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Abstract

In the past few decades, direct recordings from different areas of the brain have en-
abled scientists to gradually understand and unlock the secrets of neural coding. This
scientific advancement has shown great promise for successful development of practical
brain-machine interfaces (BMIs) to restore lost body functions to patients with dis-
orders in the central nervous system. Practical BMIs require the uses of implantable
wireless neural recording systems to record and process neural signals, before trans-
mitting neural information wirelessly to an external device, while avoiding the risk
of infection due to through-skin connections. The implantability requirement poses
major constraints on the size and total power consumption of the neural recording
system.

This thesis presents the design of an ultra-low-power implantable wireless neu-
ral recording system for use in brain-machine interfaces. The system is capable of
amplifying and digitizing neural signals from 32 recording electrodes, and processing
the digitized neural data before transmitting the neural information wirelessly to a
receiver at a data rate of 2.5 Mbps. By combining state-of-the-art custom ASICs, a
commercially-available FPGA, and discrete components, the system achieves excellent
energy efficiency, while still offering design flexibility during the system development
phase. The system's power consumption of 6.4 mW from a 3.6-V supply at a wireless
output data rate of 2.5 Mbps makes it the most energy-efficient implantable wireless
neural recording system reported to date. The system is integrated on a flexible PCB
platform with dimensions of 1.8 cm x 5.6 cm and is designed to be powered by an
implantable Li-ion battery.

As part of this thesis, I describe the design of low-power integrated circuits (ICs)
for amplification and digitization of the neural signals, including a neural amplifier
and a 32-channel neural recording IC. Low-power low-noise design techniques are
utilized in the design of the neural amplifier such that it achieves a noise efficiency
factor (NEF) of 2.67, which is close to the theoretical limit determined by physics.
The neural recording IC consists of neural amplifiers, analog multiplexers, ADCs,
serial programming interfaces, and a digital processing unit. It can amplify and



digitize neural signals from 32 recording electrodes, with a sampling rate of 31.25
kS/s per channel, and send the digitized data off-chip for further processing. The IC

was successfully tested in an in-vivo wireless recording experiment from a behaving

primate with an average power dissipation per channel of 10.1 pW. Such a system is

also widely useful in implantable brain-machine interfaces for the blind and paralyzed,
and in cochlea implants for the deaf.

Thesis Supervisor: Rahul Sarpeshkar, Ph.D.
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

This chapter of the thesis motivates the need for ultra-low-power implantable wireless

neural recording systems, informs the readers of prior works in this area, presents the

design approach of the system to be discussed later in this thesis, and outlines the

organization of the thesis.

1.1 Motivation

In the past few decades, direct recordings from the cortical area of the brain have

enabled scientists to gradually understand and unlock the secrets of neural coding.

With the aid of high-density microelectrode arrays, neural activities from a large

population of neurons can be observed simultaneously with a spatial resolution down

to that of a single cell [29], [35]. Many experiments in non-human primates [70],

[64], [58] and a pilot clinical trial in a human subject [27] illustrated that control

signals directly derived from spiking activities from a population of neurons in the

cortical area of the brain can be used to successfully control and manipulate computer

devices or robotic limbs. The study in [67] shows that cortical activities from a

population of neurons can be used to control even a sophisticated device such as

a robotic limb with multiple degrees of freedom. These studies have shown great

promises for a successful development of practical brain-machine interfaces (BMIs)

to restore lost body functions to patients with disorders in central nervous system



such as those suffering from spinal cord injuries. Practical BMI systems of the future

will be portable and may enable the users to control dexterous robotic limbs or their

natural limbs at a near-natural level.

Nevertheless, to reach a stage where such BMIs can be used chronically in humans,

many challenges need to be solved. BMI systems require the use of neural recording

systems to obtain neural data. In the studies mentioned earlier, neural recordings were

performed with passive microprobes that were implanted in the cortical area of the

brain. The implanted microprobes were then connected by a bundle of transcutaneous

wires to external recording electronics. These recording electronics were normally

large in size and consumed watts of power, and thus needed to be mounted on a

rack or a subject's wheel chair. In addition, the transcutaneous connections also pose

a major risk of infection due to the skin rupture, and thus must be eliminated in

practical BMIs. Therefore, for clinically viable BMIs, the recording systems should

be entirely implanted under the skin, while the recorded neural data and the power to

operate the implants must be transferred through wireless means. This implantability

requirement poses major constraints on the size and total power consumption of the

recording systems.

To avoid excessive heat dissipation that may cause cell deaths in the surround-

ing tissues, the total power dissipation from the recording systems should be kept

below a 10 mW range. For the battery-operated recording systems, low power con-

sumption could prolong the time between recharges, thus expanding battery life to

avoid frequent surgeries for battery replacements. Power dissipation of an implantable

recording system is also a strong determinant of its size and cost. Low power con-

sumption means that small batteries can be used to power the recording systems. In

the case when the recording systems are to be continuously powered, a smaller RF coil

can be used to receive RF power to operate the systems. With a small-sized implant,

the cost of packaging reduces as well and the complexity of the surgical procedure

for implanting such system may significantly decrease [53]. Due to these reasons,

minimizing power consumption of implanted neural recording systems should be the

priority in the design of BMIs.



1.2 Previous Work

Many recording systems with intended use in wireless neural recording applications

have been reported in the literature. A number of design approaches have been pur-

sued that portray the compromise among design flexibility, turnaround time, power

consumption, and sizes. Advances in integrated circuit (IC) technologies have enabled

engineers to increase the number of recording channels and signal processing func-

tions that can be put on a single chip, while still decreasing the size and improving

performance. Such technology advancement provides an excellent mean for a devel-

opment of neural recording systems since a large number of recording channels, signal

processing functionalities, and wireless communication circuitry can be integrated in

a small form factor, while consuming low enough power to make full implantations

of such systems feasible. Thus, for the purposes of minimizing power consumption

and reducing the size of the systems, an application-specific integrated circuit (ASIC)

approach in which all functionalities are custom designed as integrated circuits (ICs)

is normally pursued. However, this ASIC approach has a slow turnaround time due

to the design and fabrication of the ICs. Furthermore, design flexibility is sacrificed

since the functionalities cannot be easily changed once the ICs have been fabricated.

Examples of the systems that utilized the ASIC approach were reported in [42],

[26], [62]. The system reported in [42] contains a total of 32 neural recording channels,

which are grouped into four neural probes. Each 8-channel neural probe contains a

front-end selection circuitry that multiplexes from 64 recording sites to eight neural

amplifiers on the neural probe. The outputs of the eight neural amplifiers on each

neural probe are time-multiplexed to drive an ADC on a data-compression ASIC. The

data compression ASIC then utilizes a window thresholding method for spike detec-

tion to reduce the amount of data that needs to be transmitted wirelessly. The spike

waveforms that cross predefined threshold levels and the corresponding addresses of

the electrodes are reported at 5-bit resolution. Without a wireless transmission fea-

ture, the total power of the recording system including the four neural probes and

the data-compression ASIC was reported to be 5.4 mW. This multi-chip system is



integrated on a 3-dimensional platform. The system in [26] integrates all the func-

tionalities including neural signal amplification, data reduction, neural signal digitiza-

tion, and wireless communication into a single chip. It contains 100 neural recording

channels and includes a wireless data transmission feature by a fully-integrated FSK

transmitter. The power and commands are transferred from an external unit to the

implanted system via an inductive power link. The system utilizes a simple thresh-

olding scheme with analog spike detection circuitry to reduce the amount of data that

needs to be transmitted. The system allows one raw analog channel to be selected for

full digitization at 10-bit resolution by an on-chip ADC. The total power consump-

tion of the system is 13.5 mW. Another system reported in [62] contains 64 recording

channels. To record from 64 channels, the system utilizes four 16-channel neural

preconditioning ASICs in parallel. The preconditioning ASICs are interfaced with a

neural processing unit which consists of two 32-channel neural processing chips [61].

The system also contains a bi-directional telemetry chip for transmitting neural data

to the external world, and for receiving power, commands, and clock to operate the

implant. The overall multi-chip system is integrated on a Si-platform and consumes

a total power of 14.4 mW.

At the other end of the spectrum, many recording systems are constructed from

commercially available parts which are integrated into a system at the printed-circuit-

board (PCB) level. Some of these systems contain programmable logic devices such

as Field-Programmable Gate Arrays (FPGAs), complex programmable logic devices

(CPLDs), or microcontrollers, to implement digital signal processing functions for

the recording systems. Clearly, this approach results in a faster turnaround time

compared to the full-ASIC approach, and offers greater design flexibility due to the

uses of programmable logic devices or microcontrollers. With such approach, signal

processing algorithms can be readily modified even after the hardware has been built.

The clear disadvantage of this approach is its high power consumption and the larger

size of the systems. As a result, most systems constructed from this approach are not

yet suitable for chronic implantation in human subjects since the power consumption

is still too high to be considered safe for the surrounding tissues. However, these



systems have proved to be tremendously useful in neuroscience studies where animal

subjects are employed [52], [49]. The system in [52] consists of an analog module

interfaced with a digital module. The analog module consists of two 8:1 input analog

multiplexers that multiplexes 16 input channels into two neural recording channels.

Each recording channel consists of a unity-gain buffer, a differential amplifier, and a

filter, all built from commercially-available parts. The digital module consists of a

microcontroller with a built-in ADC. The microcontroller is interfaced with a compact

flash memory for storing neural data during the experiment. The system reported

in [49] contains a total of 96 recording channels which are grouped into three digitizing

headstage modules. Each 32-channel module consists of two custom ICs, with each

IC containing 16 neural amplifiers, a 16:1 analog multiplexer, and a digital-to-analog

converter (DAC) to control offset voltages of the amplifiers. The two custom ICs

are interfaced with commercially-available ADCs, while the clock and control signals

for the custom ICs are generated from a commercially-available CPLD. The three

digitizing headstage modules are interfaced with the implantable central communi-

cation module. The communication module consists of an FPGA, which is designed

to reduce the amount of data received from the three headstages [50], the RF data

transceiver for data and commands communications, voltage rectifiers and power reg-

ulators to generate DC supply voltages from received RF power. The total power

consumption of the implantable part of this system is close to 2 W.

1.3 Our Approach

It is my belief that, at present, the scientific community is still in an early stage

of BMI system development. Neural data processing algorithms such as spike de-

tection [40], [74], [9], spike sorting [73], [66], and neural data compression [39] are

currently being developed by many research groups around the world to help improve

performance of BMIs. While achieving low power consumption is a crucial aspect for

the design of an implantable neural recording system, design flexibility should not be

completely ignored. While an all-ASIC approach can result in low power consump-



tion and small form factor, at this stage, it might be too early for such systems to be

widely useful. For instance, while the simple thresholding method in [26] might be ef-

fective at reducing the amount of data that needs to be transmitted, some important

information such as spike amplitudes and spike shapes are lost, thus preventing the

uses of many processing algorithms previously mentioned. On the contrary, flexible

systems such as [49] can provide richer functionalities and these functionalities can

even be modified during the experimental stage, even after the hardware has been

built, by reprogramming the in-system programable logic devices. However, the total

power consumption of close to 2 watts in [49] would prevent such system to be used

chronically in human subjects.

The most suitable approach at the current stage of BMI development might lie

somewhere in between these two extremes. By combining good energy efficiency

from low-power ASICs, and design flexibility from commercial programmable logic

devices, a low-power neural recording system that is also highly programmable can

be built. This thesis presents a development of such neural recording system with

the goal of practical use in brain-machine interfaces. The ASIC approach is utilized

for parts of the system that require excellent energy efficiency, while an FPGA is

used where design flexibility is more important. Figure 1-1 shows the conceptual

diagram of the implantable wireless neural recording system to be presented in this

thesis. The system consists of an internal unit and an external unit. The internal

unit consists of a front-end processing stage that amplifies and digitizes neural signals

from recording electrodes. The digitized neural data from the front-end processing

stage is then processed by a digital signal processing module on the internal unit,

before the processed neural data is transmitted to the external unit via a wireless

data telemetry system. The external unit receives the neural data and relays it to

a remote device such as a computer or a robotic limb. For system programmability,

the communication between the internal unit and the external unit is bidirectional.

In addition to transmitting the processed neural data from the internal unit to the

external unit (uplink), the wireless data telemetry system can transmit commands in

the reverse direction to configure the parameters of the internal unit (downlink). In



Figure 1-1: Conceptual diagram of our BMI system.

addition, the external unit is responsible for delivering power wirelessly to charge the

implanted battery that powers the internal unit.

Due to the stringent requirement on power dissipation inside the body, the goal of

this thesis is to minimize power dissipation of the internal unit without compromis-

ing its performance. Since the power consumption of the front-end processing stage

normally constitutes the majority of the total system power, it is implemented with

a full-ASIC approach to achieve minimal power consumption. The processing of the

digitized neural data is performed in an on-board FPGA to offer design flexibility

during the system development.

1.4 Author's Contribution

It might be clear to the readers that the amount of work required to develope an

implantable wireless neural recording system, such as that shown in Fig. 1-1, is beyond

what one PhD student can handle. The author has been very fortunate to be a

part of an excellent research team, and to be the one responsible for integrating the

system from various subsystems that other team members have designed. The major

.......................................... .. ........... .



contributions of the author to the neural recording system development are the design

and integration of the internal unit, especially the signal processing aspects of it. As

part of this thesis, the author has designed, built, and tested an energy-efficient neural

amplifiers in a 0.5 pm CMOS process. The knowledge gained from designing such

neural amplifier was utilized to design a 32-channel neural recording IC in a 0.18

pm CMOS process, which is the front-end processing stage of the internal unit. In

addition, the author was responsible for the design of signal processing and control

algorithms on the FPGA.

1.5 Thesis Organization

While the overall neural recording system will be discussed, this thesis will focus on

the design of the internal unit, especially on its signal processing and system control

aspects. Chapter 2 presents the design, power and noise minimization techniques,

and the experimental measurements of an energy-efficient neural recording amplifier.

After the neural amplifier has been introduced, Chapter 3 presents the design and

experimental measurements of the 32-channel neural recording IC that forms the

heart of the internal unit of the neural recording system. The neural amplifier's

topology of the system described in Chapter 3 is greatly influenced by the design

techniques presented in Chapter 2. In Chapter 3, the design of each system component

of the neural recording IC including the neural amplifier, the analog multiplexer,

the analog-to-digital converter, the digital control unit, and the serial programming

interface unit will be presented in detail. Experimental measurements from a wireless

recording setup in a behaving non-human primate is also presented in this chapter.

Chapter 4 discusses in more detail the design of the overall neural recording system,

with the emphasis on the design of the internal unit and its signal processing aspect.

Experimental measurements of the overall neural recording system is also presented.

Chapter 5 concludes the thesis, discusses future work, and summarizes the author's

contributions to the field of neural recording system design.



Chapter 2

An Energy-Efficient Micropower

Neural Recording Amplifier

One of the most important components of BMIs is the neural signal amplifier. Neural

signals from extracellular recording are very weak (typically with amplitude between

10 pV and 500 pV). As a result, amplification is needed before such signals can be

processed further. Next generation high-channel-count BMIs will incorporate a large

number of neural amplifiers (on the order of 100-1000, one for every electrode) to

improve the decoding performance. For such applications, ultra-low-power operation

is very important to minimize heat dissipation in the brain, preserve long-battery life,

and maximize the time between recharges. To get clean neural signal recordings, it

is important that the input-referred noise of the amplifier be kept low. Practically,

the input-referred noise of the amplifier should be kept below the background noise

of the recording site (5 pV-10 pV) [23]. However, designers must address the tradeoff

between low-noise and low-power designs of the amplifier. For an ideal thermal-

noise-limited amplifier with a constant bandwidth and supply voltage, the power

of the amplifier scales as 1/v2 where Vn is the input-referred noise of the amplifier.

This relationship shows a steep power cost of achieving low-noise performance in an

amplifier.

Prior to our design being reported in [69], many designs of neural amplifiers had

been reported in the literature [24, 36,41,45]. Most of these designs consume power



near 100 pW to achieve less than 10 pVrms input-referred noise for bandwidths of

5-10 kHz. The designs in [36,41] consume power near 100 pW to achieve about 8-

9 P/V,,,, input-referred noise with approximately 10 kHz of bandwidth. The design

in [24] achieves an input-referred noise of 2.2 pVms with 7.2 kHz of bandwidth while

consuming 80 pW of power. If such amplifiers are to be used in a multi-electrode

array, with a power near 100 pW per amplifier for most designs, the power required

for the neural amplifiers can become the limiting factor for the whole multi-electrode

system. To address this problem, we present a new micropower neural recording

amplifier design. With our design, the power consumption per amplifier is low enough

such that the total power consumption of a multi-electrode array may no longer be

the bottleneck for the design of brain-machine interfaces.

This chapter is organized as follows. Section 2.1 discusses the high level operation

of the amplifier. Section 2.2 describes the design principles and noise analysis used in

the OTA to achieve a good power-noise tradeoff. Section 2.3 presents some measured

lab bench and in-vivo results of the amplifier configured for neural spike recording.

Section 2.4 presents experimental results when the amplifier is configured for LFP

recording. Section 3.8 concludes the paper.

2.1 Overall Architecture of the Neural Amplifier

The overall schematic of the neural amplifier is shown in Fig 2-1. The topology of the

gain stage is similar to the design in [24]. It uses a capacitively-coupled architecture

to reject the DC offset that occurs at the electrode-tissue interface. This design

includes a bandpass filter stage following the gain stage to shape the passband of

the amplifier. The low-frequency high-pass cutoff of the gain stage is created by the

MOS-bipolar pseudoresistor element [14] formed byMbl - Mb2 and the capacitance Cf.

The capacitive feedback formed by Cf and C,, sets the midband gain of the amplifier

to approximately 40.8 dB. The high-pass cutoff and the low-pass cutoff frequencies

of the amplifier can be adjusted via Vtunee and the bias current of the gm-OTA in

the bandpass-filter stage respectively. With the addition of the bandpass-filter stage,
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Figure 2-1: Overall architecture of the Neural Amplifier.

the amplifier can be configured to record either the local field potentials (LFPs) (
< 1 Hz to 300 Hz) or neural spikes (300 Hz to > 1 kHz). For low-bandwidth LFP

recording, the bias current of the OTA in the gain stage can be lowered to conserve

power. It is worth mentioning that the high-pass cutoff frequency of the gain stage

should be kept as low as possible. As reported in [45], placing a weak-inversion MOS

transistor in parallel with Cj to create a high-pass filter with a cutoff frequency at a

few hundred Hz introduces low-frequency noise that rolls off as 1/f 2 in power units

due to the noise from the transistor being low-pass filtered by Cf . This low-frequency

noise appears at the front-end and gets amplified by the gain of the amplifier thereby

degrading the minimum detectable signal. In our design as well as in [24], however, the

MOS-bipolar pseudoresistor element's noise is at very low frequencies since the MOS-

bipolar pseudoresistor element has a much higher impedance than a weak-inversion

MOS transistor. Therefore, low-frequency noise due to this element is filtered out

well before the passband and does not appear in the frequency band of interest.
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Figure 2-2: Block diagram of our neural amplifier including the input noise source of

the OTA.

The operation of our amplifier can easily be understood by the block diagram of

Fig 2-2. We include Cp,in to model parasitic gate capacitances at input terminals of

the gain-stage OTA. The input referred-noise of the OTA is modeled as a V term

added to the system at the input of the gain-stage OTA. The gain-stage OTA is

used as a high-gain amplifier and is modeled by Gm and R, blocks where Gm and

R, represents the transconductance and the output resistance of the gain-stage OTA

respectively. In the bandpass-filter stage, R, is the resistance of the series PMOS

transistors operating in the triode regime. The value of R, is set by Vene. The

combination of C and R, realizes the highpass cutoff frequency for the amplifier.

From the small-signal block diagram in Fig. 2-2, assuming that GmRo is much higher

than 1, we can express the transfer function of the neural amplifier as

H(s) = " _() Ci sRC 1 (2.1)
Vin(S) C 1 + sRC 1 +sgmCL

The midband gain of the amplifier is A, = -Cin/Cf. The highpass cutoff frequency

is at fHP 1/ (27RpC) whereas the lowpass cutoff frequency is at fLP = gm (27ECL).

We can relate the input-referred noise v of the gain-stage OTA to the input-referred

noise v2am, of the overall amplifier as

V2 = Cin + C5 + C,,in 2. (2.2)Vn,amp Ci n'
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Figure 2-3: Schematic of the low-noise OTA used in this design.

The input-referred noise of the bandpass filter stage is insignificant and is not included

in the block diagram since the gain of 40 dB of the gain stage alleviates the bandpass-

filter stage's input-referred noise requirement. As a result, the power consumption of

the bandpass filter stage is much smaller than that of the gain stage. Thus, to achieve

low-noise performance, it is important to design the gain-stage OTA to have low input-

referred noise. Section 2.2 describes the low-noise low-power design techniques used

in this OTA.

2.2 Low-Power Low-Noise OTA design for gain stage

The schematic of the low-noise OTA is shown in Fig. 2-3. It is a modified version

of a standard folded-cascode topology shown in Fig. 2-5. The OTA in Fig. 2-3 is

biased such that the currents of the transistors in the folded branch M7 - M12 are

only a small fraction of the current in the input differential pair transistors M and

M 2 . In our design, the channel current in My - M 1 2 is scaled to approximately 1/ 16 th

Mbl
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Figure 2-4: Circuit schematic for analyzing current scaling in the source-degenerated

current mirrors of Fig. 2-3.

of the current in Mi and M2. The much lower current in M7 - M 12 makes the noise

contributed by them negligible compared to that from M1 and M 2. As a result, we

simultaneously lower the total current and the total input-referred noise of the OTA.

To ensure that such severe current scaling is achieved, we carefully set the bias

currents of M5 and M6 through the use of the bias circuit formed by Mb2, Mc2 and Mc3.

The current sources Mbi, Mb2 are cascoded to improve their output impedances and

thereby ensure accurate current scaling. They operate in strong inversion to reduce

the effect of threshold voltage variations. The source-degenerated current mirrors

formed by Mc3 , M5 and M6 and resistors R1 and R 2 set the currents in M5 and

M 6 such that the currents in M7 and M8 (the difference between the current in M3

and M5 and between the current in M 4 and M6 ) are a small fraction of the currents

in Mi and M 2. An analysis of mismatches in source-degenerated current mirrors

is deferred until Section 2.2.3 and is important for robust biasing performance. In

order to save power in the bias circuit, the current scaling ratio between Mbi and

Mb2 is 16:1 (21B/32) as shown in Fig. 2-3. To set the currents in the folded-branch

transistors to be IB/32, which is 1/ 16th of the currents in differential-pair transistors,

we set the current in M5 and M6 to be 171B/ 3 2. Such current ratioing is achieved by

making R 3 to be 17R 1/2 = 17R 2/2, and constructing Mc3 as a parallel combination of

two unit transistors while M5 and M6 are each constructed from 17 unit transistors

in parallel. To clarify this scaling further, the current mirror formed by Mc3 , R 3



and M5 , R 1 in Fig. 2-3 is transformed into an equivalent circuit comprised of many

source-degenerated unit transistors as shown in Fig. 2-4. All source-degenerated unit

transistors are identical and have the same gate voltage. For any gate voltage there

is only one source voltage at which a unit resistor's current equals a unit transistor's

current. Thus, the nominal channel currents in all unit transistors are identical and

the total current in M5 is 17/2 times the current in Mc3 as desired.

For the amplifier to have low input-referred noise, the transconductance Gm of the

OTA needs to be maximal for a given current level. For the standard folded-cascode

OTA shown in Fig. 2-5, the impedance looking into the sources of M5 and M6 is

much smaller than the impedance looking into the drains of M - M 4. As a result,

the standard folded-cascode OTA achieves an overall transconductance Gm near gm1,

the gm of M 1. However, if we lower the current in M - M10 to be a small fraction of

the current in Mi and M2, the impedance looking into the sources of M5 and M6 can

be a significant portion of the impedance looking into the drains of M - M4 such

that incremental currents do not almost all go through the sources of M 5 and M6 in

the current divider formed between the sources of M5 and the drains of M and M3 .

Therefore, Gm is significantly less than gmi. Section 2.2.1 explains how we achieve

Gm near gm1 even with our extreme current scaling via the use of source-degenerated

transistors M5 and M6 in Fig. 2-3.

In the standard folded-cascode topology shown in Fig 2-5, the current sources

formed by M 3 and M 4 contribute a significant amount of noise due to their large

channel currents. In this design, we replace the current-source transistors M 3 and

M 4 in Fig. 2-5 with source-degenerated current sources formed by M5 and M6 and

degeneration resistors R1 and R 2 as shown in Fig. 2-3. With an appropriate choice of

degeneration resistance, the noise contributions from the source-degenerated current

sources are mainly from the resistors and can be made much smaller than the noise

contributions from MOS transistors operating at the same current level. Another

benefit of using source-degenerated current sources is that the noise from resistors

is mainly thermal noise while NMOS current sources contribute a large amount of

1/f noise unless they are made with very large area. As a result, the 1/f noise in



Figure 2-5: Schematic of a standard folded-cascode OTA.

our neural amplifier is mainly from the input differential pair. Therefore, the input-

differential pair is made with large-area PMOS transistors, which have lower 1/f

noise than similarly-sized NMOS transistors in most CMOS processes.

2.2.1 Device sizing for maximizing Gm

To achieve low input-referred noise, it is important that the transconductance of the

OTA be maximized for a given total current. The maximum transconductance of the

standard folded-cascode OTA that can be achieved is the transconductance of one of

the transistors in the input-differential pair, say gmi. As a result, it is advantageous to

operate Mi and M 2 in the subthreshold regime where a transistor's gm is maximized

for a given current level. Therefore, Mi and M2 need to have large W/L ratios. The

lengths of M1 and M 2 then need to be small such that their widths stay relatively

small and the input capacitance of the amplifier is not too large.

In order to make sure that all the incremental current caused by the differential

input goes through the sources of M7 and M8 , we cascode the input differential-
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Figure 2-6: Circuit schematics for obtaining admittance formula.

pair transistors with M 3 and M 4 to increase their output impedances. The source-

degenerated current sources formed by M5 and R 1 and by M6 and R 2 are designed

to have large output impedances as well. The output impedances of the cascoded

input-differential pair and the source-degenerated current sources need to be much

larger than the impedance looking into the sources of M7 and M8 such that Gm is

near gmi-

Before we analyze the operation of the OTA in Fig. 2-3, we shall briefly review two

useful admittance formulas. The first one is the formula for the admittance looking

into the source of an MOS transistor when its drain is connected to an impedance

to incremental ground as shown in Fig. 2-6(a). The second useful formula is the

admittance looking into the drain of a cascode transistor as shown in Fig. 2-6(b).

