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Characterization of bivariate hierarchical quartic box

splines on a three-directional grid
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bInstitute of Applied Geometry, Johannes Kepler University, Linz, Austria

Abstract

We consider the adaptive refinement of bivariate quartic C2-smooth box
spline spaces on the three-directional (type-I) grid G. The polynomial seg-
ments of these box splines belong to a certain subspace of the space of quar-
tic polynomials, which will be called the space of special quartics. Given
a bounded domain Ω ⊂ R2 and finite sequence (Gℓ)ℓ=0,...,N of dyadically
refined grids, we obtain a hierarchical grid by selecting mutually disjoint
cells from all levels such that their union covers the entire domain. Using
a suitable selection procedure allows to define a basis spanning the hierar-
chical box spline space. The paper derives a characterization of this space.
Under certain mild assumptions on the hierarchical grid, the hierarchical
spline space is shown to contain all C2-smooth functions whose restrictions
to the cells of the hierarchical grid are special quartic polynomials. Thus,
in this case we can give an affirmative answer to the completeness questions
for the hierarchical box spline basis.

Keywords: hierarchical splines, box splines, completeness, adaptive
refinement, three-directional grid, type-I triangulation

1. Introduction

Box splines and the functions contained in the spaces spanned by them
form a very useful class of piecewise polynomial functions on regular grids.
They possess a number of useful properties that make them well-suited for
applications. It has been shown that box splines have small support (a few
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cells of the underlying grid), they are non-negative, they form a partition
of unity, and that box splines are refinable, i.e., the box spline spaces on
refined grids are nested [2, 7]. Monographs and survey articles about box
splines include [6, 7, 3, 27]. Tensor-product B-splines are special instances
of box splines also.

From the rich literature on box splines, we mention a few representative
publications on three specific topics. Firstly, a substantial number of results
on the approximation power of box splines is described in the literature, e.g.
[23, 28]. Secondly, several publications discuss techniques for the efficient

manipulation of box spline bases. A general stable evaluation algorithm is
devised in [16]. In [15] the problem of efficient evaluation of box splines
is addressed by making use of the local Bernstein representation of basis
functions on each triangle. Also, numerical integration schemes, which are
important for applications, based on quasi-interpolation have been consid-
ered in [20, 5].

Using hierarchical splines is a well-established approach to adaptive re-
finement in geometric modeling [10] and numerical analysis [26, 29, 34].
Kraft [18] introduced a basis for hierarchical tensor-product spline spaces
using a selection mechanism for B-splines. More recently, a slight modifica-
tion of this approach was shown to provide a basis with better properties,
such as the partition of unity property, strong stability and full approxi-
mation power [12, 13, 32]. The hierarchical approach has been extended to
Powell-Sabin splines, Zwart-Powell elements and B-spline-type basis func-
tions for cubic splines on regular grids [14, 31, 37].

Computations of the dimensions of spline spaces on partitions of a do-
main and constructions of suitable bases for such spaces are classical prob-
lems considered in the theory of multivariate splines [35, 36]. The complete-

ness question (i.e., how to construct a basis spanning the entire spline space
on a partition of a domain) led to the introduction of polynomial splines
over hierarchical T-meshes (PHT-splines) [8, 9, 21]. Bivariate splines over
T-meshes are considered in [30]. A graphical summary of the related litera-
ture has been given in [24, Fig. 1]. Several publications have addressed the
completeness questions for hierarchical spline spaces generated by tensor-
product B-splines [1, 11, 25]. Given a hierarchical spline space, these publi-
cations derive sufficient conditions which guarantee that the associated basis
(obtained by Kraft’s selection mechanism) spans the entire spline space on
the partition of the domain which is determined by the hierarchical space.

The paper explores the hierarchical spline spaces generated by C2-smooth
quartic box splines on nested type-I triangulations of a bounded domain
Ω ⊂ R2, cf. Fig. 1. These functions form the mathematical basis of Loop’s
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subdivision scheme and are therefore used to construct the regular parts of
the corresponding subdivision surfaces, cf. [22, 33]. Moreover, it is known
that any C2-smooth piecewise polynomial function of degree 4 on a type-
I triangulation of R2 can be represented as a linear combination of box
splines plus three (globally supported) truncated power (piecewise polyno-
mial) functions of degree 4. However, the box splines suffice for representing
all locally supported C2-spline in the space, cf. [4]. On each cell of the tri-
angulation, the space generated by the box splines spans a 12-dimensional
subspace of quartic bivariate polynomials. This subspace, which will be
called the space of special quartics, is known to contain the cubic polynomi-
als. The current manuscript follows the approach presented in [25] in order
to establish the completeness of hierarchical C2-smooth quartic box splines
with respect to special quartics.

