275 research outputs found

    Clockless Continuous-Time Neural Spike Sorting: Method, Implementation and Evaluation

    No full text
    In this paper, we present a new method for neural spike sorting based on Continuous Time (CT) signal processing. A set of CT based features are proposed and extracted from CT sampled pulses, and a complete event-driven spike sorting algorithm that performs classification based on these features is developed. Compared to conventional methods for spike sorting, the hardware implementation of the proposed method does not require any synchronisation clock for logic circuits, and thus its power consumption depend solely on the spike activity. This has been implemented using a variable quantisation step CT analogue to digital converter (ADC) with custom digital logic that is driven by level crossing events. Simulation results using synthetic neural data shows a comparable accuracy compared to template matching (TM) and Principle Components Analysis (PCA) based discrete sampled classification

    10-Bit 200 kHz/8-Channel Incremental ADC for Biosensor Applications

    Get PDF

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces

    Walking naturally after spinal cord injury using a brain–spine interface

    Get PDF
    A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis1,2. Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain–spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals3 and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking4,5,6. A highly reliable BSI is calibrated within a few minutes. This reliability has remained stable over one year, including during independent use at home. The participant reports that the BSI enables natural control over the movements of his legs to stand, walk, climb stairs and even traverse complex terrains. Moreover, neurorehabilitation supported by the BSI improved neurological recovery. The participant regained the ability to walk with crutches overground even when the BSI was switched off. This digital bridge establishes a framework to restore natural control of movement after paralysis

    A modular neural interface for massively parallel recording and control : subsystem design considerations for research and clinical applications

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 78-79).The closed-loop Brain-Machine Interface (BMI) has long been a dream for clinicians and neuroscience researchers alike - that is, the ability to extract meaningful information from the brain, perform computation on this information, and selectively perturb neural dynamics in the brain for therapeutic benefit to the patient. Such systems have immediate application to treatment of paralysis, epilepsy and the amputated, and the potential for treatment of higher order cognitive dysfunction. Despite the promise of the BMI concept, the technology for bidirectional communication with the brain at sufficiently large scale to be truly therapeutically useful is lacking. Current state-of-the-art neuromodulation systems deliver open loop, 16-channel patterned electrical stimulation incapable of precisely targeting small numbers of neurons. Large-scale neural recording systems are limited to 16-128 electrodes, at the cost of several thousand dollars per channel. The ability to record from the awake behaving animal - let alone precisely modulate neural network dynamics in closed-loop fashion- presents a substantial challenge today.In this thesis, I present decoupled design solutions for three critical subcomponents of the closed-loop BMI - (i) a highly miniature, wirelessly powered and wirelessly controlled implantable optogenetic neuromodulation system capable of selective neural network control with single neural subtype- and millisecond-timescale precision, (ii) a prototype, highly parallel and scalable bio-potential recording system for simultaneous monitoring of many thousands of electrodes, and (iii) a space- and energy-efficient battery charger for biomedical applications. In aggregate, these systems overcome many of the fundamental architectural problems seen in the research and clinical environment today, potentially enabling a new class of neuromodulation system capable of treatment of higher-order cognitive dysfunction. In the research setting, these systems may be scaled to enable whole-brain recording, potentially yielding insights into large-scale neural network dynamics underlying disease and cognition.by Christian T. Wentz.M.Eng

    Analog Compressive Sensing for Multi-Channel Neural Recording: Modeling and Circuit Level Implementation

    Get PDF
    RÉSUMÉ Dans cette thèse, nous présentons la conception d’un implant d’enregistrement neuronal multicanaux avec un échantillonnage compressé mis en oeuvre avec un procédé de fabrication CMOS à 65 nm. La réduction de la technologie a˙ecte à la baisse les paramètres des amplificateurs neuronaux couplés en AC, comme la fréquence de coupure basse, en raison de l’e˙et de canal court des transistors MOS. Nous analysons la fréquence de coupure basse et nous constatons que l’origine de ce problème, dans les technologies avancées, est la diminution de l’impédance d’entrée de l’amplificateur opérationnel de transconductance (OTA) en raison de la fuite d’oxyde de grille à l’entrée des OTA. Nous proposons deux solutions pour réduire la fréquence de coupure basse sans augmenter la valeur des condensateurs de rétroaction de l’étage d’entrée. La première solution est appelée rétroaction positive croisée et la deuxième solution utilise des PMOS à oxyde épais dans la paire de l’entrée di˙érentielle de l’OTA. Il est à noter que pour compresser le signal neuronal, nous utilisons le CS dans le domaine analogique. Pour la réalisation, un intégrateur à capacité commutée est requis. Les paramètres non idéaux de l’OTA utilisé dans cet intégrateur, tels que le gain fini, la bande passante, la vitesse de balayage et le changement rapide de la sortie. Toutes ces imperfections induisent des erreurs et réduisent le rapport signal sur bruit (SNR) total. Nous avons simulé ces imperfections sur Matlab et Simulink pour définir les spécifications de l’OTA requis. Aussi, pour concevoir les circuits analogiques correspondant aux interfaces neuronales requises, tels qu’un amplificateur neuronal, une référence de tension compacte et à faible consommation d’énergie est requise. Nous avons proposé une référence de tension de faible consommation d’énergie sans utiliser le transistor bipolaire parasite de la technologie CMOS pour diminuer la surface de silicium requise. Finalement, nous avons complété l’encodeur de CS et un convertisseur analogique-numérique à approximation successive (SAR ADC) requis pour la chaine d’enregistrement des signaux neuronaux dans ce projet.----------ABSTRACT In this thesis we present the design of a multi-channel neural recording implant with analog compressive sensing (CS) in 65 nm process. Scaling down technology demotes the parameters of AC-coupled neural amplifiers, such as increasing the low-cuto˙ frequency due to the short-channel e˙ects of MOS transistors. We analyze the low-cuto˙ frequency and find that the main reason of this problem in advanced technologies is decreasing the input resistance of the operational transconductance amplifier (OTA) due to the gate oxide static current leakage in the input of the OTA. In advanced technologies, the gate oxide is thin and some electrons can penetrate to the channel and cause DC current leakage. We proposed two solutions to reduce the low-cuto˙ frequency without increasing the value of the feedback capacitors of the front-end neural amplifier. The first solution is called cross-coupled positive feedback, and the second solution is utilizing thick-oxide PMOS transistors in the input di˙erential pair of the OTA. Compress the neural signal, we utilized the CS method in analog domain. For its implementation, a switched-capacitor integrator is required. Non-ideal specifications of OTA of CS integrator such as finite gain, bandwidth, slew rate and output swing induce error and reduce the total signal to noise ratio (SNR). We simulated these non-idealities in Matlab and Simulink and extracted the specification of the required OTA. Also, to design analog circuits such as neural amplifier a low power and compact voltage reference is required. We implemented a low-power band-gap reference without utilizing parasitic bipolar transis-tor to decrease the silicon area. At the end, we completed the CS encoder and successive approximation architecture analog-to-digital converter (SAR ADC)