Using a nodal analysis, we obtain the two admittances to be

is 91 + 1/roiGs (2.3)vs 1 + ZI/roi

Gd-id 1 ( 1
Vd rol 1 + s1ZL + ZL /ro 1

Let G,3 be the admittance looking into the sources of M 3 and M 4, Gd5 be the admit-

tance looking into the drains of M5 and M6 , and G, 7 be the admittance looking into

the sources of M7 and M8 of the OTA in Fig. 2-3. We can express the transconduc-



tance Gm of the OTA as

Gm gmi. (G. 7 Gsr0 1  (2.5)
m (lGs7 + Gas) 1 + Gsareil -

We can express GAs, G, 7 and Gd5 by using (2.3) and (2.4) as

GA =gs + 1/ro3  (2.6)
3  1 + 1/ (ro3(G 7 + Gd5))

g8 s (2.7)
1 + 1/ (ro3 (Gs7 + Gd5))'

Gs = 7gor + 1/'o7 (2.8)
1 + (1/gmn1)/ro7

~ 1 gmiro 7  gs7, (2.9)

and
1 1

G 5  (2.10)
rGd 1 + R1/r 5o + gs5R1

where gsj and r0 j are the incremental source admittance of Mi with its drain at

incremental ground, and the output resistance of Mi respectively. The expressions

from (2.7)-(2.10) present the design constraints for sizing and biasing each device to

achieve Gm close to gmi. The size, the channel current and the simulated intrinsic

gain (g8r,) of each transistor in the OTA are shown in Table 3.1. From (2.5), in

order to make Gm close to gmi, the ratios Gs7 / (G7+ Gd5) and Gs3 roi/ (1+ Gs3 roi)

should be made as close to 1 as possible. The ratio Gs7 / (Gy + Gd5) represents the

incremental current gain from the drain of M 3 and M4 to the output. The incremental

current gain from the input differential pair transistors to the drain of the cascode

transistors M 3 and M 4 is Gs3 ro1/ (1 + Gs3roi).

In order to maximize the ratio G 7 /(G 7 + Gd5), we try to make Gd5 < G87 .

Since M11 and M7 have the same channel current, gmii' gm7. Therefore, gmllro7

gm7ro7 > 1 and we have G,7  g87. In order to make Gd5 < Gs7, we need to

minimize Gd5. From (2.10), we can minimize Gd5 by making ro5 large and also making



g, 5R1 > 1. Therefore, we make M 5 and M6 with large W/L ratios and with long

channel lengths to achieve large gs5 and r 5 respectively. Then we choose R1 such

that g,5 R1 > 1.

In order to maximize the ratio G 3 r01 / (1 + G 3roi), we need to make G 3 ri > 1.

From (2.7), G,3 is approximately g,3 if Grr3 is much greater than 1. Since G.7 ~ g7,

we have G 7 ro3  gs7ro3. Since the current in M7 is about 1/16 of the current in M3

and both transistors are operating in subthreshold, g,7  g 3/16. From simulation,

we achieve gs3ro3 of 119 which results in a g, 7 ro3 of 7.43. The expression in (2.7) is

thus reduced to G3 ~ 0.889 3. Note that Mi and M 3 have the same currents and

the same channel lengths. Thus M1 and M 3 should have roi = ro3 . As a result,

Gs3roi Gs3ros ~ (0.88g8 3)ro3 = 104. Therefore, the ratio G83 0 1 / (1 + Gs3 roi) is

close to 1. As a result, we are able to achieve Gm close to gmi even with sixteen-fold

current scaling between the input differential-pair transistors and the folded-branch

transistors.

2.2.2 OTA Noise Analysis

The noise in cascode transistors typically contributes little to the overall noise in

an OTA [54] because these transistors self shunt their own current noise sources: A

cascode transistor's current noise is attenuated by a factor of 1/(1 + gsR)2 where g,

is its incremental source transconductance and R is the effective source-degeneration

resistance respectively. Therefore, the only noise sources that are significant in Fig. 2-

3 are due to non-cascode transistors, i.e., the differential-pair input transistors M

and M 2 , the resistors R 1 and R 2 , and the current-mirror transistors MI, and M12. We

Table 2.1: Operating Points for Transistors in the OTA with Itot = 2.7 pA
Devices jW/L (pm) I ID gsr. Operating Region
M1 , M2  399/1.2 1.18 pA 133 subthreshold
M3 , M4  100.5/1.2 1.18 pA 119 subthreshold
M, M6  204/6 1.25 pA 322 subthreshold
M, M8  3.6/1.5 68 nA 164 subthreshold
M9, M10  6/1.2 68 nA 123 subthreshold
M11 , M12 3.6/2.2 68 nA 458 above-threshold



now perform an OTA noise analysis using a method similar to that described in [54].

The admittances looking into the sources of M 3, M5 , and My7 are approximately

gs, gs5, and gs7 respectively. Then the current transfer function from each signifi-

cant current noise source in the OTA to an incrementally grounded output can be

calculated to be

n~utGs3r'oi Gs7 (2.11)
i2 \1( + Gs3aroi Gs7 + Gas

1 + gs3roi G7 + Gds)2
n,M1

2

g 3 r 1i g 7 + d 5 
(2 .1 2 )

1+gssR0 1 grG2 2

'""G=R 1 . Cs 7 )(2.13)

'n,R1±G 5 R C 7 +
(Ys5 PL4 gs7 2

1+g8s5R1 gs7 ± Gd3 (2.14)

and __

ij2
n,ot =1 (2.15)

-22n,M11

Since this circuit is biased such that gs3 roi > 1, gs5R1 > 1 and g7 > Gd5, Gd3 as

explained in Section 2.2.1, the expressions from (2.12)-(2.15) are reduced to 1. For

the following discussion, we model the MOSFET's current noise as

= 47kTgm (2.16)

where k is Boltzmann's constant, T is the absolute temperature, gm is the transcon-

ductance of the MOSFET, and y = 2/3 for above-threshold operation and y = 1/ (2K)

for subthreshold operation. From this noise model, we can calculate the input-referred

noise of the OTA as the total output current noise divided by its transconductance

gl 1 to be
- 1 4kTgn1 8kT 16

v2= + + -kTgmiil (2.17)
" g R1  3

where Mi and M 2 operate in weak inversion and M11 and M 12 operate in strong



inversion. Let IC be the inversion coefficient of the transistor which is defined as

the ratio of its channel current ID to the moderate inversion characteristic current Is

where Is is given by [65]

is =2pCU2 W (2.18)
K L

where UT is the thermal voltage and is equal to kT/q, where q is the electron charge.

Using the EKV model [16], we can estimate the gm of each transistor to be

NID 2
gm = UT 1 (2.19)

UT 1 + v'1 + 4- I C

We can then rewrite (2.17) as

- 1 4kT 2UT 4 I11v2 = -- - 1+ _+ -a-, (2.20)
g m K IiR 1  3 1

where a = 2/ (1 + v1+ 4 -IC11 ), which is less than 1, and IC 11 is the inversion

coefficient of M11 and M 12. Equation (2.20) suggests that in order to minimize the

input-referred noise of the OTA, I 1 R1 should be large compared to 2 UT. Furthermore,

the current ratio I1/In1 should be large compared to jaa. For our implementation,

the ratio I1/In is 16. For a total supply current of 2.7 iA and 5.3 kHz bandwidth,

I1 and In are approximately 1.18 pA and 68 nA respectively. For R1 = 240kQ,

the second and the third terms in (2.20) are 1.8 x 10-1 and 5.4 x 10-2 respectively,

assuming a temperature of T=300 K, r, = 0.7 and a = 1. Equivalently, (2.17) is

reduced to
- =2kT

o x 2.47. (2.21)
K9ml

Equation (2.21) can be interpreted as 2.47 times the input-referred noise of a MOS

transistor operating in weak inversion with a transconductance of gmi. This means

that our OTA effectively has only 2.47 subthreshold devices that contribute noise.

This value is close to the theoretical limit of 2 noise sources in any OTA that uses

two subthreshold MOS differential-pair transistors as an input stage. Effectively, our

design has almost eliminated all other sources of noise except for that of Mi and M2.
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Figure 2-7: Circuit schematics for analyzing VT and R mismatches in source-

degenerated current mirrors.

2.2.3 Current mirror mismatch analysis

The key techniques for achieving good power-noise tradeoff in this amplifier are the

uses of source-degenerated current mirrors and the severe current scaling ratio be-

tween the input-differential pair transistors and the folded-branch transistors. The

severe current scaling scheme can work only if the current errors due to mirroring are

well controlled: The amplifier would not work if the error due to current scaling is

too large such that none of the current flows in M7 -M 12 in the OTA of Fig.2-3. Thus,

we address and investigate this concern to ensure the correct operation of our ampli-

fier. Let us consider the current matching between two unit transistors in Fig. 2-4

due to variations in the threshold voltage and variations in the source-degeneration

resistance. We shall model these variations as errors in the parameters of each of the

unit transistors of Fig. 2-4. Let the nominal current in one of the unit transistors

of Mc3 be ID and consider the deviation in current AID in one of the unit transis-

tors of M 5 from its nominal value due to deviations in the threshold voltage AVT

and deviations in the source-degeneration resistor AR as shown in Fig. 2-7(a). To

model the threshold-voltage mismatch, we use the body-referenced current equation

in saturation for an MOS transistor operating in weak inversion [65]. Let the nominal



current in each unit transistor be described by

ID = Iset,(VGS-V)/UT .1 (-)VBS/UT (2.22)

where I, is a constant scaling current which is the same for all unit transistors. Let

V be the nominal DC voltage drop across R such that ID = V/R. We define

aID _

9T -- ID -- m, (2.23)
&VT UT

g IDR-*VR ID. (2.24)
OR dR R R R R

and
01 D I1- K~

9mb = __ - ' ID. (2.25)
OVBS UT

By assuming that AVT and AR are small, we can use a small-signal circuit model

as shown in Fig. 2-7(b) to calculate the variation in nominal current AID when AVT

and AR are considered as inputs to the system. With some analysis, the variation in

the channel current due to variations in VT and R is obtained to be

AID= 9T AVT - (9m + 9mb + 1/r)(AID - 9R AR) R. (2.26)

Combining (2.26) with the results from (2.23) and (2.24) and using the relationship

9g = 9m + gmb, we obtain the fractional change in channel current as a function of the

fractional change in VT and R to be

AID = 1 AVT gR + R/ro AR
ID I + gR + R/r, ID/gm 1 + gsR + R/r, R '

Since Mc3 , M5 and M6 are biased in weak-inversion regime, their ID/gm is approxi-

mately 40 mV at room temperature. As seen from (2.27), the mismatch in threshold

voltage as a fraction of 40 mV is attenuated by a factor of 1 + g8R + R/r and is

negligible if gR >> 1. In our design, we have gsR ~ 12, thus, the fractional mismatch

in threshold voltage is attenuated by more than a factor of 10 and does not play



a significant role in current mirror mismatch. In contrast, the fractional mismatch

in channel current scales almost 1:1 to the fractional mismatch in R. However, the

matching of passive components in most CMOS processes is much better controlled

than the matching of transistors' threshold voltages. In our design, therefore, we try

to achieve good resistor matching with careful layout.

2.2.4 Noise Efficiency Factor and its theoretical limit for

OTA with differential inputs

To compare the power-noise tradeoff among amplifiers, we adopt the noise efficiency

factor (NEF) proposed in [63] and widely used to compare neural-amplifier designs:

NEF =Vnirms (2.28)
r UT -4kT - BW

where Vni,rms is the total input-referred noise, Itot is the total supply current, and BW

is the -3 dB bandwidth of the amplifier respectively. The theoretical limit of the NEF

of an OTA that uses a differential pair as an input stage is when the two differential-

pair transistors are the only noise sources in the circuit. The input-referred noise of the

OTA is then Vn = 2 x 2kT/ (Kgm) = 4kT/ (Kgm) where gm is the transconductance of

a single differential-pair transistor. For minimum input-referred noise, the transistors

should run in subthreshold, such that we have gm= KID/UT. Assuming a first-

order roll-off of the frequency response, the input-referred noise of the ideal OTA is

expressed as

Vni,rms - T:U BW. (2.29)
K2 ID

Combining (2.28) and (2.29) and setting Itot = 2 1 D, we obtain the theoretical limit

for NEF of any OTA that uses a subthreshold MOS differential pair to be

NEF = - 2.02 (2.30)
K
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Figure 2-8: A die micrograph of our neural amplifier.

assuming a typical value of r, = 0.7. We now show that our experimental NEF is near

this value, and our theoretical NEF was computed to be 2.47 from Section 2.2.2.

2.3 Measurement Results

The amplifier was fabricated in a 0.5 pm CMOS process through MOSIS. It was

designed to give a gain of approximately 110 ( 40.8 dB) by setting the value of Cmn

to 14 pF and Cf to 120 fF. The OTA in the bandpass filter stage is a wide common-

mode range OTA to reduce signal distortion in the case of large input amplitudes.

The amplifier occupies a chip area of 0.16 mm2. A chip micrograph of our amplifier

is shown in Fig. 2-8.

Four chips were tested on the lab bench and they exhibited very similar per-

formance characteristics, indicating that the severe current-scaling scheme worked

robustly. The measured transfer function of one of our neural amplifiers is shown in

Fig. 2-9. The amplifier consumes 2.7 [pA including the current from the bias circuit

. ................ .............. -- -- - _---_ -____ --- -_______- --- ___
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Figure 2-9: Measured transfer function of the neural amplifier configured for recording

neural spikes.

(M2, Mc2 and Mc3) from a 2.8 V supply. We do not include the current 'bias shown

in Fig. 2-3 since it can be shared by many amplifiers in the array. The -3 dB cutoff

frequencies are adjusted to be at 45 Hz and 5.32 kHz. The amplifier is configured

as an inverting amplifier, thus the phase is approximately -180' near the midband

frequency.

Fig. 2-10 shows the measured input-referred noise spectrum together with a circuit

simulation of the noise spectrum with a similar noise model to the theoretical calcu-

lations (the smooth curve). There is a good agreement between the measured and

simulated curves. The measured thermal noise level is 31 nV/v/Il. Integrating under

the area of the measured curve from 10 Hz to 98 kHz yields a total input-referred

noise of 3.06 pV,ms, while the simulated result is 3.1 pVrms. With a high-pass cutoff

frequency at 45 Hz, 1/f noise is filtered out and is not noticeable in the passband.

The NEF of this amplifier is calculated from the achieved experimental measure-

ments to be 2.67. This value is close to 2.02 which is the theoretical NEF limit that

has been calculated in 2.2.4 and also near our expected theoretical calculation of 2.47

44
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frequency (Hz)

Figure 2-10: Measured and simulated (smooth curve) input-referred noise spectra of
the neural amplifier configured for recording neural spikes.

Table 2.2: Comparison of reported neural amplifiers
Amplifier Power Noise Bandwidth NEF Year

/1W pVrms Published
[24] 80 2.2 0.025 Hz-7.5 kHz 4 2003
[20] 8.6 5.6 100 Hz-9.2 kHz 4.9 2009
[38] 40.3 1.94 0.2 Hz-8.2 kHz 2.9 2009
[72] 0.44-0.9 2.5 3.5 mHz-292 Hz 3.26 2009
[32] 14.8 4.3 10 Hz-9 kHz 5.56 2010

This work 7.56 3.06 45 Hz-5.32 kHz 2.67 2007

* a a a aL
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in (2.21). The good power-noise tradeoff of this amplifier is a result of minimizing

the effective number of transistors that contribute noise. Moreover, almost all the

power is consumed by the input-differential pair. Therefore, little power is wasted in

less critical parts of the amplifier. Table 2.2 compares the NEF of this amplifier with

those reported in the literature. Due to its energy-efficiency that is close to a limit

determined by physics, this amplifier still achieves the best NEF among the more

recently reported design, even though it was published earlier.

The measured CMRR and PSRR are shown in Fig. 2-11. CMRR is calculated as

the ratio of the differential-mode gain to the common-mode gain. PSRR is calculated

as the ratio of the differential-mode gain to the gain from power supply to the output.

The measured CMRR and PSRR exceed 66 dB and 75 dB ( over the range of 45 Hz

to 5.32 kHz) respectively. The measured characteristics of the neural amplifier are

summarized in Table 2.3.

Table 2.3: Measured Performance Characteristics
Parameter Measured

Supply voltage 2.8 V
Total current 2.7 pA

Gain 40.85 dB

Bandwidth 45 Hz-5.32 kHz

Input-referred noise 3.06 pVrms
Noise efficiency factor 2.67

Max. signal (1% THD A 1.024 kHz) 7.3 mVP,
Dynamic Range (1% THD) 58 dB

CMRR (45 Hz-5.32 kHz) 66 dB
PSRR (45 Hz-5.32 kHz) 75 dB

Area (in 0.5 pm CMOS) 0.16 mm 2

We verified that this neural amplifier works in a real recording environment by

using it to record action potentials in the RA region of a zebra finch's brain. Data were

taken with a Carbostar electrode that had an impedance of approximately 800 kQ.

A long extracellular trace and a short extracellular trace recorded from our amplifier

normalized by the gain are shown in Fig. 3-49. They were found to be identical to

that recorded by a commercial neural amplifier.
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Figure 2-11: CMRR and PSRR measurements of the neural amplifier configured for
recording action potentials.
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2.4 Measurements of Local Field Potentials

Local Field Potentials (LFPs) instead of action potentials are often used in some

brain-machine interfaces, e.g, those used in paralysis prosthetics [56]. Therefore, we

also measured the performance characteristics of our amplifier configured with lower

bandwidth (and power) for such applications. Since the LFP contains energy in the

frequency range of 1 Hz to 300 Hz, we can simply lower the -3 dB lowpass cutoff

frequency of our amplifier by lowering the supply current of the OTA in the bandpass

filter stage. The highpass cutoff frequency can also be lowered to be below 1 Hz by

adjusting Vtene. If we just change the bandwidth in this manner, the input-referred

noise of the amplifier becomes excessively low. From a hand-analysis, if we adjust the

bandwidth of the amplifier to be 0.5 Hz-300 Hz while maintaining the same supply

current for the gain-stage OTA, the input-referred noise of the amplifier is less than

1 pVrms. Such low input-referred noise is unnecessary and is wasteful of power.

From (2.20), the input-referred noise power is inversely proportional to gmi, therefore

inversely proportional to I1. Thus, we can save more power by lowering the current

in the gain-stage OTA as well.

The amplifier was adjusted to have a highpass cutoff frequency of 392 mHz and a

lowpass cutoff frequency of 295 Hz for LFP-suitable configuration. The total current

of our amplifier was measured to be 743 nA, corresponding to a power consumption

of 2.08 [pW from a 2.8 V supply and 1.66 pVrm, total input-referred noise integrated

from 0.2 Hz to 1 kHz. The measured transfer function for the amplifier configured

for recording LFP is shown in Fig. 2-13. The measured input-referred noise spectrum

and expected noise curve from simulation are shown in Fig. 2-14. The measured NEF

for LFP recording is then 3.21. Note that the NEF is worse than that of the amplifier

configured to record neural spikes. This degradation in NEF is due to the fact that

the thermal noise from the resistors R1 and R 2 becomes more significant once the

current in the input differential pair is low. Moreover, 1/f noise becomes significant

as well since the highpass cutoff has been decreased to 395 mHz. The other measured

performance characteristics of the LFP amplifier are summarized in Table 2.4 and



45

40

35 -.-

30 ..... ..... . . ....... . . . .30-

25

10 100 10 102
Frequency (Hz)

-300'..10
10 10 101

Frequency (Hz)

Figure 2-13: Transfer function of the amplifier configured for recording LFP.

10

10

10
1

frequency (Hz)

Figure 2-14: Measured and simulated (smooth curve) input-referred noise spectra for

the amplifier configured for recording LFP.

50

*.. . .

-. *.-.-.-.-.-.-.-
- * *. ..

- - *

*. .. ..* .

- * - - - . .

. . . - -.

.. . . . ." - -. - -

.~~~~ ~ ~ ~ .

.~~~~~ ~ ~ - -.

0_



similar to those shown in Table 2.3.

Table 2.4: Measured Performance Characteristics of LFP Amplifier
Parameter F Measured

Supply voltage 2.8 V
Total current 743 nA

Gain 40.9 dB
Bandwidth 392 mHz-295 Hz

Input-referred noise 1.66 pVrms
Noise efficiency factor 3.21

Max. signal (1% THD @ 1.024 kHz) 7.2 mVp
Dynamic Range (1% THD) 63.7 dB

CMRR (392 Hz-295 Hz) 66 dB
PSRR (392 Hz-295 kHz) 75 dB
Area (in 0.5 pm CMOS) 0.16 mm2

2.5 Conclusion

This chapter presented a micropower low-noise neural recording amplifier. Many low-

noise design techniques were employed to enable the amplifier to achieve an input-

referred noise near the theoretical limit of two devices of an input differential pair.

The amplifier appears to be the lowest power and most energy-efficient neural ampli-

fier reported to date. It can be configured to record either action potentials or local

field potentials. We obtained successful recordings of action potentials with our am-

plifier from a zebra finch's brain. This amplifier may thus be useful in brain-machine

interfaces for paralysis prosthetics, visual prosthetics, or experimental neuroscience

systems for chronic monitoring.



52



Chapter 3

Ultra-low-power 32-channel Neural

Recording IC

To record from a large number of cortical neurons, high-channel-count recording sys-

tems are needed. In such case, low power consumption and small area per recording

channel are of critical importance. In this chapter, we present a design and experi-

mental results of an ultra-low-power 32-channel neural recording IC. The 32-channel

neural recording IC is the front-end processing core of the internal unit. Its function

is to amplify and digitize neural signals from 32 recording electrodes, and send the

digitized neural data to the FPGA on the internal unit for further processing before

the processed neural data is transmitted to the external unit via the data telemetry

system. The organization of this chapter is as follows. In Section 3.1, we give an

overview of the overall system architecture of the neural recording IC. In Section 3.2,

we discuss the design of the neural amplifier. In Section 3.3, we present detailed de-

signs of an energy-efficient analog-to-digital converter (ADC), an analog multiplexer,

and the power saving strategies that are applied to these circuit building blocks. In

Section 3.5, we discuss the serial programming protocol for configuring the IC, and

also the circuit architecture of the serial programming interface unit. In Section 3.6,

we present the design of the Digital Control Unit that oversees the operation of the

whole chip. Finally, in Section 3.7, we present both the measurement results of the

circuit building blocks, and also the in-vivo experimental result of the 32-channel



neural recording IC, when used in a wireless neural recording experiment to obtain

neural signals from a behaving primate.

3.1 System Architecture

Figure 3-1 shows the overall architecture of the 32-channel neural recording IC. The

IC contains a total of 32 recording channels, which are grouped into eight 4-channel

neural recording modules. The schematic of one of the 4-channel neural recording

modules is shown in Fig 3-2. Each neural recording module contains four neural

amplifiers, an analog multiplexer, an 8-bit ADC, and a serial programming interface

unit. The outputs from the four neural amplifiers in the neural recording module

are multiplexed into the ADC which digitizes its input signal at a rate of 125 kS/s.

Effectively, each neural amplifier's output is sampled and digitized at a rate of 31.25

kS/s. The clock and control signals for the analog multiplexer and the ADC are

generated from a centralized control logic which we call the Digital Control Unit.

The output data from the ADCs are multiplexed into the Digital Control Unit, where

the data are packetized and streamed off-chip for further processing by the on-board

FPGA. The configuration setting of each recording channel is achieved through the

serial programming interface unit via the programming data and the programming

clock pins.

To minimize power consumption of the recording system, we utilize two power

supply domains. The neural amplifiers and analog multiplexer, requiring larger volt-

age headroom, operate from a 1.8 V supply voltage. The ADCs and the Digital

Control Unit operate from a lower supply voltage of 1 V to save power. The digital

level translators are included to interface between the Digital Control Unit and the

control switches in the analog multiplexers. The analog multiplexers also act as DC

level shifters between the neural amplifiers and the ADCs. A bandgap voltage refer-

ence circuit [31,68] is included on chip to generate a temperature-independent 1 V

reference (Vef) for the ADCs and a 0.9 V reference (Vmid) for the mid-rail voltage of

the neural amplifiers. A proportional-to-absolute-temperature (PTAT) current gen-
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erator [21] provides constant-gm biasing to all the neural amplifiers and the analog

multiplexers on the IC.

3.2 Neural Amplifier

While the amplifier presented in Chapter 2 consumes very low power and exhibits

very low input-referred noise, its layout area of 0.16 mm2 might prevent it from

a practical use in a high-channel-count neural recording system. For such system,

low power consumption and small area per channel are of critical importance. In

this section, we describe the design of the neural amplifier used in the 32-channel

neural recording IC. The amplifier is modified from the one presented in Chapter 2

to occupy smaller silicon area and to provide programmable gain and bandwidth.

The neural amplifier is optimized for recording action potentials (spikes), which are

widely considered to be the main information carrying signals in the brain. However,

local field potentials (LFPs) have been shown to provide promising additional neural

information for the development of BMI systems [6, 56]. It is therefore beneficial if

neural amplifiers in the array can also be used to record the LFPs. Therefore, we

designed our neural amplifiers such that they can also be configured to record LFPs

if needed. Generally, extracellular spikes exhibit frequency content from 200 Hz - 10

kHz with amplitudes in the range of 10 pV - 500 pV, while LFPs exhibit frequency

content in the range of < 1 Hz-300 Hz with amplitudes in a few millivolts range

(< 5 mV). With the neural noise due to background cortical activity on the order

of 5-10 pVrms [22], the SNR of the combined neural signals is on the order of 60 dB.