Using a suitable selection procedure, which generalizes the hierarchical
B-spline basis introduced by Kraft [17] to quartic C2-smooth box splines, we
define a basis spanning a hierarchical box spline space. We prove that the
elements of the space can equivalently be characterized as the C2-smooth
functions whose restrictions to the cells of the hierarchical grid (which con-
sists of mutually disjoint cells from different levels covering the entire do-
main) are special quartic polynomials.

The remainder of this paper consists of five sections and an appendix.
The next section recalls existing results concerning bivariate spline spaces on
regular grids and C2-smooth quartic box splines. It also derives a character-
ization of C2-contacts between segments of special quartic polynomials by
their box spline coefficients. Section 3 is devoted to the spaces of C2-smooth
functions whose segments are special quartic polynomials on a multi-cell do-
main, where all cells belong to the same level. For certain multi-cell domains,
which are said to be admissible, these spaces are spanned by the associated
box splines. These domains are characterized by an offset condition in Sec-
tion 4. Based on these results, the fifth section discusses the completeness of
the hierarchical box spline basis on the associated hierarchical grids. Finally
we conclude the paper. The appendix proves that the spaces spanned by the
special quartic polynomials on each cell are simply restrictions of a globally
defined subspace of the space of quartic polynomials.

2. Preliminaries

We recall existing results concerning C2-smooth quartic splines on regu-
lar type-I triangulations and characterize C2-smooth contacts between spe-
cial quartic polynomials on adjacent triangular cells.
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2.1. Bivariate splines on regular grids

We consider bivariate splines on a three-directional grid in the plane R2,
see Fig. 1. Let us denote by Pd the linear space of polynomials in R[x, y] of
degree less than d+ 1.

Furthermore, we consider a partition GΩ of a polygonal domain Ω ⊂ R2

into mutually disjoint cells, where each cell is an open set and the closure
of the union of all cells equals Ω. In addition we choose a finite-dimensional
linear space T of functions on R2.

Definition 1. We define Sr(GΩ, T ) to be the space of Cr-smooth functions
s on Ω with the property that their restrictions (denoted by the vertical bar
s|△) to any cell △ ∈ GΩ yields a function which is obtained by restricting a
function in T to the cell, i.e.,

(1) Sr(GΩ, T ) = {s ∈ Cr(Ω) : s|△ ∈ T |△ for all cells △ ∈ GΩ},

where the linear space T |△ contains the restrictions of the functions in T to
the cell △.

We will call the above space a spline space, and its elements spline func-
tions or simply splines. This definition is quite general and applies to any
partition of a planar domain in R2 and to any linear space T . A typical
choice is T = Pd, but other choices are also envisaged in this paper.

In a slight abuse of notation we will also use this definition for the case
r = −1, where we obtain the space S−1(GΩ, T ) of disconnected splines on
GΩ. Strictly speaking, these spline functions are well-defined only on the
interior of the cells,

⋃

△∈GΩ
△, since they may take multiple values on edges

and vertices.

Example 2. If T = Pd, we obtain the spline space formed by the Cr-
smooth piecewise polynomials of (total) degree d. Typically, this space is
used when considering triangulations of the domain. Alternatively one may
consider bivariate tensor-product polynomials T = Pd⊗Pd of bidegree (d, d),
which are used in connection with partitions of the domain into axis-aligned
boxes. Clearly, it is also possible to consider trigonometric polynomials
T = span {1, cos kx, sin kx : k = 1, . . . , d} or multivariate versions thereof.
In this paper we are interested in a certain subspace T = P̂ of P4 which is
generated by the polynomial segments of C2-smooth quartic box splines on
type-I triangulations. ✸

Throughout this paper, we consider a particular triangulation that allows
to construct splines with good properties. More precisely, we consider the
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bi-infinite grid in R2 with lines R × Z and Z × R, and the triangulation
obtained by adding the north-east diagonals in the squares of the grid, see
Fig. 1. This produces a three-directional grid which we denote by G. The
grid G is a set which contains the elementary triangles (which are called
cells) as its elements, where each of the triangles is considered as an open
subset of R2.

This type of grid is called a type-I triangulation (e.g. [19]), and spline
spaces on triangulations of this type have been studied thoroughly in the
rich literature on this subject. In particular, they include box spline spaces,
which are interesting due to their elegant construction and simple refinement
algorithm.

All results concerning splines on type-I triangulation remain valid under
affine transformations of the underlying grid G. For instance, these trans-
formations include scalings of the grid (and we will use this fact later when
constructing hierarchical spline spaces), but also affine mappings that trans-
form all triangles into equilateral ones, a particular case which reveals the
built-in symmetries of these spline spaces.

Figure 1: The three-directional grid G.

2.2. Quartic box splines

We restrict ourselves to polynomials P4 of degree up to four and we will
denote this space simply by P. For each triangle △ ∈ G, let us denote by
P|△ the linear space formed by the restrictions f |△ of all polynomials f ∈ P
to △, i.e.,

P|△ = {f |△ : f ∈ P}.

