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Abstract

Local refinement of spline basis functions is an important pro-
cess for spline approximation and local feature modelling in com-
puter aided design (CAD). This paper develops an efficient lo-
cal refinement method for non-uniform and general degree THB-
splines(Truncated hierarchical B-splines). A non-uniform subdivi-
sion algorithm is improved to efficiently subdivide a single non-
uniform B-spline basis function. The subdivision scheme is then
applied to locally hierarchically refine non-uniform B-spline basis
functions. The refined basis functions are non-uniform and sat-
isfy the properties of linear independence, partition of unity and
are locally supported. The refined basis functions are suitable for
spline approximation and numerical analysis. The implementation
makes it possible for hierarchical approximation to use the same
non-uniform B-spline basis functions as existing modelling tools
have used. The improved subdivision algorithm is faster than clas-
sic knot insertion. The non-uniform THB-spline approximation is
shown to be more accurate than uniform low degree hierarchical
local refinement when applied to two classical approximation prob-
lems.

1 Introduction

Efficient local unstructured refinement is an extremely important research
focus in Isogeometric Analysis (IGA), since geometric models created by
designers will most likely be too coarse for analysis [10, 17]. IGA aims
to seamlessly integrate CAD and FEA (finite element analysis), using the
same spline basis functions for the representation of geometry in the design
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stage and the approximation in the analysis stage. Spline approximation
also has many other applications, such as approximation of curve segments
[5, 6], reduction of dense data points [12] and fitting dense meshes [13].
Furthermore, adaptive local mesh refinement is a most effective approach
for FEA as shown in [1]. Local refinement can increase the accuracy of
approximation whilst using fewer basis functions.

The THB-spline basis [8] is a normalized basis for hierarchical spline
spaces. Thanks to the truncation mechanism, it forms a convex partition
of unity. It has smaller support than hierarchical B-splines, hence enables
a local mesh refinement in an effective and easy way. Furthermore, the
THB-spline basis is strongly stable for adaptively refined multilevel spline
spaces [9]. Consequently, THB-splines seem to be a promising adaptive ap-
proximation tool. However, the calculation of the weights of non-uniform
truncated refined basis functions is not clear. This paper will focus on
efficient implementation of the THB-spline in non-uniform settings.

Non-uniform general degree hierarchical refinement is essential in NURBS-
based IGA which requires the same basis functions in both the design
model and the approximation of the solution of the partial differential
equation. Since the design stage adopts non-uniform B-splines, the ap-
proximation stage should adopt the same format of non-uniform B-splines.
Non-uniform hierarchical refinement gives finer refinement and more local-
ization than uniform hierarchical refinement, as shown in Fig. 1. Further-
more, general degree B-splines gives more accurate approximation than
low degree. Hence, non-uniform general degree hierarchical refinement is
very important for improving the adaptive IGA. However, application of
non-uniform B-splines to hierarchical refinement is more of a challenging
task due to the complexity of non-uniform knot insertion.

B-spline subdivision schemes provide a feasible solution to the problem
of non-uniform general degree hierarchical refinement. Knot insertion is
the basic operation in both subdivision surface generation and hierarchical
refinement of basis functions. The Boehm algorithm [2] is for single knot
insertion. The Oslo algorithm [4] extends it to parallel knot insertion.
Recently, efficient parallel knots insertion algorithms have been developed
[3] with much reduced number of iterations, which greatly improves the
efficiency and speed of the subdivision. The generated subdivision sur-
face is compatible with NURBS. This suggests that efficient hierarchical
refinement of NURBS basis functions is feasible.

The aim of the present paper is to develop an efficient subdivision-
based implementation of THB-splines in general degree and non-uniform
settings. Firstly, a non-uniform subdivision algorithm is developed to
determine the weights of the refined basis functions derived from a single
original basis function. The resulting subdivision weights are then used
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(a)Uniform hierarchical refinement (b)Non-uniform hierarchical refinement

Figure 1. Non-uniform hierarchical refinement gives finer refinement
and smaller localization than uniform hierarchical refinement at the

marked black point of the knot meshes

with hierarchical refinement to generate a refined basis with properties
of linear independence, partition of unity and local support. Finally, the
refined basis functions are used to improve the accuracy of approximation.
The refined basis functions provide a richer set of basis functions that can
be used for local feature modelling and adaptive IGA approximation. The
main contribution of the paper is improving the non-uniform subdivision
algorithm to be suitable for approximation, and implementing efficiently
local refinement of THB-splines by applying the algorithm.

