33 research outputs found

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fine‐tuning, fuzzy rule‐based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programming‐based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods

    Fuzzy Logic

    Get PDF
    Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems

    Dynamic Fuzzy Rule Interpolation

    Get PDF

    Analyse intelligente de la qualité d'expérience (QoE) dans les réseaux de diffusion de contenu web et mutimédia

    Get PDF
    Today user experience is becoming a reliable indicator for service providers and telecommunication operators to convey overall end to end system functioning. Moreover, to compete for a prominent market share, different network operators and service providers should retain and increase the customers’ subscription. To fulfil these requirements they require an efficient Quality of Experience (QoE) monitoring and estimation. However, QoE is a subjective metric and its evaluation is expensive and time consuming since it requires human participation. Therefore, there is a need for an objective tool that can measure the QoE objectively with reasonable accuracy in real-Time. As a first contribution, we analyzed the impact of network conditions on Video on Demand (VoD) services. We also proposed an objective QoE estimation tool that uses fuzzy expert system to estimate QoE from network layer QoS parameters. As a second contribution, we analyzed the impact of MAC layer QoS parameters on VoD services over IEEE 802.11n wireless networks. We also proposed an objective QoE estimation tool that uses random neural network to estimate QoE from the MAC layer perspective. As our third contribution, we analyzed the effect of different adaption scenarios on QoE of adaptive bit rate streaming. We also developed a web based subjective test platform that can be easily integrated in a crowdsourcing platform for performing subjective tests. As our fourth contribution, we analyzed the impact of different web QoS parameters on web service QoE. We also proposed a novel machine learning algorithm i.e. fuzzy rough hybrid expert system for estimating web service QoE objectivelyDe nos jours, l’expĂ©rience de l'utilisateur appelĂ© en anglais « User Experience » est devenue l’un des indicateurs les plus pertinents pour les fournisseurs de services ainsi que pour les opĂ©rateurs de tĂ©lĂ©communication pour analyser le fonctionnement de bout en bout de leurs systĂšmes (du terminal client, en passant par le rĂ©seaux jusqu’à l’infrastructure des services etc.). De plus, afin d’entretenir leur part de marchĂ© et rester compĂ©titif, les diffĂ©rents opĂ©rateurs de tĂ©lĂ©communication et les fournisseurs de services doivent constamment conserver et accroĂźtre le nombre de souscription des clients. Pour rĂ©pondre Ă  ces exigences, ils doivent disposer de solutions efficaces de monitoring et d’estimation de la qualitĂ© d'expĂ©rience (QoE) afin d’évaluer la satisfaction de leur clients. Cependant, la QoE est une mesure qui reste subjective et son Ă©valuation est coĂ»teuse et fastidieuse car elle nĂ©cessite une forte participation humaine (appelĂ© panel de d’évaluation). Par consĂ©quent, la conception d’un outil qui peut mesurer objectivement cette qualitĂ© d'expĂ©rience avec une prĂ©cision raisonnable et en temps rĂ©el est devenue un besoin primordial qui constitue un challenge intĂ©ressant Ă  rĂ©soudre. Comme une premiĂšre contribution, nous avons analysĂ© l'impact du comportement d’un rĂ©seau sur la qualitĂ© des services de vidĂ©o Ă  la demande (VOD). Nous avons Ă©galement proposĂ© un outil d'estimation objective de la QoE qui utilise le systĂšme expert basĂ© sur la logique floue pour Ă©valuer la QoE Ă  partir des paramĂštres de qualitĂ© de service de la couche rĂ©seau. Dans une deuxiĂšme contribution, nous avons analysĂ© l'impact des paramĂštres QoS de couche MAC sur les services de VoD dans le cadre des rĂ©seaux sans fil IEEE 802.11n. Nous avons Ă©galement proposĂ© un outil d'estimation objective de la QoE qui utilise le rĂ©seau alĂ©atoire de neurones pour estimer la QoE dans la perspective de la couche MAC. Pour notre troisiĂšme contribution, nous avons analysĂ© l'effet de diffĂ©rents scĂ©narios d'adaptation sur la QoE dans le cadre du streaming adaptatif au dĂ©bit. Nous avons Ă©galement dĂ©veloppĂ© une plate-Forme Web de test subjectif qui peut ĂȘtre facilement intĂ©grĂ© dans une plate-Forme de crowd-Sourcing pour effectuer des tests subjectifs. Finalement, pour notre quatriĂšme contribution, nous avons analysĂ© l'impact des diffĂ©rents paramĂštres de qualitĂ© de service Web sur leur QoE. Nous avons Ă©galement proposĂ© un algorithme d'apprentissage automatique i.e. un systĂšme expert hybride rugueux basĂ© sur la logique floue pour estimer objectivement la QoE des Web service