To record both LFPs and spikes, a neural amplifier should provide an effective input

dynamic range of 60 dB, which is determined by the largest neural signal amplitude

(LFPs) to that of the lowest signal amplitude (low-SNR spikes). To achieve high input

dynamic range while keeping the supply voltage relatively low, the neural amplifier's

gain should be made programmable. Spiking signals and LFPs can be separated in

the frequency domain, allowing each signal type to be amplified appropriately with

different gains [45]. Weaker spikes should be amplified with high gains such that



noise from subsequent signal processing stages do not degrade the relatively lower-

SNR spike signals. For LFPs with relatively higher SNR, lower gain can be used such

that the LFPs do not saturate the output of the neural amplifier.

To get clean neural recordings, the input-referred noise of the amplifier should be

kept low. A common design choice for most existing neural amplifiers in the literature

is that their input-referred noise be kept below the background noise that may be

encountered at any recording electrode in the array. In real recording environments,

the background noise strength encountered at various electrodes in the array may

vary considerably. Figure 3-3 shows an example of a probability distribution of the

background noise obtained from an array of 64 electrodes. This distribution shows

that while some recording sites can exhibit a background noise as low as 5 pVrms, most

recording sites exhibit a background noise higher than 15 pVrms. In a thermal-noise-

limited subthreshold amplifier, amplifier's power consumption for a fixed-bandwidth

signal scales as 1/v' where v is the input-referred noise of the amplifier. Such a

power-noise tradeoff shows a steep power cost of achieving very low input-referred

noise in an amplifier. Therefore, biasing every amplifier in an array such that its

input-referred noise is below 5 pVrms, the lowest background noise encountered over

all sites, is wasteful of power. In order to optimize power consumption in the neural

recording system, an adaptive biasing scheme should be used [55]. In such a scheme,

each neural amplifier's input-referred noise, and thus its power consumption, can be

individually adjusted to suit the background noise level at its corresponding recording

site. As a result, every neural amplifier in the array consumes just sufficient power to

obtain clean recordings, while the total power consumption of the recording system

is near optimal.

Figure 3-4 shows the schematic of the neural amplifier. The neural amplifier

consists of three stages including: i) the front-end amplifier ii) the bandpass filter and

iii) the programmable-gain amplifier. The midband gain of the front-end amplifier is

designed to be 40 dB. The passband of the neural amplifier is determined by that of

the bandpass filter stage and can be chosen for one of the following two settings: i) the

spike-recording setting (350 Hz - 12 kHz) and ii) the LFP recording setting (< 1 Hz
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- 300 Hz). After the bandpass filter stage, the programmable gain amplifier provides

an additional gain that ranges from 9 dB to 26 dB, adjustable in eight unequal steps.

As a result, the overall gain of the neural amplifier can be adjusted from 49 dB to 66

dB based on a user-provided digital input.

3.2.1 Front-End Amplifier

Since the front-end amplifier is the first stage of the whole signal processing chain, its

input-referred noise is of critical importance. Figure 3-5(a) shows the schematic of

the front-end amplifier. We use the capacitively-coupled architecture proposed in [24]

to reject the DC offset introduced at the electrode-tissue interface. The midband

gain of the front-end amplifier is set to -Cin/Cf which is achieved by the capacitive

feedback formed by Cf and Cim around the high gain amplifier A1 . The high-resistance

pseudoresistor element formed by Mb3 and M4 acts as a DC biasing resistor to set

the DC voltage at the positive terminal of A1 to the amplifier's mid-rail voltage Vmid.

The pseudoresistor element formed by Mbi and Mb2 provides a DC feedback path

from the output of the front-end amplifier, Vst, to the negative input terminal of Ai

such that the voltages at Vst and the negative input terminal of A1 are set to Vmid

in steady state.

The schematic of the amplifier A1 including its transistor sizing is shown in Fig-

ure 3-5(b). The amplifier A1 consists of a folded cascode operational transconductance

amplifier (OTA) followed by a class-AB output buffer. The class-AB output buffer is

included to minimize the output impedance of A1 while minimizing the extra quies-

cent bias current required to operate the buffer. This feature is important to ensure

that even at a low bias current level of the OTA, the closed-loop bandwidth of the

front-end amplifier is still much wider than the bandwidth of the bandpass filter.

Therefore, the bandwidth of the overall neural amplifier is determined by that of the

bandpass filter stage, and is not limited by the bandwidth of the front-end amplifier

even if its bias current is drastically reduced to save power according to the adaptive

biasing strategy. The transistors Mbl, M2, M 1 - M 14 form the core of the OTA while

M15-M18 form the class-AB output buffer. The transistors Mb3-Mbs form the bias cir-
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Figure 3-6: Small-signal diagram of the front-end amplifier.

cuit that helps distribute the current in the folded-cascode OTA. The distribution of

current in the OTA will be explained later in this section. The folded-cascode OTA is

modified from the low-power, low-noise OTA presented in Chapter 2 (and in [69]). To

minimize the layout area per recording channel, we replaced the source-degeneration

resistors in the OTA in [69] with the transistors Mbs, M7 , and M8 at an expense of

reduced noise efficiency factor. The cascode voltages Vci, V 2 , V 3 and V 4 and the

current Ibuf for biasing the output buffer are generated from bias circuits local to the

OTA (not shown in the figure for simplicity).

Small-Signal Analysis

In this section, we will analyze the small-signal operation of the front-end amplifier.

The analysis provided here is important to determine the input-referred noise and the

bandwidth of the overall neural amplifier. The small-signal diagram of the front-end

amplifier is shown in Fig. 3-6. We will use the block diagram technique as explained

in [51] since it provides the most intuitive way of analyzing a feedback circuit. The

resistance Rf represents the effective resistance of the series combination of Mbi and

Mb2 in Fig. 3-5(a). We can model the amplifier A1 as an amplifier with an infinite

input resistance, a transfer function of A(s), and an output resistance of Ro. The

capacitive load at the output node Vo0 t and the parasitic capacitance at the input
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Figure 3-7: Feedback block diagram for analyzing the front-end amplifier.

terminal of A1 can be modeled as C,,,t and Cp,in respectively. The incremental

voltage across the input terminals of A1 is V- - V = Vn. Using the principle of

superposition, we can write the expression for Vmn as

Vm =Vin Rf 1| (1/s(Cf + Cp,in)) _ ____1/s(Cin + C,,in)

V 1/sCin + Rf I (1/s(Cf + C,in)) out 1/s(Cin + C ±,in)+ RfII (1/sCj)

_ sCjnR5 + V 1+ sCfRf
i + sR5(Cin + C5 + Cp,in) * 1 + sR$(Cin + Cf + C,in)31)

The expression for V0ut can be approximated as

V = -A(s)V Rf I1 (l/S(CP,0 ut + C)
Ro + Rf 1 (1/s(C,Out + Cf))

= -A(s)V / . (3.2)m Rf + Ro 1 + s(Rf Ro)(CJ + Cp,out)

Using (3.1) and (3.2), we can draw a feedback block diagram for the front-end

amplifier as shown in Fig. 3-7(a). In Fig. 3-7(a), we have included the input-referred

noise of the amplifier A 1 , A, for the purpose of noise analysis which will be pre-

sented later. Since RJ is the effective resistance of the pseudoresistor element, its

value can be much larger than RO (R5 is on the order of 1012 ohms [24]). Thus,



Rf/(Rf + R,) ~ 1 and RfIIRO ~ R0 . Therefore, the expression in (3.2) can be

simplified to
1

Vo,.t = -A(s)Vm . (3.3)1 + sRo(Cf + Cp,out)(

Figure 3-7(a) can be simplified into a unity-feedback configuration as shown in Fig. 3-

7(b). To arrive at Fig. 3-7(b), we have made approximations by assuming that the

frequency of interest is much higher than 1/21rRf Cf and that Ro << Rf. The factor

sCiRf/(1 + sRf Cf) in front of the unity-feedback loop in Fig. 3-7(b) represents

the ideal transfer function of the front-end amplifier, while the non-ideal dynamics

are captured in the feedback loop part of the diagram. The ideal transfer function

indicates that the low-frequency cutoff (highpass type) is given by 1/27rCf Rf. At the

frequency greater than 1/27rRf Cf, the magnitude of the ideal closed-loop gain of the

front-end amplifier is given by Am = Cm/Cf. The loop transmission of the front-end

amplifier is given by

LC(s) 1f A(s)

Cin+C+C,in 1 + sRo (C + C,out)

C5/ )( AOLCf AOL(3.4)
Cin Cf (1 C,,ipi) (1 + sRo (Cf + Cp,out))

where we model the transfer function of A1 as A(s) = AOL/(1 + s/pi), where AOL

is the open-loop gain of A1 and pi is the pole associated with the node Vout,OTA of

Fig. 3-5(b) due to the high impedance at this node. The loop transmission in (3.4)

captures the loop dynamic, which determines the stability of the front-end amplifier.

Fortunately, an explicit frequency compensation scheme is not needed since the de-

sired closed-loop gain of 40 dB results in an attenuation of approximately 40 dB in the

loop gain compared to that in a unity-gain amplifier case. This implicit reduce-gain

compensation successfully stabilizes the amplifier. The attenuation in the loop gain

is captured by the factor Cf/(Cn + Cf + C,in) in L(s). In this design, we would like

the closed-loop gain of the front-end amplifier, Am, to be 40 dB (100), thus we have

to make Cin = 10OCf. Because C,in is just a parasitic capacitance at the input of

the amplifier A1 , its value is less than the explicit capacitor Cf. Therefore, the factor
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Figure 3-8: Bode magnitude plot of the front-end amplifier's transfer function.

C5/(Cin + Cf + Cp,in) in L(s) can be approximated as 1/Am = 0.01.

Next, let's determine the non-ideal transfer function of the front-end amplifier.

From the block diagram of Fig. 3-7(b), we can write the transfer function of the

front-end amplifier as

Vout() sCinRf A(s)/Am 1
Vin 1 + sCf Rf 1 + A(s)/Am 1 + sRO(Cf + Cin)/(A(s)/Am) '

If we assume that A(s) > Am and that A(s) can be approximated as AOL at all the

frequency of interest, (3.5) can be approximated as

Vout() sCinRj 1
Vin 1 + SCfRf 1 + sRo(C5+ Cin)/(AOL /Am)

It should be emphasized that (3.6) is just an approximation, since in reality the

current in the OTA can be reduced according to the adaptive biasing scheme such

that the magnitude of A(s) drops significantly at higher frequency, and thus the

assumptions that we have made are no longer valid. Nevertheless, (3.6) still provides

useful insights into the operation of the front-end amplifier.

The Bode magnitude plot of the transfer function in (3.6) is shown in Fig. 3-

8. From this plot, we can see that the midband gain of the front-end amplifier

is Ci,/Cf, while the low-frequency and high-frequency cutoff are 1/27rRf C5 and

(AOL/Am)/27Ro(Cf + Cin) respectively. Since Rf is the resistance of the pseudoresis-



tor element and is very large, the low-frequency cutoff can be made lower than 1 Hz

even with a small value of Cf. As mentioned earlier, the high-frequency cutoff of the

front-end amplifier should be made as large as possible such that the bandwidth of

the overall neural amplifier is determined by that of the bandpass filter stage. This is

accomplished by the use of the class-AB output buffer to minimize R, of the amplifier

A1 without consuming too much quiescent current.

Noise Analysis

The noise introduced by the front-end amplifier is of critical importance since it is

the first stage in the signal processing chain. In this section, we will perform a

detailed noise analysis of the front-end amplifier to understand how to minimize it

while keeping the overall power consumption of the front-end amplifier low. From the

feedback block diagram in Fig. 3-7(a), we can calculate the input-referred noise of

the front-end amplifier by referring the input-referred noise of A1 , V2Ali to the input

Vin. Therefore, the input-referred noise of the front-end amplifier, V2amp, is given by

2 1+ sRf (Cin + Cf + Cp,in) 22
SC2R V 2 (3.7)on,am, sCinRf - n,Al9.

At our frequency of interest (f > 1/2rrRf Cf), the expression in (3.7) can be simplified

to

2 Cin + C5+ Cp,in 2 V2 (3.8)on, am, = ( Cin - n,Ai. (38

To minimize the front-end amplifier's input-referred noise in (3.8), we need to mini-

mize V2, and also maximize Cin relative to Cf and Cp,in. Making the closed-loop

gain of the front-end amplifier very large by making Cin >> Cf would help minimize

the input-referred noise of the front-end amplifier. However, making the front-end

amplifier's gain too large is not practical because large LFPs may saturate the output

of the front-end amplifier resulting in information lost. Therefore we limit the gain of

the front-end amplifier to 40 dB. Additional gain is provided by the programmable-

gain amplifier after the LFPs and spikes have been separated by the bandpass filter.

It is important to note that C,,in must be kept small relative to Cj, otherwise, it can
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Figure 3-9: Small-signal diagram for the noise analysis of the amplifier A1 .

degrade v2am. As a result, making the input transistors M1 and M2 too large to

minimize 1/f noise can adversely affect the overall input--referred noise of the neural

amplifier.

To perform the noise analysis of the amplifier A1 , we use a small-signal diagram

of Fig 3-9. In Fig 3-9, we model the OTA as a two-stage amplifier. The first stage of

the OTA is modeled as a voltage amplifier with an infinite input resistance and the

output resistance of R0 i. The input of the first stage OTA is V4., while the output is

V0i. The output voltage V0i of the first stage corresponds to the voltage difference

between the source nodes of M9 and Mio. The first stage of the OTA consists of

Mbi, Mb2, and M1 -Ms of the circuit in Fig. 3-5(b). The second stage of the OTA

is modeled as a transimpedance amplifier with an input resistance of Ri~ and the

output resistance of RO,OTA. The input signal of the second stage OTA is the current

is, while the output signal is the voltage VOst,OTA. The input current is corresponds

to the differential current between M9 and Mio of Fig. 3-5(b). The second stage of

the OTA consists of the transistors M9 -M14 of the circuit in Fig. 3-5(b). The class-AB

output buffer is modeled as a voltage amplifier with a gain of A>_, and a finite input

resistance of Ri~sy The output resistance Roi of the first stage OTA corresponds

to the resistance looking into the drains of M3 and M5 (or M4 and M6 ). A simple

analysis yields

Rol (g8 3 ros)1r 0 7 (gSros) (3.9)

where r 2O and g~j are the Early Effect resistance and the source admittance of the



transistor Mi respectively. The resistance Ri,f is the resistance looking into the

second stage of the OTA, which corresponds to the resistance looking into the source

of Mg (or M10). Therefore,

Rin, = 1/gS. (3.10)

The circuit noise of A1 is modeled as the current noise generator, 2 , injected
n~o

into the output node Vut,OTA and the voltage noise source, vf,, in series with the

output node Vut. These current noise and voltage noise sources, whose values will

be calculated next, account for the noise contributions of all the transistors in A1 .

The current noise generator i2,0 accounts for the noise contributions from M1 -M 15 ,

M 17 , and the two current sources Ibuf. Note that each current source buf must

be implemented with a transistor, and thus it contributes noise just like a regular

transistor. The voltage noise generator v 2
, accounts for the noise contributions0obuf

from the output transistors M16 and M18 . Note that, due to the symmetry of the

circuit, the noise contributions from Mbl-Mbs to the output node Vo0 t are zero, and

thus can be ignored.

For the noise analysis that follows, we model the noise of each transistor in the

circuit of Fig. 3-5(b) as a current noise generator connected between its drain and

source terminals. Let's denote the current noise generator of the transistor Mi as i2

i E {1, ..., 18}, and the current noise generator of each current source Ibuf as in.buf

To calculate i,, we calculate and combine the current noise contributions from all

the transistors to the node Vut,OTA, while it is being held at an AC ground. Let

a = Roi/(Roi + Rin,f) be the current division ratio at the source node of Mg (or

M10). Intuitively, a represents the ratio of the incremental input current that can

flow to the OTA's output node Vt,OTA. Since the current noise generators i2  are

uncorrelated to each other, the output current noise i2 can be expressed as

= 2a 2 (i, 1 + )-+2(1-a) 2 + 2il1 + 2ilbsf. (3.11)



Every transistor in the amplifier A1 is designed to operate in saturation, we can use

a noise model for a MOS transistor that is valid in both subthreshold and above-

threshold operations [21]

i -- 8 3 kTgmi + Kimi f (3.12)
^^ 3 ' Wi LiCox f

where k is the Boltzmann constant, Ki is the 1/f noise coefficient of the ith transistor,

and Cox is the oxide capacitance per unit area. Ki takes the value of K, if Mi is

a PFET, while it takes the value of K, if Mi is an NFET. The first term in (3.12)

represents the thermal noise component while the second term represents the 1/f

noise component of the transistor Mi. From Fig. 3-5(b), since I'f is chosen just to

be enough to bias the gate-to-source voltages of M15 and M 17, its value can be made

much smaller than the current Ib in M 13 and M 14. In our design, the value of Ibuf is

chosen to be 20 nA, while the lowest value of I is greater than 100 nA. Therefore,

the gm's of the transistors that make Ibf current sources are much smaller than the

gm's of M 1-M 14 , and thus their noise contributions can be ignored. We can write the

expression for i2 ,O as

i2 36Ck [a2gm + a2gm7 + (1-a) 2 gm9 + gm13]12,0 3

+ 2ag2 K 2 1 KMng2 7  +2(1 - a)2 m9 (3.13)
L W1 L1 Cox W7L 7Co) ( W()L Cox

+2 Kg 13 1_
W13L 13Co0 _ f

The voltage noise generator at the output of the class-AB output buffer, v 2,,, can

be expressed as

v 2 n , 1 6  ,1i (3.14)
o,buf (9s16 + 9s18) 2 -

To find the input-referred noise of A1 due to B , we divide the expression in (3.13)

by the transconductance of the OTA. Similarly, to find the input-referred noise of A1

due to v 2 , we divide the expression in (3.14) by the voltage gain from Vi to Vut.



The transconductance of the OTA is given by

Gm = mi R agmi (3.15)
Roi + Rinjf

and the voltage gain from V, to V0nt is given by

A = R R ,5 (Ro,OTA Rin,buf )AbufRol + Rin

Gm (Ro,OTA||Rin,buf) (3.16)

where Abuf = (gmi 6 + gmis)/(gsi6 + gis) is the gain of the class-AB output buffer

whose value is less than but close to 1. The total input-referred noise of A1 can be

calculated from

1- 1
= - 2 +±-Vn,A1 G2' 0  A 2 obuf

G- "' Gm ( g8 1 6 + gsis)2 ( RO,oTA||Rin,ouf) 2 -i2 i

n,o

The approximation in (3.17) is based on the fact that (g 16 +gsis) (Ro,oTA||Rin,uif) >>

1. Note that Ro,OTA is very high due to cascoding and Rin,buf is also high since it is the

parallel combination of the output resistances of the transistors that make the current

sources Ibuf. Thus Ro,OTA |Rin,buf is already greater than roi 1 |roi8 . Since we know

that (gis 6+gsis)(roi6 jjrais) > 1, then (gS16+gsis)(Ro,oTA||Rin,buf) > 1. Therefore, the

noise contribution from the class-AB output buffer is negligible. Combining (3.13)-



(3.17), we can write V A as

2 8kT gmy 1-a 2 gm9 1 gml3

nA1 3 gmi gmi a gmi a 2 9mi

2K . + 2Kn g7 2 ( - a,2 2Kn (gm) 2

W1 L1 Cox W7L7 Cox gm1 a W9 L9C0  g

1 2 Kp gm13 21 (3.18)
a2 W13L13Cox gmi f'

The first and second terms on the right hand side of (3.18) represent the input-

referred thermal noise component and the input-referred 1/f noise component of the

amplifier A1 respectively. To minimize the noise contributions from Mg and M10 , we

need to maximize the ratio a. We maximize a by adding the cascode transistors M3 ,

M4 , M5 , and M6 to the drains of M 1 , M 2 , M7 and M8 respectively. Cascoding makes

the admittance looking into the source terminals of Mg and M10 much larger than the

admittance looking into the drains of M3 , M5 and M4 , M6 even when the current in

Mg and M 10 is a small fraction of the current in M3 , M 5 and M 4 , M6 . Quantitatively,

we make Roi in (3.9) much larger than Rin,f in (3.10). As a result, a achieves a value

close to 1 and (3.18) is reduced to

8kT [I+ gmi + gm3 2Kp + 2Kn my 2

n,A1 3gmi L gml gmi _ W1L1Cox W7L7 Cox g(9m1

2K (9ml3 2 1 (3.19)
W13L13Cox ( mi ) /

To minimize both the thermal noise and 1/f noise components of Ai for a given bias

current, we need to maximize gmi, while minimizing gmy and gml3 relative to gmi. The

transconductance gmi is maximized for a given bias current if Mi and M 2 operate

deep in subthreshold. To operate M1 and M2 deep in subthreshold, we size them

with a large W/L ratio (200 pim/1.2 pim in this design). To minimize gmi3 relative to

gmi, first we scale the current in M 13 and M 14 such that it is only a small fraction of

the current in M1 and M 2. In our design, the current in M13 and M 14 is set to 1/ 5th



of the current in Mi and M2 . This current scaling scheme ensures that most of the

supply current in the OTA is consumed in the input differential pair transistors M

and M2, and not in the folded branch (M 9 - M 14 ), in which the higher bias current

would increase both the input-referred noise and the total power consumption of A1 .

The distribution of the current in the OTA is achieved with the help of the bias circuit

formed by the transistors Mbi, Mb2, M3, M4, Mb7, Mbs and M5-Ms. As a result,

gm13 is made small relative to gmi, minimizing both the noise contributions from M 13

and M 14 and the total power consumption of A1 . To further reduce gm13 relative to

gmi, we size M 13 and M14 with a small W/L ratio such that they operate in strong

inversion where transistors exhibit smaller gm for a given bias current (a small gm/ID

ratio). The transistors M7 and M 8 carry a higher bias current than that in M and

M2 , and thus can contribute a significant amount of noise. To minimize the noise

contributions from M7 and M8, we need to minimize gm7 by sizing M7 and Ms with a

small W/L ratio (12 pLm/64 pm) such that they operate deep in the strong inversion

region with a large gate overdrive voltage.

The 1/f noise power per unit bandwidth of a FET is proportional to its g2 and

inversely proportional to its gate area (W x L). Because the input transistors' gm is

the highest among the transistors in the OTA, the only way to minimize their 1/f noise

contributions without using excessively large input transistors is to use pFETs since

they have the smallest 1/f noise coefficient (K, ~ 0. 1Kn in our process). Furthermore,

the transistors that can contribute significant 1/f noise ( M 1, M 2 , M7 and M8 ) due to

their relatively high gm's are made with large gate areas. The sizes of the transistors in

the OTA along with their intended regions of operation are summarized in Table 3.1.

Due to the high gain of the front-end amplifier, its input-referred noise dominates

the input-referred noise of the overall neural amplifier. Therefore, controlling the

front-end amplifier's input-referred noise provides the most effective way of controlling

the input-referred noise of the overall neural amplifier. From (3.19), due to the

fixed ratios of currents in M7 and M1 and in M 13 and M 1, the ratios gm7/gmi and

gm13/gmi are relatively constant across the OTA's bias current. In subthreshold, gmi

is proportional to M1 's bias current, and thus the thermal noise component in (3.19)



Table 3.1: Transistor sizings of the OTA in the amplifier A1

Devices W/L (pm) Operating region
M 1, M 2  20 x 10/1.2 subthreshold
M 3 , M 4  10 x 6/0.36 subthreshold
M 5 , M6  5 x 10/0.64 subthreshold
M7, M8  6 x 2/64 strong inversion

Mg, M10  4 x 4/0.64 subthreshold

M 11 , M 1 2  4 x 6/0.2 subthreshold

M 13 , M 1 4  2 x 2/10 strong inversion

Mbl, M2 10 x 5/2.4 moderate inversion

Mb3, M4 5/2.4 moderate inversion

Mb6 10/0.64 subthreshold

MWy 2/64 strong inversion

is inversely proportional to M1 's bias current. However, the 1/f noise component

in (3.19) is invariant to Mi's bias current. By keeping the bandwidth of the neural

amplifier constant and ensuring that the thermal noise component dominates the

overall noise of the OTA, we can control the overall input-referred noise of the neural

amplifier by controlling the bias current in M1 and M2 ; we increase the bias current

in M1 and M 2 to reduce the amplifier's input-referred noise, and vice versa. The bias

current of the OTA is controlled by a 4-bit binary current DAC which is represented

as the variable current source Ib in Fig. 3-5b).

3.2.2 Bandpass Filter

Figure 3-10(a) shows the schematic of the bandpass filter used in this design. The

bandpass filter can be configured with two recording settings: i) a spike recording

setting (350 Hz - 12 kHz) and ii) an LFP recording setting (< 1 Hz - 300 Hz). The

choice of the recording setting is controlled by the signal 41; when 41 = 1, the filter

is in the spike recording setting, and when 41 = 0, the filter is in the LFP recording

setting. Let's denote the upper and lower -3 dB cutoff frequencies of the bandpass

filter as fh and f, respectively. To set the value of fh, we use the combination of the

unity-gain connected Gm2-OTA and the load capacitance C2. The cutoff frequency fh

can be expressed as fh = Gm2/2irC 2 where Gm2 is the effective transconductance of
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Figure 3-10: (a) Schematic of the bandpass filter.
(c) Schematic of the WLR-OTA.

(b) Schematic of the Gm2 OTA.
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the Gm2 OTA, which is a function of the OTA's bias current. In the spike recording

setting (#1 = 1), the switch S5 is closed and the Gm2 OTA is biased with the current

Ihigh such that fh(#5 1 = 1) = Gm2(Ihigh)/ 2WC2 = 12 kHz. Similarly, in the LFP

recording setting (#1 0), the switch S4 is closed and Gm2 OTA is biased with I,,

such that fh(O1 = 0) = Gm2 (Ihow)/27FC 2 = 350 Hz.

Setting the cutoff frequency f, is slightly more subtle. To set f, in the spike

recording setting, we use a combination of C1 and the unity-gain connected WLR-

OTA [53]. However, due to the difficulties of biasing a WLR-OTA at very low bias

current to achieve ft < 1 Hz, we simply use the series combination of M1 and

Mr2 as a large resistor to set f, and to provide a DC path to the positive input

terminal of Gm2 OTA in the LFP recording setting. Let R, denote the effective

resistance of the series combination of M1 and Mr2 and let GmWLR denote the

effective transconductance of the WLR-OTA. For now, let's assume that the voltage

Mune is set such that R, >> 1/Gm,WLR. In the spike recording setting (#1 = 1),

the switches Si and S2 are closed and the WLR-OTA appears in parallel with R,.

