy3azanvHenHs 36Unalinoi 3adaui npo prox3axu, Koau Haodip npedmemis
posousaemvca na kaacu. Hyavosuil éapianm eéubopy npeomema 3aminioemocs
GUOOPOM PiBHO 001020 NpeOMema 3 KOHCHO20 KIACY Npeomemis

Kntouosi crnosa: yinowucenvna sadaua npo proxsaxu, nepe@opmyniosanis,
anzopumm 2inox i mesic, YHIMOOYAAPHUU, 00MUCI08ATILHA CKIAAOHICMb
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In general the linear integer programming problem has
very important real life applications. The general linear in-
teger problem comes in the form of capital budgeting, trans-
portation, traveling salesman, facility location, scheduling,
knapsack etc. This model even though it is very easy to

model mathematically, has proved to be very difficult to solve.
See [1-5] for more on linear integer models.

The paper presents a new reformulation approach to
reduce the complexity of a branch and bound algorithm for
solving the knapsack linear integer problem. The branch
and bound algorithm [6,7] in general relies on the usual
strategy of first relaxing the integer problem into a linear
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programing (LP) model. If the linear programming optimal
solution is integer then, the optimal solution to the integer
problem is available. If the linear programming optimal solu-
tion is not integer, then a variable with a fractional value is
selected to create two sub-problems such that part of the fea-
sible region is discarded without eliminating any of the feasible
integer solutions. The process is repeated on all variables with
fractional values until an integer solution is found. In this ap-
proach variable sum and additional constraints are generated
and added to the original problem before solving. In order to do
this the objective bound of knapsack problem is quickly deter-
mined. The bound is then used to generate a set of variable sum
limits and four additional constraints. From the variable sum
limits, initial sub-problems are constructed and solved. The
optimal solution is then obtained as the best solution from all
the sub-problems in terms of the objective value. The proposed
procedure results in sub-problems that have reduced comp-
lexity and easier to solve than the original problem in terms of
numbers of branch and bound iterations or sub-problems.

Knapsack problem reformulation is not a new idea. The
reformulation approaches were once used to solve some knap-
sack and other problems [8, 9].

The knapsack problem is a special form of the general linear
integer problem. There are so many types of knapsack problems.
These include the zero-one, multiple, multiple-choice, bounded,
unbounded, quadratic, multi-objective, multi-dimensional,
collapsing zero-one and set union knapsack problems. The zero-
one knapsack [10, 11] problem is one in which the variables as-
sume 0 sand 1 s only. The reason being that an item can be cho-
sen or not chosen. In other words there is no way it is possible
to have fractional amounts or items. This is the easiest class of
the knapsack problems and is the only one that can be solved
in polynomial by interior point algorithms and in pseudo-poly-
nomial time by dynamic programming approaches. The multi-
ple-choice knapsack problem is a generalization of the ordinary
knapsack problem, where the set of items is partitioned into
classes. The zero-one choice of taking an item is replaced by
the selection of exactly one item out of each class of items.

The multiple knapsack problem [12-14] is a generaliza-
tion of the standard knapsack problem formed by combining
single knapsacks into a group of knapsacks having different
capacities. In this case the objective is to assign each item to
at most one of the knapsacks in such a way that all capacity
constraints are satisfied and that the total profit of all the
items put into knapsacks is made maximum. In the boun-
ded knapsack problem [15] there is a knapsack capacity and
a set of items, each having a positive integer value, a positive
integer weight, and a positive integer limit or bound on its
availability. With the bounded knapsack problem the main
objective is to select the number of each item type to add to
the knapsack in such a way that the total weight is not vio-
lated and that the total value is a maximum.

2. Literature review and problem statement

In this case of the unbounded knapsack problem, types of
items of different values and volumes are given, then it is re-
quired to find the most valuable set of items that fit in a knap-
sack of fixed volume. The main difference with the bounded
knapsack problem is that the number of items of each type is
unbounded. A quadratic knapsack [16—19] is a knapsack prob-
lem whereby the objective is expressed as a quadratic function
subject to a set of linear constraints. The variables in this

knapsack problem can either be zero-one or general integers.
With the multi-objective knapsack, the objective changes from
a single objective into many objectives within the same prob-
lem. For example in agriculture, there is an objective to ma-
ximize profit and at the same time minimizing transportation
costs and maximizing the number of employees. In multi-ob-
jective [20, 21] knapsack problems there is the dilemma of
dealing with environmental, social, political and or economic
concerns. In the multidimensional knapsack problem, several
dimensions are considered in the formulation of the problem.
The multidimensional knapsack [22—25] problem basically
consists of finding a subset of objects that maximizes the total
profit while observing some capacity restrictions.