For a given triangle △, any bivariate polynomial can be represented as a
linear combination of the associated bivariate Bernstein polynomials on this
triangle [19],

(2) f |△ =
∑

i+j+k=4

cijkB
4
ijk ,
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with real coefficients cijk. Each Bernstein polynomial B4
ijk has an associated

anchor point, which possesses the barycentric coordinates (i/4, j/4, k/4)
with respect to the triangle. This representation of the polynomials is quite
useful for the efficient evaluation of the functions and their derivatives at a
given point [15, 19].

The coefficients in Fig. 2, which are placed according to the associated
anchor points, define a piecewise polynomial function, whose support is the
set of these triangles. The multiple 1/24 of this function is the symmetric
quartic box spline (cf. [19] for more details). This box spline is a C2−smooth
function on the three-direction grid and will be our main object of interest.
It will be denoted by B. Note that this box spline forms the mathematical
basis of Loop subdivision surfaces [22, 33].

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 2 3 4 3 2 1 0 0 0

0 0 0 1 3 4 6 6 4 3 1 0 0 0

0 0 0 1 4 6 8 10 8 6 4 1 0 0 0

0 0 0 1 3 6 10 12 12 10 6 3 1 0 0 0

0 0 0 0 2 4 8 12 12 12 8 4 2 0 0 0 0

0 0 0 1 3 6 10 12 12 10 6 3 1 0 0 0

0 0 0 1 4 6 8 10 8 6 4 1 0 0 0

0 0 0 1 3 4 6 6 4 3 1 0 0 0

0 0 0 1 2 3 4 3 2 1 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 2: Left: Support and the Bernstein coefficients of the scaled box spline 24B. The
central vertex is located at the origin. Right: Graph of B over [0, 4]2.

The translates

βij(·) = B(· − (i, j)), (i, j) ∈ Z2

are known to form a locally linearly independent set

(3) B = {βij : (i, j) ∈ Z2}

in the following sense: for any open subset A ⊂ R2, the translates

BA = {βij ∈ B : supp (βij) ∩A 6= ∅}

restricted to A are linearly independent [19]. Here supp (f) denotes the
support of the function f .
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2.3. Contact of polynomial pieces

By construction, each translated box spline βij is associated with the
lattice point (i, j). For a cell △ in G, let △̄ denote the closure of △. We
consider the translates whose support contains the given cell △,

B△ = {βij : supp (βij) ∩△ 6= ∅}.

This set is formed by the 12 translates βij , which are associated with the
vertices of the 1-ring neighborhood of △ in the three directional grid, see
Fig. 3.

◦
8

11

5
◦

◦

◦

◦
6

3

1

◦

◦
9

12
◦

◦
4

7

◦
2

10

◦

◦

Figure 3: The 1-ring of a triangle.

We now consider the linear space spanned by the restrictions of these
translates to the given triangle,

V△ = (spanB△)|△.(4)

Since this space is a genuine subset of quartic polynomials (its dimension is
only 12), we will call it the space of special quartics on △.

Remark 3. It can be shown that V△ = P̂|△ where

P̂ = span (P3 ∪ {x4 − 2x3y, y4 − 2xy3}).(5)

In particular, it should be noted that P̂ is independent of the chosen cell △.
The proof of this observation is postponed to the Appendix. ✸

Any polynomial f |△ ∈ V△ has a unique representation

f |△(x) =
∑

β∈B△

λβ
△(f |△)β(x), x ∈ △,
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Figure 4: Active box splines on a square domain consisting of two triangles. Twelve
functions are active (non-zero) on each triangle. Exactly ten of those are active on both
triangles.

for certain coefficients λβ
△(f |△) ∈ R.

Now we consider two cells △ and △′ which share an edge. The 1-rings
around △ and △′ have 10 vertices in common, or equivalently, B△, and B△′

share 10 elements, see Fig. 4.
The following notion of contact will be important in the sequel for the

definition of spline spaces.

Definition 4. We say that two polynomials f |△ ∈ P△ and f ′|△′ ∈ P△′

have contact of order 2 (and write f |△ ∼ f ′|△′), if

(6) ∀x ∈ △̄ ∩ △̄′,
∂i+j

∂xi∂yj
f |△(x) =

∂i+j

∂xi∂yj
f ′|△′(x)

for all i and j with 0 ≤ i + j ≤ 2. The derivatives and values at points on
the boundary of a triangle are obtained by one-sided limits.

This property of contact, or continuity of higher order, is a desired prop-
erty in applications. The following lemma will help us to characterize the
situation of contact of quartic box splines.

Lemma 5. Consider a domain Ω = △∪△′ consisting of two triangles

meeting on one edge. Then dim S2(GΩ, P̂) = 14.