Since R, >> 1/Gm,WLR, the effective resistance 1/Gm,WLR dominates the parallel

combination. As a result, the cutoff frequency ft in the spike recording setting is

approximated as ft = Gm,WLR/ 2 1rC1. The bias current of the WLR-OTA is set such

that ft = 350 Hz. In the LFP recording setting (#1 = 0), the switches S1 and S2 are

open while the switch S3 is closed. The WLR-OTA is disconnected from the signal

path and the capacitor C1 appears in series with R, through the switch S3. In this

case, the combination of C1 and R, determines the cutoff frequency fl. By setting

tune = Vmid, the effective resistance R, is very large such that ft = 1/27RC 1 < 1Hz.

Note that the drain and source terminals of M1 and Mr2 are approximately at Vmid

while the bulk terminals of the two transistors are at ground. The resulting Body

Effect helps minimize the subthreshold leakage current through M1 and Mr 2 and

allows a low value of ft.

The schematics of Gm2 OTA and WLR-OTA are shown in Fig. 3-10(b) and 3-10(c)

respectively. To achieve low cutoff frequencies of 300 Hz and 12 kHz with reasonable

bias currents in the OTAs and small capacitances C1 and C2, we utilize Gm reduction



techniques described in [54] or in [53]. Bump-linearization and source degeneration

techniques are used in the WLR-OTA to achieve a very low cutoff frequency of 300 Hz.

To achieve a 12-kHz cutoff frequency in the Gm2-OTA, only the bump-linearization

technique is deployed.

3.2.3 Programmable Gain Amplifier

Figure 3-11(a) shows the schematic of the programmable-gain amplifier. To achieve

a large output signal swing with low distortion, we use a non-inverting amplifier

topology with linear resistors in the feedback path. The gain of the programmable-

gain amplifier can be programmed to any of the eight values and is given by A,2 =

1+ DR ) i {0,..., 7}, where R,(Di) is the total resistance seen between the negative

input terminal of A2 and the node Vmid when the switch Di is closed. The digital

decoder ensures that only one of the switches Di's can be closed at a given time

depending on the decoder's inputs G2, G1, and Go. The values of the gain A,2 for

every combination of G2, G1, and Go are tabulated in Table 3.2.

The schematic of the amplifier A 2 is shown in Fig. 3-11(b). We use a standard

two-stage design with Miller compensation [51,53]. The capacitor Cc acts as a Miller

capacitor and the transistor Mc, biased in the linear region, acts as a resistor to

eliminate the right-half-plane zero. We design A 2 to be unity-gain stable such that

it has ample stability margins even when configured in the low closed-loop gain set-

tings. The class-AB output buffer is included to drive the resistive load (the feedback

resistors) at the output of A2 .

Table 3.2: Gains of the programmable-gain amplifier
G2 G1 Go switch closed Gain (dB)
0 0 0 Do 9.5
0 0 1 D1 10.8
0 1 0 D2 12.7
0 1 1 D3 14
1 0 0 D4 15.6
1 0 1 D5 17.7
1 1 0 D6 20.8
1 1 1 D7 26.4
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3.3 Neural Signal Digitization

After amplification, the neural signals are converted into digital format by analog-

to-digital converters (ADCs) to facilitate the communication between the 32-channel

neural recording IC and the on-board FPGA. Due to power constraint of an im-

plantable recording system, the power overhead per channel due to signal digitization

should also be kept as small as possible. In this 32-channel neural recording IC, one

ADC is shared by four neural amplifiers in a recording module to save silicon area.

In this section, we present the design of an energy-efficient analog-to-digital converter

that is used in the 32-channel neural recording IC, along with the design of an analog

multiplexer used for multiplexing the outputs of neural amplifiers into the ADC. To

minimize power consumption, duty cycling technique is utilized to turn on various

circuits only when they are needed.

3.3.1 ADC Basic

Before we describe the design of our ADC, let's review a few basic concepts that are

important to understand the motivation behind our ADC's specifications.

ADC's Quantization Noise

An N-bit ADC is a a circuit building block that converts a continuous time signal

Vi into a series of N-bit digital output words {bN-1,-..,b0}. For an ideal ADC, the

relationship between the input signal Vi, and the digital output word can be written

as
N-1

Vin =Vre ( 2 1 +VQ (3.20)
i=O

where Vref is a full-scale reference voltage, and VQ is a quantization error due to the

finite resolution of the ADC.

The relationship between the quantization error VQ and the input signal Vin can

be understood with an aid of a diagram in Fig. 3-12. In this diagram, an ideal digital-

to-analog converter (DAC) converts the digital output of the ADC back to an analog



VQ

Figure 3-12: Circuit diagram illustrating the concept of quantization noise.

value. The difference between the output of the DAC and the input signal V, is the

quantization error VQ. Due to this quantization error, we can think of an ADC as a

unity-gain circuit that converts an analog value into a digital representation, while

adding some noise to the signal. The noise due to the quantization error is called the

quantization noise.

The quantization noise of the ADC limits the signal-to-noise ratio (SNR) of the

ADC's output signal. Even an ideal ADC adds quantization noise to the ADC's

output signal. For a real ADC, the error between the output of the ADC and the

input is even worse since circuit's noises and imperfections also contribute to the

error, resulting in a lower SNR of the converted signal. For an excellent treatment of

ADC's SNR, please see [8]. To reduce the quantization noise, an ADC with a higher

resolution (higher N) can be used, however, at the expense of higher complexity, larger

silicon area, and higher power consumption. Due to the power and area requirements

of the neural recording application, the ADC's resolution must be chosen carefully

such that the ADC does not consume too much power or silicon area, while still

being able to perform the conversion without adding significant amount of noise to

the digitized signal.

To determine the needed precision of the ADC for our neural recording application,

let's consider how much quantization noise that an N-bit ADC adds to the signal path.

For an ideal N-bit ADC with a full-scale voltage of Vref, the step size between the

adjacent codes is A = Vref/2N. The root-mean-square (rms) quantization noise can

be approximated as VQ,,ms = A/VTh. This result is easy to understand using a
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Figure 3-13: Probability density function of an ideal ADC's quantization noise.

probabilistic approach by assuming that the input signal V, is varying very rapidly

such that the quantization error VQ due to the conversion is a uniform random variable

with a value between -A/2 and A/2. The probability density function fq(x) of VQ

can be modeled as uniform in the range of [-A/2, A/2] with an amplitude of 1/A as

shown in Fig. 3-13. The mean value of the quantization noise VQ can be calculated

as

V 0 f(x) -x dx = I- xdx = 0. (3.21)Q-o -0 A A/2

Since VQ is a zero-mean random variable, its variance can be calculated as

V2_~ 00A/2 A2

g = fg(X) - X2 d = - x2 dx =- (3.22)
-ooU-_/2 12

Thus, the rms quantization noise of the ideal ADC is VQ,rms = - 2 =

A2 /12 = A//1.

ENOB and SNDR

For an ideal ADC, the quantization noise is the only noise source that affects the

SNR of the digitized signal. The SNR of an ideal ADC is often characterized by

assuming that the input signal is a full-scale sinusoidal signal (peak-to-peak amplitude

of Vref). For an ideal ADC with a full-scale sine wave input (with an amplitude of

Vref/2), the output signal power is Vf /8, while the quantization noise power is



A 2 /12 = V,12/ (12 . 2 2N). The SNR of an ideal ADC can be expressed in dB as

SNR = 10 log10 (signal power
(quantization noise power)

= 10 logo / (3.23)

= 6.02N + 1.76 dB.

For a real ADC, the number of output bits (N) does not summarize the ADC's

dynamic performance. Other circuit noises and nonidealities can worsen the SNR of

the digitized signal compared to that in the ideal case when only the quantization

noise is considered. To characterize the dynamic performance of a real ADC, we

often use a metric called the signal-to-noise-and-distortion-ratio (SNDR). The SNDR

is the ratio of the power between that of the fundamental component of the ADC's

output signal and all other spectral components present in the output signal combined.

The non-fundamental components stem from both the intrinsic circuit noise and the

distortion caused by ADC's nonidealities. To obtain the SNDR, a rail-to-rail low-

distortion sinusoidal signal is fed into the ADC's input. The digital output codes of

the ADC are then collected and the fast-fourier transform (FFT) [43] is performed

on the output samples to obtain a spectral plot. By performing an M-point FFT on

M output samples and assuming that the fundamental frequency appears in bin m,

the SNDR can be calculated from

A2
SNDR = 10 logio Am M12 (3.24)

where Ai is the amplitude of the spectral content in frequency bin i. The effective

number of bits (ENOB) is just the SNDR expressed in bits rather than in dB. With

an aid of equation (3.23) that relates the number of bits of an ideal ADC to the SNR,

the ENOB can be expressed as

SNDR(in dB) - 1.76 (3.25)
ENOB =(

6.02



The concepts of ENOB and SNDR will be used to characterize the dynamic perfor-

mance of the ADC in Section 3.7.

3.3.2 ADC Design Considerations

Neural spikes exhibit frequency contents in the range of 300 Hz - 10 kHz, while LFPs

exhibit frequency contents in the range of <1 Hz - 300 Hz. To sample these neural

signals, the sampling speed requirement of the ADC is quite modest. Given the

first-order roll-off of the neural amplifier, it is advantageous to sample the signals at

slightly higher than the Nyquist frequency [43] to minimize aliasing due to the out-

of-band noise. Since the output of each neural amplifier is bandlimited to 12 kHz,

we choose the sampling rate per channel in the spike recording setting to be 31.25

kHz for convenience in generating the sampling signal from the external 10 MHz

reference clock. To ease the design of the digital control logic block that controls the

operation of the ADCs, the same sampling rate per channel is also used in the LFP

recording setting. Therefore, the total sampling rate of each ADC is 125 kS/s because

each ADC must digitize the neural signals from four neural amplifiers in a recording

module.

Let's consider what ADC's resolution is needed for our application. First, let's

consider a neural amplifier with a gain of 60 dB and an input-referred noise of 5

pVrms. Note that this noise is just the intrinsic noise of the amplifier itself, and does

not include the noise from neural background activity and the thermal noise of the

high-impedance electrode. For an 8-bit ADC with a 1-V full-scale voltage, the rms

quantization noise of such ADC is A/12 = 1/ (28 . V1) = 1.13 mVrms. Thus, the

value of the ADC's quantization noise when referred to the input of this 60 dB-gain

amplifier is 1.13 pVrms. Since the neural amplifier's intrinsic noise and the ADC's

quantization noise are uncorrelated, the total noise when referred to the input of the

amplifier is

Kn,amprms = (5 pVrms) 2 + (1.13 pVrms) 2 = 5.13 pVrms. (3.26)



If the gain of the amplifier is reduced by half (gain of 500), the ADC's quantization

noise referred to the input of the amplifier is 2.26 pVrms, and thus the total noise

referred to the input of the amplifier is 5.48 pVrms. It can be seen that, even with

8-bit precision, the ADC's quantization noise hardly affects the overall noise of the

signal chain provided that the neural amplifier's gain is high. In practice, the noise

seen at the neural amplifier's input can be significantly higher than 5 tVrms due to the

neural background activity and the thermal noise from the high-impedance electrode.

Therefore, an 8-bit ADC with a 1-V full-scale voltage (Vef) should have sufficient

resolution for the neural recording applications. Using the ADC with higher precision

than 8 bits would not significantly improve the quality of the neural signals but only

adds design complexity, power consumption, silicon area, and the amount of data

that needs to be sent off-chip. Therefore, for our 32-channel neural recording IC, we

choose to implement the ADCs using the successive-approximation-register (SAR)

architecture due to its energy efficiency and small area when implemented at 8-bit

resolution.

3.3.3 Basic Operation of the ADC

In this section, we describe the basic operation of our SAR ADC. The schematic of

the ADC is shown in Fig. 3-14(a). The high-level topology of the ADC is similar to

the one presented in [57]. The ADC consists of a comparator, a custom dynamic SAR

logic, a switch network, a capacitor DAC array, and a bootstrapped reference switch.

However, the comparator and the SAR logic are redesigned to achieve significant

improvement in energy efficiency compared to the ADC presented in [57]. Since the

ADCs in all the eight recording modules operate in parallel, we generate the ADC's

clock and control signals in the centralized Digital Control Unit. These control signals

are derived from an external 10 MHz clock and are common among all the ADCs on

chip. The clock signal CK is the main clock of the ADC and is used for controlling

the timing operation of the SAR logic while CK, is used for registering the outputs

of the comparator. The control signals SMP, STRT, EN are used by the SAR

logic for sampling the input voltage Vi,,, initiating the conversion process, and duty
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cycling the comparator to reduce power consumption respectively. The full-scale

reference voltage of the ADC is Vey = 1 V which is generated from an on-chip

bandgap reference circuit. The split-capacitor approach presented in [19] is utilized

to reduce the power consumed by the capacitor DAC array. Each of the binary-

weighted capacitor in the array is divided in half while the two halves form a bit cell.

The MSB bit cell or bit cell 7 (controlled by S7[1] and S7[0]) consists of the left and

right 64C capacitors, while the 2 nd MSB bit cell or bit cell 6 consists of the left and

right 32C capacitors, and so on. The unit capacitance of the capacitor DAC array in

Fig. 3-14(a) is C = 8 fF.

The operation of the ADC can be described with an aid of the timing diagram

shown in Fig. 3-14(b). During the sampling period of 1 ps (when SMP is high), the

ADC's input voltage V, is sampled onto the bottom plates of all the capacitors in

the array while the reference voltage Vej is sampled onto the common node Vcomp

through the bootstrapped reference switch. The STRT signal is asserted a short

moment before the sampling process ends (200 ns before the negative edge of SMP),

initiating the SAR logic to start the successive approximation process. At the moment

when the sampling period ends (SMP goes low), Vref and V4 are disconnected from

the top and bottom of the capacitor DAC array respectively. At this point, the

voltage across all the capacitors in the capacitor DAC array is Vef - M/, while the

voltage at the node Vomp is equal to Vref. The SAR logic then immediately makes

the first approximation by connecting the bottom plates of the left capacitors in all

the bit cells to e,, while connecting the bottom plates of the right capacitors in all

the bit cells to ground. The configuration of the capacitor DAC array at this point

is as illustrated in Fig. 3-14(a). Effectively, half of the total capacitance in the DAC

array is connected to Vref while another half is connected to ground. Disconnecting

the bottom plates of half of the capacitors in the DAC array from V/, and connecting

them to Vref add the voltage of value 1 (Vef - V,) to the node Vcomp. Similarly,

disconnecting the bottom plates of the other half of the capacitors in the DAC array

from 4, and connecting them to ground subtracts the voltage of value WjM from the

node Vcomp. By the principle of superposition, the voltage at the node Vcomp after the



first approximation by the SAR logic is Vcomp = Vref+} e V)-j = Vef --.

The ADC then proceeds according to the successive approximation algorithm

to determine all the eight digital bits that represent the input signal Vin from the

most-significant-bit (MSB), D7 , down to the least-significant-bit (LSB), Do. The

successive approximation process is summarized in the flow graph of Fig. 3-15. A

similar explanation for the SAR ADC using the flow graph technique can be found

in [28]. In the first bit cycling period (i = 1 or period B7 in Fig. 3-14(b)), the

ADC determines the value of the MSB (D 7 ). First, the voltage at the node Vcomp is

compared to Vre by the comparator. If Vcomp < Vref, that means Vin > Vref/2 and

the output of the comparator CMP becomes 1, signifying that the MSB (D 7) is a

1. On the contrary, if Vcomp > Vef, that means Vn < Vref/2 and CMP becomes 0,

signifying that D7 is a 0. The SAR logic then makes the next approximation based

on the value of CMP by either adding or subtracting the voltage of value Vef/4

to the voltage at the node Vcomp by appropriately changing the configuration of the

64C capacitors in bit cell 7. If CMP is a 1, the SAR logic adds Vref /4 to Vcomp by

switching the right 64C capacitor from ground to Vref, while leaving the left 64C

capacitor to remain at Vej. However, if CMP is a 0, the SAR logic subtracts Vef/4

from Vomp by switching the left 64C capacitor from Vref to ground, while leaving

the right 64C capacitor to remain at ground. This completes the first bit cycling

period (i = 1 or the period B7 as labeled in Fig. 3-14(b)). The SAR logic then

repeats the process for the next bit cycling periods (i = 2, ..., 8). This time, once

the corresponding digital bit D8 j has been determined, the SAR logic makes the

next approximation by changing the configuration of the capacitors in bit cell 8 - i

to either add or subtract the voltage of value Vref/2i+1 to or from Vcomp. To add the

voltage of value Vef/2i+1 to Vcomp, the left capacitor in bit cell 8 - i is to remain at

Vref, while the right capacitor is switched from ground to Vef. On the contrary, to

subtract the voltage of value Vey/2i+1 from Vcomp, the left capacitor in bit cell 8 - i is

switched from Vref to ground, while the right capacitor is to remain at ground. This

process is repeated until the capacitors in bit cell 0 are properly reconfigured (i = 8)

and all the digital bits have been determined.
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Figure 3-15: Flow graph illustrating the operation of the successive approximation

ADC.



3.3.4 Circuit Implementations of the ADC

In this section, we describe the detailed implementations of the circuit building blocks

of the ADC including the bootstrapped reference switch, the comparator, the custom

SAR logic.

Bootstrapped Reference Switch

Once Vef has been sampled onto the node Vcomp and the reference switch has been

opened at the end of the sampling phase, we must ensure that the reference switch

remains open throughout the bit cycling periods. The ADC operates from a supply

voltage of 1 V, which is the same as the reference voltage Vref. However, depending

on the input signal V4, at the sampling instant, the voltage at Vcomp during the

bit cycling periods can be either significantly higher or significantly lower than Vej

and the ADC's power supply voltage. For instance, if V, = 0 V, during the first

approximation by the SAR logic, the voltage at Vomo can reach !Vrej - i which is

1.5 V. If Vi = Vef, the voltage at Vomp after the first approximation will be at Vef/2

which is 0.5 V. This poses a difficulty in the design of the reference switch. Normally,

if a PFET is used as a reference switch to pull up the node Vcomp to Vref, its bulk

terminal must be connected to the highest voltage in the circuit to prevent the body

diodes from conducting. However, in the situations discussed earlier, it is unclear

what the highest voltage in the circuit is. For the case when the ADC samples

the input signal Vn = 0 V, Vcom, can reach 1.5 V during the first approximation

by the SAR logic. Thus, if we use a PFET whose bulk terminal is connected to

the ADC's power supply of 1 V as a reference switch, the 0.5 V difference between

the source and the bulk terminals of the PFET can forward bias its source-to-bulk

diode. As a result, the charge stored on the capacitor DAC array can get discharged

through this forward-biased diode, resulting in incorrect decisions during the bit-

cycling periods. To ensure that the reference switch remains open and the total

charge on the capacitor DAC array is preserved throughout the bit cycling periods,

we utilize a bootstrapping technique in which the bulk's and the gate's voltages of a
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Figure 3-16: Schematic of the bootstrapped reference switch.

PFET switch are bootstrapped to higher than the ADC's supply voltage such that

even if Vcomp reaches 1.5 V, the reference switch and the body diode remain strongly

off, preserving the total charge on the capacitor DAC array throughout the whole

conversion period.

The bootstrapped reference switch is shown in Fig. 3-16 [57]. The PFET M1 is the

core of the reference switch. The operation of the switch can be described as follows:

Let's assume that, originally, the voltage across the capacitor Ch, V, is zero. During

the sampling duration, the signal SMP goes low making Vg3 go high, turning on M4

and turning off M 3. The gate voltage of M 1, Vgi, is thus pulled down to ground by

M4 , turning on the core switch M1 . During this sampling duration, the bottom plate

of CA is pulled down to ground and the bulk voltage Vb1 is originally pulled down to

zero by the uncharged capacitor Ch, turning on the transistor M 2. As a result, M 2

starts sourcing current to charge the capacitor Ch, raising M1 's bulk voltage, Vb1. The

voltage Vb1 rises until M2 enters the cutoff region, which is approximately when Vb1

reaches AVDD - Vn 2 , where 7 t,2 is the threshold voltage of M 2 . At this point, the

voltage across the capacitor, V, is approximately AVDD - Vtn 2. Once the sampling

duration ends, SMP steps up to AVDD. The voltage Vg is pulled low by the inverter,

turning on M3 , while turning off M 4. At this point, Vi is shorted to Vb1 by the switch
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Simulation result showing the node voltages of the reference switch in

M 3. Since the voltage across Ch is AVDD -Vtn2, the voltage at nodes V and V1g goes

to 2AVDD - Vtn2 when SMP steps up to AVDD. In the process technology that this

SAR ADC is implemented, the threshold voltage is approximately Vn2 = 500 mV.

Therefore, the gate and the bulk voltages of the core switch M1 are bootstrapped to

approximately 1.5 V. In the worst case when Vi = 0 V where Vcomp can reach 1.5

V, V 1 and V are high enough to ensure that the source-to-bulk diode of M1 remain

strongly off during the bit cycling periods.

Fig. 3-17 shows the simulation results of the waveforms at the nodes SMP, V 1,
and V. The sampling duration occurs between t = 0.1 pus to t = 1.1 ps. During

this sampling duration, the voltage at V is charged up to around 640 mV, which is
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Figure 3-18: Schematic of the comparator.

even higher than AVDD - Vn. This is because the capacitor Ch is charged by the

subhtreshold current of M2 even after M 2 enters the cutoff region. As a result, when

SMP goes high, Vbl and V1 jump to higher than 1.5 V, which ensure that the switch

M1 remain strongly off throughout the bit cycling periods.

Comparator

The schematic of the comparator is shown in Fig. 3-18. The comparator consists of a

preamplification stage followed by a latch. The preamplification stage consists of two

amplifiers connected in a cascade manner. Preamplification is required to amplify the

small voltage difference between V, and Vref to overcome the relatively large input-

referred offset voltage of the latch, and also to prevent the kickback from the latch

which may corrupt the sampled voltage on the capacitor DAC array. To improve the

sensitivity of the preamplifiers, the power supply pins of the sensitive preamplifiers

and the noisy latch are decoupled. The sensitive preamplifiers operate from an analog

supply voltage, AVDD, while the noisy latch operates from a digital supply voltage,

DVDD. The nominal value of both AVDD and DVDD is 1 V.

The schematic of the preamplifier is shown in Fig. 3-19. The preamplifier utilizes

an NMOS input differential pair with PMOS transistors operating in the triode region

as resistive loads. The transistor Mbi sets the bias current which determines the

gain, speed, input-referred noise, and power consumption of the preamplifier. The

transistor Mb2 acts as a duty cycling switch which can shut down the bias current in

the preamplfier when it is not needed. For a moderate-precision ADC such as this
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Figure 3-19: Schematic of the preamplifier.

one, the intrinsic noise of the preamplification stage is usually not the performance

limiting factor. This statement will be verified later in this section. To determine a

suitable bias current level for the preamplifiers, first let's consider the requirements

for the gain and speed of the preamplifiers. The total gain of the preamplification

stage should be large enough such that the comparator is able to resolve the input

voltage as small as VLSB/ 2 into a correct logical decision. Thus, it requires that the

preamplification stage must be able to amplify the input signal of value VLSB/2 to

larger than the input-referred offset Vff,L of the latch. If we denote the gains of the

first and the second preamplifiers as Apre, and Apre2 respectively, the gain requirement

of the preamplification stage can be stated simply as

Apre1 -Apre2 - VLSB2 > Voff,L- (3.27)

Since the full-scale voltage of the ADC is Vref 1 V, and for an 8-bit ADC, VLSB

Vref /2 8 , (3.27) can be re-written as

Apre 1 - Apre2 > 29 Voff,L (3.28)
Vref

To improve the speed of the preamplification stage, the input transistors of the latch



are made with near minimum-sized transistors such that they do not load the output

nodes of the second preamplifiers. With small input transistors, the input-referred

offset voltage of the latch can be as high as 50 mV. Thus, the gain requirement for

the preamplification stage can be stated as Aprei Apre2 > 25.

Besides providing enough gain, the preamplifiers must operate fast enough to en-

sure that the comparator can make a decision within the required time. Each bit

cycling period lasts one period of CK, with TCK= 400 ns. Preamplification occurs

during the first half of the CK period (when CK goes high), while the latching occurs

during the second half (once CK goes low). Thus, the output Vout,pre of the preampli-

fication stage in Fig. 3-18 must settle close to its final value within TCK/2 = 200 ns.

The preamplification stage behaves as a second-order system with two dominant poles

close to each other in frequency. One pole is associated with the node Vo of the first

preamplifier while another pole is associated with the node Vout,pe. Nevertheless, for

simplicity in analyzing the settling time requirement, let's assume that the pream-

plification stage behaves approximately as a first-order linear amplifier. The time

required for the output Vout,pre to settle to 90 % of its final value when excited with a

step input is teo0%=Tre -ln(10) where p,e is the effective time constant of the overall

preamplification stage. The time constant Tpre can be approximated using the Open-

Circuit time constant analysis [21], which can be written as rpre= RoiCoi + Ro2Co2

where Roi and Coi are the output resistance and the output capacitance of the ith

preamplifier respectively. Therefore, the speed requirement of the preamplification

stage can be written as

Tpre < TCK 87 ns. (3.29)
2 - ln(10)

The -3-dB cutoff frequency of a first-order linear amplifier can be related to its time

constant by the relationship f-3dB = 1/2Tpre. Thus, the bandwidth requirement of

the preamplification stage for this ADC is f-3dB > 1.8 MHz.

