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ABSTRACT 

The purpose of this research work is to propose an improved method for real-time sensitivity 

analysis (SA) applicable to large-scale complex systems. Borrowed from the EventTracker 

principle of the interrelation of causal events, it deploys the Rank Order Clustering (ROC) method 

to automatically group every relevant system input to parameters that represent the system state 

(i.e. output). The fundamental principle of event modelling is that the state of a given system is a 

function of every acquirable piece of knowledge or data (input) of events that occur within the 

system and its wider operational environment unless proven otherwise. It therefore strives to build 

the theoretical and practical foundation for the engineering of input data. The event modelling 

platform proposed attempts to filter unwanted data, and more importantly, include information that 

was thought to be irrelevant at the outset of the design process. The underpinning logic of the 

proposed Event Clustering technique (EventiC) is to build causal relationship between the events 

that trigger the inputs and outputs of the system. EventiC groups inputs with relevant corresponding 

outputs and measures the impact of each input variable on the output variables in short spans of 

time (relative real-time). It is believed that this grouping of relevant input-output event data by 

order of its importance in real-time is the key contribution to knowledge in this subject area. Our 

motivation is that components of current complex and organised systems are capable of generating 

and sharing information within their network of interrelated devices and systems. In addition to 

being an intelligent recorder of events, EventiC could also be a platform for preliminary data and 

knowledge construction. This improvement in the quality, and at times the quantity of input data, 

may lead to improved higher level mathematical formalism. It is hoped that better models will 

translate into superior controls and decision making. It is therefore believed that the projected 

outcome of this research work can be used to predict, stabilize (control), and optimize (operational 

research) the work of complex systems in the shortest possible time.  

 

For proof of concept, EventiC was designed using the MATLAB package and implemented using 

real-time data from the monitoring and control system of a typical cement manufacturing plant. 

The purpose for this deployment was to test and validate the concept, and to demonstrate whether 

the clusters of input data and their levels of importance against system performance indicators could 

be approved by industry experts. EventiC was used as an input variable selection tool for improving 

the existing fuzzy controller of the plant. Finally, EventiC was compared with its predecessor 

EventTracker using the same case study. The results revealed improvements in both computational 

efficiency and the quality of input variable selection.  
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1. Introduction 

 

The motivation for this research project is to take a short step towards a greater understanding 

of complex systems’ behaviour. This step is facilitated by modern technological advancements 

and the ability to construct and develop complex systems which are not only able to generate 

large amounts of data, but also analyse the performance of such systems. 

 

As technology improves further, Systems are becoming more complex as they are developed. 

Scientists can access more data and are looking for better ways to interpret and ultimately solve 

complex problems. However, with large data the interpretation becomes increasingly difficult. 

We borrow a quote from Lee Segall (Cited in Livingston &Antal, 2009): “A man with one 

watch knows what time it is, a man with two watches is never quite sure”. It refers to the 

potential drawback of having too much contradictory information when making decisions. 

 

A primary goal when observing complex systems is to describe the system as a function of the 

observed factors. Typically, a large number of factors are measured rather than a mere few. 

The main problem is no longer what to measure but rather how to interpret many 

measurements, knowing that some factors might not be contributing to system understanding. 

This approach can yield vast data sets, which are seldom readily interpretable. A model 

describes a transformation of the input parameters corresponding to observed factors to a 

response corresponding to system behaviour. Knowledge gained from variable selection is key 

stage of process optimisation. 

 

1.1. Identification of a gap 

“In order to understand an organised whole we must know both the parts and the relations 

between them.”(Von Bertalanffy, 1972). 

 

Man-made systems are designed and implemented such that they maintain their integrity when 

faced with volatile operational environments. The most challenging part of any engineering 

project is to ensure that the designed system functions correctly in meeting its specified 

functionalities for its given operating conditions. System complexity is increasing as systems 

are developed to meet ever demanding requirements or are required to possess the necessary 
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intelligence and physical capability to maintain system integrity when faced with perturbations 

in the operating environment. Such perturbations arise from both known and unknown internal 

or external event sources. 

 

Such increased complexity can be partly attributed to physical properties such as the 

composition of building materials, mechanical structure, electrical and electronic enablers, and 

electro-mechanical interfaces and partly to the knowledge constructs surrounding  artefacts 

(data emission and acquisition), data interpretation (input/output), state analysis (behaviour), 

action-reactions (performance), and what-if scenarios (prediction and optimization). The 

combination of electro-mechanical properties enabled with embedded electronics links such 

devices with the larger internet of other components and systems and this eco-system of a 

multiple system interacting with another is fundamentally changing our understanding and 

approach to design system integrity and fidelity. 