Proof. Let ℓ(x, y) be the (implicit) equation of the line that contains the
common edge of the two triangles.

Let (f |△, f ′|△′) ∈ S2(GΩ, P̂), then

f |△ − f ′|△′ = ℓ3(ax+ by + c),
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since ℓ(x, y)3|(f − f ′) is equivalent to f |△ ∼ f ′|△′ . Therefore

(7) f = f ′ + (Ax+By + C)3(ax+ by + c),

where ℓ(x, y) = Ax+By + C, for A,B,C ∈ R.
Since the grid GΩ has only three directions, we only need to consider the

cases: (A,B,C) = (1, 0, t), (0, 1, t) or (1,−1, t), for t ∈ R.
If (A,B,C) = (1, 0, t), then (7) becomes

f = f ′ + ax4 + byx3 + p(a, b, c)

for a polynomial p ∈ P3 that depends on a, b and c. Since f, f ′ ∈ P̂ , from
Remark 3 we deduce that b = −2a, leading to

(8) f = f ′ + a(x4 − 2x3y) + p(a, c).

The case (A,B,C) = (0, 1, t) is analogous to latter due to the symmetry of
the generators of P̂ with respect to x and y.

It remains to consider (A,B,C) = (1,−1, t). In this case (7) becomes

(9) f = f ′+a(x4−3x3y+3x2y2−xy3)+b(yx3−3x2y2+3xy3−y4)+p(a, b, c)

for a polynomial p ∈ P3 that depends on a, b and c. Since f, f ′ ∈ P̂ , from
Remark 3 we know that x2y2 /∈ P̂ , then we deduce that b = a, leading to

f = f ′ + a(x4 − 2x3y)− a(y4 − 2xy3) + p(a, c).

Thus, it follows from (8) and (9) that dimS2(GΩ, P̂) = 14.

We now come to the characterization of contact of polynomial pieces.

Lemma 6 (Contact Characterization Lemma (CCL)). Consider two special

polynomials f |△ ∈ V△ and f ′|△′ ∈ V△′ on two disjoint triangles △,△′, and

assume that the two triangles share an edge e = △̄∩△̄′. The two polynomials

f |△ and f ′|△′ have a contact of order 2 if and only if

(10) ∀ β ∈ B : β|e 6= 0|e =⇒ λβ
△(f |△) = λβ

△′(f
′|△′).

Proof. Firstly, we observe that f |△ ∼ f ′|△′ is equivalent to

F = (f |△, f |△′) ∈ S2(GΩ, P̂),

where Ω = △∪△′. Secondly, noting that there are 14 box splines in BΩ

(see Figure 4) and in view of Lemma 5, we conclude that BΩ is a basis for
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S2(GΩ, P̂). Consequently, F ∈ S2(GΩ, P̂) if and only if there exist unique
coefficients cβ ∈ R such that

F =
∑

β∈B
△∪△′

cββ.(11)

Thirdly, we consider the restrictions of F to the two triangles,

F |△ =
∑

β∈B△

λβ
△(f)β, F |△′ =

∑

β∈B
△′

λβ
△′(f

′)β.

Due to the local linear independence of the box splines, the existence of the
representation (11) is equivalent to

λβ
△(f) = cβ = λβ

△(f ′) for β ∈ B△ ∩B△′ .

This completes the proof since B△∩B△′ coincides with the set of box splines
that do not vanish on the common edge e.

Remark 7. CCL cannot be generalized to two triangles with vertex-vertex
contact. In fact, the dimension of the corresponding spline space, which is
18, is then always larger than the number of box splines (either 16 or 17,
depending on the type vertex-vertex contact).

3. Special quartic splines on multi-cell domains

We now turn our attention to a domain consisting of a collection of cells
and we establish conditions for obtaining a basis of the special quartics on
the domain.

3.1. Piecewise polynomial functions on multi-cell domains

In the three-directional grid G, we will consider a finite set of cells (tri-
angles) M ⊂ G. Any such set M corresponds to a bounded domain M,
which is the closure of the union of its cells.

More precisely, we define the union operator U , which maps any element
Q of the power set of R2 to a subset of R2,

(12) U(Q) =
⋃

c∈Q

c

We can now formally define M as

(13) M = U(M).
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If the domain M is connected, then we will say that the set M of triangles is
also connected. We need a stronger version of connectivity which excludes
vertex-vertex contacts of triangles.

Definition 8. A setM of triangles is said to be ⋆-connected if it is connected
and if additionally for any two triangles △, △′ in M , which have a common
vertex v, △̄ ∩ △̄′ ⊇ {v}, there is a chain of triangles △0,△1, . . . ,△m all in
M such that △0 = △, △m = △′ and △̄i ∩ △̄i+1 = ei for some edge ei ∈ M
that contains the vertex v, i.e. v ∈ ei, for i = 0, . . . ,m− 1.