The remainder of this paper is organized as follows. Section 2 re-
views related work in THB-splines and subdivision of B-spline curves and
surfaces. Section 3 improves a non-uniform subdivision algorithm for ap-
proximation. Implementation of univariate non-uniform THB-splines of
general degree is given in section 4. Section 5 extends the implementa-
tion to the bi-variate case. The performance of the implementation of
non-uniform THB-splines is demonstrated by adaptive approximations in
Section 6. Section 7 concludes with a few remarks and some directions for
future research.

2 Related work

A B-spline basis of degree p is formed from a sequence of knots, τi ∈ R,
where τ0 ≤ τ1 ≤, ...,≤ τn+p+2. Let τ = {τ0, τ1, ..., τn+p+2}, a univariate
B-spline basis function Ni,p(τ) is defined using a recurrence relation.
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2.1 Truncated hierarchical B-spline basis

Hierarchical refinement constructs a basis of a hierarchical spline space
through local basis refinement. Suitable hierarchical B-splines are pro-
posed in [7, 18], which are locally supported, linearly independent and
non-negative. The approach is extended by [8] so that the resulting ba-
sis forms a partition of unity along with smaller support, and are called
truncated hierarchical B-splines.

Let
V 0 ⊂ V 1 ⊂ · · · ⊂ V n−1

be a nested sequence of univariate B-splines function spaces defined on
the domain Γ0. Each spline space V l, l = 0, . . . , n − 1, is spanned by a
given normalized B-spline basis N l.

In addition, let
Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γn−1

be a sequence of nested domains.
Let h ∈ V l and let

h =
∑

N∈N l+1

W l+1
N (h)N.

be its representation with respect to the finer basis of V l+1, where W l+1
N is

the weight derived from Eq.(1). The truncation of h with respect to N l+1

and Γl+1 is defined as

truncl+1h = h−
∑

N∈N l+1,suppN⊆Γl+1

W l+1
N (h)N

=
∑

N∈N l+1,suppN*Γl+1

W l+1
N (h)N.

Although THB-splines gives the general definition of a hierarchical ba-
sis with small local support, the calculation of the weights of non-uniform
refined basis functions is not clear. The Boehm knot insertion algorithm
[2] or the Oslo algorithm [4] could be used to calculate the weights of
refined basis functions. However, there is an issue with efficiency due to
producing refined basis functions one by one. Non-uniform subdivision
algorithms provide feasible solutions to this problem. The efficiency is-
sue is addressed by [3] to insert any number of knots at a time using
refine and smooth steps to produce refined basis function simultaneously,
as explained below.
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2.2 Non-uniform subdivision of B-spline curves and

surfaces

Refinement by subdivision is a remarkable property of B-splines. For a
univariate B-spline basis function N0,p of polynomial degree p, the subdi-
vision property leads to the relation [16]:

N0,p(τ) =

p+1
∑

j=0

WjN̄j,p(τ). (2.1)

where N̄j,p are the subdivided basis functions and Wj ∈ R are the weights
of the subdivided basis functions. (The Wj are used to construct the
original basis function, not the weights of basis functions to construct a
B-spline curve).

For the uniform case, the weights Wj can be expressed in terms of
binomial coefficients as [14]:

Wj = 2−p (p+ 1)!

j!(p+ 1− j)!
(2.2)

Unfortunately for non-uniform B-splines, Eq. (2.2) does not hold. Nev-
ertheless the subdivision weights for the non-uniform case can be con-
structed using certain subdivision algorithms [3] based on blossoming.
The blossom [15] of a degree p polynomial P (τ) is the unique polynomial
in p variables b(τ1, τ2, . . . , τp) satisfying the following three properties:

• Symmetry: b(τσ(1), τσ(2), . . . , τσ(p)) = b(τ1, τ2, . . . , τp) for any permu-
tation σ of {1, 2, . . . , p}

• Multi-affine: b((1−α)τ11+ατ12, τ2, . . . , τp) = (1−α)b(τ11, τ2, . . . , τp)+
αb(τ12, τ2, . . . , τp)

• Diagonal: b(τ, τ, . . . , τ) = P (τ)

These properties are compatible with B-spline basis functions N(τ).
The relationship between B-spline basis functions can be represented by
their corresponding blossoms. The properties of blossom can be used for
subdivision of B-spline basis functions. According to the dual function
property, they are also suitable for control points construction.