From the schematic of Fig. 3-19, the differential gain of the preamplifier can be



approximated by

Ape - gml/(gdsl + gds3)

gml/gds3. (3.30)

where gmi, gdsl, and gds3 are the transconductance of M 1, the drain-to-source admit-

tance of M1 , and the drain-to-source admittance of M 3 respectively. In (3.30), we

made an assumption that gds3 > gdsi because M 3 and M 4 operate in the triode region

while M1 and M2 operate in the saturation region. Using a long-channel model of a

MOSFET, we can write gds3 as

W3
gds3 = WPCox L3 (VSG3 - VT3I) (3-31)

where p, is the hole mobility, VSG 3 is the source-to-gate voltage of M 3, and VT3 is

the threshold voltage of M3 . Since VSG3 = AVDD, the expression in (3.30) can be

written as

Apre =gm (3.32)
yCox - (AVDD - VT3)(

The input-referred thermal noise of each preamplifier V,,,e can be written as

16 kT 1 W3(33
npre = 3 2 8kTpCox (AVDD - VT3|) .(3.33)3 gmi 921 L3

Due to a high gain of the preamplification stage, its noise dominates the total noise

of the comparator. Thus, to minimize the input-referred noise of the comparator,

we have to minimize the noise contributions from the preamplifiers. From (3.32)

and (3.33), we can both minimize V2,,e and at the same time maximize Apre by

maximizing gmi and minimizing W3/L 3 . To maximize gmi, Mi and M 2 are sized with

large W/L ratio such that they operate in subthreshold, while M 3 and M 4 are sized

with small W/L ratio such that they operate deep in strong inversion and their noise

contributions are minimized. However, it must be cautioned that making W3/L 3 small

can degrade the speed of the comparator due to the increase in the output resistances
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Figure 3-20: Magnitude response of the preamplification stage. The low-frequency
gain is 30.9 dB (35) and f-3dB = 4 MHz

of the preamplifiers. Equations (3.29), (3.32), and (3.33) can be used along with

circuit simulations to design the preamplification stage that meets the speed, gain,

and noise requirements of our application.

The sizes of the transistors in the preamplifier are indicated in Fig. 3-19. When

the preamplifier are biased with the current in Mbi of approximately 600 nA, the small

signal parameters from a DC simulation are gmi = 6.9ptA/V, gdsi = 154 nA/V, and

9d,3 = 986 nA/V. According to (3.30), the DC gain per each amplifier is calculated

to be 6. Figure 3.3.4 shows the magnitude response from an AC simulation of the

preamplification stage. The low-frequency gain of the preamplification stage is 35.1

(30.9 dB), while the -3-dB cutoff frequency is approximately 4 MHz. Figure 3-21

shows the simulated output noise density at the node Vout,p,,e of Fig. 3-19. This noise

density results in a total noise of approximately 7 mVrms at Vout,p,,e. The input-referred

noise of the preamplification stage is thus (7 mVrms)/35 = 200 pVrms. Please note

that the quantization noise of our 8-bit SAR ADC is approximately 1.13 mVrms. Thus

the intrinsic noise of the preamplification stage, and thus the comparator, accounts

for only 17 % of the ADC's quantization noise and can safely be ignored.

According to the timing diagram in Fig 3-14(b), the sampling period of the ADC is
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Figure 3-21: Output noise density at Vou pe.

2 0TCK, while the conversion process in which the comparator is needed is only about

half that long. To minimize power consumption in the preamplifiers, their supply

currents are shut down when they are not needed. The transistor Mb2 in Fig. 3-19

whose gate is connected to the enable signal EN is used as a duty cycling switch for

each preamplifier. When EN is high, both preamplifiers are turned on. Note that

the time at which the preamplifiers are turned on is 4.1 pus, which is about 50 % of

the 8 pus sampling period. As a result, a power saving by a factor of 2 can be achieved

compared to when both preamplifiers are on at all time.

The schematic of the latch is shown in Fig. 3-22. As mentioned earlier, when CK is

high, the voltage difference between V/ref and Vcomp is amplified by the preamplification

stage to overcome the input-referred offset of the latch. During this time, the latch

is non-operational. The transistors M,1, Mr2 and Mrs are on, pinning the drains of

M5 and M6 to the supply voltage DVDD while shorting the drains of M1 and M2

together. At this time, MB is turned off such that no static current is wasted in the

latch. The latch is now in the balance state. Immediately when CK goes low, MB is

turned on while M,1, Mr2 and Mr3 are turned off. The transistors M3 , M5 and M4 ,
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Figure 3-22: Schematic of the latch.

M 6 behave as cross-coupled inverters forming a positive feedback loop. The voltages

on the nodes outl+ and outl_ are discharged by Mi and M 2 at an unequal rate which

is determined by the differential voltage V+ -V = Voutpre, thus creating an unbalance

in the cross-coupled inverters. Once the difference between outl+ and outl_ is large

enough, the positive feedback action kicks in. The latch starts to regenerate, latching

the voltages outl+ and outl_ to the opposite supply rails. The SAR logic makes the

decision on the positive edge of CK which is exactly the moment when the nodes

outl+ and outl_ are reset to DVDD. To ensure that the comparator's outputs CMP

and CMP are always constant at the positive edge of CK, which is the moment of

decision by the SAR logic, we use the output registers DFF1 and DFF2 to sample

the latch's outputs at the negative edge of an auxiliary clock signal CK, as shown in

Fig. 3-14(b). As a result, the comparator's outputs CMP and CMP will have been

stable for about 100 ns before each positive edge of CK.

Custom SAR logic and Switch Network

The schematic of the SAR logic is shown in Fig. 3-23. It consists of a chain of shift

registers (labeled SR) and eight switch drive registers (labeled SDR). The shift

register chain behaves as a state machine that controls the order of operation of the

ADC through the index signals L7 (L 7 ) to Lo (L0). The index signals L 7-L0 act as
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Figure 3-24: Timing diagram of the SAR logic.

enable signals for SDR7-SDRo; when Li (i E {0, ..., 7}) is asserted, the register SDRj

asserts the output Sj[1 : 0] to configure the switches in bit cell i of Fig. 3-14(a). The

timing diagram of the SAR logic is given in Fig. 3-24. At the start of the conversion

process, a STRT pulse is asserted at the input of the leftmost shift register SR to

initiate the conversion. The pulse is clocked through the shift register chain at every

positive edge of the clock signal CK. During the bit cycling period Bi, the pulse

reaches the shift register SR, and the index signal Li is asserted for half the period

of CK. The signal Li then instructs the corresponding switch drive register SDRj

to determine the states of the switch drive signals Si [1 : 0], based on the value of the

comparator's output signal CMP from the previous decision.

To minimize power consumption of the SAR logic, the shift registers and switch

drive registers are custom designed using dynamic logic techniques [47] to minimize
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Figure 3-25: (a) Schematic of SR (b) Schematic of SR

the number of internal capacitances that need to be switched. The schematics of

SR and SR based on the C2MOS registers [47] are shown in Fig. 3-25(a) and 3-25(b)

respectively. The register SR is a positive-edge triggered version while the register SR

is a negative-edge triggered version. These registers are dynamic in nature because

they utilize internal capacitances as the storage mechanism instead of the positive

feedback commonly employed in static logic circuits. For the register SR in Fig. 3-

25(a), when CK goes low, the internal node I receives the value of D while node

Q is at high impedance. Once CK goes high, the internal node I becomes high

impedance and the value of D right before the positive edge of CK is stored in the

internal capacitance at the node I. The output Q becomes low impedance and takes

on the value of 7, which is equal to the value of D just right before the positive edge

of CK. The operation of SR is the same as that of SR except that the phase of CK

is reversed. The output Q of SR takes on the value of the input D just right before

the negative edge of CK.

The schematic of the shift register SRi is shown in Fig. 3-26. It is also based on

the C2 MOS topology, but with extra transistors to ensure that the internal nodes are

properly reset or precharged to appropriate values such that the output Q and Li are

reset to ground after the STRT signal is asserted (STRT is low). This requirement
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Figure 3-26: Schematic of the shift register SR.

is very important because the switch drive register SDRj that is driven by Li is

designed with dynamic logic techniques; if Li is incorrectly asserted at the wrong

time, the switch drive signals Si[1 : 0] may be accidentally switched to the wrong

values, and cannot be restored to the correct values until the next conversion period.

This scenario can result in an error of the conversion and must be avoided. To prevent

such error from happening, we make sure that within one period of CK after STRT is

asserted, the output Q and Li of all the shift registers SRj are reset to 0. During the

conversion period, the EN signal is high, turning on M7 and turning off Ms. When

STRT is high (STRT is low) and when CK goes low, the transistors M and M 3 are

on while the transistor M6 is off. As a result, the intermediate node I is precharged

through M1 and M3 to DVDD, regardless of the value of the input D. When CK

goes high, the tri-state inverter formed by M9 -M 12 becomes transparent, driving the

output Q to a logic 0. As a result, the output Li also becomes 0 regardless of the

logic level of CK. After the STRT signal goes low (STRT is high), M is turned

off while M6 is turned on. The register SRj now behave as a regular C2MOS shift

register with the input D and the output Q. The NAND gate and the inverter formed
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Figure 3-27: Schematic of the switch drive register SDRj.

by M 1 3 and M 14 are included for creating Li such that Li goes high only when both

Q and CK are high. This feature of Li is to guarantee the correct operation of the

switch drive register SDRj that is driven by Li, and will be explained later in this

section. The schematic of the switch drive register SDRj is shown in Fig. 3-27. It

consists of two identical dynamic registers for separately controlling Si[1] and Si[0].

During the sampling duration when SMP is high (SMP is low), the transistors M5 ,

M8, M15, and M18 are turned on, while M6 , M7 , M16 and M17 are turned off. As

a result, Si[1] and Si[0] are precharged to DVDD through M5 and M1 5 respectively.
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Since the source nodes of M6 and M16 are at high impedance and sit at undefined

voltages when SMP is high, we add M8 , Mg and M18 , Mig to precharge these nodes

to DVDD. This is to prevent the charge sharing effect when SMP goes low in which

the charge at the nodes Si [1] and S [0] will be distributed to the parasitic capacitances

at the source nodes of M6 and M16, and thus lowering the voltages at S[1] and Sj[0].

The original state of the switch drive signals in which Si [1] and Si [0] are both at logic

1 corresponds to the switch configuration where the bottom plate of the left capacitor

in bit cell i is connected Vej and the bottom plate of the right capacitor in bit cell

i is connected to ground. During the decision process when Li goes high, only one

of either S [1] or S [0] will be discharged to ground, thus only one of the capacitors

in bit cell i will change its configuration. If Sj[1] is discharged to ground, the left

capacitor in the bit cell i, which is originally connected to Vrej, will be switched to

ground. Similarly, if S[0] is discharged to ground, the right capacitor in bit cell i,

which is originally connected to ground, will be switched to Vref. Note that when Li

goes high, the outputs of the comparator CMP and CMP are already stable (with

the helps of DFF1 and DFF2 in Fig. 3-22). Consider the top register of Fig. 3-27. If

CMP is low (CMP is high) when Li goes high, the gate voltage of M7 will be pulled

up to DVDD through M1 and M 2, turning on M7 and turning off Mg. Since M6 is

already on once SMP goes low, the voltage at S [1] will be discharged to ground.

However, for the bottom register of Fig. 3-27, because CMP is high, the gate voltage

of M17 is pinned to ground through M13 and M14 , causing M17 to remain in the off

state. The voltage at node S [0] thus remains at logic 1 as desired. On the contrary,

if CMP is low when Li goes high, S4[0] will be discharged to ground while Si [1] will

remain at logic 1.

The schematics of the switch network is shown in Fig. 3-28. The nodes BiM and

BiL drive the bottom plates of the left and right capacitors in bit cell i respectively.

During the sampling duration when SMP goes high, the transmission gate switches,

formed by M 2 , M 3 and M6 , M7 , connect both BiM and BiL to the input Vi. Please

recall from the description of SDRj that both S [1] and S [0] are already precharged

to logic 1 during the sampling duration. As a result, when SMP goes low, Bim
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Figure 3-28: Schematic of the switch network.

is connected to Vref through the transistor M1 , while BiL is connected to ground

through the transistors Ms. During the bit cycling period Bi when Li goes high

(SMP is already low), one and only one of the switch drive signals Si[1] or S [0]

is discharged to a logic 0. If Si[1] is 0, the transistor M1 is turned off while M 4 is

turned on, and thus BiM is switched from Vrej to ground. On the other hand, if S [0]

is discharged to a logic 0, Ms is turned off while M5 is turned on, and thus BiL is

switched from ground to Vref. As a result, the reconfiguration of the capacitors in bit

cell i according to the flow graph in Fig. 3-15 is accomplished.

3.4 Analog Multiplexer

The outputs from four amplifiers are multiplexed through an analog multiplexer onto

the ADC in the recording module. The analog multiplexer needs to be strong enough

to drive the input capacitance of the ADC. Furthermore, the input voltage range of the

ADC is from 0 to Vef = 1 V while the DC level of the amplifier's output is Vmid

0.9 V. To utilize the whole input range of the ADC, the analog multiplexer must

therefore also perform a DC level shifting function such that the input to the ADC is
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Figure 3-29: Schematic of the analog multiplexer.
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Figure 3-30: Timing diagram of the analog multiplexer's control signals.

centered near the midpoint of the ADC's input range (0.5 V). Figure 3-29 shows the

schematic of the analog multiplexer. The core of the analog multiplexer consists of

four source-follower drivers which are formed by the transistors M 1, Mbi,...,M 4 , M4.

The source-follower drivers buffer the amplifiers' outputs V0sti-Vst4 to provide low

output impedance necessary for driving the input capacitance of the ADC and for

also performing DC level shifting function that centers the ADC's input near 0.5 V.

Multiplexing the amplifiers' outputs onto the ADC is achieved through the switches

S1 -S 4 which are controlled by the control signals Ai,-A 4, respectively. When As.

(i E {1, ..., 4}) is high, the switch Si is closed and V0,ti is buffered and multiplexed

into the input of the ADC. The timing diagram of the control signals Ai,, ..., A4, is

shown in Fig. 3-30. Note that only one of the switches S1-S4 is closed at a given

time. The duration at which each switch is closed is 1.1 ps which suffices to span the

ADC's sampling duration (when SMP is high for 1 ps). As a result, the ADC's input

is driven by only one low-impedance source at the sampling instant of the ADC (at

the negative edge of SMP).

In order to drive the ADC's input capacitance, the source-follower driver must

achieve a low output impedance, thus requiring a high bias current. Fortunately, each

source-follower driver only needs to be active when it is driving the input capacitance
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0000 0010 : Module 2

0000 1000: Module 8
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: Amp 2 (bits 9 to 16)

: Amp 3 (bits 17 to 24)

: Amp 4 (bits 25 to 32)
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1

P

3 bits ADC (bits 33 to 35)

Figure 3-31: Format of the programming packet for configuring each neural recording

module.

of the ADC, which is only 1.1 pts for the whole 32 ps duration of the sampling period.

By turning on each source-follower only when it is driving the ADC's input, we can

achieve the power saving by almost a factor of 32 compared to the case when all the

drivers are constantly powered. We therefore duty cycle the bias current in the ith

source-follower driver by its corresponding control signal Ai,. When Ais is high, the

switch Sib is closed. The current Ib is mirrored with a 10x gain to the ith source

follower driver. The ADC's sampling period of 1 pis allows the bias current in the

source-follower driver to settle before the sampling instant takes place at the negative

edge of SMP. When Ais goes low, the switch Sib is opened, turning off the bias current

in the the source follower driver to save power.

3.5 Serial Programming Interface

Configuring the 32-channel neural recording IC is achieved on a module-by-module

basis. As shown in Fig. 3-2, each recording module contains a dedicated serial pro-

gramming interface unit. In each recording channel, the bias current of the front-end
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amplifier, the gain of the programmable-gain amplifier, and the recording setting are

configured with 4-bit, 3-bit, and 1-bit control inputs respectively. For the purpose

of calibration against process variations, the bias currents of the preamplifiers in the

ADC can also be controlled by a 3-bit control input. To configure the recording

channel's setting and the ADC's preamplifiers in each recording module, the user

must provide a 56-bit programming data stream in a recognizable format as shown in

Fig. 3-31. The 56-bit programming data stream consists of a 13-bit header field, an

8-bit module address, and a 35-bit payload field. The header field is a fixed sequence

"1111100110101". The module address is an 8-bit binary value that specifies the ad-

dress (from 1 to 8) of the recording module to be programmed. Once the header field

and the module address are recognized by the internal logic, the 35 payload bits are

clocked into storage registers that provide the control inputs to the recording channels

and the ADC's preamplifiers. The programmed bits are maintained as long as the

power is supplied to the 32-channel neural recording IC or until the user reprograms

the recording module with different payload.

The circuit architecture of the serial programming interface unit is shown in Fig. 3-

32. The programming data (prog data) is shifted into a 56-bit shift register on the

positive edge of the programming clock (prog clock). Two digital comparators are

used to detect whether the recognition sequence and the module address match the

specified values. If both match (recogrmatch and address-match signals go high),

the load signal, load-prog, is asserted, instructing the storage registers to load the

programming bits from the payload field to their outputs. In addition, the signal

load-prog is used to clear the 56-bit shift register to guarantee that, once the recog-

nition sequence and the module address match, the payload field is cleared such that

it cannot trigger another loading.

3.6 Digital Control Unit

In this section, we present the design of the Digital Control Unit. The Digital Control

unit serves two purposes. First, it creates all the control signals for the ADCs and
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Figure 3-32: Circuit architecture of the serial programming interface unit.
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clock

Figure 3-33: Block diagram of the Digital Control Unit.
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analog multiplexers on the 32-channel neural recording IC. Second, it organizes the

outputs from the eight ADCs, before sending these data off-chip to the on-board

FPGA for further processing. We decide not to implement a specific digital signal

processing unit on chip to allow for design flexibility obtained from using an on-

board FPGA. The block diagram of the Digital Control Unit is shown in Fig. 3-

33. It consists of two separate units: the Control Signal Generator and the Data

Packetizer. The Control Signal Generator generates the clock and control signals for

the ADCs and analog multiplexers on-chip as previously discussed in Section 3.3.3

and Section 3.4. The clock signals CK and CK, serve as the ADC's main and

auxiliary clocks respectively. The signals SMP, STRT, EN, control the operation

of the ADCs, while the signals Ai,, A2,, A3 , A 4, control the operation of the analog

multiplexers. These control signals are derived from an external 10-MHz crystal

oscillator, which is mounted on the flexible PCB of the internal unit. The Data

Packetizer takes as inputs the outputs from eight ADCs, appends parity bit to each

sample, and packetize the data into a data frame before serially shifting the data

off-chip to the on-board FPGA. The serial data is streamed out through ser-out pin

of the Data Packetizer in Fig. 3-33. For further flexibility in the FPGA design, a

parallel version of the data is also available through the 8-bit par-out pin of the Data

Packetizer. For this purpose, the 5-bit channel address (chan-addr) and the clock for

streaming parallel data off-chip (par-clk) are provided.

Control Signal Generator

Figure 3-34 shows a block diagram schematic of the Control Signal Generator. The

main state machine of the Digital Control Unit is the 9-bit up-counter that keeps

counting continuously from 0-319. The input clock of the counter is the 10-MHz

external clock from the on-board crystal oscillator. One round of counting from

0-319 establishes the sampling period of each recording channel. Since one round

of counting corresponds to 320 clock cycles, with the clock period of 100 ns, each

recording channel is sampled at a sampling period of 32 ps. The 9-bit output of the

counter (Q[8:0]) is fed to control logic blocks where it is used to generate the control
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Figure 3-34: Block diagram of the Control Signal Generator.
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Figure 3-35: Timing diagram of Digital Control Unit. Q[8:0] is shown in decimal
basis.

signals. For each control logic block in Fig. 3-34, the values listed under Q are the

values of Q[8:0] in decimal basis at which the logic block asserts a 1. For example, the

SMP logic asserts a 1 when the counter's output are 2-11, 82-91, 162-171, and 242-

251. Note that there are four intervals in the whole 32 ps period at which SMP logic,

STRT logic, and EN logic assert a 1 because each ADC must sample and convert the

amplified neural signals four times from four neural amplifiers in a recording module.

However, Ai. logic, i E {1, ..., 4} only asserts a 1 once in the 32 ps period. The outputs

of these 7 control logic blocks are then registered at the positive edge of the clock in

order to create glitch-free control signals. Figure 3-35 shows the timing diagram of

the control signals including the output of the counter (Q[8:0]) in decimal basis for

the first quarter of the 32 ps sampling period. Note that SMP, STRT, EN, and A1,

are registered outputs, thus there is one clock period delay between when the outputs

of the logic blocks go high and when these control signals go high. This scenario is

illustrated in the SMP signal case in which the control signal SMP lags the output

of its corresponding logic block (SMPi,) by 1 clock period.

The Control Signal Generator is also responsible for generating the clocks, CK

and CK, of the ADCs. Referring to Fig. 3-24, CK is a 2.5 MHz (TCK=400 ns)

clock that controls the operation of the SAR logic, while CK,, also operating at 2.5

MHz, is used for sampling the outputs of the comparator to ensure the correct timing
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CK

Figure 3-36: Timing diagram of the CK and CK, generation. Q[1:0] is shown in
binary basis.

operation of the ADCs. To generate CK and CK,, we use the two least significant

bits of the counter's output, Q[1:0]. The CK and CK, are also registered to ensure

that they are glitch-free. The timing diagram illustrating the generation of CK and

CK, is shown in Fig. 3-36. In Fig. 3-36, Q[1:0] is shown in binary basis.

Data Packetizer

daigitized sample parity
8 bits 1 bit..

recog. seq 1

1111100110101 001 chanl[1] --- chan8[1] chanl[2] -- chan8[2]
16 bits 9 bits

recog. seq 2
1111100110101:010 chanl[3] -- chan8[3] chanl[4] -- chan8[4]

Figure 3-37: Format of the outgoing data packet of the 32-channel neural recording
system.

With a 32 ps sampling period per channel and no storage mechanism on chip,

the data from each recording channel must be transmitted off-chip within the next

32 is. The Data Packetizer must collect all the outputs of the ADCs, organize

these data into a data packet, and stream it serially off-chip, all within the 32 Ps time

frame. Serial streaming is also necessary if the 32-channel neural recording IC is to be

interfaced with a wireless digital transmitter directly (for the subsequent generations

of the recording system). To provide an easy synchronization between the 32-channel

neural recording IC and the on-board FPGA, the data from all 32 recording channels
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Figure 3-38: Block Diagram of the Data Packetizer.

are packetized into a 320-bit data frame. The data frame is streamed out serially at

10 Mbps and contains two 16-bit recognition sequences. The format of the outgoing

data packet is shown in Fig 3-37. For error correction purposes, an even parity bit

is appended to each digitized sample to create a 9-bit samples. In Fig. 3-37, the

data frame is divided into two halves with each half containing one 16-bit recognition

sequence and sixteen 9-bit samples from 16 recording channels. In Fig. 3-37, the 9-bit

sample chan i[j] represents the sample from the recording module i (i E {1, ...8}) and

channel j (j C {1, ..., 4}) respectively.

Figure 3-38 shows the schematic of the Data Packetizer that organizes the digitized

data into data packets and streams the data serially off-chip. The main serialization

process is performed by two parallel-in-serial-out shift registers SRegl and SReg2.
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Note that these two shift registers also contain serial inputs. The two shift registers

are connected in a serial manner as shown in Fig 3-38. For each shift register, when

the load pin is asserted, the shift register loads the parallel input upon the positive

edge of clock. When the load pin is not asserted, the shift register shifts out its data

content, also upon the positive edge of the clock.

The Data Packetizer requires three control inputs, loadRI1, loadR1_2, and loadR2,

which are generated from the 9-bit counter in the Control Signal Generator. These

control inputs indicates when to load the content of each shift register such that

the serial output stream is in the format as shown in Fig. 3-37. During opera-

tion, SRegl and SReg2 will perform the data shifting function most of the time,

except when these three control inputs are asserted. When the signal loadR1_1 is as-

serted, the 16-bit recognition sequence 1 ("1111100110101001") is loaded into SRegl.

Similarly, when the signal loadR1-2 is asserted, the 16-bit recognition sequence 2

("1111100110101010") is loaded into SRegl. The duration between loadR1_1 and

loadR1-2 is 160 clock cycles apart, which corresponds to exactly the time required

to stream out half of the 320-bit data frame. Loading parallel data into SReg2 is

done more frequently than loading into SRegl, because when SReg2 is empty, the

new sample needs to be loaded to ensure the continuity of streamed-out data. When

load-R2 is asserted, a 9-bit sample from an ADC (8-bit digitized data + 1-bit parity)

is loaded into SReg2. Therefore, loading the data into SReg2 happens every 9 clock

cycles, except for the last sample right before the beginning of the next half of the

data frame. After loading this particular sample into SReg2, we need to wait until

SRegl is empty before we can load the new recognition sequence into SRegl and the

new sample into SReg2. As a result, after the 9-bit samples for chan8[2] or chan8[4]

are loaded (referred to Fig. 3-37), we need to wait for 9+16=25 clock cycles, instead

of 9, before we can assert loadR2.

The timing diagram of the loading signals is given in Fig. 3-39. In this figure,

the output Q[8:0] of the counter is shown in decimal basis. The signal loadR1-1 is

asserted when Q[8:0]=71 while loadR1_2 is asserted when Q[8:0]=231, which is 160

clock cycles after loadR1_1 is asserted. The signal loadR2 is asserted when Q[8:0] is
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Figure 3-39: Timing diagram of the loading signals for loading SRegl and SReg2.

equal to 71, 80, 89, ..., namely every 9 clock cycles. However, after loadR2 is asserted

when Q[8:0]=206, it has to wait until Q=231 for it to be asserted again. As mentioned

earlier, this is the 25 clock cycles required to empty the data content of SRegl, before

the recognition sequence 2 can be loaded into SRegl. This same explanation also

applies to when loadR2 is asserted at Q[8:0]=46. In this case, we need to wait for 25

clock cycles until Q[8:0]=71 before SRegl is empty such that we can load recognition

sequence 1 into SRegl.

3.7 Experimental Results

The 32-channel neural recording system was fabricated in the IBM 0.18 ptm CMOS

(7RF) technolog through MOSIS. The micrograph of the chip is shown in Fig. 3-40.