The collapsing zero-one knapsack problem is a type of
non-linear knapsack problem in which the knapsack size is
a non-increasing function of the number of items included.
The set-union knapsack [26] problem is a variation of the
zero-one knapsack problem in which each item is a set of ele-
ments, each item has a nonnegative value, and each element
has a nonnegative weight. The weight of one item is given by
the total weight of the elements in the union of the items’ sets.

The branch and bound was the first algorithm to be
developed in 1960 [6] for these linear integer models. This
method was further modified in 1965 to solve the mixed
linear integer problem [7]. So many improvements have been
done on the branch and bound algorithm in terms of addition
of cuts to get the branch and cut algorithm [19, 27—29]. Pric-
ing was introduced within the context of branch and bound
to get the branch and price algorithm [30, 31]. The improved
versions, branch and cut and branch and price were also com-
bined to get the branch, cut and price [32—34]. In addition
to using cuts and pricing within the context of a branch and
bound algorithm, preprocessing can reduce the number of
sub-problems needed to verify optimality. Even with all these
efforts the general linear integer is still very difficult to solve.
In fact the general linear integer problem including the knap-
sack problem is NP hard [10, 18, 19, 26, 35, 36] and there
are not aware of any consistent efficient algorithm for these
problems. These difficult problems and include the knapsack
problem which is a special case with only one constraint.

The proposed algorithm has the advantage that it is
parallelizable and independent processors can be used. The
knapsack problem has so many real life applications. These
include home energy management, cognitive radio networks,
mining operations use, relay selection in secure cooperative
wireless communication, electrical power allocation manage-
ment, production planning, in selection of renovation actions,
waste management, formulation and solution method for tour
conducting and optimization of content delivery networks.
Network of electricity that intelligently integrates the users’.

The knapsack problem has so many real life applications.
These include home energy management [37], cognitive radio
networks [38], mining operation use [39], relay selection in
secure cooperative wireless communication [40], electrical po-
wer allocation management [41], production planning [42], in
selection of renovation actions [43], waste management [44],
formulation and solution method for tour conducting and
optimization of content delivery networks [45].

Nowadays electricity network grid which incorporates
the user’s input or actions is now being used and is known as
a smart grid. This smart grid is very important for sustainable,
economical and secure supply of electrical power to the people.
Knapsack optimization is used in the management and distri-
bution of power.



Knapsack problem formulation is used in channel and
power allocation for cognitive radio (CR) networks. In this
formulation it is assumed that the total available spectrum
is divided into several bands, each consisting of a group of
channels. A centralized base station, enabled by spectrum
sensing, is assumed to have the knowledge of all vacant chan-
nels, which will be assigned to various CRs according to their
requests. In this case the objective of resource allocation is to
maximize the sum data rate of all CRs.

An extension of the precedence constrained knapsack
problem where the knapsack can be filled in multiple periods
has applications in the mining operations. This problem
formulation is known in the mining industry as the open-pit
mine production scheduling problem. Both exact and heu-
ristics are used in solving the LP relaxation of this problem.

Knapsack formulation is used in cooperative jamming.
Cooperative jamming schemes support secure wireless com-
munication in the presence of more eavesdroppers. Large
numbers of cooperative relays provide better secrecy rate
while increasing the communication ad synchronization
needs associated with cooperative beam forming.

When renovating a building structure there is a need
for the construction manager to select the most feasible
renovation activities and the order in which they must be
done. The main challenge of renovating a building structure
is to determine whether to renovate the existing structure or
start building a new building. Such a decision requires use of
decision tools such as knapsack modeling.

Waste is another challenge that may cause serious en-
vironmental damage if not properly managed. Plastic and
paper waste is a serious issue in most developing countries.
The many problem of waste in developing countries is that
there is very low level recycling in these countries. In other
words there is a small amount of plastic and paper waste that
is recycled and the rest is sent to the landfills or dumbed on
the streets. For recycling to be financially profitable there is
need to use effective and efficient ways in selecting items to
be produced from a lot of items given a limited amount of
money and other resources. This is where knapsack modeling
is applied to minimize waste management costs.