In particular, two triangles are ⋆-connected triangles if they possess a
common edge.

We require the following condition.

Condition 9. The set M is assumed to be a union of finitely many mutually

disconnected finite sets of triangles, each of which is ⋆-connected.

In particular, this condition on the set of triangles M implies that we do
not allow “kissing vertices” in any connected component of M; or in other
words, M is a triangulation of a 2-manifold M with boundary.

Example 10. The domain M = U(M) in Fig. 5 has only one component
and it is not ⋆-connected. In Fig. 6, the set of triangles M is modified in
several ways by adding and deleting triangles and the different components
(when more than one) are all ⋆-connected, and hence the domains satisfy
Condition 9. ✸

Figure 5: Example of a set M (in gray) which is connected but not ⋆-connected.

In the remainder of the paper, every set M is assumed to satisfy Condi-
tion 9. The set of the translates of box splines that act on the triangles M
will be denoted as

BM = {βij ∈ B : suppβij ∩M◦ 6= ∅},
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Figure 6: Example of sets of triangles obtained by adding and/or deleting certain triangles
to the set M in Fig. 5. The additional triangles in each of the four cases appear in dark-
gray. The four new sets satisfy Condition 9 i.e., each of its connected components is
⋆-connected.

where M◦ denotes the interior of M, see Fig. 7 for an example. These basis
functions generate a space which we denote by

(14) VM = spanBM |M .

In particular, when M contains just the single cell △ then

VM = V{△} = V△ = P̂|△ ,

as in Remark 3.
For a finite set of triangles M ⊂ G, we consider the space of discon-

nected quartics S−1(M,P), and the space of disconnected special quartics

S−1(M, P̂). For M = {△}, these two spaces coincide with P|△ and with

P̂|△, respectively. It is obvious that S−1(M, P̂) ⊂ S−1(M,P) for any choice
of M .

Given a disconnected special quartic f = (f |△)△∈M ∈ S−1(M, P̂), we
have a local representation

f |△(x) =
∑

β∈B

λβ
△(f |△)β|△(x), x ∈ △,
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in terms of the restriction of the box splines, for any △ ∈ M . However, this
representation is generally not available for general disconnected quartics.

Figure 7: Supports (shown in blue) of three translates of the box splines B that act on a
domain M (grey).

Lemma 11. For a finite set of triangles M , and the corresponding discon-

nected space S−1(M, P̂), the space S2(M, P̂) is precisely

S2(M, P̂) = {f ∈ S−1(M, P̂) : ∀△,△′ ∈ M, f |△ ∼ f |△′}

where the relation ∼ is defined in Definition 4.

Proof. By the definition of the space of C2 splines given in (1), it is easy to
deduce that S2(M, P̂) ⊂ S−1(M, P̂). Let f ∈ S−1(M, P̂), then f ∈ S2(M, P̂)
if and only if f is a C2 function on M , or equivalently, if and only if for all
pair of cells △ and △′ in M satisfy (6) in Definition 4.

The space S2(M, P̂) will be referred to as the special spline space on M .
As we shall see later, the special spline space S2(M, P̂) can be generated

by box splines with support on M, but one may need to use several copies
of some of these box splines, as shown in the following Example.

Example 12. The domain in Fig. 8 consists of two ⋆-disconnected trian-
gles. The space of disconnected special quartics consists of pairs of special
polynomials, where the first and the second entry of each pair is associated
with the first and the second triangle. Since the two triangles are discon-
nected, the special spline space is equal to the space of disconnected special
quartics. Consequently, it has dimension 24 and is therefore not spanned by
the 18 box splines whose support intersects this domain. ✸

13



Figure 8: A domain with VM ( S2(M, P̂).

Definition 13. For a spline β ∈ BM , the coefficient graph Γβ associated to
β is defined as follows:

• The vertices of the graph Γβ are the cells△ ∈ M such that△ ⊆ suppβ.

• Two vertices of Γβ are connected by an edge if the corresponding cells
△,△′ have a common edge and β|△̄∩△̄′ 6= 0|△̄∩△̄′ .

We will write △ ∈ Γβ to indicate that △ corresponds to a vertex of Γβ.

Example 14. Let us consider the domain in Fig. 9, and the box splines βi
(i = 1, 2, 3). The coefficient graphs Γβi

corresponding to these box splines
are given in Fig. 10. ✸

βββ2

βββ1
βββ3

Figure 9: A multi-cell, and three examples of box splines βi.

Proposition 15. An element f ∈ S−1(M, P̂) is in S2(M, P̂) if and only if

the coefficients satisfy λβ
△(f |△) = λβ

△′(f |△′), for all β ∈ BM , and all pair of

cells △,△′ belonging to the same component of Γβ.
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β1 β2
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b
b

b
b

b

b
b

b b
b

b
b
b

b

b

Graph Γβ1
Graph Γβ2

Graph Γβ3

Figure 10: Coefficient graphs associated to βi, i = 1, 2, 3 from Fig. 9.