Based on blossoming [15] and using the refine and smooth algorithm
[11], a non-uniform subdivision algorithm is introduced for general degree
B-spline curves [3]. This algorithm works by inserting new knots between
each pair of original knots. A case distinction is required for odd and even
degrees. For odd degree, the refine stage adds a new point between each
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pair of the original control points. Each smoothing stage copies half of the
points themselves. Each of the other half points is an affine combination
of three consecutive points. For even degree, the refine stage just doubles
the original control points. Each smoothing stage places a pair of new
points somewhere on the edge between a pair of old points. As a result,
the algorithm efficiently doubles the control points of a non-uniform B-
spline curve. The subdivision property can be used to improve spline
approximation by construction of an optimal spline space.

3 Improved Non-uniform Subdivision Algo-

rithm for Approximation

For non-uniform B-spline basis functions, a refinability formula equiva-
lent to the uniform case, formula (2.2), does not exit. The aim here is
to develop a subdivision algorithm to generate the weights for the refined
basis functions and apply these weights for non-uniform hierarchical basis
refinement. By simply replacing the coefficients in formula (2.1) with the
generated non-uniform subdivision weights, the existing uniform hierar-
chical refinement algorithm can be used to achieve non-uniform refinement
of the basis functions.

An efficient basis function refinement algorithm can be constructed
from the subdivision algorithm in [3] which inserts control points into the
original control meshes. This procedure can also be called knot insertion,
since the addition of control points to a control mesh must be accompa-
nied by knots inserted into neighboring basis functions. Operating on the
knots of a single non-uniform B-spline basis function instead of the control
points, and eliminating the refine step, a simplified refinement algorithm
may be obtained. For odd degree, we find that the refine step can be
combined with the smooth step. Setting the level variable λ to zero, the
refine step is identical to the smooth step of level zero. For even degree,
the refine step is replaced by setting two unit weights to the original ba-
sis function. Extra steps are added to check whether a subdivided basis
function is an end basis function, since the weights associated with end
subdivided basis functions are different from the weights associated with
internal subdivided basis functions.

To illustrate the subdivision process, two examples of blossoming di-
agrams for the quintic and sextic algorithms are shown in Fig. 2. Each
basis function is represented as the blossom function b(τ1, τ2, . . . , τp). Note
that the variables of the blossom function are the internal knots of its
corresponding B-spline basis function. For example, the blossom vari-
ables of the knot vector {τ0, τ1, . . . , τp, τp+1} are {τ1, τ2, . . . , τp}. Here,
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τi, i = 0, 1, ..., p+1 is an original knot and τ̄i, i = 0, 1, ..., p is a new knot
to be inserted. An affine combination is represented by arrows entering a
basis function. A dashed line means no actual calculation.

Algorithms 1 and 2 give generic pseudo-code implementations of the
subdivision of a single non-uniform B-spline basis function for odd and
even degree respectively. The original weight value is one, which is the
weight of the original basis function for itself. The output are the weights
of the refined basis functions which make up the original basis function,
i.e. which can be used to reconstruct the original basis function.

Two examples of the subdivision algorithms are given in Fig. 3. The
original basis functions are quintic and sextic non-uniform B-splines func-
tions. Applying the subdivision algorithms to the knots of the original
basis functions generates the weights of the refined basis functions. Ac-
cording to equation (2.1), the original basis functions are the sum of the
weighted refined basis functions.