    Advances in Microelectronics for Implantable Medical Devices

    Get PDF

    An ultra low power implantable neural recording system for brain-machine interfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 179-187).In the past few decades, direct recordings from different areas of the brain have enabled scientists to gradually understand and unlock the secrets of neural coding. This scientific advancement has shown great promise for successful development of practical brain-machine interfaces (BMIs) to restore lost body functions to patients with disorders in the central nervous system. Practical BMIs require the uses of implantable wireless neural recording systems to record and process neural signals, before transmitting neural information wirelessly to an external device, while avoiding the risk of infection due to through-skin connections. The implantability requirement poses major constraints on the size and total power consumption of the neural recording system. This thesis presents the design of an ultra-low-power implantable wireless neural recording system for use in brain-machine interfaces. The system is capable of amplifying and digitizing neural signals from 32 recording electrodes, and processing the digitized neural data before transmitting the neural information wirelessly to a receiver at a data rate of 2.5 Mbps. By combining state-of-the-art custom ASICs, a commercially-available FPGA, and discrete components, the system achieves excellent energy efficiency, while still offering design flexibility during the system development phase. The system's power consumption of 6.4 mW from a 3.6-V supply at a wireless output data rate of 2.5 Mbps makes it the most energy-efficient implantable wireless neural recording system reported to date. The system is integrated on a flexible PCB platform with dimensions of 1.8 cm x 5.6 cm and is designed to be powered by an implantable Li-ion battery. As part of this thesis, I describe the design of low-power integrated circuits (ICs) for amplification and digitization of the neural signals, including a neural amplifier and a 32-channel neural recording IC. Low-power low-noise design techniques are utilized in the design of the neural amplifier such that it achieves a noise efficiency factor (NEF) of 2.67, which is close to the theoretical limit determined by physics. The neural recording IC consists of neural amplifiers, analog multiplexers, ADCs, serial programming interfaces, and a digital processing unit. It can amplify and digitize neural signals from 32 recording electrodes, with a sampling rate of 31.25 kS/s per channel, and send the digitized data off-chip for further processing. The IC was successfully tested in an in-vivo wireless recording experiment from a behaving primate with an average power dissipation per channel of 10.1 [mu]W. Such a system is also widely useful in implantable brain-machine interfaces for the blind and paralyzed, and in cochlea implants for the deaf.by Woradorn Wattanapanitch.Ph.D

    Improvement of Speech Perception for Hearing-Impaired Listeners

    Get PDF
    Hearing impairment is becoming a prevalent health problem affecting 5% of world adult populations. Hearing aids and cochlear implant already play an essential role in helping patients over decades, but there are still several open problems that prevent them from providing the maximum benefits. Financial and discomfort reasons lead to only one of four patients choose to use hearing aids; Cochlear implant users always have trouble in understanding speech in a noisy environment. In this dissertation, we addressed the hearing aids limitations by proposing a new hearing aid signal processing system named Open-source Self-fitting Hearing Aids System (OS SF hearing aids). The proposed hearing aids system adopted the state-of-art digital signal processing technologies, combined with accurate hearing assessment and machine learning based self-fitting algorithm to further improve the speech perception and comfort for hearing aids users. Informal testing with hearing-impaired listeners showed that the testing results from the proposed system had less than 10 dB (by average) difference when compared with those results obtained from clinical audiometer. In addition, Sixteen-channel filter banks with adaptive differential microphone array provides up to six-dB SNR improvement in the noisy environment. Machine-learning based self-fitting algorithm provides more suitable hearing aids settings. To maximize cochlear implant users’ speech understanding in noise, the sequential (S) and parallel (P) coding strategies were proposed by integrating high-rate desynchronized pulse trains (DPT) in the continuous interleaved sampling (CIS) strategy. Ten participants with severe hearing loss participated in the two rounds cochlear implants testing. The testing results showed CIS-DPT-S strategy significantly improved (11%) the speech perception in background noise, while the CIS-DPT-P strategy had a significant improvement in both quiet (7%) and noisy (9%) environment
    • …
    corecore