Proof. Suppose f ∈ S2(M, P̂), and β in B. If △ = △0 and △′ = △d+1 are
two cells in M corresponding to vertices in the same component of Γβ, then
there is a chain of vertices v1, . . . , vd in Γβ corresponding to cells △1, . . . ,△d

in M , such that △i and △i+1 intersect in an edge, for i = 0, . . . , d. By
Lemma 6, λβ

△i
(f |△i

) = λβ
△i+1

(f |△i+1
), and since this is valid for every 0 ≤

i ≤ d, then the same follows for △ and △′.
Conversely, from a similar argument as before, if for any pair of triangles

△ and△′ inM with an edge e in common we have that λβ
△(f |△) = λβ

△′(f |△′)
for every basis function β ∈ B such that β|e 6= 0, then by Lemma 6 every
linear combination of the basis functions β is in S2(M, P̂).

3.2. Box spline bases on multi-cell domains

Definition 16. For every β ∈ B and every connected component Φ of Γβ

we define the function

βΦ(x) =

{

β(x) if x ∈ U(Φ),

0 otherwise.

The set of these functions, for the different connected components of the
graph Γβ, is denoted by Λ, more precisely,

Λ =
⋃

β∈B

{βΦ| Φ is a connected component of Γβ}.

Theorem 17. The set Λ, when restricted to M, forms a locally linearly

independent basis for S2(M, P̂).

The proof is analogous to that of Theorem 2.12 in [25].
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Corollary 18. If the intersection of the support of each β with the multi-cell

domain M is ⋆-connected, then the functions in BM , when restricted to M,

form a basis of S2(M, P̂).

Proof. If the condition is satisfied, then for each β ∈ BM the coefficient
graph Γβ has either one component or it is empty. The result thus follows
from Theorem 17.

Example 19. The graph Γβ, associated to every β with non-empty inter-
section with the interior of M in Fig. 7, has only one component. From
the previous Corollary, it follows that the functions in BM , restricted to M,
form a basis for the special spline space S2(M, P̂) on the domain M. ✸

4. Admissible multi-cell domains

In view of the discussion in the previous section, we give the following
definition.

Definition 20. A domain M = U(M) is said to be admissible, if the inter-
section of the support of any box spline with M is ⋆-connected.

The following result is then obvious from Corollary 18:

Corollary 21. For any admissible domain M, the functions in BM when

restricted to M form a basis of S2(M, P̂).

A subset of admissible domains can be characterized by the offsets of
their boundaries.

Definition 22. We define the offset curve of a multi-cell domain M as
follows: Consider any cell (triangle) in G \ M . If the boundary of this
triangle shares a vertex with M, but both incident edges are not part of the
boundary of M, then the opposite edge is added to the offset curve. We say
that a domain M satisfies the offset condition if its offset is a simple closed
curve or a collection of simple closed curves.

Proposition 23. If a domain satisfies the offset condition, then it is also

admissible.

Proof. The proof follows from a careful case-by-case analysis.

Remark 24. For the domain on the left in Fig. 11 the box splines in BM

form a basis for S2(M, P̂). In this situation, when the holes in the domain
are “sufficiently small”, they do not split the support of any basis function
β ∈ BM and the result follows by Corollary 18. Consequently, the offset
condition is not necessary for admissibility. ✸

16



Figure 11: The offsets of the two domain boundaries in the picture are non-simple curves.
The domain on the left is admissible, however one of the holes has a discontinuous offset.
The domain on the right does not possess a simple offset, and furthermore it is not
admissible since there are box splines (such as the one whose support is indicated) with a
disconnected coefficient graph, see Fig. 10.

5. Hierarchical Box splines

We define the special spline spaces on a hierarchical grid and a hierar-
chical basis. We then prove the completeness of this basis under certain
assumptions on the domain hierarchy.

5.1. Special spline spaces on hierarchical grids

Given an integer N ≥ 0, we consider the hierarchical grids

Gℓ , ℓ = 1, . . . , N

such that Gℓ+1 is obtained from Gℓ by one global, uniform dyadic refinement
step, where the coarsest grid G1 = G is the one with vertices Z2 which has
been described in Section 2. More precisely, the grid Gℓ+1 = 1

2
Gℓ is obtained

by dividing all edges of triangles of Gℓ into two edges and adding three new
interior edges, thus every triangle is split into four smaller ones, see Fig. 12.
The index ℓ will be called the level of the grid, and the number N specifies
the number thereof. Each grid Gℓ is a set of triangles of the same shape,
and these triangles are open sets.