Land conservation projects require proper managing and
planning for the benefits to be seen. For these land projects
there is always the dilemma of how to select the most profi-
table land projects subject to financial constraints. A multi-
ple knapsack formulation is employed in making such deci-
sions and it outperforms other decision making tools such as
benefit targeting, cost-effectiveness analysis, and sequential
binary integer programming.

The fast growing populations and introduction of health-
care systems have resulted in increased both inpatients and
outpatients to public hospitals, particularly those hospitals
that provide special and comprehensive health services in large
countries such as China and India. The hospitals in these coun-
tries have huge numbers of both inpatients and outpatients.
The huge numbers of patients result in overcrowding and
these overcrowding conditions are a concern for the hospital
managers. The obvious question is how to manage these huge
numbers of patients effectively given the fact that some pa-
tients require less attention than the others, the lengths of some
patients are predictable than the others. In other words those
who require less clinical care are less likely to stay longer at the
hospital. In order to alleviate the challenge of overcrowding,
a multi-criteria knapsack model is used for disease selection in
the reception or observation ward of the public hospitals.

So many studies have been done in the field of optimi-
zation methods. Unfortunately, sometimes it is not possible
to directly apply these optimization methods to practical
problems. As an example, a tourist deciding on a traveling
schedule within a traveling time limit needs to select travel
tourist spots from lists so as to be satisfied as far as pos-
sible. This is a problem that can’t be solved by the available
conventional methods. This problem is formulated as a tour
conducting knapsack problem. The formulation and solution
method of tour conducting knapsack problem are based on
those of traveling salesman problem and knapsack problem.

The knapsack problem has many very important appli-
cations in so many areas of business and engineering and it
is certainly very necessary to develop efficient solution algo-
rithms for it. Most of the algorithms for the knapsack prob-
lem are branch and bound based and in this paper the branch
and bound algorithm is improved for the knapsack problem.

The knapsack problem has so many applications [37—45]
and there is definitely a need for efficient and consistent al-
gorithms for this problem. Some of the applications are home
energy management [37], cognitive radio networks [38],
mining operation use [39], relay selection in secure coopera-
tive wireless communication [40], electrical power allocation
management [41], production planning [42], in selection of
renovation actions [43], waste management [44], formula-
tion and solution method for tour conducting and optimiza-
tion of content delivery networks [45].

Even though there is a lot of effort from researchers to deve-
lop an efficient and consistent solution such a method does not
exists. The knapsack problem is NP hard [10, 18, 19, 26, 35, 36]
and an optimal solution is very difficult to obtain. For example
in [10] a parallel algorithm for solving the NP-complete Knap-
sack Problem was proposed. NP complete is the most difficult
subset of the NP hard problems. In [18] it is pointed out that
the knapsack problem is an NP-hard optimization problem
with so many diverse applications in industrial and manage-
ment engineering, however, computational complexities asso-
ciated with this problem still remain in the knapsack problem.
In [19] it is also made very clear that the knapsack problem is
a well-known NP-hard combinatorial optimisation problem,
with many practical applications. Even up to now, approxi-
mation methods are still being developed [13, 25, 26, 35, 45]
for this problem. The reason for using heuristics is that there
are no efficient consistent exact methods for the knapsack
problem. In [35] it is clarified that because of the high com-
putational complexity of knapsack problem, three heuristic
approaches are proposed. The paper [26] is a recent heuristic
which shows that exact efficient approaches for this knapsack
problem are not available.

The approximated solution for the knapsack problem is
easy to obtain and good for quick decisions but the difference
between the approximated solution and the exact solution
may be in millions of dollars for large projects such the UN
humanitarian projects and the US military operations. There
is a need for exact methods for the knapsack problem.

3. The aim and objectives of the study

The aim of the study is to reformulate the knapsack
problem given in so that it is easier to solve by branch and
bound algorithm. To achieve the set aim the following tasks
have been solved:

— to determine the objective bound Z7;



— to use the objective bound to generate the variable sum
limits ¢,,/,,...,¢, and additional constraints;

— to construct the £ initial parallel sub-problems;

— to illustrate by an example how to reformulate a knapsack;

— to give classes ad examples of difficult knapsack problems.