    A multi-objective particle swarm optimized fuzzy logic congestion detection and dual explicit notification mechanism for IP networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.The Internet has experienced a tremendous growth over the past two decades and with that growth have come severe congestion problems. Research efforts to alleviate the congestion problem can broadly be classified into three groups: Cl) Router based congestion detection; (2) Generation and transmission of congestion notification signal to the traffic sources; (3) End-to-end algorithms which control the flow of traffic between the end hosts. This dissertation has largely addressed the first two groups which are basically router initiated. Router based congestion detection mechanisms, commonly known as Active Queue Management (AQM), can be classified into two groups: conventional mathematical analytical techniques and fuzzy logic based techniques. Research has shown that fuzzy logic techniques are more effective and robust compared to the conventional techniques because they do not rely on the availability of a precise mathematical model of Internet. They use linguistic knowledge and are, therefore, better placed to handle the complexities associated with the non-linearity and dynamics of the Internet. In spite of all these developments, there still exists ample room for improvement because, practically, there has been a slow deployment of AQM mechanisms. In the first part of this dissertation, we study the major AQM schemes in both the conventional and the fuzzy logic domain in order to uncover the problems that have hampered their deployment in practical implementations. Based on the findings from this study, we model the Internet congestion problem as a multi-objective problem. We propose a Fuzzy Logic Congestion Detection (FLCD) which synergistically combines the good characteristics of the fuzzy approaches with those of the conventional approaches. We design the membership functions (MFs) of the FLCD algorithm automatically by using Multi-objective Particle Swarm Optimization (MOPSO), a population based stochastic optimization algorithm. This enables the FLCD algorithm to achieve optimal performance on all the major objectives of Internet congestion control. The FLCD algorithm is compared with the basic Fuzzy Logic AQM and the Random Explicit Marking (REM) algorithms on a best effort network. Simulation results show that the FLCD algorithm provides high link utilization whilst maintaining lower jitter and packet loss. It also exhibits higher fairness and stability compared to its basic variant and REM. We extend this concept to Proportional Differentiated Services network environment where the FLCD algorithm outperforms the traditional Weighted RED algorithm. We also propose self learning and organization structures which enable the FLCD algorithm to achieve a more stable queue, lower packet losses and UDP traffic delay in dynamic traffic environments on both wired and wireless networks. In the second part of this dissertation, we present the congestion notification mechanisms which have been proposed for wired and satellite networks. We propose an FLCD based dual explicit congestion notification algorithm which combines the merits of the Explicit Congestion Notification (ECN) and the Backward Explicit Congestion Notification (BECN) mechanisms. In this proposal, the ECN mechanism is invoked based on the packet marking probability while the BECN mechanism is invoked based on the BECN parameter which helps to ensure that BECN is invoked only when congestion is severe. Motivated by the fact that TCP reacts to tbe congestion notification signal only once during a round trip time (RTT), we propose an RTT based BECN decay function. This reduces the invocation of the BECN mechanism and resultantly the generation of reverse traffic during an RTT. Compared to the traditional explicit notification mechanisms, simulation results show that the new approach exhibits lower packet loss rates and higher queue stability on wired networks. It also exhibits lower packet loss rates, higher good-put and link utilization on satellite networks. We also observe that the BECN decay function reduces reverse traffic significantly on both wired and satellite networks while ensuring that performance remains virtually the same as in the algorithm without BECN traffic reduction.Print copy complete; page numbering of 105-108 incorrect