In addition to the union operator U , see (12), which transforms a set Q
of subsets of R2 into the closed subdomain U(Q) ⊂ R2 covered by it, we
define the triangulation operators T ℓ which restrict the grid of level ℓ to a
given subset Q of R2,

T ℓ(Q) = {△ ∈ Gℓ : △ ⊆ Q}.
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G1 G2 G3

Figure 12: Three levels of hierarchical grids.

When applied to subsets of the corresponding grids, these operators are the
inverses of the union operator, i.e. for any M ℓ ⊂ Gℓ we have T ℓ(U(M ℓ)) =
M ℓ.

Let Ω be a domain of R2 aligned with level N . More precisely, its
boundary ∂Ω is a union of edges from the grid GN , see the top right of
Fig. 13. The hierarchical grid is defined by an inversely nested sequence of
subdomains Mℓ = U(M ℓ) thereof,

(15) ∅ = M0 ⊆ M1 ⊆ · · · ⊆ MN = Ω,

which correspond to subsets of the corresponding grids, M ℓ ⊂ Gℓ. Thus the
boundary ∂Mℓ is a union of edges of the grid Gℓ of the same level. These
subdomains were called rings in [11]. They are multi-cell domains (with
respect to the grid) of level ℓ.

The difference of two successive subdomains

Dℓ = Mℓ \Mℓ−1

and the associated subset Dℓ = T ℓ(Dℓ) of the grid of level ℓ is called the
refinement domain of level ℓ, see Fig 14. In particular we have D1 = M1

and D1 = M1.
Finally we collect the triangulations of the refinement area and arrive at

the hierarchical grid

(16) H =
N
⋃

ℓ=1

Dℓ,

see Fig. 15. This hierarchical grid, which collects triangles from all levels,
provides a representation of the domain Ω = U(H) as a hierarchical multi-
cell domain. We use it to define the hierarchical special spline space

H = S2(H, P̂).
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M1 M2 M3 = Ω

M1 M2 M3

Figure 13: Nested sequence of domains Mℓ and the corresponding multi-cell domains M ℓ,
ℓ = 1, 2, 3 from Fig. 12.

D1 D2 D3

Figure 14: Refinement domains corresponding to the multi-cell domains M ℓ in Fig. 13,
ℓ = 1, 2, 3.

Equivalently, the spline functions s ∈ H can be characterized by the fact
that their restrictions to the subdomains belong to the corresponding spline
spaces:

Lemma 25. A function s : Ω → R is an element of H if and only if

s|Mℓ ∈ S2(M ℓ, P̂).

holds for all ℓ = 1, . . . , n.

The proof of this simple observation has been omitted.

19



H

Figure 15: Hierarchical multi-cell domain Ω = U(H), obtained as the union of refinement
areas Di (i = 1, 2, 3) from Fig. 14.

5.2. Completeness of the hierarchical spline basis

We consider the box splines Bℓ, which are associated with the grids Gℓ,
and the spaces spanned by them. Similar to the grids, these box splines can
be obtained by a dilation,

Bℓ+1 = {β(2 ·) : β ∈ Bℓ}

from the coarsest basis B1 = B which has been defined in Section 2. For
each subdomain M ℓ we consider the box splines whose supports possess a
non-empty intersection with Mℓ,

Bℓ
Mℓ = {β ∈ Bℓ : suppβ ∩Mℓ 6= ∅}.

The hierarchical spline basis is defined by a selection procedure which was
proposed by Kraft [18] for tensor-product B-splines. We select box splines
from all levels,

Kℓ =
{

βℓ ∈ Bℓ
Mℓ : suppβℓ ∩Mℓ−1 = ∅

}

,

and collect them into the hierarchical spline basis

K =
N
⋃

ℓ=1

Kℓ.

The linear independence of this set of functions is implied by the local linear
independence of the box splines at each level, see [11, 18].

Finally we provide a sufficient condition for the completeness of the hi-
erarchical spline basis.
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Theorem 26. The hierarchical spline basis K spans the hierarchical spline

space H if each subdomain M ℓ is admissible with respect to the grid of level ℓ.

Proof. The proof follows standard arguments already presented in [11, 25],
for the case of hierarchical tensor B-spline bases. Any spline function s ∈ H

admits a representation

s = (h1 + · · ·+ hN )|Ω,

where hℓ ∈ spanBℓ
Mℓ with the property that

(17) hℓ|Mℓ = s|Mℓ − (h1 + . . .+ hℓ−1)|Mℓ .

for ℓ = 1, . . . , N . This is proved by induction with respect to ℓ.
For any given level ℓ, all functions hk|Mℓ of lower levels k < ℓ are con-

tained in S2(M ℓ, P̂), since

spanBk
Mk |Mℓ ⊂ S2(M ℓ, P̂).

Lemma 25 implies s|Mℓ ∈ S2(M ℓ, P̂). Consequently, the right-hand side of
Eq. (17) is contained in S2(M ℓ, P̂). Since the subdomain Mℓ is admissible,
we conclude that hℓ ∈ spanBℓ

Mℓ according to Corollary 21. In particular,
choosing ℓ = N in Eq. (17) implies the first equation.