 

To provide an example, a cement manufacturing specification is engineered and verified with 

respect to a set of required user functionalities. These specifications are normally translated 

into a structural model (an assembly of electro mechanical components) that integrates with 

data and communication control architectures. The modus-operandi of an engineered artefact 

is ultimately predetermined by its designers. This act of predetermination imposes a static 

nature on the system design and its functional attestation. This static design methodology is 

logical, and in general, yields tangible results in a given time span (research, design and 

development lifecycle). The design blueprint defines the principle components, their 

relationships and the overall functionalities of the system or artefact. Such an approach allows 

the developer to hardwire the system to its specification. Control mechanisms may be 

embedded into the system to enable it to cope with potential or predicted variances that arise 

within the system itself or its operational environment. Such predictive monitoring and control 

are salient features of any modern complex system and enable it to be smarter, more 

autonomous, and better able to adapt to the environment in which it operates. 

 

However, often, these embedded control subsystems are designed in such a way that even 

though they are part of a much larger and complex system, they do not necessarily share 

information with other sibling subsystems that comprise the whole, but instead act as isolated, 

closed units. This separation could very well be intentional to ensure system integrity, or could 

also be unintentional, resulting from a lack of forethought at the design phase. Regardless of 
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intent, the lack of accurate knowledge regarding interrelated events and triggers may very well 

result in so-called malfunctions or non-responsiveness from the system. These occurrences are 

well-known and reported as undocumented malfunctioning resulting from unknown 

circumstances. For example, the cement manufacturing production industry can be designed 

within a series of well-defined operational conditions. Under certain circumstances, due to 

environmental or structural perturbations, a series of unspecified events occur; events that were 

unforeseen in the original design specification or by the operator, and result in the production 

refusing to operate as expected. This chain of events may very well arise from a combination 

of factors that includes production rate, health and safety issues or raw material quality - a 

series of factors that result in unresponsiveness and system malfunction. Such events are 

normally unanticipated by the operator and unforeseen by the designer. 

 

The sole purpose of any in-depth analysis of the combined event chain, its precedence, 

interrelationships, and ultimately influence on the expected system behaviour is to gain an 

understanding of why such a chain of internal and/or external events (random or predicted) has 

resulted in unexpected system behaviour. Depending on the complexity of the system this 

analysis is laborious to reconstruct and requires the assembly of information from multiple 

sources that includes communication systems and data-mining exercises, all performed in 

conjunction with consultation and coordination with a number of specialist 

individuals/teams/institutions. This exercise can be time consuming and very expensive to 

undertake and often the results are inconclusive due to a lack of meaningful information or 

expert disagreement. The more inaccurate the data and knowledge available to the 

reconstruction, then the more subjective is any expert agreement or disagreement. The given 

analysis will result in actions such as design updates, new operational guidelines, adjustment 

to training procedures, and new safety and security protocols. 

 

The conventional modelling and design of physical systems normally relies on a set of known 

linear/non-linear differential equations or analytical models to describe the physical behaviour 

of the systems that they are meant for. The knowledge about the input variables (i.e. excitation 

parameters) and their impact on performance (i.e. output) requires high levels of background 

knowledge, know-how and effort by highly-qualified experts. The shortening and improving 

of the process of input data selection and analysis would therefore have major economic 

benefits for the stakeholders. 
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Observations in the manufacturing, automotive and aerospace industry reveals that the process 

of evaluating and validating the correctness and accuracy of the models in real time is 

extremely time consuming and expensive. For example, the Hardware in-the-Loop (HiL) 

models are normally based on limitations imposed by modelling experts on the numbers and 

extent of input variables (often restricted to ‘known known’). Most practitioners rely on trial 

and error and/or costly destructive and non-destructive testing. Figure 1.1 can be viewed as an 

interpretation of the current modelling process.   

 

 

 

 

Figure 1.1. Current design project, problem solving, performance measurement and 

optimization process 

 

1.2. Research Hypothesis and Key Research Questions 

The Hypothesis of this research is that: “all the available knowledge about the internal and 

external events surrounding a defined system has an effect on its state, unless proven 

otherwise.” Although this has been philosophically argued by Lorenzo (2000) discussed in the 

literature, but the key objective of this thesis is to provide an optimal practical and technical 

platform to prove the interrelationships between the measurable parameters representing 

systems state. A manufacturing process is then used as a case study to verify the hypothesis. 

The motivation for the proposed research is that modern manufacturing systems are capable of 

sensing, communication, modelling, and providing corrective actions (actuation) to adjust to 
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changing operational and functional requirements. The flexibility to adapt can only be assured 

if data is succinctly interpreted and translated into corrective actions in a timely manner.  

Within the context of the thesis, the key questions that this thesis intends to address are: 

 

1. What would the implication of unbiased increase of input data and their potential 

relationships with one another and the system outputs be on our understanding of 

systems behaviour? Addressing the scalability problem. 