4. The knapsack linear integer problem

4. 1. General form of knapsack problem

The knapsack linear integer problem is a special case of
the general integer problem. Even though this integer prob-
lem has only one constraint, it is believed to be NP complete
and very difficult to solve.

Minimize Z=cx,+¢,x,+..+c,x,. Such that:

ax,+a,x,+..+a,x,2b, )]
where x; is integer.

4. 2. Totally unimodular transportation matrix
The constraints of any linear integer problem can be
expressed as (2).

AX =B, 2)

where A is the transportation coefficient matrix.

Theorem 1: Matrix A is totally unimodular if the determi-
nant of each square submatrix of is 0, —1 or +1.

Theorem 2: 1f matrix A is totally unimodular, then every
vertex solution of (2) is integral

Proof of 1&2. Note that every column of A has exactly
two 1’s, thus any column of A, has either:

1) two 1’s;

2) only one 1;

3) exactly No. 1.

If A, contains a column that has No.1, then clearly
Det[A,]=0 and done for (7). Thus now assume that every co-
lumn of A, contains at least one 1. There are two cases that must
be considered here. The first case is where every column of 4,
contains two 1’s. Then one of the 1’s must come from the source
rows and the other one must come from the destination rows.
Hence subtracting the sum of all source rows from the sum of
all destination rows in A, will give the zero vector. Thus the
row vectors of A, are linearly dependent. Hence Det[A,]=0.
What is now left is to consider the case where at least one
column of A, contains exactly one 1. By expanding A, with
respect to this column, let’s have Det[A,]=+Det[A, ] where
the sign depends on the indices of that particular 1. Now the
theorem is proved by repeating the argument to matrix 4, ,.
Therefore the matrix A, is totally unimodular. More on un-
imodular matrices can be found in[46]. The variable sum
inequalities constructed in this chapter have zeros and ones as
the only coefficients. Making the coefficient of every linear in-
teger problem unimodular is a very difficult task. In this paper
let’s rely on the strategy of introducing new constraints to the
knapsack problem with only zeros (0s) and ones (1s) as coeffi-
cients. This does not make the knapsack problem unimodular
but makes the problem easier to solve than the original form.

4. 3. Branch and Bound Algorithm

The branch and bound algorithm in general relies on
the usual strategy of first relaxing the integer problem into
a linear programing (LP) model. If the linear programming

optimal solution is integer then, the optimal solution to the
integer problem is available. If the linear programming optimal
solution is not integer, then a variable with a fractional value is
selected to create two sub-problems such that part of the feasi-
ble region is discarded without eliminating any of the feasible
integer solutions. The process is repeated on all variables with
fractional values until an integer solution is found. The worst
case complexity of the branch and bound algorithm on knap-
sack linear integer models is NP Complete. The number of
sub-problems can easily reach levels that are not manageable.

4. 4. Variable sum equality

A constraint of the form x,+x,+..+x,=/¢, where /¢ is
an integer, is called a variable sum equality. Let’s note the
coefficients are only ones and this equality is not new and
has been used as clique inequality in the general integer pro-
gramming. Variable sum equalities can be generated for (1).
Let x;’ =SINT > (b / cjg where SINT stands for the smallest
integer. The objective bound Z} can be found as (3) and can
be expressed as (4).

VA :rnin[qxf,czxg,... c xo]. 3)

»nn

CX, +CyXy + .ot x, S ZL. (4)

The variable sum bounds (¢, & ¢,) which are integers can
now be determined once the objective bound is known. These
two integral bounds satisfy (5).

0 Sx 4+ X, + et x, SO 5)

The two variable sum bounds may be found by solving
the following two linear programming models (6), (7).
Maximize /,=x,+x,+..+x,. Such that:

ax, +a,x,+..+a,x, 2b,
B
X+ C X, +. e, x, S 27, (6)

where x is integer.
Minimize ¢, =x,+x,+..+x,. Such that:

ax, +a,x,+..+a,x,2b,
B
X+ C X, +. e, X, S 27, @)

where x; is integer.

The variable sum equality was used recently in [17] to im-
prove the optimality verification process. If there are parallel
processors then these can be solved at the same time, other-
wise these can be solved as a combined problem given in (8).