    Fuzzy Logic Based Software Product Quality Model for Execution Tracing

    Get PDF
    This report presents the research carried out in the area of software product quality modelling. Its main endeavour is to consider software product quality with regard to maintainability. Supporting this aim, execution tracing quality, which is a neglected property of the software product quality at present in the quality frameworks under investigation, needs to be described by a model that offers possibilities to link to the overall software product quality frameworks. The report includes concise description of the research objectives: (1) the thorough investigation of software product quality frameworks from the point of view of the quality property analysability with regard to execution tracing; (2) moreover, extension possibilities of software product quality frameworks, and (3) a pilot quality model developed for execution tracing quality, which is capable to capture subjective uncertainty associated with the software quality measurement. The report closes with concluding remarks: (1) the present software quality frameworks do not exhibit any property to describe execution tracing quality, (2) execution tracing has a significant impact on the analysability of software systems that increases with the complexity, and (3) the uncertainty associated with execution tracing quality can adequately be expressed by type-1 fuzzy logic. The section potential future work outlines directions into which the research could be continued. Findings of the research were summarized in two research reports, which were also incorporated in the thesis, and submitted for publication: 1. Tamas Galli, Francisco Chiclana, Jenny Carter, Helge Janicke, “Towards Introducing Execution Tracing to Software Product Quality Frameworks,” Acta Polytechnica Hungarica, vol. 11, no. 3, pp. 5-24, 2014. doi: 10.12700/APH.11.03.2014.03.1 2. Tamas Galli, Francisco Chiclana, Jenny Carter, Helge Janicke “Modelling Execution Tracing Quality by Means of Type-1 Fuzzy Logic,” Acta Polytechnica Hungarica, vol. 10, no. 8, pp. 49-67, 2013. doi: 10.12700/APH.10.08.2013.8.

    Fuzzy Transfer Learning

    Get PDF
    The use of machine learning to predict output from data, using a model, is a well studied area. There are, however, a number of real-world applications that require a model to be produced but have little or no data available of the specific environment. These situations are prominent in Intelligent Environments (IEs). The sparsity of the data can be a result of the physical nature of the implementation, such as sensors placed into disaster recovery scenarios, or where the focus of the data acquisition is on very defined user groups, in the case of disabled individuals. Standard machine learning approaches focus on a need for training data to come from the same domain. The restrictions of the physical nature of these environments can severely reduce data acquisition making it extremely costly, or in certain situations, impossible. This impedes the ability of these approaches to model the environments. It is this problem, in the area of IEs, that this thesis is focussed. To address complex and uncertain environments, humans have learnt to use previously acquired information to reason and understand their surroundings. Knowledge from different but related domains can be used to aid the ability to learn. For example, the ability to ride a road bicycle can help when acquiring the more sophisticated skills of mountain biking. This humanistic approach to learning can be used to tackle real-world problems where a-priori labelled training data is either difficult or not possible to gain. The transferral of knowledge from a related, but differing context can allow for the reuse and repurpose of known information. In this thesis, a novel composition of methods are brought together that are broadly based on a humanist approach to learning. Two concepts, Transfer Learning (TL) and Fuzzy Logic (FL) are combined in a framework, Fuzzy Transfer Learning (FuzzyTL), to address the problem of learning tasks that have no prior direct contextual knowledge. Through the use of a FL based learning method, uncertainty that is evident in dynamic environments is represented. By combining labelled data from a contextually related source task, and little or no unlabelled data from a target task, the framework is shown to be able to accomplish predictive tasks using models learned from contextually different data. The framework incorporates an additional novel five stage online adaptation process. By adapting the underlying fuzzy structure through the use of previous labelled knowledge and new unlabelled information, an increase in predictive performance is shown. The framework outlined is applied to two differing real-world IEs to demonstrate its ability to predict in uncertain and dynamic environments. Through a series of experiments, it is shown that the framework is capable of predicting output using differing contextual data
    corecore