The proposed subdivision algorithm is more efficient than classic knot
insertion algorithms, e.g. Oslo algorithm [4]. The Oslo algorithm can be
treated as a local knot insertion algorithm, i.e. inserting into only one
interval at a time. The proposed algorithms are global, i.e. acting on
all knot intervals at once. The proposed algorithm is likely to overlap
computations as much as possible. The generated subdivision weights can
be used for hierarchical refinement of non-uniform B-spline basis functions
as discussed in the following section.
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Figure 2. Blossoming diagrams for subdivision of a single non-uniform B-spline basis function (a) p = 5 and (b)
p = 6
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Algorithm 1: Subdivision algorithm for a non-uniform B-spline ba-
sis function of odd degree
input : Degree p, where p mod 2 = 1
input : Knot vector τ of the original basis function, where | τ |= p+ 2
input : Knots to be inserted τ̄ , where τi ≤ τ̄i ≤ τi+1, 0 ≤ i ≤ p+ 1
output: Weights Wj , 0 ≤ j ≤ p+ 1, of the refined basis functions

1 t← τ ∪ τ̄ // Such that each τi = t2i and each τ̄i = t2i+1

2 w0
(p+1)/2 ← 1.0 // Assign initial weight

3 for λ← 0 to (p− 1)/2 do // For each smoothing step

4 for i← p− λ to p+ λ+ 2 do // For each new basis

5 j ← i− (p+ 1)/2 // Shifting of index

6 if λ mod 2 = i mod 2 then // Copy the weight

7 wλ+1
j = wλ

j

8 else // Calculate weights by affine combination

9 c0 =
ti+p−λ−ti+λ

ti+p−λ−ti−p+λ
; c1 =

ti+λ−ti−λ

ti+p−λ−ti−p+λ
; c2 =

ti−λ−ti−p+λ

ti+p−λ−ti−p+λ

10 if i = p− λ then // Left end basis

11 wλ+1
j = c2w

λ
j+1

12 else if i = p+ λ+ 2 then // Right end basis

13 wλ+1
j = c0w

λ
j−1

14 else // Internal basis

15 wλ+1
j = c0w

λ
j−1 + c1w

λ
j + c2w

λ
j+1

16 for j ← 0 to p+ 1 do // Transfer weight notation

17 Wj = w
(p+1)/2
j

0.0 2.0 3.0 6.0 8.0 11.0 15.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 2.0 3.0 6.0 8.0 11.0 15.0 17.0
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Quintic (b) Sextic

Figure 3. Subdivision of a single non-uniform spline basis function
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Algorithm 2: Subdivision algorithm for a non-uniform B-spline ba-
sis function of even degree
input : Degree p, where p mod 2 = 0
input : Knot vector τ of the original basis function, where | τ |= p+ 2
input : Knots to be inserted τ̄ , where τi ≤ τ̄i ≤ τi+1, 0 ≤ i ≤ p+ 1
output: Weights Wj , 0 ≤ j ≤ p+ 1, of the refined basis functions

1 t← τ ∪ τ̄ // Construct refined knot vector

2 w1
p/2 ← 1.0; w1

p/2+1 ← 1.0 // Assign initial weights

3 for λ← 1 to p/2 do // For each smoothing step

4 for i← p− λ to p+ λ+ 1 do // For each new basis

5 j ← i− p/2 // Shifting of index

// Calculate weights by affine combination

6 if λ mod 2 = i mod 2 then

7 c0 =
ti+p−λ+2−ti−λ+1

ti+p−λ+2−ti−p+λ
; c1 =

ti−λ+1−ti−p+λ

ti+p−λ+2−ti−p+λ

8 if i = p− λ then // Left end basis

9 wλ+1
j = c1w

λ
j+1

10 else if i = p+ λ then // Second right end basis

11 wλ+1
j = c0w

λ
j

12 else // Internal basis

13 wλ+1
j = c0w

λ
j + c1w

λ
j+1

14 else

15 c0 =
ti+p−λ+1−ti+λ

ti+p−λ+1−ti−p+λ−1
; c1 =

ti+λ−ti−p+λ−1

ti+p−λ+1−ti−p+λ−1

16 if i = p− λ+ 1 then // Second left end basis

17 wλ+1
j = c1w

λ
j

18 else if i = p+ λ+ 1 then // Right end basis

19 wλ+1
j = c0w

λ
j−1

20 else // Internal basis

21 wλ+1
j = c0w

λ
j−1 + c1w

λ
j

22 for j ← 0 to p+ 1 do // Transfer weight notation

23 Wj = w
p/2+1
j

4 Implementation of Univariate Non-uniform

THB-splines of General Degree

In this section, we derive a local refinement scheme to construct non-
uniform THB-splines step by step, using the weights of the refined basis
functions generated by the subdivision algorithm introduced in section 3.