Excluding the area for the I/O pads, the chip features the dimensions of 2.1 mm x

2mm. Due to the number of I/O pads included for testing purposes, the layout of

the whole system was not optimized for the total chip area. However, the neural

amplifier, analog multiplexer, and the ADC were laid out as compact as possible for

further scaling to higher channel count in the subsequent generations. The active

areas of the neural amplifier, the analog multiplexer, and the ADC are 0.03mm 2,

0.006mm 2 , and 0.02mm 2 respectively. The remaining area of the recording module is

occupied by the serial programming interface unit and the power supply decoupling

capacitors.
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Figure 3-40: The micrograph of the 32-channel neural recording system.
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Figure 3-41: Magnitude Responses of the amplifier at
spike recording setting.
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3.7.1 Benchtop Testing of the Neural Amplifier

In this section, we describe the experimental measurement of the neural amplifier. A

dynamic signal analyzer (SR785, Stanford Research Systems) was used to measure

the frequency responses and the output noise power spectral densities (PSD) of the

neural amplifier. To measure frequency response, swept sine measurements were

performed with an input amplitude of 100 pV. Figure 3-41 shows the measured

magnitude responses of the neural amplifier in the spike recording setting for four

different gain settings. The lower and upper -3 dB cutoff frequencies were measured to

be fi = 350 Hz and fh = 11.7 kHz respectively, and were constant across different gain

settings. The common-mode-rejection-ratio (CMRR) and the power-supply-rejection-

ratio (PSRR) were measured to be 62 dB and 72 dB respectively. Figure 3-42 shows

the input-referred noise spectral densities of the neural amplifier in the spike recording

setting as we increased the front-end amplifier's bias current. The input-referred noise

spectral densities were calculated by dividing the output noise spectral densities by

the corresponding midband gains of the neural amplifier. Notice that as we increased

the front-end amplifier's bias current, the input-referred noise spectral density in the

frequency range above 100 Hz decreased as expected. However, at the frequency

below 100 Hz, the input-referred noise spectral density was invariant to the front-end

amplifier's bias current. At low frequency, the noise of the front-end amplifier was

no longer the dominant factor because the gain from the front-end amplifier to the

output of the neural amplifier dropped significantly due to the filtering effect of the

bandpass filter (f, = 350 Hz). As a result, the noise from the programmable gain

amplifier (especially 1/f noise) became the dominant noise source of the overall neural

amplifier and was independent of the front-end amplifier's bias current.

The total input-referred root-mean-square (rms) noise of the neural amplifier for

different front-end amplifier's bias current levels (including the current from the local

bias circuits) was calculated by integrating the corresponding input-referred noise

density curve from 10 Hz to 65 kHz. Note that the bandwidth of integration (10

Hz-65 kHz) was several times the neural amplifier's bandwidth (350 Hz-11.7 kHz).
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Figure 3-42: Input-referred noise densities of the neural amplifier as the front-end
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Figure 3-43: Integrated input-referred rms noise and the NEF of the neural amplifier
vs. front-end amplifier's bias current.

The Noise Efficiency Factor (NEF) [63] was calculated for each front-end amplifier's

bias current level. The plot showing the input-referred rms noise and the NEF versus

the front-end amplifier's bias current level is shown in Fig. 3-43. It is interesting to

note that as the front-end amplifier's bias current increased, its input-referred noise

decreased as expected, however, at a slower rate. As we significantly increased the

front-end amplifier's bias current, its thermal noise component decreased and the 1/f

noise component became the limiting factor, thus limiting the improvement in the

overall input-referred noise of the amplifier through the adaptive biasing technique.

Our neural amplifier achieved the best NEF of 4.4 when the front-end amplifier's bias

current was 1.2 pA. Due to the limitation from the 1/f noise discussed earlier, the

NEF became worse as we increased the front-end amplifier's bias current.

As previously mentioned, the neural amplifier can also be configured to record

LFPs. Figure 3-44 shows the magnitude response of the neural amplifier when con-
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Figure 3-44: Magnitude Response of the amplifier in the LFP recording setting.
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Figure 3-45: Input-referred noise density in the LFP recording setting
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figured for the LFP recording setting. At this particular setting, the amplifier exhibits

the midband gain of 53.3 dB with the -3 dB cutoff frequencies of f, = 126 mHz and

fh = 293 Hz. The input-referred noise spectral density of the neural amplifier in

the LFP recording setting is shown in Fig. 3-45. Integrating the input-referred noise

spectral density curve from 500 mHz to 3.3 kHz yielded the total input-referred noise

of 3.14 pVrms with the front-end amplifier's bias current of 3.98 PA. At this low fre-

quency, 1/f noise of the front-end amplifier dominates the overall input-referred noise

of the neural amplifier making the adaptive biasing strategy impractical. Table 3.3

summarizes the measured performance of the neural amplifier.

Table 3.3: Performance Summary of

Performance Metric
Supply Voltage
Programmable Gain
Bandwidth:

spike recording setting
LFP recording setting

Input-referred noise (spike recording)
CMRR
PSRR
Power Consumption per Channel:

Bandpass filter & Current DAC
Programmable-gain amplifier
Front-end amplifier
Total

Active Area
NEF of 1st stage

the Neural Amplifier

Value
1.8 V
49-66 dB

350 Hz-11.7 kHz
126 mHz-293 Hz
5.4 pVrms-11. 2 pVrms
62 dB
72 dB

700 nW
2.6 pW
2.1 - 16.6 pW

5.4 - 20 pW
0.03 mm 2

4.4-5.9

3.7.2 Benchtop testing of the Analog-to-Digital Converter

In this section, we describe the experimental characterization of the ADC. The static

measurement was done with the code density test (histogram test) to obtain the

integral nonlinearity (INL) and the differential nonlinearity (DNL) plots. To obtain

a histogram, a rail-to-rail low-frequency sawthooth wave was fed into the input of

the ADC. For an ideal ADC, if the frequency of the sawtooth wave and the ADC's

conversion frequency are uncorrelated and enough output samples are collected, the
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samples will tend to be equally distributed among all the possible output codes of the

ADC, resulting in a flat histogram with every code bin containing the same amount

of samples. For a real ADC, the ratio of the number of samples in a code bin to

the total number of samples collected is proportional to the code width in the ADC's

transfer curve. Thus, we can use the histogram to construct the ADC's transfer curve

from which we can calculate the INL and DNL. In our measurement, we used a 10-

MHz crystal oscillator as an external timing reference to the ADC while the sawtooth

input was obtain from a function generator with independent timing reference. The

ADC performed a conversion at the rate of 125 kS/s, while the frequency of the

sawtooth wave is 300 Hz. Thus, both ADC's conversion rate and the frequency of

the input signal are uncorrelated, and thus the code density method can be applied.

A histogram from the code density test, which contain a total number of 327,680

samples, is shown in Fig. 3-46. From the histogram in Fig. 3-46, an ADC's transfer

characteristic was constructed and the INL and DNL were calculated. The INL and

DNL plots of the ADC are shown in Fig. 3-47. The least-squared approximation was

used to calculate the INL. Both the INL and DNL of our ADC are within ± 0.4 LSB.

To measure the dynamic performance of the ADC, we used it to sample a full-

scale (1 Vpp) low-distortion 1.024-kHz input sine wave from a dynamic signal analyzer

(Stanford Research System, SR785). The sampling rate of the ADC was set at 125

kS/s. The Fast Fourier-Transform (FFT) analysis was applied to 31,982 sample points

to obtain the plot of the power-spectral density presented in Fig 3-48. The signal-

to-noise-and-distortion-ratio (SNDR) was calculated from this plot to be 47.81 dB.

The effective number of bits (ENOB) was calculated from the SNDR to be 7.65

bits. The spurious-free dynamic range was 60 dB which was limited by the fifth

harmonic. The total power consumption of the ADC from a 1-V supply voltage for

this particular dynamic measurement was 1.93 puW which can be divided as follows:

592 nW from the comparator, 1.13 [W from the custom SAR logic, and 210 nW

from the capacitor DAC array. Note that this power consumption is for converting

the output signals from four amplifiers in a recording module. The average power

123



1500

1000-

E
MU,
0

E
z

500-

0
-50 0 50 100 150 200 250 300

Codes

Figure 3-46: Histogram of the ADC's output codes from the code density test.

consumption per recording channel of the ADC is only 483 nW. One important figure

of merit (FOM) of the ADC that is widely used to compare the ADCs across a wide

range of bandwidths and precisions is the energy consumption per quantization level.

The FOM can be calculated from the formula FOM = Potai/ (2 ENOB x f,), where

Ptotal and f, are the total power consumption and the sampling frequency of the

ADC respectively. The FOM of our ADC was calculated to be 77 fJ per quantization

level and is among the most energy-efficient ADCs reported to date. The performance

summary of the ADC is provided in Table 3.4.

3.7.3 Wireless In- Vivo Testing of the Neural Recording Sys-

tem in Behaving Primate

To verify the functionality of the neural recording system, we used it in our proof-

of-concept prototype of the wireless recording system to obtain the neural data from

a behaving primate. The recording unit was constructed on a custom PCB that in-
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Figure 3-47: Low-frequency INL and DNL plots of our ADC. The INL is obtained
using the least-squared approximation.

Table 3.4: Performance Summary of the Analog to Digital Converter
Performance Metric
Supply Voltage
Full-scale voltage
Precision
ADC's input range
Sampling rate
INL
DNL
SNDR
SFDR
ENOB
Power Dissipation:

Analog(comparator & Capacitor DAC)
Digital (SAR logic)

Energy per quantization level
Active Area

Value
1 V
1 V
8 bits
0-1 V
125 kHz
< ± 0.4
< ± 0.4
47.8 dB
60 dB
7.65 bits

LSB (8 bits)
LSB (8 bits)

802 nW
1.13 pW
77 fJ/State
0.02 mm 2
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Figure 3-48: Measured output spectrum of the ADC with a rail-to-rail input sine
wave of 1.024 kHz.

cluded the 32-channel neural recording chip (in QFP80 package), a low-power FPGA

(IGLOO series, AGL060 from Microsemi), off-the-shelf power regulators, a 10-MHz

crystal oscillator, the internal unit of the impedance-modulation data telemetry sys-

tem described in [34], and the secondary coil. The receiver unit was constructed

on another PCB that housed the external unit of the impedance-modulation data

telemetry system and the primary coil. The receiver unit was interfaced with a PC

via a USB data acquisition system (XEM3010 from Opal Kelly). The on-board FPGA

in the recording unit selected the raw data from 8 input channels of the 32-channel

neural recording system to be transmitted wirelessly to the receiver unit. Eight input

channels of the recording unit were wired to microwire recording electrodes that had

just been previously lowered into the brain tissue of a rhesus macaque while the rest

of the input channels were grounded. Throughout the experiment, the primary and

secondary coils of the data telemetry system were placed concentric to each other and

spaced approximately 1 cm apart. Prior to each recording session, the configuration
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Figure 3-49: Electrode-referred neural signals recorded from the brain of a rhesus
macaque and transmitted wirelessly: (a) 1-second long raw neural data. (b) 74 su-
perimposed spikes.
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commands were sent wirelessly from the PC to the 32-channel neural recording chip

on the recording unit. During the recording sessions, the recorded neural signals were

transmitted at 2.5 Mbps from the recording unit to the receiver unit and subsequently

streamed into the PC via a USB interface.

The wirelessly-recorded neural data from one of the recording channels is shown

in Fig. 3-49. Fig 3-49(a) shows a 1-second long raw neural data that was streamed

into the PC. Fig. 3-49(b) shows 74 neural spikes from this particular channel that

have negative swings crossing the -120-puV threhsold, peak-aligned and superimposed

on each other. The SNR of the recordings from our system was compared to the SNR

of the recordings from a commercial system (Plexon, Inc) and both were found to be

identical.

The performance summary of the neural recording chip during the wireless record-

ing experiment is shown in Table 3.5.

Table 3.5: System Level Performance

Technology 0.18 prm CMOS
Voltage Supply:

Amplifier array & reference circuits
ADC array & Digital Control Unit

Channel Count
Dimensions of the Neural Amplifier
Dimensions of the Recording Module
Die Dimensions
ADC's Input Range
ADC's Sampling Rate
INL of ADC
DNL of ADC
ENOB of ADC
Power Dissipation:

Neural Amplifier Array

ADC Array
Digital Control Unit
Voltage and Current References
Total

1.8 V
1 V
32
215 tm x 155 pm
680 pm x 450 pm
3.15 mm x 3.15mm
0-1 V
31.25 kHz
< i 0.4 LSB
< ± 0.4 LSB
7.65 bits

207 pW
(biased
15 pW
42 pW
61 tW
325 pW

at NEF = 4.5)

Table 3.6 compares the performance of the presented design with some of the state-
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of-the-art designs in the literature that achieve low power consumptions and small

areas per channel. The designs in [59] included both the recording and stimulation

features while the design in [10] also included the digital signal processing (DSP) and

ultra-wide-band (UWB) transmitter. In Table 3.6, only the recording features that

include signal amplification and digitization are compared. Among recently reported

designs with the comparable area per recording channel, our design achieved one of

the lowest power consumption per channel reported to date.

Table 3.6: Comparison to other state-of-the-art neural recording systems

Reference [59] [10] [20] This work

Channel Count 128 128 16 32

Supply Voltage 3 V +1.65 V 1.8 V 1.8 V(analog)

1 V (digital)

Technology 0.35-pm CMOS 0.35-ym CMOS 0.18-yim CMOS 0.18-pm CMOS

Mid-band gain 54-73 dB 57-60 dB 70 dB 49-66 dB

Low freq. cutoff 0.5-50 Hz 0.1-200 Hz 100 Hz 0.126 Hz, 350 Hz

(selectable)

High freq. cutoff 500 Hz - 10 kHz 2 kHz - 20 kHz 9.2 kHz 293 Hz, 12 kHz

(selectable)

Input-referred noise 6.08 pVrms 4.9 pVrms 5.4 pVrms 5.4-11.2 pVrms

(10 Hz - 10 kHz) - - (10 Hz - 65 kHz)

NEF 5.5 4.9 4.4 - 5.9

ADC resolution 8 bits 6-9 bits (adjustable) 8 bits 8 bits

ADC sampling 14 kHz 40 kHz 30 kHz 31.25 kHz

rate/channel

ADCINL& DNL - 0.5/0.5 0.4/0.4

ADC ENOB 6.5 bits 7 bits 7.65 bits

Total Power 2.43 mW 3 mW 680 iW 325 pW

Dissipation (@NEF=4.5)

Average Power 19 pW/chan. 23.4 pW 42.5 ptW/chan. 10.1 pW/chan.

/channel (@NEF=4.5)
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3.8 Conclusion

In this chapter, we described the operation and the measured performance of the

32-channel neural recording IC, which is the heart of the implantable wireless neural

recording system that will be the topic of the next chapter. The IC can amplify

and convert the data from 32 input channels into 8-bit digital representations before

sending the data off-chip in a serial-stream format. The adaptive biasing technique

is utilized in the design of the neural amplifier to help minimize the total power

consumption of the overall recording system. The measured performances of the

circuit building blocks is presented. The neural amplifier is highly programmable;

its gain, recording setting, and input-referred noise can be programmed to suit the

recording environment, while occupying an area of only 0.03 mm2 . Depending on

its input-referred noise level, the neural amplifier achieved an NEF in the range of

4.4-5.9 in the spike recording setting. The ADC achieved an ENOB of 7.65 bits while

dissipating less than 500 nW per channel. The ADC's figure of merit of 77 fJ/State

places it among the most energy-efficient ADC reported to date. The recording IC

was successfully tested in an in-vivo wireless recording experiment from a behaving

primate while dissipating only 10.1 piW/channel. Due to very small area and power

consumption per recording channel, the recording IC is highly suitable for further

scaling to higher channel counts in the subsequent generations.
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Chapter 4

An Implantable Wireless Neural

Recording System

In this chapter, I will describe the design of our implantable wireless neural recording

system, which was introduced earlier in Chapter 1. Our wireless neural recording

system consists of an internal unit and an external unit. The system is designed for

use in a wireless recording experiment in a non-human primate. The internal unit is

intended to be fully implanted under the skin (between the skull and the scalp) to

eliminate any kind of transcutaneous connections. The external unit is intended to

be placed over the top of the head to communicate with the internal unit and transfer

power to operate the internal unit. While I will discuss the operation of the whole

system, I will only focus on the design of the internal unit, especially on the signal

processing aspect of the system.

4.1 System Overview

Figure 4-1 shows a block diagram of our wireless neural recording system. The internal

unit contains 32 neural inputs which can be interfaced with 32 recording electrodes.

The main function of the internal unit is to amplify and digitize neural signals from

32 recording electrodes, process the digitized neural data to obtain useful neural

information, and transmit the neural information to the external unit via a short-
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Figure 4-1: Block diagram of our implantable wireless neural recording system.

range wireless data telemetry system. The neural information from the internal unit

is transferred inductively through the data coil in Fig. 4-1. The external unit receives

the neural information from the internal unit, and then it can relay that information

to a remote device via a far-field wireless transmission system. Since the power to

operate the internal unit must be transferred wirelessly from the outside, the system

also contains a power link through which RF power can be transferred from the

external unit to the internal unit via the power coil as shown in Fig. 4-1.

4.2 Design Considerations of the Internal Unit

4.2.1 Energy Efficiency vs. Flexibility

Due to severe power constraint inside the body, our design goal is to minimize power

dissipation of the internal unit. Besides the heat dissipation concern, if the inter-

nal unit is to be powered by an implantable battery, low power consumption of the

internal unit could prolong the time between battery recharges, thus expanding the

battery lifetime. An ideal strategy to minimize power consumption of the internal

unit is to integrate all the functionalities into a single custom ASIC. With this ap-

proach, every circuit on the IC can be customized for a specific task such that the
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overall system is highly energy-efficient. As mentioned in Chapter 1, such approach

is only suitable for the final phase of system development when all the functional-

ities have been finalized. However, during the early phase of system development,

some functionalities may still need to be modified or even completely redesigned,

thus rendering the custom ASIC approach inappropriate. For design flexibility, we

have adopted a multi-chip approach in which each part of the system is designed

and optimized separately for performance and power consumption. The parts are

then integrated at a PCB level to form a complete system. For added flexibility, an

FPGA is utilized as the main signal processing and control units. The FPGA can

be programmed in-system through the programming probe points included on the

PCB. This in-system programmability gives us another level of flexibility in which

the signal processing and control algorithms can be reconfigured during the testing

phase of the hardware. Obviously, the drawback of this approach is a higher power

consumption compared to that of the custom ASIC approach. Since the signals must

be sent between ICs on the internal unit, each IC must incorporate output driver pads

to drive relatively large parasitic capacitances associated with PCB wirings. There-

fore, the chip-to-chip communication makes the power consumption of this multi-chip

approach higher than that of the single chip approach. In addition, the FPGA is still

much less energy-efficient than if we implement the same digital functionalities in

a custom ASIC. However, at this phase of the system development, the multi-chip

approach is chosen solely for design flexibility. Nevertheless, due to excellent energy-

efficiency of our custom ASICs, the internal unit that will be presented in this chapter

achieves one of the lowest power consumption among all the reported designs in the

literature.

4.2.2 Power Minimization Strategies of the Internal Unit

In order to minimize power consumption of the internal unit, we utilize the following

strategies. First, we use a highly energy-efficient 32-channel neural recording IC as a

front-end processing stage. The design of the 32-channel neural recording IC is the

subject of Chapter 3. In most designs, the front-end processing stage is the most
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crucial part that determines the power consumption and performance of the neural

recording system. Thus, it is very important that this front-end processing stage is

very energy-efficient, while offering no compromise in performance. The second strat-

egy for minimizing the power consumption of the internal unit is to keep the signal

processing on the internal unit as simple as possible. Any computationally-intensive

task should be performed outside the body (on the external unit) where power dis-

sipation is less of a concern. This allows the signal processing on the internal unit

to be performed with relatively low power consumption on a commercially-available

low-power FPGA.

The third strategy for minimizing the power consumption in the internal unit

is to minimize power dissipation of the wireless transmitter on the internal unit.

Please note that the goal of our wireless neural recording system is to transmit neural

information from the internal unit to a remote device. To minimize power dissipation

of the wireless transmitter on the internal unit, we divide the wireless transmissions

into two steps, instead of installing a powerful RF transmitter on the internal unit to

send the neural information to the remote device all at once. The first transmission

step is to transfer neural information from the internal unit to the external unit, which

sits directly above the internal unit on the top of the head, via a short-range wireless

data telemetry system. After receiving the neural information from the internal

unit, the external unit can relay the neural information to a remote computer or

a robotic limb via a separate far-field wireless transmission system. The short-range

wireless data telemetry system that we use was presented in [34]. It consists of

an internal data telemetry unit and an external data telemetry unit. The wireless

data telemetry system utilizes an impedance-modulation technique to minimize power

consumption of the internal data telemetry unit. The power consumed by the internal

data telemetry unit can be as low as 100 pW, since this power is only used for turning

on/off a switch that creates variation in a load on the internal data telemetry unit,

which is then detected by circuitry on the external data telemetry unit. Since the

external data telemetry unit consists of a free running oscillator and active circuitry

to detect load variation on the internal data telemetry unit, its power consumption is
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approximately 2.5 mW, which is much higher than that of the internal data telemetry

unit. However, this power is dissipated outside the body where power sources are

readily available. To transmit the neural information from the external unit to a

remote device, a separate far-field transmission system can be used. Such far-field

transmission system can be built from commercially available parts such as CC850

from Texas Instruments Inc. [5].

4.2.3 Powering the Internal Unit

Because the internal unit will be implanted under the skin to avoid any through-

skin connections, the power to operate it must be transferred wirelessly from the

external world. Inductive energy transfer has been widely studied for biomedical

applications [71], [46], [30], [7]. In the neural recording applications, many systems

have been presented that utilize continuous inductive power transfer to operate the

internal units [25], [62], [49]. In this scheme, the RF power is continuously transferred

to a receiving coil on the internal unit where the AC voltage across the receiving coil is

rectified to create a DC voltage that is used for powering the internal unit. A supply

filtering network must be included on the internal unit to smooth out the ripples

on the supply rail. The sizes of the components of the supply filter are inversely

proportional to the frequency of the RF carrier that is used for transferring power.

To create a clean DC supply voltage with a small-sized supply filtering network, a

high-frequency carrier must be used. However, due to elevated absorption by the

body tissue at high frequency, high-frequency signal is not a viable solution for power

transfer because as the frequency of the carrier increases, the body tissue absorption

increases as well. This can lead to poor power transfer efficiency and overheating of

the tissue that lies in the power transfer path. As a result, transcutaneous power

transfer in biomedical applications normally utilizes low to moderate frequency (100

kHz-10 MHz range) to minimize losses in body tissue [55], [60], [18]. Thus, there

exists a tradeoff between the size of the power supply network and the magnitude of

voltage ripples on the power supply. In order to keep the size of the internal unit

small, larger voltage ripples may need to be tolerated. Therefore, it is important

135



that the electronics on the internal unit exhibit good power supply rejection if the

internal unit is to be continuously powered inductively. Otherwise, the sensitivity of

the recording system can be severely degraded due to noise coupling from the power

supply. An example of such problem was reported in [25]. In this work, the input-

referred noise of an amplifier when it was powered in isolation from a clean power

supply is 4.8 /Vrms. However, when the amplifier was used in the neural recording

system that is powered inductively, the input-referred noise of that amplifier increased

to 30-40 pVrms.

One method to mitigate the noise problem from the power supply is to power the

internal unit with an implantable battery. An implantable battery is also necessary if a

wireless neural recording system is to operate without a top-of-the-head external unit

(without continuous wireless energy transfer). Neural information may be transmitted

directly from the internal unit to a remote host. An example of such system is reported

in [11] where neural information is transmitted through an Ultra-Wide-Band (UWB)

transmission system [37]. However, the work in [11] does not provide any detail

of body tissue absorption of high-frequency signal (3.1-10.6 GHz) used by the UWB

transmission system. Whether such UWB transmission is suitable for fully-implanted

systems still requires further research.

Because a battery generates electrical energy from chemical reactions, the output

voltage produced by a battery is much less noisy than the rectified voltage obtained

from continuous power transfer. Even with a battery as a power source, inductive

power transfer is still needed to periodically transfer energy to recharge the battery

on the internal unit. Once the battery is successfully charged, the internal unit can

operate continuously with a clean supply voltage. However, incorporating a battery

on the internal unit does increase the size of the internal unit. How much increase in

size depends on the size of the battery to be implanted, which is proportional to the

amount of energy it can store. Therefore, internal units with high power consump-

tions are not normally powered by batteries [49], but are powered continuously by the

inductive power transfer method instead. In our neural recording system, the power

consumption of the internal unit is low enough such that battery powering is appli-
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cable, and thus can be used as a viable method to improve neural recording quality.

Therefore, our system is designed to be powered by an implantable battery and have

incorporated a battery charging circuit [15] to periodically recharge the battery as

needed.

4.2.4 Bandwidth Limitation of the Wireless Data Link

Since each recording channel of the 32-channel neural recording IC is sampled with

8-bit precision at 31.25 kHz, the overall data rate from the neural recording IC to the

FPGA is (8 bits/chan. x 32 chan. x 31.25 kHz = 8 Mbps). If this amount of data is to

be transmitted wirelessly to the external unit, a high-speed wireless transmitter needs

to be used, thus significantly increasing the total power consumption of the overall

internal unit. In addition, due to elevated body tissue absorption at high frequency,

the transmitter becomes less efficient and needs to burn more power to compensate

for signal attenuation by the body tissue. It is therefore advantageous to reduce the

amount of data before wireless transmission such that a low-power wireless data link

can be used. This would help keep the power consumption of the overall internal unit

within a feasible limit.

Our wireless data telemetry system [34] can accommodate data transmission from

the internal unit at a rate of 1 Mbps - 5 Mbps, with a higher data rate resulting in a

higher bit-error rate (BER). To keep the BER low, we choose to transmit the neural

information from the internal unit to the external unit at 2.5 Mbps, which is a rate

at which our data telemetry system can comfortably accommodate. Therefore, data

reduction needs to be performed such that the neural information can be transmitted

wirelessly at 2.5 Mbps. A number of data reduction schemes have been proposed in

wireless neural recording systems. The system in [26] utilizes an analog comparator,

which is local to each amplifier, to perform spike detection on the neural amplifier's

output. The spike threshold is set by a 6-bit current DAC. The comparator is reset

roughly every 1 ms, resulting in a total data rate of 100 kbps for all 100 recording

channels. To provide full visualization of a waveform, one channel out of possible

100 channels can be selected for full digitization at 10-bit precision. A more sophis-
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ticated data reduction system was presented in [50]. This data reduction system was

implemented in an FPGA and was designed for use in a 96-channel neural recording

interface. The system provides four modes of the output data including: raw digi-

tized data from one of the 96 channels, extracted waveforms of the spikes that cross

threshold from any subset of the 96 channels, 1-ms bincounts of all the 96 channels,

and raw digitized data from a single channel along with the extracted spike waveforms

from that channel. To set the spike detection threshold on each channel, the system

analyzes 16-ms length of the waveform from that channel and computes the appro-

priate threshold accordingly. The system in [20] implemented similar data reduction

scheme as in [50] in an ASIC, and thus achieved much lower power consumption.