Let’s maximize ¢,—/,. Such that:

ax, +a,x,+..+a,x,2b,

CX, +CyXy + ot x, SZL,

ly=x+x,+..+x,

ay,+ay,+..+a,y,2b,

CYy Yy ot Oy, S 75

L=y +Y, ot Y, (8)

where x,y,>0 are the unknown variables.
In this case the y variables are used for the second problem.



4. 5. Initial branches

Once the variable sum bounds have been determined
then the variable sum constraints can now be constructed
as given in (9). From ¢, <x +x,+..+x,</,, let's have &
equality constraints, i. e.

X+ Xy +Xy+.tx, =0,
X2, a0+
X +Xy+xy+.+x, =0,

X+, X+ +x, =0, 9)

Each variable sum equality is an initial branch for the
branch and bound procedure which imply that the knapsack
problem has £ initial branches to be explored. The branches
are shown in Fig. 1. he % initial branches of the proposed in
and illustrated in Fig. 1, can be explored independently thus
allowing the use of the much needed parallel processors.

X +x, +otx, =0

X +x,+4x, =0,

Fig. 1. Initial branches of a knapsack problem

4. 6. Two additional constraints

Two additional binding constraints can be constructed
and added to the original knapsack problem so that the
complexity is reduced further. If the variable giving the ob-
jective bound is x; then an additional variable x,,, can be
introduced such that.

X+x,, =0, X, =X +X,+..+x,

(10)

n+l

i.e.

X +X,+..tx, —Xx 0. (11)

nl T

The variable x; is excluded in the sum of variables (11).
Let’s note that (11) is obtained by rearranging the variables
and that the two constraints (10) and (11) are made up of
only (0 s) and (£1 s) as the coefficients. The addition of these
two constraints to each branch will significantly reduce the
complexity of the problem.

5. Reformulation procedure for the knapsack linear
integer problem

5. 1. Numerical illustration
Let’s minimize:

Z=162x, +38x, +26x, + 301x, +87x, +5x, +137x;.

Such that:

165x, +45x, +33x, +279x, +69x; +

+ 6, +122x, 218773, (12)

where x;>0 and integer Vj.

The branch and bound algorithm takes 1351 sub-prob-
lems to verify the optimal solution: x, =568, x,=35, x;=5,
X, =x,=x,=x;,=x,=0&Z=14,793. This is a very small
problem and the 1,351 sub-problems used to verify the opti-
mal solution is too much.

There is definitely a need to preprocess the knapsack
linear problem before solving it by the branch and bound
method. In this paper there are variable sum constraints and
additional constraints and add them to the original problem
and then solve,

5. 2. Reformulation procedure

Given any knapsack linear integer problem of the form.
Let’s minimize Z=cx,+¢,x, +..+¢,X,.

Such that:

ax,+a,x,+..+a,x, 2b,

where x; is integer.

An objective bound (Z72), variable
sum limits (¢,,¢,,..,¢,) and the two
additional constraints as x; +x,,, =/

nt =~ i
and x,,,=x,+x,+..+x, can be de-

termined. The initial £ sub-problems
generated are:

— Initial sub-problem 1.

Let’s minimize:

X +x, +ot+x, =0,
Z=Cx +CX,+...+C,x,.
Such that:
ax, +a,x,+..+a,x,2b,
CX, + Xy + ot x, SZL,
X tx,+.tx, =0,

X, +X

J n+l

=€1’

X +x,+.+x,—x,,=0.

— Initial sub-problem 2.
Let’s minimize Z =c,x, +¢,x, +...+¢,x,. Such that:

ax, +a,x,+..+a,x,2b,

B
X+ C X, +. X, S 27,
X +X,+.tx, =0,

l

X.+X /)

J =

X +a,+otx,—x,,=0.

— Initial sub-problem k.
Let’s minimize Z =c,x, +¢,x, +...+¢,x,. Such that:

ax, +a,x,+..+a,x,2b,

B
CX +C X, +. e, X, S,
X +X,+.tx, =0,

x;+x o

n+l T

X +a,++x,—x,,=0.



The k initial sub-problems can be solved independently
and the optimal solution is the best solution (in terms of
objective value) from the & sub-problems.

5. 3. Algorithm

In other words the knapsack linear integer problem is
solved using the following steps.

Step 1: Determine the objective bound Z_.

Step 2: Use the objective bound to generate the variable
sum limits ¢,,7,,...¢, and additional constraints.