11

4.1 Supporting small localization and maintaining

the original partitioning

Given a knot interval marked to be refined, determining the refined domain
and thus choosing the number of refined basis functions is an essential issue
in hierarchical refinement. Reducing the local support and maintaining
the original domain are two requirements that need to be considered.

A straightforward approach is to apply the subdivision equation (2.1)
to all the original basis functions with support in the marked knot interval
[18]. However, this approach is inefficient as it results in more refined basis
functions than are necessary, which in turn leads to non-localization.

Alternatively, the contracted approach only adds three refined basis
functions for a cubic B-spline basis function [16]. It is not clear how to
use the contracted approach for general degrees. In the cubic case, this
approach can achieve very small localization and satisfies the requirements
of the approximation. A disadvantage of this approach is that it will
add new knots to the original domain, which makes the refinement more
complex in both geometry and approximation.

The approach here is to just add the refined basis functions whose
support overlaps the marked knot interval. This approach can achieve
smaller localization than straight subdivision and keep the partition of the
original domain [16]. Fig. 4(a) illustrates the refinement of the marked
knot span [6, 10] for a cubic non-uniform B-spline. The support of each
refined basis function overlaps with the marked knot span.

4.2 Recovering linear independence

In order to construct a hierarchical B-spline space suitable for the approx-
imation, the linear independence of the basis functions should be ensured.
With reference to Fig. 4(b), in the refined level, there are more than p+2
consecutive refined B-spline basis functions. The linear combination of
these refined basis functions will represent some of the basis functions in
the previous level, as determined by equation (2.1). In order to determine
the refined span of basis functions, it is necessary to determine all the
B-spline basis functions (all the dotted functions in Fig. 4) to identify
which basis functions can be removed from the coarser level.

4.3 Forming partition of unity

In the hierarchically refined basis of Fig. 4(b), some basis functions of the
original level still implicitly contain some B-spline basis functions of the
refined level. A further improvement of the conditioning and sparsity can
be achieved by removing these multiplicities. If a refined B-spline basis
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Figure 4. Univariate hierarchical refinement
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function has common support with a B-spline basis function on the current
level and if it is a part of the linear combination of the subdivision B-spline
basis functions generated from the current level then we subtract the B-
spline basis function of the refined level, multiplied by the corresponding
subdivision weight, from B-spline basis functions of the current level.

Applying the subtraction procedure to the basis in Fig. 4(b), we get
the refined hierarchical basis in Fig. 4(c). The original basis functions are
plotted as dotted lines, while the subtracted basis functions are plotted
as solid lines. It illustrates that any overlap is further reduced whist
maintaining the unity partition.

4.4 Multi-level hierarchical refinement

By repeating the procedure described in the previous paragraphs, the local
knot support of the refinement can be reduced. An example of multi-level
refinement procedure is illustrated in Fig. 4(d). To refine the position
at 8, the node spans that are marked for refinement in levels 0 and 1 are
[6, 10] and [7.5, 9] respectively.

The hierarchical local refinement is efficient, since only a small por-
tion of coarse basis functions need calculating the associated subdivision
weights. These basis functions’ support partly overlaps the refined in-
tervals. We do not need to do anything to the basis functions outside
the refined interval. We just remove the basis functions within the re-
fined intervals. Replacing the uniform subdivision weights by the weights
generated from the proposed subdivision algorithms, we can realize the
non-uniform hierarchical refinement using the existing uniform hierarchi-
cal refinement code.

5 Implementation of Bivariate non-uniform

THB-splines

The extension of non-uniform subdivision from a single univariate B-spline
basis functions to the bivariate case is straightforward due to their tensor
product structure. The bivariate subdivision can be written as:

Bp,q(u, v) =

p+1
∑

i=0

q+1
∑

j=0

Wi,pN̄i,p(u)Wj,qN̄j,q(v). (5.1)

Where p, q are the polynomial degrees, u, v are the parametric coordinates
in each parametric direction, i, j denotes the position of the subdivided
basis functions in the tensor product structure, and Wi,p,Wj,q are the
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weights of the subdivided basis functions. The weights are calculated
using Algorithms 1 and 2. Fig. 5 illustrates the subdivided non-uniform bi-
quintic basis functions resulting from the subdivision algorithms proposed
in Section 3.