Moreover, the construction of the functions hℓ ensures that

hℓ|Mℓ−1 = 0|Mℓ−1 .

Since the box splines possess the property of local linear independence we
can conclude that hℓ ∈ spanKℓ. This completes the proof.

6. Conclusion

We extended the discussion of the completeness of hierarchical spline
spaces from [25] to the case of hierarchies of bivariate quartic C2-smooth
box splines on type-I triangulations. There are two main differences to the
original approach, which was formulated for tensor-product splines.

First, since box splines do not span the whole space of quartic polyno-
mials, a special polynomial subspace – the special quartics – had to be in-
troduced. In some sense this situation generalizes the tensor-product case,
where the B-splines span a polynomial space of a given (coordinate-wise)
bi-degree, instead of the the space of bivariate polynomials of a given total
degree.
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Second, the constraints on the domains are entirely different, due to the
differences in the characterization of contacts between polynomial pieces.
For bivariate tensor-product splines, both edge-edge and vertex-vertex con-
tacts could be characterized easily by the equality of spline coefficients. In
the present case, however, this was possibly solely for edge-edge contacts.
Consequently, the completeness of hierarchical splines requires more severe
restrictions to the hierarchical grid.

The hierarchical box spline basis does not form a partition of unity.
Similar to the approach presented in [12], this property can be recovered
with the help of a suitable truncation procedure. Also, in [25] it is described
a decoupling procedure that allows to relax the assumptions regarding the
hierarchical grid. This approach can be extended to the box spline case as
well. Finally it is also possible to combine truncation and decoupling as in
[24].

Appendix

We show that the space V△ defined in Eq. (4) is the restriction of a
global space to the triangle, as pointed out in Remark 3. In order to prove
this result we use the notation introduced in Section 5. The following proof
is not restricted to quartic box splines.

Proposition 27. Consider a global polynomial f ∈ P defined in R2. If

f |△ ∈ V△ for some △ ∈ Gℓ, then f |△′ ∈ V△′ for any other cell △′ in the

grid Gℓ.

Proof. We observe that if △,△′ ∈ Gℓ then both cells are contained in a
bigger triangle △̃ of a grid which we denote as G0, see Fig. 16. We denote by
V0

△̃
the restriction of the span of the corresponding box splines (associated

with the grid G0) to the cell △̃. Similarly we denote with Vℓ
△ and Vℓ

△′

the span of the correspondiung box splines (associated with the grid Gℓ)
restricted to these triangles. Clearly, we have that

dimV0

△̃
= dimVℓ

△ = dimVℓ
△′

because of the symmetry and the scaling invariance of the box spline con-
struction. The box spline spaces on the different levels are nested, hence

V0

△̃
|△ ⊆ Vℓ

△ and V0

△̃
|△′ ⊆ Vℓ

△′ .
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G0

Gℓ

Figure 16: The two cells in the fine grid Gℓ are both contained in a cell of the grid G0.

Since V0

△̃
is a subspace of a polynomial space we also know that

dimV0

△̃
= dimV0

△̃
|△ = dimV0

△̃
|△′ .

Combining these observations confirms that Vℓ
△ = V0

△̃
|△ and Vℓ

△′ = V0

△̃
|△′ ,

as we wanted to show.

We may therefore define P̂ to be this global polynomial space. In the
special case of C2 quartic box splines, the above result may be seen directly
by using the representation of the polynomial pieces in the monomial basis.
For the sake of completeness we report the coefficients of 12βi, βi ∈ β△ with

respect to the basis (5) of P̂ in the matrix









































1 y y2 y3 x xy xy2 x2 x2y x3 x4
− 2x3y y4

− 2xy3

β1 0 0 0 0 0 0 0 0 0 0 0 −1
β2 0 0 0 2 0 0 0 0 0 0 0 1
β3 0 0 0 0 0 0 0 0 0 2 −1 2
β4 1 2 0 −6 2 6 6 0 0 −4 2 −1
β5 1 4 6 0 −2 −6 −6 0 0 2 −1 −1
β6 0 0 0 0 0 0 0 0 0 0 1 −1
β7 1 −2 0 6 4 −6 −12 6 6 −4 −1 −1
β8 6 0 −12 0 0 12 12 −12 −12 8 −1 2
β9 1 2 0 0 −4 −6 0 6 6 −4 1 0
β10 0 0 0 −2 0 0 6 0 −6 2 −1 1
β11 1 −4 6 0 2 −6 −6 0 12 −4 2 −1
β12 1 −2 0 0 −2 6 0 0 −6 2 −1 0









































.

Each row corresponds to a box spline, following the numbering in Figure 3.
The grid size is 1 and the origin is located at vertex no. 8.
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