Step 3: Construct the k initial sub-problems.

Step 4: Solve the k sub-problems to obtain the optimal
solution as the best solution from the % sub-problems in terms
of the objective value.

5. 4. Using the numerical illustration from 5. 1
Let’s minimize:

Z =162x,+38x, +26x, +
+301x, +87x +5x, +137x,.
Such that:

165x, +45x, +33x, +279x,
++69x; +6x+122x, 218,773,

where x;>0 and integer V.
Step 1.

xf =289 418 569 68 273 3129 154.

It should be a solid formula:

0

, [46,818, 15,884, 14,794,
n

7P = =14,794. (13
m 20,468,23,751,15,645,21,098] (13)

Step 2.
Let’s maximize ¢, =x,+x,+x;+X, + X, + X, +4;.
Such that:

165x, +45x, +33x, +279x, +
+69x; +6x4 +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x,+5x5+137x, <14,794,

>
x,;20.

0,,<578.33 .0, =578,

Let’s minimize /, =x,+x, +x; +x, + X, + X, +x,.
Such that:

165x, +45x, +33x, +279x, +
+69x; + 6 +122x, 218,773,

162x, +38x, +26x, +301x, +
+87 x5+ x4 +137x, <14,794,

>
x]_O.

1,<568.43 .0, =569.

369, +x, + a0, + X, + x5+ X, +x, <378, (14)

0,=569, (,=570, (,=5T1,
0,=572, (=573, (,="574,

0,=575, =576, (,=5TT&(,, =5T8. (15)

The general two additional constraints are:

Xy+x=0,Vi=12.9. (16)
Xg =X+ X, + X, + 45+ X+, 17)
Step 3.

The 9 initial sub-problems are:

1) Sub-problem 1.

Let’s minimize:

Z=162x,+38x, +26x, + 301x, +87x; + Sxy +137x,.
Such that:

165x, +45x, +33x, +279x, +
+69x; +6x, +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x; +5x5+137x, <14,794,

(18)
X+ X, + 2, + X, + X5+ X + 1, =569,
Xy 425 =569,

Xg =X +X,+ X, + X5+ X+ X;.

2) Sub-problem 2.
Let’s minimize:

Z=162x,+38x, +26x, + 301x, +87x; + Sy +137x,.
Such that:

165x, +45x, +33x, +279x, +
+69:x5 +6x, +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x; +5x +137x, 14,794,

(19)
X+ X, + X5+, + X5+ X+ 2, =570,
Xy 425 =570,

Xg =X+ X, + X+ X5+ X5+ X,

3) Sub-problem 3.
Let’s minimize:

Z=162x,+38x, +26x, +301x, +87x; + 5y +137x,.



Such that:

165x, +45x, +33x, +279x, +
+69x; +6x4 +122x, 218,773,

162x, +38x, +26x, +301x, + 20)
+87x5+5x5 +137x, <14,794,
Xy 40, + X5+ 00, + 05+ X5+ 2, =571,

X+ x,=571,

Xg =X, + X, + X, + X, + X, + X,

4) Sub-problem 4.
Let’s minimize:

Z=162x,+38x, +26x, +301x, +87x, + dx; +137x,.

Such that:

165x, +45x, +33x, +279x, +
+69x; +6x,+122x, 218,773,

162x, +38x, +26x, +301x, +
+87x5+5x5 +137x, <14,794,

21)
Xy 40, + X5+ X, + X5+ X +x, =572,
Xy +x,=572,

Xg =X+ X, + X, + X5 +Xg+X;.

5) Sub-problem 5.

Let’s minimize:
Z=162x,+38x,+26x, +301x, +87x, + dx; +137x,.

Such that:

165x, +45x, +33x, +279x, +
+69x; + 6, +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x5+5x5 +137x, <14,794,

(22)
Xy 40, + Xy + X, + X5+ X+ X, =573,
X+ x4 =573,

Xy =X, + X, + X, + X, + X, + X,

6) Sub-problem 6.
Let’s minimize:

Z=162x, +38x, + 26x, + 301x, +87x; +5x, +137x;.

Such that:

165x, +45x, +33x, +279x, +
+69x; + 64 +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x5+5x, +137x, 14,794,

(23)
X+ X, + X0, + X, + X5+ X5+ 2, =575,
Xy + x4 =575,

Xg =X+ Xy + X+ X5+ X+ X,

7) Sub-problem 7.
Let’s minimize:

Z=162x,+38x, +26x, +301x, +87x; + 5xy +137x,.