Figure 5. Subdivision of a non-uniform bi-quintic spline basis
function

Similarly, the non-uniform hierarchical refinement approach can be
extended to bivariate B-spline basis functions. Based on the subdivided
bivariate basis functions calculated from Algorithms 1 and 2, the bivariate
hierarchical refinement can be achieved using the steps illustrated in Sec-
tion 4. Fig. 6 illustrates bivariate hierarchical refinement on non-uniform
bi-cubic B-spline basis functions. The locally refined basis are linearly
independent, form a partition of unity and suitable for approximation.

Given a knot interval marked to be refined, the proposed approach
uses a slightly different way from those in THB-splines [8] to determine
the refined domain. Note that the bases are the same as THB-splines,
only the strategy to determine the refined domain is different. In order to
achieve smaller localization, the proposed approach just adds the refined
basis functions whose support overlaps the marked knot interval. If the
present univariate refinement strategy is extended to the bivariate case,
L-junction would appear during the refinement process. Thanks to the
hierarchical approach, L-junction is acceptable in THB-splines as shown
in Fig.2 of [8].
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Figure 6. Non-uniform hierarchical refinement of bi-cubic B-spline
basis functions

6 Approximation using non-uniform THB-

splines

In this section, we compare the behavior of non-uniform high order THB-
splines with uniform low order THB-splines, and the efficiency of the im-
plemented subdivision algorithm with that of the classic knot insertion
method. Their performances are tested on two classical approximation
problems. Least-square fitting is iteratively implemented to approximate
a given function until the residual error is within a specified tolerance.
Given a test function and an initial knot vector defined on a domain, we
iteratively approximate the test function using the hierarchically refined
B-spline basis. The initial non-uniform meshes are manually constructed
so that the meshes in singularity or sharp areas are denser than the meshes
in the flat or smooth areas.The hierarchical refinement algorithm is de-
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scribed as follows:
(a) Compute the least-square approximation using the initial B-spline

basis.
(b) Flag all knot intervals whose error exceeds the given tolerance (30%

of the maximum approximation error).
(c) Apply hierarchical refinement on the flagged knot intervals to gen-

erate one more level of hierarchical B-spline basis.
(d) Compute the least-square approximation using the refined hierar-

chical B-spline basis of step (c).
(e) Repeat from step (b) to (d) until the maximum residual error lies

within the given tolerance.
We test two classical approximation problems using the above de-

scribed approach, and compare the convergence of uniform low order
THB-splines and non-uniform high order THB-splines. The first exam-
ple compares uniform hierarchical refinement to non-uniform hierarchi-
cal refinement using the same order of cubic approximation. The second
example compares low order non-uniform hierarchical refinement to high
order non-uniform hierarchical refinement using quadratic and quartic ap-
proximations respectively. Note that the two test functions are taken from
[8] with small modifications.

Figure 7. Functions considered in the examples

Example 1. We compute the least-squares approximations of the function

f(x) =
2

3 exp(
√

(10x− 3)2 + (10y + 3)2
+

2

3 exp(
√

(10x+ 3)2 + (10y − 3)2
,

as shown on the left of Fig. 7, by sampling the data points on a 150× 150
uniform interval defined on the domain [−1, 1]× [−1, 1]. The function is
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approximated by uniform and non-uniform cubic B-splines basis functions
respectively.

Fig. 8 shows the non-uniform approximation results and errors on lo-
cally refined hierarchical meshes of iterations 0, 2 and 4. Fig. 9(a) gives the
comparison of the convergence of uniform and non-uniform THB-splines
on this function. Fig. 9(a) illustrates that the non-uniform THB-splines
are more accurate than the uniform THB-splines for the same number
of degrees of freedom. Given a specified tolerance, the non-uniform re-
finement uses few degrees of freedom than that of the uniform refinement.
Hence, the non-uniform hierarchical refinement converges faster compared
with the uniform hierarchical refinement algorithm.

The absolute convergence of the approximation seems slow. The main
reason is that most of the degrees of freedom are used to satisfy the bound-
ary condition of the B-splines. Only a small number of the degrees of
freedom contribute to the approximation of the problem. Since the same
original domains are used for all the hierarchical refinements, this will
not affect the comparison of convergence rate for different hierarchical re-
finement methods. The convergence rate can be improved by choosing
alternative error estimators and refinement strategies. A true error esti-
mator or a posteriori error estimator may be used to replace the residual
error [1]. The error threshold which determines the mesh intervals to re-
fine should be related to the approximation problem. Given the marked
mesh interval in a level, a suitable refinement strategy [8] can be chosen
to determine the refinement region in the next level.