In our system, since we aim to minimize power consumption in the internal unit,

a computationally-intensive scheme such as the one in [50] is avoided. Instead of

focusing on transmitting raw neural data to the external unit, we aim to transmit

decoded information from the internal unit to the external unit, which requires much

lower transmission bandwidth. The decoded information from the internal unit can

be used by a signal processing unit external to the body to derive motor control sig-

nals for controlling a prosthetic device. An energy-efficient neural decoding algorithm

is implemented on the FPGA of the internal unit to derive the decoded information

from the spiking information obtained from the 32-channel neural recording IC. The

decoding algorithm only relies on simple additions, comparisons, and retrieving con-

tents from small memories, and thus can be implemented with low power consumption

on a small FPGA. The decoding algorithm and its implementation on an FPGA is

beyond the scope of this thesis. For further detail, please see [48].

4.2.5 Interfacing between the 32-channel neural recording IC

and the FPGA

As mentioned in Chapter 3, the 32-channel neural recording IC provides both the

serial and parallel versions of the digitized neural data. For the serial version, the

digitized neural data are packaged into a 320-bit data frame, which includes two 16-bit
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recognition sequences to facilitate the synchronization between the IC and the FPGA.

The data frame is streamed out serially at a rate of 10 Mbps. For the parallel version,

the 32-channel neural recording IC provides 8-bit-wide bus that carries the digitized

data, and a 5-bit-wide bus that carries the channel address. One output pin of the

32-channel neural recording IC provides a clock signal for streaming parallel data into

the FPGA. The serial output version is necessary if the 32-channel neural recording IC

is to be interfaced with a digital wireless transmitter directly. In addition, if many 32-

channel neural recording ICs are to be integrated on a PCB to create a high-channel-

count system, the serial output option can greatly reduce the number of traces that

need to be routed on the PCB, thus significantly easing the PCB design process and

reducing its fabrication cost. In this case, we need to implement logic circuits on the

FPGA to demultiplex the digitized neural data from many serial pins into parallel

buses before the neural data can be processed further by the FPGA. However, if only

one 32-channel neural recording IC is to be integrated on a PCB, the parallel output

version offers an advantage over its serial counter part. For the parallel output version,

the FPGA can read the digitized neural data on the parallel bus directly without an

additional demultiplexing logic block, thus saving the FPGA's resources for other

important signal processing tasks. This can be critical for an FPGA with limited

computational resources such as the one we are using in our system. Furthermore,

incorporating a demultiplexing logic block, which must operate at the same speed

as the incoming serial data (10 MHz), can increase the power consumption of the

FPGA due to increased high-speed switching activity. On our PCB, both the parallel

output bus and the serial output line are routed to the FPGA for design flexibility.

Nevertheless, since our FPGA has limited computational resources and minimizing

power consumption is our major design goal, we choose to use the parallel output

version to avoid the need for an additional demultiplexing logic block on the FPGA.
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Figure 4-2: Block diagram of the Internal Unit.

4.3 Architecture of the Internal Unit

Figure 4-2 shows a detailed block diagram of the internal unit of our wireless neural

recording system. The internal unit consists of: i) the 32-channel neural recording

IC, ii) a low-power FPGA (IGLOO06OV2, Microsemi Corp., Irvine, CA) [4], iii)

internal data telemetry unit, and iv) power management & battery charging unit [15].

The internal unit also contains two crystal oscillators, a 10-MHz oscillator and a 32-

kHz oscillator for clock generations, for frequency reference and a magnetic switch

[2] to control the modes of transmission of the internal data telemetry unit, and a

light emitting diode (LED) for battery charging status indication. The 32-channel

neural recording IC is responsible for amplifying and digitizing neural signals from 32

recording electrodes. The digitized neural data is sent from the neural recording IC

to an on-board low-power FPGA for further processing. The FPGA is packaged in a

121-pin chip-scaled package (CS121) with dimensions of 6 mm x 6 mm. The FPGA

performs two important tasks including i) signal processing and data reduction, and

ii) operation control of the internal unit. The processed neural information from the
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FPGA is sent to the internal data telemetry unit to be transmitted wirelessly to the

external unit (uplink telemetry mode). In addition, the internal data telemetry unit

is responsible for receiving configuration commands from the external data telemetry

unit (downlink telemetry mode). The commands are used for configuring various

parameters of the internal unit. To switch between the uplink and downlink telemetry

modes, a magnetic switch is included on the internal unit to configure the internal

data telemetry unit into one of the transmission modes. Since the internal unit will be

fully implanted under the skin, the power to operate it must be transferred wirelessly.

Thus, the internal unit contains the power management & battery charging unit for

receiving RF power from the external unit to recharge the implantable battery. The

power management & battery charging unit is also responsible for generating different

supply voltages to power various subsystems on the internal unit.

4.3.1 Power Supply Domains of the Internal Unit

The internal unit integrates many ICs from different technologies, thus they were

designed to operate from different supply voltages. The 32-channel neural recording

IC was designed to work with supply voltages of 1.8 V (analog) and 1 V (digital).

The processing core of the FPGA can operate with a supply voltage from 1.2 V to

1.5 V, while many supply voltages can be used for its I/O. However, during the flash

programming of the FPGA, a 1.5 V supply voltage is needed [4]. The internal data

telemetry unit was designed to operate from a 2.5 V supply voltage. The 10 MHz

crystal oscillator was designed to operate from a 1.8 V supply voltage, while the 32

kHz crystal oscillator was designed to operate from a supply voltage between 1.3-

5.5 V. Due to these various requirements of the supply voltages, the internal unit

needs to provide various power supply domains to operate each subsystem at its ideal

condition.

For our internal unit, the Power Management & Battery Charging Unit generates

three supply voltage domains including: i) 1.8 V supply domain, ii) 1.2 V supply

domain, and iii) 2.5 V supply domain. The 1.8 V supply domain is used to power

analog circuitry ( neural amplifiers and multiplexers) in the 32-channel neural record-

141



ing IC and the on-board 10 MHz crystal oscillator. The 1.2 V supply domain is used

to power the ADCs, the Digital Control Unit, the digital I/O pads of the 32-channel

neural recording IC, the core of the FPGA, and the FPGA's I/O pads that interface

with the 32-channel neural recording IC. The 2.5 V supply domain is used to power

the internal data telemetry unit, the LED, the magnetic switch, the 32 kHz crystal

oscillator, and some FPGA's I/O pads. Since during the flash programming of the

FPGA, the core of FPGA must operate from a 1.5 V supply voltage, we therefore

include a voltage switching circuit to switch the output voltage of the 1.2 V supply

domain to 1.5 V. However, during normal operation of the internal unit, the 1.2 V

supply voltage always generate the output of 1.2 V.

4.3.2 Design of the Digital System on the FPGA

FPGA

par-sampin -

chanaddr-
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10Mck -

Neural Data
Processor

Programming
Interface

Unit

32k-clk

Operation
Control

Unit
-
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LED

Figure 4-3: Block diagram of the synthesized system on the FPGA.
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Figure 4-3 shows the overall architecture of our digital system on the FPGA. It

consists of three main modules including the Neural Data Processor, the Operation

Control Unit, and the Programming Interface Unit. The Neural Data Processor takes

as inputs the digitized neural data (8-bit bus par..samp-in) and the channel address

information (5-bit bus chan-addr) from the 32-channel neural recording IC. The sig-

nal chan.ready is a signal notifying whether the data on par-samp-in and chan-addr

buses are ready to be used by the Neural Data Processor. The Neural Data Processor

operates from the 10 MHz clock (10M-clk in Fig. 4-3), which is generated from the

on-board 10 MHz crystal oscillator. It then processes the neural data on par-samp-in

bus to obtain important neural information and reduce the amount of data for trans-

mission. The processed neural information is then streamed out serially at a rate of

2.5 Mbps to the internal wireless data telemetry unit, where it is transmitted wire-

lessly to the external unit through the data coils. The operation of the Neural Data

Processor will be explained in Section 4.4.

To process the neural data, the Neural Data Processor needs a certain parameters

that must be provided by the user. As an example, the threshold of each recording

channel must be set in order for the Neural Data Processor to detect the threshold

crossing events correctly and accurately. Therefore, it is important that the user be

able to wirelessly set the values of parameters on the FPGA. For this purpose, the

Programming Interface Unit in Fig. 4-3 is included on the FPGA. The Programming

Interface Unit is of similar architecture to the one explained in Section 3.5 of Chapter

3. The design of the Programming Interface Unit and the description of important

parameters for the operation of the internal unit will be explained in Section 4.6.

For practical BMIs, the internal unit of the recording system is not just trans-

mitting the neural information all the time. However, the user occasionally needs

to instruct the internal unit into various modes of operation. For example, the user

may want to turn off the internal unit to save battery power, or the user may want

to reconfigure the parameters of the 32-channel neural recording IC or the spike de-

tection thresholds of some recording channels. In addition, the user may want to

change the way in which the neural information is being sent out (explained later in
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Section 4.4). Or after a long recording session, the battery might be running out of

charge and thus needs to be recharged. In this case, the user may wish to turn off

most of the circuits on the internal unit such that all the charging current can be

directed toward charging the implantable battery. Therefore, the internal unit needs

a centralized control unit to control its operation based on the user's instructions.

For this purpose, we include the Operation Control Unit on the FPGA to control the

operation of the internal unit. The operation of the Operation Control Unit will be

explained in Section 4.5.

4.3.3 Output Modes of the Neural Data Processor

The Neural Data Processor receives the digitized neural data from the 32-channel

neural recording IC and then processes these neural data to reduce the amount of

information that needs to be transmitted wirelessly to the external unit. The Neural

Data Processor can output the neural information in one of the three modes including

Decode, Calibration, and Stream8 modes, which can be set by the user.

In BMI applications, the main signals of interest are not just the high-bandwidth

raw neural data, but also the low-bandwidth decoded neural information that may be

used to derive the motor control signals for a prosthetic device. Thus, it is beneficial

if the internal unit can derive the decoded neural information and only transmit this

information to the external unit. This method would greatly reduce the amount of

data that needs to be transmitted wirelessly, thus lowering the power of the wireless

data telemetry system, however, at an expense of slightly increased power consump-

tion on the internal unit. In our system, we incorporate an energy-efficient neural

decoding unit to perform such data reduction scheme. The detail of the neural decod-

ing unit can be found in [48]. The neural decoding unit takes as inputs the threshold

crossing information of spikes from all 32 channels. To provide the threshold crossing

information to the neural decoding unit, a digital spike detection logic is implemented

on the FPGA. Note that decoding operation can be done on the external unit as well.

This is actually a more widely adopted approach since sophisticated algorithms can

be implemented without as stringent a power constraint as that of the implantable
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decoding unit. Performing neural decoding on the external unit also offers greater

flexibility since the algorithms can be modified until a satisfactory performance is

achieved, even after the internal unit has already been implanted. To provide such

flexibility, we also provide the threshold crossing information, which is the input of

the internal neural decoding unit, to the external unit. We term this first output

mode of the Neural Data Processor as the Decode mode. In this mode, the output

of the Neural Data Processor contains both the decoded neural information, and the

threshold crossing information of neural spikes from all the 32 channels for external

decoding tasks.

In order to accurately set the threshold of each recording channel for the spike

detection logic, raw neural data from each channel is required for the computa-

tion of the baseline level and noise of each recording channel. To avoid performing

computationally-intensive task on the internal FPGA during the threshold calcula-

tion process, we choose to calculate the spike detection thresholds and the baseline

levels of all the 32 channels on an external processor. Therefore, the Neural Data

Processor must be able to provide the raw waveform information from all 32 record-

ing channels to the external unit for visualization by the user. Due to transmission

bandwidth limitation of the wireless data link discussed in Section 4.2.4, the neural

data from all the 32 channels cannot be transmitted to the external unit all at once.

The wireless data link can only accommodate the raw neural data up to eight chan-

nels. However, to ease the threshold calculation process, the waveform information

from all the 32 recording channels should be obtained in one recording session. For

this purpose, we include another output mode for the Neural Data Processor, which

we term the Calibration mode. In this mode, we divide the 32 recording channels

into four nonoverlapping sets, with each set containing 8 recording channels. The

Calibration session is then divided into 2-second time frames. The Neural Data Pro-

cessor then rotates to each set of eight recording channels and transmits 2-second

snippets of raw neural data from eight recording channels in that set. After at least 8

seconds of the Calibration session, the Neural Data Processor will manage to transmit

at least 2-second length of raw neural data snippets from all 32 recording channels.
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This amount of data on each channel should suffice for the computation of the noise

amplitude and the baseline level of each recording channel. If a Calibration session

of longer than 8 seconds is performed, the neural data snippets of each recording

channel can be concatenated to provide more data for calibration purpose.

In experiments in which raw neural data is of primary concern such as in physical

neuroscience studies, the user may want to obtain raw neural data from as many

channels as possible. Therefore, we have included an output mode of the Neural

Data Processor for streaming out raw neural data from many recording channels at

once. As mentioned in Section 4.2.4, we choose to transmit the neural information

from the internal unit to the external unit at a rate of 2.5 Mbps. This data rate is

equivalent to sending ten 8-bit bytes in a 32 ps time frame. If only raw neural data

are to be sent out in a 32 ps time frame, the wireless data link can accommodate up to

10 channels. However, to provide synchronization between the internal unit and the

external unit, the data stream needs to contain extra bits for data synchronization

purpose. Therefore, instead of transmitting only raw neural data from 10 channels,

we choose to transmit only 8 channels of raw data in each 32 ps time frame, while the

other two bytes are preserved for synchronization purpose and providing information

on the status of the data being transmitted. The eight channels to be transmitted

can be arbitrarily selected by the user through downlink wireless communication. We

term this output mode Stream8 mode. To choose between the three output modes,

the user must wirelessly program the content of a 2-bit register "RecMode." Table 4.1

summarizes the relationship between the register Rec..Mode and the output format

of the Neural Data Processor.

Table 4.1: RecMode vs. Output Format of the Neural Data Processor.
RecMode Mode I Description

01 Calibration snippets of data from all 32 channels
10 Stream8 raw neural data from selected 8 channels
11 Decode decoded neural information

+ threshold crossing information
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Figure 4-4: Block diagram of the Neural Data Processor implemented on the FPGA.

The block diagram schematic of the Neural Data Processor is shown in Fig. 4-4.

The main processing blocks of the Neural Data Processor are the Data Reduction

Unit, the Data Interleaver Unit, the Data Serializer Unit, and the Central Control

Unit. The Data Reduction Unit performs the data reduction on the digitized neural

data (on par-samp-in) by i) detecting the threshold crossings to obtain spiking in-

formation on each recording channel, and ii) performing the decode on the spiking

information to obtain decoded neural information. The output of the Data Reduction

Unit is denoted as mode3_output in Fig. 4-4, and consists of both the decoded neural

information and the threshold crossing information, which are organized in a certain

format. The operation of the Data Reduction Unit will be explained in Section 4.4.1.

The output of the Data Reduction Unit is then sent to the Data Interleaver Unit. The

Data Interleaver Unit is responsible for selecting what data to be passed to the Data

Serializer Unit such that the serialized output data, serial-dat-out, in Fig. 4-4 is in a

format recognized by the external unit. To specify the output format of the Neural

Data Processor, the content of the register RecMode must be set. If RecMode =
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"11" (in binary basis), the Data Interleaver Unit will select the output of the Data

Reduction Unit (mode3_output) to be passed to the Data Serializer Unit. However,

if ReciMode is either "01" or "10" (in binary basis), the Data Interleaver Unit will

select digitized neural data from some recording channels to be passed to the Data

Serializer Unit. The operation of the Data Interleaver Unit will be explained in Sec-

tion 4.4.2. The Data Serializer Unit takes the parallel output bytes from the Data

Interleaver Unit, serialize them, and send the serial data out to the internal wireless

data telemetry system at a rate of 2.5 Mbps. The operation of the Data Serializer

Unit will be explained in Section 4.4.3. The Central Control Unit is responsible for

generating important timing control signals for the three processing units previously

mentioned. The operation of the Central Control Unit of the Neural Data Processor

will be discussed in Section 4.4.4.

4.4.1 Data Reduction Unit

Figure 4-5(a) shows the diagram of the Data Reduction Unit. It consists of the Neural

Decoding Unit and the Spike Detection Logic. The operation of the Neural Decoding

Unit is beyond the scope of this thesis, thus we will treat it as a signal processing block

that takes as input the 32-bit spiking information from the Spike Detection Logic and

gives as output the 32-bit decoded neural information. The main processing block of

the Spike Detection Logic is the comparator (ThComp) that detects if the 8-bit neural

data (par-samp-in) is greater than its corresponding 8-bit spike detection threshold

(Th). To aid the description that follows, let's consider the timing diagram shown in

Fig. 4-5(b). The signal chan-addr is a 5-bit signal that provides the channel address

information of the neural data on par-samp-in. In Fig. 4-5(b), chan-addr is presented

in decimal basis. The recording channels are numbered as channel 0 to channel

31. The signal chan-ready is a timing reference signal to notify when the data on

par...samp in and chan-addr are ready to be retrieved. The signal frame-start, which is

generated from the Central Control Unit of the Neural Data Processor, serves as the

timing reference that specifies the beginning of the 32 ps data frame which contains

the neural data from all 32 channels.
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Figure 4-5: (a) Block diagram of the Data Reduction Unit. (b) Timing diagram of
the input signals.
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The spike detection thresholds of the 32 recording channels are stored in the 8-

bit threshold storage registers ThO to Th3l. The contents of the threshold storage

registers, ThO-Th3l, must be programmed wirelessly through the downlink program-

ming, prior to each recording session. During spike detection process, the threshold

multiplexer, ThMux, which is controlled by chan-addr, sequentially multiplexes the

thresholds stored in ThO to Th3l to the input Th of the comparator ThComp. The

incoming digitized neural data (par-samp-in) of the recording channel, which is spec-

ified by chanaddr, is then compared to its corresponding spike detection threshold

on that channel to produce a one-bit output Spk. The output Spk is a 1 if the

digitized data on par-samp-in is greater than the threshold, and is a 0 otherwise.

Thus, for every 8-bit sample that comes in, the Spike Detection Logic reduces it to

a 1-bit data, resulting in an 8:1 compression ratio. The output signal Spk is then

shifted into a serial-in-parallel-out shift register SpkSReg upon the positive edge of

chan-ready. After threshold detection has been performed on all the 32 channels in

a 32 ps data frame specified by frame-start, the 32-bit output of the shift register

Spk_SReg is registered by a 32-bit storage register SpkReg upon the positive edge of

frame-start. Registering the output of Spk-SReg is to guarantee that the threshold

crossing information of the neural data from all 32 channels in the previous data

frame is available for further processing in the next 32 ps data frame (on spk32 bus).

The output of the Neural Decoding Unit is also registered by the signal frame-start,

thus it is also unchanging during the next 32 ps data frame. The output of the Spike

Detection Logic, spk32, and the output of the Neural Decoding Unit, decode32, are

then multiplexed out to the output mode3_output to the Data Interleaver Unit.

4.4.2 Data Interleaver Unit

The main function of the Data Interleaver Unit is to organize the order of data that

will be sent out to the Data Serializer Unit such that when the data is streamed

out serially from the Data Serializer Unit, the serial output stream is in a format

recognizable by the external unit, and thus can be synchronized to the data acquisition

system and a PC. Depending on the content of the register RecMode, the Data
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Figure 4-6: (a) Output data format for different output modes. (b) Block diagram of
the Data Interleaver Unit.
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Interleaver Unit organizes the order of data into one of the three formats shown in

Fig 4-6(a). The first two bytes of each data package form a recognition sequence,

while the last eight bytes are reserved for the neural information that will be sent out

to the external unit. In the Calibration mode (RecMode = "01" in binary basis),

the last two bits of the second byte of the recognition sequence are used to provide

the information regarding the set of eight channels that are being streamed out. This

information is important for the external unit because the set of eight channels that

are being sent out is not fixed, but changed every two seconds. As shown in Fig. 4-

6(a), when the second byte of the recognition sequence is "00110100" (BK2a), the

data field contains the neural data from channel 0 to channel 7. When the second

byte of the recognition sequence is "00110101" (BK2b), the data field contains the

neural data from channel 8 to channel 15, and so on. In the Stream8 and Decode

mode (Rec-Mode = "10" and Rec-Mode = "11" in binary basis respectively), the

recognition sequence is always "0001111" (BK1) followed by "00110101" (BK2) since

the neural information in the data field is always from a know source. Therefore, we

do not need to put additional information in the recognition sequence to tell what

kind of neural information is inside the data field.

Figure 4-6(b) shows the block diagram of the Data Interleaver Unit. The mul-

tiplexer Mux1 controls the order of data to be sent to the Data Serializer Unit in

a given 32 ps data frame (marked by frame-start in Fig. 4-5(b)). The operation

of Mux1 is controlled by the control signal fifo-inctrl, which is generated from the

Central Control Unit. The two bytes that comprise the recognition sequence are

sent to the Data Serializer Unit at the beginning of the 32 ps data frame. After

the bytes that comprise the recognition sequence have been sent, Mux1 only sends

the neural information on data-fifo-in to the Data Serializer Unit, which can be from

either the digitized neural data (par..samp-in) or the output of the Neural Decoding

Unit (mode3_output) depending on the value of RecMode. Choosing which value

to write into the second byte of the recognition sequence is accomplished through

the multiplexer Mux3 and Mux4. If the internal unit is not in the Calibration mode

(RecMode # "01" in binary basis), Mux3 always choose "00110101" (BK2) as the
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second byte of the recognition sequence. However, if the internal unit is in the Cali-

bration mode, Mux3 will choose an 8-bit value from the set {BK2a, ...,BK2d}, which

is chosen by the multiplexer Mux4, to provide the external unit with the information

regarding the content of the data field that is being sent out. The control signal for

Mux4, caLstate, consists of the two most-significant bits of an 18-bit counter, which

is clocked by the signal frame-start of Fig. 4-5(b). Since the period of frame-start is

32 is, one counting period of the 18-bit counter is 218 x 32 ps = 8.38 s. Therefore,

each set of eight channels will be streamed out for a duration of 8.38/4=2.1 s, before

the Neural Data Processor changes to stream out the next set of eight channels.

4.4.3 Data Serializer Unit

- -serialout

SRgout
fifo-in rate.* wrdata rddata l i

an d the F atwr-en wLN FIFO rdEN i the load

caLstate enable J 10M.._ k -i-- i wr.clk rdclk < t e >

Rec.Mode hO---ChR7e-u

BKWr a- 1- (2.5 MHz)

Write Enable load-SR

Logic

Figure 4-7: Block diagram of the Data Serializer Unit.

To communicate with the external unit, the internal unit must transmit the neural

information at a uniform data rate. However, since the internal unit needs to be able

to arbitrarily select eight recording channels to be sent out, it needs some kinds of

data buffering before serialization to guarantee a uniform output data rate. The Data

Serializer Unit simply serves this purpose. The block diagram of the Data Serializer is

shown in Fig. 4-7. Once a recording session starts, the data to be sent out are written

into the FIFO at the write port (wr-data). The writing into the FIFO is controlled

by the write enable signal wr-en, which is generated from the Write Enable Logic

block. The signal wr..en is always asserted when BK-wr goes high, which indicates

that the data on the fifo-in port is one of the bytes of the recognition sequence. The

Write Enable Logic block contains eight 5-bit registers, ChR0-ChR7, that store the
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addresses of the channels chosen to be sent out. The signal wr-en is asserted when

the address on the chan-addr port matches the content of one of the registers ChRO-

ChR7. In the Calibration mode, the contents of ChR0-ChR7 are cycled by the signal

cal-state. If cal-state = "00" in binary basis, ChR0-ChR7 store the channel addresses

0-7 respectively. When cal-state = "01" in binary basis, ChR0-ChR7 store the channel

addresses 8-15 respectively, and so on. In the Stream8 mode, the contents of ChRO-

ChR7 must be programmed by the user which indicate the recording channels to be

sent out. In the Decode mode, writing the data from the Data Reduction Unit is

much simpler because the 32-bit outputs of the Spike Detection Logic and the Neural

Decoder in Fig. 4-5(a) are fixed for the whole 32 ps sampling period. As a result, we

simply stream mode3_output into the FIFO the same way as we want to write neural

data from channel 0 to channel 7 into the FIFO.

After 32 ps has passed since the start of a recording session, at least 10 bytes

of data will already be written into the FIFO. We can then stream the data from

the FIFO at the read port (rd-data) into a parallel-in-serial-out shift register SR-out.

The signal loadSR, generated from the Central Control Unit, acts as the read enable

signal for the FIFO and, at the same time, acts as the load enable signal for the shift

register SRout. The output clock, clkout, is generated from the Central Control

Unit and has a frequency of 2.5 MHz, which is equal to the desired output data rate

of the system. The clock clkout is then used as a read clock for the FIFO and the

clock of the shift register SR-out. The signal loadSR is asserted every eight cycles

of clk.out which corresponds to the time it takes for SR-out to serially shift out an

8-bit byte of neural data from the FIFO.

4.4.4 Central Control Unit

The Central Control Unit is responsible for generating the control signals for the

Neural Data Processor. The block diagram of the Central Control Unit is shown in

Fig. 4-8(a). The main building block of the Central Control Unit is a 9-bit up-counter

C320. The counter is clocked by the 10 MHz clock and repeatedly counts from 0 to

319 to divide the 32 ps data period into 320 equally time segments. This results in

154



10Mclk

chan-addr o 1 2

c-out

10Mclk _..l.....l
(b)

Figure 4-8: (a) Block diagram of the Central Control Unit. (b) Timing diagram of
the 9-bit counter C320 used in the Central Control Unit.

a 100 ns-period per each time segment, which is the finest time scale in our system.

Note that this strategy was once employed in the design of the Digital Control Unit

in Chapter 3. The counter is synchronized to the channel address information on

chan-addr such that it starts at 0 right when chan-addr = 1, and finishes counting

319 (in decimal basis) just exactly at the same time when chan-addr is changing

from 0 to 1. The timing diagram of the counter C320 is shown in Fig. 4-8(b). The

9-bit output of the counter C320 is then used by the Control Signal Generator logic

block to generate the required control signals for the Data Reduction Unit, the Data

Interleaver Unit, and the Data Serializer Unit in the same fashion as in Section 3.6

of Chapter 3.