Such that:

165x, +45x, +33x, +279x, +
+69x; + 64 +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x5 +5x5 +137x, 14,794,

(24)
Xy + X, + X, + X, + X5+ X5+ 2, =576,

Xy + x4 =576,

Xg =X+ Xy + X+ X5+ X5+ X,

8) Sub-problem 8.
Let’s minimize:

Z=162x,+38x, +26x, +301x, +87x, +5x, +137x;.

Such that:

165x, +45x, +33x, +279x, +
+69x; + 6 +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x5 + 5y +137x, 14,794,

(25)
X+ X, + X, + 2, + X5+ X+ 1, =577,
Xy + x4 =577,

Xg =X+ X, + X, + X5+ X+ X,

9) Sub-problem 9.
Let’s minimize:

Z=162x,+38x, +26x, +301x, +87x; + 5y +137x,.



Such that:

165x, +45x, +33x, +279x, +
+69x; + 6, +122x, 218,773,

162x, +38x, +26x, +301x, +
+87x5+5x5 +137x, <14,794,

(26)
Xy 400, + Xy + 20, + X5+ X+ X, =578,
Xy 4 x5 =578,

Xg =X +X,+ X, + X5+ X5+ X;.

The initial branches and their corresponding number of
sub-problems are given in Table 1.

Table 2
Complexity of the problem as n increases

Value of n | Number of sub-problems created by the branch and
in model bound approach to reach the optimum solution

4 1

6 39

8 139

16 25,739

32 Number of sub-problems exceeds 30,000

This shows that the branch and bound on its own is not
a very good approach.

6. 2. Second class of bizarre knapsack problems

Table 1 This is a modification of Class 7. 1. Class 7.1 and the
No. of sub-problems for each branch general form is given in (21).
Sub- | Number of i Let’s maximize:
. Optimal
prob- | sub-prob- Solution solution o
lem lems
Z= 2 x;
1 7 Z,=14794, x,=569, =
X =X, =X, =X;=X,=x,=0
- Infeasible or Minimize x,.
> Such that:
7 Infeasible
n-1
1 Infeasibl _
nieasible 22xjim€n—n—1, (21)
Z,=14793, Best & =
5 5 x, =568, x,=5, ol _ . .
X =x,=x,=x,=x,=0 tima where x, =0 or 1 Vj,3<x<n-1, x is odd and n is even.
— The bizarre behaviour of the branch and bound method
6 5 Infeasible . .
is given in Table 3.
7 5 Infeasible
8 5 Infeasible Table 3
9 7 Infeasible Complexity of the problem as n increases
10 3 Infeasible Value of n | Number of sub-problems created by the branch and
in model bound approach to reach the optimum solution
The automated branch and bound algorithm takes only 4 K =3, sub-problems=17
5 sub-problems to verify the optimal so}ution: 2 '='568, X5 =5, x =3, sub-problems=59
X =x,=x,=x;=x,=0&Z=14793, in the initial parallel 6
problem 5. K =5, sub-problems=59
k =3, sub-problems=209
6. Some difficult classes of knapsack problems 8 k=5, sub-problems=209
K =7, sub-problems=209
6. 1. Knapsack binary linear problems with bizarre be-
haviour 16 Sub-problems exceeded 30,000

Let’s maximize:

or Minimize x,.
Such that:

(20)

where x;=0or 1 Vj and nis even.
The behaviour of the standard branch and bound me-
thod for n=4, 6, 8, 16, ..., is given in Table 2. The number of

sub-problems increases exponentially as n increases.

These are small problems and the branch is not expected
to struggle to solve these problems.

6. 3. Third class of knapsack problem pure integer case

Changing of variables from binary to pure integer in any
difficult knapsack problem automatically increases the com-
plexity of the problem.

Let’s maximize:

n—

1
Z:ij
j=1

J

or Minimize x,.



