1,109 research outputs found

    BPX-Preconditioning for isogeometric analysis

    Get PDF
    We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or Nurbs mapping which we assume to be regular. The numerical solution of the PDE is computed by means of tensor product B-splines mapped onto the physical domain. We construct additive multilevel preconditioners and show that they are asymptotically optimal, i.e., the spectral condition number of the resulting preconditioned stiffness matrix is independent of hh. Together with a nested iteration scheme, this enables an iterative solution scheme of optimal linear complexity. The theoretical results are substantiated by numerical examples in two and three space dimensions

    Non-equispaced B-spline wavelets

    Full text link
    This paper has three main contributions. The first is the construction of wavelet transforms from B-spline scaling functions defined on a grid of non-equispaced knots. The new construction extends the equispaced, biorthogonal, compactly supported Cohen-Daubechies-Feauveau wavelets. The new construction is based on the factorisation of wavelet transforms into lifting steps. The second and third contributions are new insights on how to use these and other wavelets in statistical applications. The second contribution is related to the bias of a wavelet representation. It is investigated how the fine scaling coefficients should be derived from the observations. In the context of equispaced data, it is common practice to simply take the observations as fine scale coefficients. It is argued in this paper that this is not acceptable for non-interpolating wavelets on non-equidistant data. Finally, the third contribution is the study of the variance in a non-orthogonal wavelet transform in a new framework, replacing the numerical condition as a measure for non-orthogonality. By controlling the variances of the reconstruction from the wavelet coefficients, the new framework allows us to design wavelet transforms on irregular point sets with a focus on their use for smoothing or other applications in statistics.Comment: 42 pages, 2 figure

    Characterization of bivariate hierarchical quartic box splines on a three-directional grid

    Get PDF
    International audienceWe consider the adaptive refinement of bivariate quartic C 2-smooth box spline spaces on the three-directional (type-I) grid G. The polynomial segments of these box splines belong to a certain subspace of the space of quar-tic polynomials, which will be called the space of special quartics. Given a bounded domain Ω ⊂ R 2 and finite sequence (G ℓ) ℓ=0,...,N of dyadically refined grids, we obtain a hierarchical grid by selecting mutually disjoint cells from all levels such that their union covers the entire domain. Using a suitable selection procedure allows to define a basis spanning the hierarchical box spline space. The paper derives a characterization of this space. Under certain mild assumptions on the hierarchical grid, the hierarchical spline space is shown to contain all C 2-smooth functions whose restrictions to the cells of the hierarchical grid are special quartic polynomials. Thus, in this case we can give an affirmative answer to the completeness questions for the hierarchical box spline basis

    Wavelet and Multiscale Methods

    Get PDF
    Various scientific models demand finer and finer resolutions of relevant features. Paradoxically, increasing computational power serves to even heighten this demand. Namely, the wealth of available data itself becomes a major obstruction. Extracting essential information from complex structures and developing rigorous models to quantify the quality of information leads to tasks that are not tractable by standard numerical techniques. The last decade has seen the emergence of several new computational methodologies to address this situation. Their common features are the nonlinearity of the solution methods as well as the ability of separating solution characteristics living on different length scales. Perhaps the most prominent examples lie in multigrid methods and adaptive grid solvers for partial differential equations. These have substantially advanced the frontiers of computability for certain problem classes in numerical analysis. Other highly visible examples are: regression techniques in nonparametric statistical estimation, the design of universal estimators in the context of mathematical learning theory and machine learning; the investigation of greedy algorithms in complexity theory, compression techniques and encoding in signal and image processing; the solution of global operator equations through the compression of fully populated matrices arising from boundary integral equations with the aid of multipole expansions and hierarchical matrices; attacking problems in high spatial dimensions by sparse grid or hyperbolic wavelet concepts. This workshop proposed to deepen the understanding of the underlying mathematical concepts that drive this new evolution of computation and to promote the exchange of ideas emerging in various disciplines

    Data-driven quasi-interpolant spline surfaces for point cloud approximation

    Get PDF
    In this paper we investigate a local surface approximation, the Weighted Quasi Interpolant Spline Approximation (wQISA), specifically designed for large and noisy point clouds. We briefly describe the properties of the wQISA representation and introduce a novel data-driven implementation, which combines prediction capability and complexity efficiency. We provide an extended comparative analysis with other continuous approximations on real data, including different types of surfaces and levels of noise, such as 3D models, terrain data and digital environmental data

    A subdivision-based implementation of non-uniform local refinement with THB-splines

    Get PDF
    Paper accepted for 15th IMA International Conference on Mathematics on Surfaces, 2017. Abstract: Local refinement of spline basis functions is an important process for spline approximation and local feature modelling in computer aided design (CAD). This paper develops an efficient local refinement method for non-uniform and general degree THB-splines(Truncated hierarchical B-splines). A non-uniform subdivision algorithm is improved to efficiently subdivide a single non-uniform B-spline basis function. The subdivision scheme is then applied to locally hierarchically refine non-uniform B-spline basis functions. The refined basis functions are non-uniform and satisfy the properties of linear independence, partition of unity and are locally supported. The refined basis functions are suitable for spline approximation and numerical analysis. The implementation makes it possible for hierarchical approximation to use the same non-uniform B-spline basis functions as existing modelling tools have used. The improved subdivision algorithm is faster than classic knot insertion. The non-uniform THB-spline approximation is shown to be more accurate than uniform low degree hierarchical local refinement when applied to two classical approximation problems

    From spline wavelet to sampling theory on circulant graphs and beyond– conceiving sparsity in graph signal processing

    Get PDF
    Graph Signal Processing (GSP), as the field concerned with the extension of classical signal processing concepts to the graph domain, is still at the beginning on the path toward providing a generalized theory of signal processing. As such, this thesis aspires to conceive the theory of sparse representations on graphs by traversing the cornerstones of wavelet and sampling theory on graphs. Beginning with the novel topic of graph spline wavelet theory, we introduce families of spline and e-spline wavelets, and associated filterbanks on circulant graphs, which lever- age an inherent vanishing moment property of circulant graph Laplacian matrices (and their parameterized generalizations), for the reproduction and annihilation of (exponen- tial) polynomial signals. Further, these families are shown to provide a stepping stone to generalized graph wavelet designs with adaptive (annihilation) properties. Circulant graphs, which serve as building blocks, facilitate intuitively equivalent signal processing concepts and operations, such that insights can be leveraged for and extended to more complex scenarios, including arbitrary undirected graphs, time-varying graphs, as well as associated signals with space- and time-variant properties, all the while retaining the focus on inducing sparse representations. Further, we shift from sparsity-inducing to sparsity-leveraging theory and present a novel sampling and graph coarsening framework for (wavelet-)sparse graph signals, inspired by Finite Rate of Innovation (FRI) theory and directly building upon (graph) spline wavelet theory. At its core, the introduced Graph-FRI-framework states that any K-sparse signal residing on the vertices of a circulant graph can be sampled and perfectly reconstructed from its dimensionality-reduced graph spectral representation of minimum size 2K, while the structure of an associated coarsened graph is simultaneously inferred. Extensions to arbitrary graphs can be enforced via suitable approximation schemes. Eventually, gained insights are unified in a graph-based image approximation framework which further leverages graph partitioning and re-labelling techniques for a maximally sparse graph wavelet representation.Open Acces
    corecore