4.5 Operation Control Unit

As the name implies, the Operation Control Unit is responsible for controlling the

operation of the internal unit. The main processing block of the Operation Control

Unit is a synchronous state machine whose states determine the settings of the internal
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unit.

4.5.1 Design Considerations of the Operation Control Unit

Before we discuss the design of the Operation Control Unit and the required inputs

and outputs of the state machine, let's consider the following design considerations.

Transmit or Receive

The data telemetry system in [34] is a half-duplex system, meaning that the system

can send the data in only one direction at any given time. When the system is in

the uplink mode (data flows from the internal unit to the external unit), it does not

alow the user to send commands to reconfigure the internal unit. Similarly, when the

system is in the downlink mode (data flows from the external unit to the internal unit),

the system cannot stream out neural information from the internal unit to the external

unit. To configure the data telemetry system into either of the transmission modes,

the user needs to set control switches on both the internal and the external data

telemetry units accordingly. Let's denote these switches as TxRx switches for both

the internal and the external data telemetry unit. For the uplink mode, the Tx-Rx

of the internal data telemetry unit must be set to 1 (meaning "transmit"), while the

TxRx of the external data telemetry unit must be set to 0 (meaning "receive"). For

the downlink mode, the opposite switch configurations apply for both the internal

and external data telemetry units. Setting the TxRx switch of the external unit

is trivial, since the user has an easy access to this switch at all time. However,

the user has no direct access to the TxRx switch on the internal unit, unless it is

achieved through some wireless means. Obviously, we cannot configure the setting of

the internal TxRx switch through the same wireless data telemetry system, because

once the internal data telemetry system is in the "transmit" mode, it cannot receive

any downlink data. A different overriding scheme needs to be employed. For this

purpose, we use magnetic field to control whether the internal data telemetry system

should be in the "transmit" or the "receive" mode. An inverter circuit, consisting of of
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a magnetic switch [2] and a pulled-up resistor, has been included on the internal unit

to generate a signal HS as an input into the state machine. The HS signal is used

to determine whether the TxRx switch of the internal data telemetry unit should be

set for the "transmit" or the "receive" mode. During normal recording session, the

magnetic field is not applied to the magnetic switch, and thus the magnetic switch

is open and HS=0. Based on this value of HS, the FPGA sets the switch Tx-Rx of

the internal data telemetry unit to 1, making it in the "transmit" mode. As a result,

neural information can be transmitted from the internal unit to the external unit.

However, when the user needs to send commands to the internal unit, he can apply

magnetic field to the magnetic switch, causing the switch to close and HS=1. With

this value of HS, the FPGA sets the Tx-Rx switch of the internal data telemetry

unit to 0, causing it to be in the "receive" mode, and thus ready to receive commands

from the user.

Battery Charging or Recording

As mentioned earlier, we choose to power our internal unit from an implantable

battery to achieve high-quality neural recordings. As a result, a battery charging

IC [15] is included on the internal unit, which can be used to recharge the implantable

battery as needed. During a battery charging session, the RF power is transferred

from the external unit to the internal unit, where it is rectified to create a 5 V DC

voltage on the internal unit. This DC voltage is then used by the battery charging IC

to charge the implantable battery. It thus makes sense that battery charging should

be done while a recording session is not in progress such that the RF power does

not corrupt the ongoing neural recording session. To ensure that most of the current

obtained from the rectified RF voltage is directed toward charging the battery, instead

of being drained by other subsystems on the internal unit, it makes sense that other

subsystems which are not required to operate during the battery charging session

such as the neural recording IC, the internal data telemetry unit, the Neural Data

Processor on the FPGA, and the 10 MHz crystal oscillator should be turned off.

Therefore, the state machine needs an input to notify when the battery charging is in
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session such that other subsystems can be shut down accordingly. For this purpose,

we create a digital flag VR from the rectified DC voltage. Whenever the RF power

from the external unit is enough to create the rectified DC voltage on the internal

unit of more than 5 V, the flag VR is raised to 1. The signal VR is then used by the

state machine to specify the charging status of the internal unit. Whenever VR = 1,

the state machine shuts down other subsystems on the internal unit such that most

of the output current from the battery charging IC goes into charging the battery

instead of being drained by other running subsystems.

Recording or Idle

In order to maximize the time between recharges of the implantable battery, it is

important to be able to force the internal unit into idle when it needs not operate.

Thus, the state machine needs an input to specify whether the internal unit should be

in a recording session, or should be in the idle state in which most of the electronics on

the internal unit are shut down to save power. For this purpose, we create a storage

register S on the FPGA whose content is used as an input to the state machine to

specify whether the internal unit should be powered up or powered down. If S = 1,

the internal unit should be powered up such that neural recording can be performed.

If S = 0, the internal unit should be powered down to save power from the implantable

battery. To set the content of the register S, the user must program it through the

wireless data telemetry system. Note that S can be set in the same manner, during

the downlink programming phase (through magnetic activation), as other parameters

that are used in the Neural Data Processor.

Low Battery

To preserve battery health, it is advantageous to not deeply discharge the battery

[33], [53]. Therefore, the internal unit should be able to notify when the battery is

about to be deeply discharged such that it can shut down the rest of the system. To

incorporate this feature, we have included a low battery flag LB as an input to the

state machine. The low battery flag LB is provided by a commercially-available step
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down switching regulator (LTC3620, Linear Technology Corp.) [1]. When the battery

voltage falls below 3 V, the flag LB is raised to 1, indicating that the internal unit

should go into idle to minimize current drawn from, and thus avoid damaging the

battery.

4.5.2 Outputs of the Operation Control Unit

Depending on its current state, the state machine produces three outputs that are

used for controlling the internal unit. Referring to Fig. 4-3, the first output is the

TxRx signal, which is used for controlling the TxRx switch of the internal data

telemetry system. The second output is the En-1.8V signal, which is used for turning

on/off the 1.8 V supply domain. The third output is the LED signal, which is used

for blinking the LED, to indicate the charging status of the internal unit. Since the

1.8 V supply domain powers the 32-channel neural recording IC and the 10 MHz

crystal oscillator, the power drawn from this supply domain comprises the majority

of the total power drawn from the implantable battery. Furthermore, once the 1.8 V

supply domain is turned off, the 10 MHz clock is disabled causing the Neural Data

Processor, even if it is powered from the 1.2 V supply domain, to stop operating

and stop drawing current from the 1.2 V supply domain. Thus, the En_1.8V signal

also indirectly acts as a clock gating signal [12,13,47] for the Neural Data Processor.

Note that this strategy only eliminates the dynamic power dissipation of the Neural

Data Processor, however, the leakage power still exists. The 1.2 V supply domain is

always left operating since it also powers the state machine, which must continuously

operate even when the internal unit is not in a recording session. Furthermore, the

2.5 V supply domain is always on since it needs to power the 32 kHz crystal oscillator

which produces the clock signal for the state machine. However, the 32 kHz crystal

oscillator only draws about 1 pA of current, which is considered negligible in our

system. The 2.5 V supply domain also powers the LED such that when the battery

charging is in progress, the LED blinks notifying the charging status.
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4.5.3 Finite State Machine of the Operation Control Unit

Based on previous discussions, we divide the operation of the internal unit into four

states as follows:

1. Idle: The 1.8 V supply domain is shut down, disabling the 32-channel neural

recording IC, and the 10 MHz crystal oscillator. As a result, the Neural Data

Processor on the FPGA is disabled, thus saving power drawn from the 1.2 V

supply domain.

2. Charge. The 1.8 V supply domain is shut down such that most of the current

from the rectified DC voltage is used for charging the battery. The on-board

LED blinks, notifying the user that the implantable battery is being charged.

3. Programming. The TxRx switch of the internal data telemetry unit is set to

0, causing it to be in the "receive" mode and ready to receive commands from

the external unit. All the supply domains are powered up.

4. Recording. All the supply domains are powered up. The neural recording IC,

the 10-MHz crystal oscillator, and thus the Neural Data Processor are oper-

ating. The Tx-Rx of the data telemetry unit is set to 1, causing it to be in

the "transmit" mode and continuously transmitting neural information to the

external unit.

The state diagram for controlling the state of operation of the internal unit is

shown in Fig. 4-9. Table 4.2 summarizes the roles of the input signals into the state

machine.

Table 4.2: Table summarizing the purposes of state machine's inputs
Input Signal Action if asserted

HS Go to Programming state
LB Low battery (< 3 V), go to Idle state
VR Received RF power, go to Charging state
S Recording and transmitting neural information.
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Figure 4-9: State diagram of the state machine in the Operation Control Unit.
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4.6 Programming Interface Unit

The Programming Interface Unit of Fig. 4-3 has a structure similar to the serial pro-

gramming interface of the 32-channel neural recording IC described in Section 3.5 of

Chapter 3. It consists of a 56-bit shift registers that are clocked by the programming

clock (prog.clk in Fig. 4-3) from the internal data telemetry unit. The required input

data package is similar to that shown in Fig. 3-31. The data package consists of a

13-bit recognition sequence. However, the 8-bit address field is used as an 8-bit "Op

Code" field. The "Op Code" field is used to specify which parameter registers on

the FPGA to be programmed. The 35-bit payload field contains the data to be pro-

grammed into the parameter registers. Once the recognition sequence and the "Op

Code" are detected by an internal logic block of the Programming Interface Unit, the

data in the payload field are latched into the corresponding parameter registers ad-

dressed by the "Op Code". Once the parameter registers have been programmed, the

programming data and programming clock pins (prog-dat and progclk in Fig. 4-3)

are pulled down by the pull-down resisters attached to those pins. This is to prevent

the inputs of the Programming Interface Unit from floating, which might cause an

accidental reprogramming of the parameter registers. Therefore, the parameter reg-

isters will retain their contents until the power is cut from the internal unit, or until

the user intentionally reprograms the parameters. Table 4.3 summarizes the roles of

the parameter registers that must be programmed by the user.

Table 4.3: Parameter registers to be programmed by the user.
[Registers I Purpose

ThO-Th3l storing 8-bit thresholds of all 32 channels
ChRO-ChR7 storing 5-bit addresses of eight channels to

be streamed out in the Stream8 mode
Rec.Mode 2-bit register specifying the

output format of Neural Data Processor
S specifying if the internal unit should be

I_ recording, or should be idle

Table 4.4 summarizes the values of "Op Code" for uses in programming different

parameter registers of the internal unit.
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Table 4.4: Table summarizing the purposes of different "Op Code".
Registers I Op Code comment

ThO, Th8, Th16, Th24 00010001 payload: 8-bit thresh. values of 4 chan. in module 1
Thl, Th9, Th17, Th25 0001 0010 payload: 8-bit thresh. values of 4 chan. in module 2
Th2, Thl0, Th18, Th26 0001 0011 payload: 8-bit thresh. values of 4 chan. in module 3
Th3, Th11, Th19, Th27 0001 0100 payload: 8-bit thresh. values of 4 chan. in module 4
Th4, Th12, Th20, Th28 00010101 payload: 8-bit thresh. values of 4 chan. in module 5
Th5, Th13, Th2l, Th29 00010110 payload: 8-bit thresh. values of 4 chan. in module 6
Th6, Thl4, Th22, Th3O 0001 0111 payload: 8-bit thresh. values of 4 chan. in module 7
Th7, Thl5, Th23, Th3l 0001 1000 payload: 8-bit thresh. values of 4 chan. in module 8

ChRO-ChR3 0010 0001 payload: 5-bit 4 chan. addr. to be stored in ChRO-ChR3
ChR4-ChR7 0010 0010 payload: 5-bit 4 chan. addr. to be stored in ChR4-ChR7

0011 0001 Rec-Mode=01 (Calibration)
RecMode 0011 0010 Rec-Mode=10 (Stream8)

0011 0011 RecMode=11 ((Decode))
S 0100 0000 system goes into idle

0100 0001 system is recording

4.7 Physical Design of the Internal Unit

The internal unit is designed for implantation in a non-human primate (a rhesus

macaque). Figure 4-10 shows the original plan and the physical dimensions of the

internal unit relative to the implantable area on a rhesus macaque's skull. The internal

unit is intended to be implanted between the skull and the scalp and is integrated on

a flexible PCB substrate such that it can be fitted to the curvature of the skull. The

black dots in Fig. 4-10 represent the screw holes on the internal unit for tightening

the unit to the skull. Note that the anterior part of the skull is toward the top of the

figure (labeled with the letter "A"), while the posterior part is toward the bottom

of the figure (labeled with the letter "P"). The part of the internal unit labeled

"Flexible PCB" houses most of the circuit components of the internal unit, while

the part labeled "Stacked Coils" is a support platform for holding the concentric

data and power coils. The internal unit contains two nano strip connectors (A79041-

01, Omnetic Connector Corp., Minneapolis, MN) for connecting two microelectrode

arrays to the internal unit.

Figure 4-11(a) shows our assembled internal unit with some circuit components

on the PCB labeled, while Fig. 4-11(b) shows just the flexible PCB substrate when it

is flexed. The PCB contains 5 routing layers and one ground plane. The main com-
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Figure 4-10: Conceptual diagram showing the planned physical dimensions of the
internal unit relative to the surgery area on a rhesus macaque's skull.
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Figure 4-11: (a) Populated internal unit. (b) Flexible PCB substrate of the internal
unit.
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ponent of the PCB has dimensions of 18 mm x 56 mm, while the coil platform adds

an area of 18 mm x 22 mm to the entire device. The PCB was carefully designed to

minimize noise coupling from the digital components (FPGA and on-board switching

regulators) to the sensitive analog components (neural amplifiers on the 32-channel

neural recording IC). Separate ground systems are used for the Power Management

& Battery Charging Unit, the FPGA, the internal data telemetry unit, and the 32-

channel neural recording IC. The grounds of these circuits are combined at a single

point on the PCB, where it is connected to the battery's cathode. This technique

helps prevent the ground current of the circuits with higher power and higher switch-

ing activities, such as the FPGA and the switching regulators, from disturbing the

ground potential of the sensitive neural amplifiers [44]. In addition, careful shielding

was employed to reduce capacitive coupling between crossing PCB traces. The sen-

sitive analog signals including the input wires of the 32 neural amplifiers were routed

on the top layer of the PCB. The digital signals were routed on layers 3, 4, and 5.

The ground plane on layer 2 acts as a shield between the analog signals on the top

layer and the digital signals on layers 3 and below.

4.8 Experimental Measurements

Figure 4-12(a) shows the experimental setup for testing our implantable wireless neu-

ral recording system, while Fig. 4-12(b) shows a close-up view of the overall wireless

neural recording system (internal unit & external unit) under test. The internal unit

is powered by a 3.6 V supply voltage from a Keithley source meter, while the external

unit is powered by a 3.3 V supply from another source meter. The source meter is used

to power the internal unit instead of a battery for the purpose of power measurements

during different states of operation of the internal unit. Neural signals are fed into

one of the electrode array connectors (to 16 inputs of the internal unit), while another

array connector is grounded. An audio file containing neural signals is played from

an iPod. The audio output of the iPod is fed to a Plexon headstage tester [3] where

the neural signals are attenuated by a factor of 1000 before being input into all the
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Figure 4-12: (a) Experimental setup of the implantable wireless neural recording
system. (b) Internal unit and external unit under test.
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16 channels of the array connector in parallel. The headstage tester also mimics real

recording conditions of real recording electrodes by providing high output impedance

and adding thermal noise to the neural signals. Due to the high impedance on each

channel of the headstage tester, the whole unit needs to be wrapped in an aluminum

foil for shielding the high-impedance nodes against power line interference. As shown

in Fig. 4-12(b), the data coil of the internal unit and that of the external unit are

placed concentric to each other, with a 5-mm separation by a piece of foam. A USB

cable is connected from the external unit to a data acquisition system where the data

is streamed into a PC.

During a normal recording session (in the Stream8 mode) when all the subsystems

of the internal unit are operating and the data are being transmitted to the external

unit, the internal unit consumes a total of 6.4 mW (1.8 mA from a 3.6 V supply). Note

that the internal unit still works when the power supply is reduced to 3 V. However,

we choose a supply voltage of 3.6 V since this is the output voltage of a Li-ion battery.

Figure 4-13(a) shows the received neural data from the PC from one of the recording

channels. The neural amplifier's gain for this recording is 60 dB. The close-up version

of this waveform, illustrating both the high-amplitude and low-amplitude spikes, is

shown in Fig. 4-13(b). Due to careful PCB design, the waveform shown in Fig 4-13(a)

expresses no sign of interference from the on-board digital circuits. Figure 4-14 shows

a part of the waveform that contains only the background noise. Calculating the rms

value of this waveform gives the output noise value of 3.3 codes. Referring this value

to the input of the neural amplifier, with the fact that 1 code is equal to 1/28 V

and that the input signal has been amplified by 60 dB, gives the noise referred to

the input of the neural amplifier of 12.9 pVrms. Note that the value of the resister

used on the Plexon headstage tester for adding thermal noise to the neural signals is

500 kQ. For the 12-kHz bandwidth of the neural amplifier, the thermal noise due to

this resister is 12.5 pVrms. Therefore, the noise seen on the output waveform of our

wireless neural recording system is mostly from the headstage tester, and not from

intrinsic noise of our system.

We have also tested different states of operation of the internal unit. The downlink
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Figure 4-13: Digitized neural data from one of the recording channels (gain = 60
dB) of the implantable wireless neural recording system (a) Long-time trace. (b)
Short-time trace.
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Figure 4-14: A short-time trace showing the noise of the waveform in Fig. 4-13(a).

programming works correctly. We are able to force the internal unit into the Pro-

gramming mode by applying magnetic field to the on-board magnetic switch, and are

able to configure all the parameters of the internal unit correctly. When the internal

unit is programmed into the Idle mode, the 1.8 V supply domain is powered down

as expected, and the internal unit draws a total current of 400 PA from the 3.6 V

supply (from the Keithley source meter). This standby power is due to the standby

current of the off-the-shelf switching power regulators and linear regulators in the

power management & battery charging unit. Due to strong coupling between the

data and power coils of the internal unit, the two coils cannot be placed concentric

to each other during the battery charging phase. The strong coupling between the

two internal coils causes the internal data telemetry unit, which is connected to the

data coil, to leak significant amount of current (around 4 mA) from the 2.5 V supply

domain during the battery charging phase. Thus, the output current from the battery

charging IC is drained away due to the power leakage from the 2.5 V supply domain,

and could not be directed toward charging the battery. However, this problem can be

solved simply by separating the two coils such that they do not overlap. We test the

battery charging circuitry by transferring RF power to the receiving internal power

coil on the internal unit. Once the rectified voltage of more than 5 V is detected on
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the internal unit, the internal unit goes into the Charging mode. During this mode,

the current of 1.7 mA is delivered to the Keithley source meter, indicating that the

battery charging IC is successfully delivering current to charge an implantable battery

as designed.

Table 4.5: System Level Performance
Specification Value
No. of Channels 32
Power Supply 3.6 V (battery)
Output Modes i) waveform snippets of all 32 channels

ii) 8 channels of raw waveform
iii) decoded & thresholded spike information

Uplink Data Rate 2.5 Mbps
Downlink Data Rate 300 kbps
Amplifier:

Gain 49-66 dB
Low cut-off 0.126 Hz or 350 Hz
High cut-off 293 Hz or 12 kHz
Input-referred noise 5.4-11.2 pVrms

Power Consumption:
Recording 6.4 mW
Stand-by 1.4 mW

Figure of Merit 80 pJ/(ch - bit)
Size:

Main PCB 1.8 cm x 5.6 cm
Coil platform 1.8 cm x 2.2 cm

Table 4.5 summarizes the performance of our implantable wireless neural recording

system. In order to compare the energy efficiency of various implantable wireless

neural recording systems reported in the literature, we have devised a figure of merit

(FOM) which bases on total power consumption, number of recording channels, and

the output data rate of the system. The figure of merit can be calculated from

FOM = Ptotai/(No. of channels x Output data rate). Our system achieves a figure of

merit of 80 pJ/(Ch-bit), which places it among the most energy-efficient implantable

wireless neural recording systems to date. Table 4.6 compares the performance of

our neural recording systems with those published earlier in the literature. Note

that we do not include the FOM of the work in [17] because it would not be a fair
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Table 4.6: Comparison to other state-of-the-art implantable wireless neural recording
systems

Reference [26] [62] [17] This work

No. of Channels 100 64 6 32

Supply Voltage 3.55 V 1.8 V 3 V 3.6 V

Up. Data Rate 330 kbps 2 Mbps 9.6 kbps 2.5 Mbps

Down. Data Rate 6.5 kbps 2 Mbps NA 300 kbps

Tx. Range a few cm a few em 9 m a few cm

Amplifier: gain 60 dB 60 dB 46 dB 49-66 dB

Low cut-off 300 Hz <10 Hz-100 Hz a few Hz 0.126 Hz, 350 Hz

High cut-off 5 kHz 9.1 kHz 1 kHz 293 Hz, 12 kHz

Power 13.5 mW 14.4 mW 66 mW 6.4 mW

FOM 450 112 NA 80

(pJ/(Ch-bit))

Sizes NA 1.4 cm x 1.55 cm 2.5 cm x 2.5 cm 1.8 cm x 5.6 cm
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comparison. The system in [17] was designed to transmit to a long distance of 9 m,

and thus its wireless telemetry system consumes much more power than other systems

in Table 4.6.

4.9 Conclusion

In this chapter, I have presented the design of an implantable wireless neural recording

system. The design of the overall system including the internal unit and the external

unit have been presented, while the emphasis is on the neural signal processing aspect

on the internal unit. The implantable unit (internal unit) consists of the 32-channel

neural recording IC which is the topic of Chapter 3, the power management & bat-

tery charging unit, the on-board low-power FPGA, and the impedance-modulation

wireless telemetry system. The internal units utilizes separate data coil and power

coil for data and power transfer. The system can amplify and digitize neural signals

from 32 recording electrodes. The digitized neural signals are processed by the on-

board FPGA to reduce the amount of data that must be transmitted to the external

world. The system was successfully tested on the lab bench and exhibited high-quality

recordings. By combining state-of-the-art ASICs, commercially-available FPGA and

discrete components, the system achieved excellent energy efficiency, while still offer-

ing design flexibility during the system development phase. The internal unit's power

consumption of 6.4 mW from a 3.6 V supply and the wireless output data rate of 2.5

Mbps place it among the most energy-efficient implantable wireless neural recording

systems reported to date.
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Chapter 5

Conclusions

5.1 Summary

This thesis focused on the development of an implantable wireless neural recording

system. The major design goal is to minimize the total power consumption of the

implantable unit to avoid excessive heat dissipation in the area of implantation and

to maximize the lifetime of the implantable battery that powers the internal unit.

The following contributions were made to this area:

" The design of an ultra-low-power neural recording amplifier was reported. The

design utilized the folded-cascode amplifier topology with extreme current scal-

ing technique and source-degenerated current mirrors to simultaneously mini-

mize the input-referred noise of the amplifier and its overall power consumption.

With such techniques, the amplifier achieved an input-referred noise close to the-

oretical limit of two transistors in an input differential pair, while most of its

supply current was consumed only in this input differential pair.

" The design of an ultra-low-power 32-channel neural recording system (IC) was

reported. By utilizing an energy-and-area-efficient amplifier, analog multi-

plexer, and digital-to-analog converter, the neural recording IC achieved very

low power and small silicon area per recording channel.

" An adaptive biasing strategy was presented and utilized in designing the neural
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amplifier. Combined with the system programmability, the adaptive biasing

technique helps minimize the total power consumption of the overall IC, while

still making it useful for different recording conditions.

These innovations were incorporated into the design of a fully-implantable wire-

less neural recording system. The implantable wireless neural recording system can

amplify and digitize neural signals from 32 recording electrodes, and transmit neural

information to the external unit at a rate of 2.5 Mbps. The system also incorporated

an energy-efficient battery charging circuitry for charging an implantable battery that

powers the internal unit. By incorporating a low-power FPGA and state-of-the-art

ASICs, the implantable system achieved very low-power consumption, while offering

design flexibility during the system development phase.

5.2 Future Work

Several areas are worth exploring to make the current neural recording system more

useful in practical BMIs. These areas include:

" A clear disadvantage of the presented system is its size. To make the system

useful in clinical applications, the size of the implantable unit should be reduced

to approximately no larger than 2 cm x 2 cm. The size limitation of this work

arises from the low level of system integration at the integrated circuit level

(a tradeoff for design flexibility). By combining the subsystems described in

this thesis into a single IC, the size of the implantable unit will be drastically

reduced. This is one of the reasons we use an on-board FPGA, instead of a

microcontroller, to implement the signal processing functions of the system.

The hardware description language (HDL) for synthesizing the digital system

on the FPGA can be conveniently ported to implement the same functions in

a custom ASIC environment.

" A lot of improvements can be done toward reducing the total power consump-

tion of the internal unit. A large fraction of the total power consumption of the
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internal unit is in the 10 MHz clock generation process, chip-to-chip communi-

cations, and signal processing on the FPGA. Note that the power consumption

of the 10 MHz crystal oscillator alone is about 1.5 mW. This power can be

reduced to less than 100 pW by implementing the active circuitry part of such

oscillator in the same technology in which the 32-channel neural recording IC

was implemented. The power consumption of the FPGA amounts to about 2

mW. This same power can be reduced to less than 100 ptW if the same digital

functions are implemented in an ultra-low-power digital ASIC manner.

9 For high performance BMIs, a high-channel-count system is necessary. The

presented system was designed with only 32 input channels as a proof of con-

cept. However, increasing the number of recording channels is an improvement

worth pursuing. The designs of the circuit components in the 32-channel neural

recording IC are suitable for scaling to a high-channel-count system. Note that

the reason we chose to implement only 32 recording channels was not because of

the die area limitation, but because of the system integration issues. Interfacing

multielectrode arrays with a high-channel-count neural recording IC will need

a more sophisticated integration technology than what we used in this thesis.

A high-channel-count neural recording IC will require a larger number of I/O

pads, which will make the pad pitch even smaller and the routing to these pads

more difficult. In our system, routing 32 traces on a flexible PCB from the array

connectors to the 32 input pads of the neural recording IC poses some design

challenges due to limitations of the PCB technology. A more promising method

is to use a silicon platform [62] in which the signals can be easily routed with

ultra-fine traces in the same manner as in VLSI design.
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