Such that:

(22)

J=1

where x;20, integer Vj, 1<k<n-1, x is odd and 7 is even.
The behaviour of the branch and bound method for n=4, 6,

8 and 16 for this class of difficult problems is given in Table 4.
Table 4

Complexity of the problem as n increases

Value of n | Number of sub-problems created by the branch and
in model bound approach to reach the optimum solution
4 K =3, sub-problems=23
K =3, sub-problems=129
6 K =35, sub-problems=129
K =3, sub-problems=755
8 K =5, sub-problems=755
K =7, sub-problems=755
16 Number of the sub-problems exceed 30,000

Changing from binary to general integer means expand-
ing the problem. The number of sub-problems increases and
this is expected.

6. 4. Fourth class of hard knapsack problems
Let’s maximize:

or Minimize x,.
Such that:

n-1

2) x;+xx, =4, (23)
j=1

where x;20, integer Vj, 2(n-1)+ k=X, x,A=0 are odd
and 7 is even.

The standard branch and bound method can’t solve most
of these for large values of k. For example a knapsack prob-
lem with the parameters, n=4, k=91, A=97, explodes to
an unmanageable number of sub-problems.

Let’s minimize Z=x,. Such that:

2, +22, +2x, +91x, =97, (24)
where x>0, integer Vj.

The branch and bound method requires 7449 sub-prob-
lems to verify the optimal solution. For large values of A the
knapsack problems are very difficult to solve by the standard
branch and bound algorithm on its own. These numerical
illustrations and more on complexity of knapsack problems
and other linear integer models are given in [9].

7. Discussion of experimental results

The knapsack problem has been reformulated and a nu-
merical illustration is used to show the reformulation process.

The numerical illustration is given in Section 5. The branch
and bound on its own took 1351 sub-problems to verify op-
timality. The same knapsack problem is reformulated into
10 parallel problems which can be solved independently as
given in Section 5. 4. The reformulated same knapsack problem
is solved by the branch and bound algorithm. The numbers of
iterations required to verify optimality ranges from 3 to 11 for
the parallel problems as given in Table 1. Reducing complexity
from 1,351 to the worst case of 11 is a very significant improve-
ment. The branch and bound algorithm is a general purpose
algorithm for solving the general linear integer problem. Un-
fortunately this approach on its own has serious weaknesses as
presented in Section 6 from Tables 2 to 4.

The reformulated knapsack can be identified by the follow-
ing features. The new knapsack problem is split into several
independent parallel problems. The number of constraints in-
creases from 1 to 5 for each parallel. The 4 new constraints for
each parallel problem include an objective bound. Splitting the
problem into many parallel problems, increasing the number
of constraints from only 1 to 4 and increasing the number of
variables by 2 for each split problem are the weaknesses of the
proposed approach. The most important feature of the new
problem is that it is easier to solve by the branch and bound
algorithm than the original single constraint knapsack form.

There is a need to compare the proposed approach with
other methods. Again this is a limitation and a shortcoming
for this study. What seems to be an obvious weakness is that
the reformulation splits the single problem into many but
easier problems to solve. The challenge of splitting the prob-
lem into parallel independent sub-problem can be alleviated
by use of parallel computer processors. There is a need to
further reduce the numbers of branch and branch bound iter-
ations needed to solve each sub-problem. The main challenge
with this is that the complexity of the general integer prob-
lem increases with an increase in the number of variables.

8. Conclusions

1. Determining an objective bound (Z(f ) to the knapsack
problem. An objective bound which is the initial upper limit
to the objective value of the problem. In this study all the #
given variables in the original knapsack problem were used in
determining the objective bound.

2. Once the objective bound was determined it became
easy to generate the k variable sum limits 7,,7,,...,¢, and the
2 additional constraints. To do this let’s only calculate ¢, and ¢,
and the rest generated as all the integers between ¢, and ¢,,. The
first additional constraint was easily generated from the objec-
tive bound and objective row and the other two constraints
were generated from the variable sum limits.

3. The k parallel initial sub-problems where constructed
from the & variable limits ¢,,/,,...,¢, and 3 additional con-
straints. Even though the original knapsack problem looked
simpler than the each of the & parallel sub-problems the truth
is that the reformulated parallel problems were easier to solve
than the original problem as attested to by the numerical il-
lustration. The available computing power which is in terms
parallel processing can be taken advantage of.

4. The numerical illustration was shown in Section 5. Refor-
mulation is the way for a knapsack problem given I this paper.

5. Classes of difficult problems were presented in this
study. There is need for more research on knapsack problems
as shown from the various applications.
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