2. How would the new knowledge about the new interrelationships between systems 

components allow us to better define performance (e.g. cost, quality, reliability, and 

fidelity)? 

3. How would tracking and relating the events that represent the observable behaviour of 

the system lead to an increased insight to system functionalities and does it lead to more 

desirable improvements in the control of the system, and its optimal operation? 

 

The four stages of design research methodology (DRM) proposed by Blessing and Chakrabarti 

(Blessing & Chakrabarti, 2009) is adopted to devise a framework for the planning and 

implementation of the research programme.  

 

 Research Clarification 

The research clarification stage helps to clarify the current understanding and the overall 

research objectives, develop a research plan and provide a focus for the subsequent stages. 

At the first instance the author posed the challenges and the fundamental research questions. 

In the following sections of this chapter the aim and objectives of the research are explained 

(section 1.3).  

 

Chapters 2, 3, and parts of chapters 4 and 6 appraises the existing literature relevant to the 

subject area. The intention of the literature review was to identify the gaps in the existing 

technologies and methods of input variable selection, sensitivity analysis, complexity, systems 

modelling, as well as mathematical techniques for data management. The analysis of the state-

of-the-art provides the focal point of the innovation required to bridge the gaps.  

 The Descriptive study I 

Building from the literature analysis, an outline of the potential solution to the problem was 

emerges in chapter 4. In this chapter the author discusses the roadmap and the framework of 
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the solution to be designed and applied. Based on the knowledge acquired about the definition 

of systems and in specific the definition of a manufacturing process system the components of 

the experimental design are established. Upon the establishment of the framework, a model of 

the real system is created in the laboratory environment. By establishing the emulator the key 

factors that influence the performance of the system can be tested and validated through 

observable experiments and feedback from experts in Cement Factory. The author 

acknowledges the support he received from AControl. The result of this stage would be a 

reference model (Calderon, 2010). 

 

Through this stage the design architecture of the proposed solution emerges. The emerged 

Event-Clustering solution is the outcome of evolutionary improvements to existing data and 

knowledge engineering and systems modelling, with comparisons made with the existing 

solution in input variable selection, sensitivity analysis and big data clustering methods. The 

resultant model was then compared to the most relevant technique i.e. EventTracker. 

 Prescriptive study 

Chapters 5 and 6 are dedicated to implementation of the preliminary design and conducting 

experiments in the laboratory and on the field to validate and verify the resultant Event-

Clustering algorithm. Various tests were conducted to test the hypothesis and to establish 

whether the key research questions were answered.  The tests included laboratory based 

simulation (discrete, deterministic and probabilistic) models, as well as filed data comparisons. 

 

The models and the resulting Event Clustering (EventiC) method was implemented in a live 

operations of a cement factory. A novel fuzzy inference modelling for performance 

optimisation was introduced by utilising the results of Event Clustering.   

 

 Descriptive study II 

In chapters 7 and 8 the author evaluates whether the key questions of the research were 

answered and whether the new solution provides a novel contribution to the existing body of 

knowledge.   At this stage the efficacy, the usability and the applicability of the solution is 

evaluated.. The validation process examines whether the proposed EventiC has effectively 

answered the questions posed and has contributed to improving the quality of systems 

monitoring and control. 
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1.3.  The aim and objective of the thesis 

The aim of the this thesis is to propose a data and knowledge engineering platform to meet the 

challenges of  the dynamic, autonomous, adaptive and self-organising embedded systems, and, 

seamless/secure interaction of the embedded system/cyber-physical systems with their 

environment. This research intends to interrelate the internal dynamics of the components 

embedded system or network of devices with that of other systems that create its operational 

environment and the first of its kind, the proposed technique will be able to evaluate the impact 

of each member of the cyber-physical system on the performance, stability and overall 

behaviour of the system in real-time. 

 

There is a major difference between the proposed event modelling and the classical approach 

to data modelling and management. In the classical approach a state vector is expressed as a 

series of input data representing more complex information (e.g.𝑉𝑁 = [𝑥1, … 𝑥𝑛]).]). Any 

subsequence operation on the vector is based on the assumption that the vector is the true 

representation of the data series (a factual known). In contrast, the proposed event modelling 

(EventiC) technique does not make such an assumption about the input data. From its 

perspective there is no prior knowledge of any association between the total system input 

parameters (excitation parameters) and the output(s), thus it is ‘unaware’.  EventiC treats data 

as an ‘unknown’ mass that needs to be organised prior to any formal expression of the 

information. 