Example 2. The data points are sampled on a 150×150 uniform intervals
from the function

f(x) =







2x− 3, 3/2 ≤ x ≤ 2,

1/2 cos(4π
√

q(x, y)) + 1/2, q(x, y) ≤ 1/16,
0, otherwise,

where q(x, y) = (x−1/2)2+(y−1/2)2, defined on the domain [0, 2]×[0, 1]
as shown on the right of Fig. 7.

Fig. 10 compares the quadratic and quartic non-uniform hierarchical
meshes and approximation errors after 5 steps of refinement. It illustrates
that the quartic refinement has smaller errors than quadratic refinement
with similar density of refined meshes. The performance of the approxima-
tion may depend on the function to be tested. For the linear part of the
test function, quartic approximation gives worse results than quadratic
approximation. Larger errors and denser meshes are produced by quartic
refinement than those of quadratic hierarchical refinement. For the cosine
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Figure 8. Non-uniform hierarchical spline approximations (p = 3) to
the function in example 1 of iterations 0, 2 and 4. In each sub-figure, left

is the locally refined hierarchical knot meshes, middle is the
approximation to the function, right is the corresponding errors.
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Figure 9. Convergence of approximation using hierarchical adaptive
local refinement
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Figure 10. Comparison of quadratic and quartic non-uniform
hierarchical approximation for the function in example 2. In each

sub-figure, left is locally refined hierarchical knot meshes, right is the
corresponding approximation errors.

part, quartic hierarchical refinement gives smaller errors than quadratic hi-
erarchical refinement, producing similar density of the hierarchical meshes.

Fig. 9(b) illustrates that high-degree(quartic) hierarchical refinement
is more accurate than low-degree (quadratic) hierarchical refinement for
the combined cosine and linear functions. Given a specified tolerance,
the high-degree refinement uses fewer Degrees of Freedoms (DOFs) than
that of low-degree refinement. Note that the number of DOFs is not
proportional to the density of meshes for different degree of approximation.
The reason is that high-degree DOFs need more mesh knots than low-
degree DOFs. For example, a univariate quartic DOF needs 6 mesh knots
while a univariate quadratic DOF only needs 4 mesh knots. Hence the
quartic refinement uses fewer DOFs than quadratic refinement although
they have similar density of meshes.

The above examples and discussions indicate that the implementa-
tion of non-uniform general degree THB-splines converges faster compared
with the implementation of low degree uniform. The implementation is
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flexible and makes it possible for approximation to use the same non-
uniform B-spline basis functions as existing modelling tools have used.

7 Conclusion

This paper proposed an efficient implementation on non-uniform THB-
splines of general degree. A non-uniform subdivision algorithm is devel-
oped to subdivide a single non-uniform B-spline basis function and applied
to construct THB-splines for use in approximation. The non-uniform sub-
division algorithm is efficient due to simultaneous generation of all refined
basis functions. The proposed approach can be easily integrated into the
existing uniform code for uniform B-splines, by simply applying the sub-
division algorithm to generate the subdivision weights to replace uniform
subdivision weights.

An application of the proposed implementation is approximating clas-
sic approximation functions. This is possible because the proposed im-
plementation makes it possible for both design and approximation stages
to use the same format of non-uniform B-spline basis functions. It has
been illustrated that the non-uniform general degree THB-splines con-
verge faster in comparison with the uniform low degree THB-splines for
the two classic approximation problems tested.

In the future, the hierarchical non-uniform refinement implementa-
tion can be directly applied on the B-spline basis instead of through the
subdivision of an individual basis function. A careful indexing scheme
for selective nodes during subdivision can be configured using a selective
knot insertion scheme. The non-uniform hierarchical refinement may be
extended to trivariate splines for approximation of 3D solids.
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techniques. Springer, 2002.

[15] L. Ramshaw. Blossoming a connect-the-dots approach to splines.
Tech. Rep. 19, Digital Systems Research Center, 1987.



22
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