 

Event modelling begins with event vector𝐸𝑆 = [𝑒1, … 𝑒𝑠], where event E is expressed by all 

observable events that occurred at a given instant (S = sample space). By implementing the 

EventiC algorithm the problem statement becomes a more reliable expression of 𝐸𝑁 =

[𝑒1, … 𝑒𝑛], where𝑒1to𝑒𝑛, and 𝑁 ≤ 𝑆, input events are the true representation of E. By reinstating 

the actual values of the variables of the state vector, 𝑉𝑛 = [𝑥1, … 𝑥𝑛]this could be considered as 

a more reliable state vector prepared for subsequent operations such as transfer functions, 

inferential models and other forms of data manipulation and knowledge representation. 

 

The outcome of this research is to propose a platform that automates and integrates the process 

of data acquisition and analysis of raw data in near real-time would appear to be timely. As 

noted above, the acquisition process of large-scale data and organising it in the form of cross 

interrelationships and clusters of relevance, takes place at the lowest layer of interface between 
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the physical system and the higher-level information framework. The proposed method could 

indeed be considered the linking point between the engineering of physical systems and higher-

level data modelling constructs, thus allowing a true cyber interface of complex devices that 

can help each other to stabilise or function at optimal required outputs. This is achieved in two 

dimensions, system state change at defined intervals (vertical) and changes in time domain 

(horizontal), throughout the study span. 

 

The first question posed in the research is answered by a combination of literature review 

(Chapters 2, 3 and partially chapters in 4), where the definitions of system and methods of 

knowledge engineering and management is presented. Furthermore, by designing the 

experiments through the systems simulation and observations on the live activities of the 

factory, the scalability of the approach was facilitated. Using live feed data from the factory 

and cross correlating the system inputs and outputs it was possible to assess the issues of 

significant increase in quantity and quality of data to monitor the behaviour of the system. 

 

The second question posed in this research question is addressed in chapters 5 and 6, where the 

state of the system or the output parameters of the system is defined by the Key Performance 

Indicators specified in the manufacturing industry. These indicators are product quality, 

productivity, production efficiency, resource utilisation, and inventory. They are represented 

by well-established transfer functions defined in manufacturing systems literature.  The raw 

data emitting from the sensors and actuators in the plant integrated by a SCADA system 

represent the input parameters of the system.  

 

The designed experiment enabled the simulation of acquisition of real-time data from the plant 

and conducting sensitivity analysis against the event that takes place during the production 

process. The observations took over 30 days at a rate of 1 minute sampling rate. 

 

The sensitivities of all KPIs were assessed against all 196 available input data series.  Whilst 

originally this was not the case. Individual KPIs were only connected to a pre-specified set of 

input series. Thus enabling us to assess the efficacy of de-modularity of the system. 

 

Finally to answer the third question of the thesis, a full case study was implemented with the 

involvement of the factory and production engineering staff. The new modulations and 

extracted relationships between systems input and output parameters lead to better 
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understanding of the system behaviour and more over reducing the lead time to return the 

system to optimal performance. This was proven by connecting resultant EventiC to the 

factory’s fuzzy controller, in which new membership functions showed to represent the 

dynamics of the system more effectively and accurately.   

 

EventiC achieves this by simply (a) interpreting changes in the values of input-output (I/O) 

data as I/O events (b) detecting if the I/O events coincide, and (c) groups the I/O events, as 

related events. This process happens at a specified time interval called the scan rate. Scan rates 

can range from microseconds to seconds or minutes. Each scan registers a scenario of input-

output, akin to recording a clip in a film. The weight of an input on an output is calculated 

using the basic logic of the number of coincidence in a time span. At the end, and for the 

purpose of modelling, we return to the actual values of the I/O data. Such an approach can be 

considered a novel one in the understanding of large-scale raw data. 

 

With the help of a case study, we demonstrate the application of EventiC in assembling the 

necessary knowledge (data analysis) for the purpose of systems modelling and control 

optimization. The automation of the preliminary data analysis has significantly reduced time 

system modelling, design and validation. Figure 1.2 represents the new modelling platform. In 

this model EventiC sits between raw data acquisition platform and upper layer modelling and 

design platform as a middleware. 

 

 

 

Figure 1.2. Design project, problem solving, performance measurement and 

optimization processes with EventiC 
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With expansion and fluctuation of modern complex systems, producing time-critical accurate 

knowledge about the state of the system remains and continues to remain a major challenge for 

researchers and practitioners. Thus building a powerful eco-system of causal events could be 

one of the most natural approaches to de-cluttering the complexity that arises from larger 

datasets. The challenge would therefore be to improve the current technology of de-clustering 

complexity in a specific time span of the system life cycle. 

 

In order to address the challenge of conceptualising complexity this thesis suggests the concept 

of Event clustering as a platform for managing the interrelationships and internal and external 

dynamics of the components of a system. It intends to understand the causal relationships 

between the system and its operational environment as the system changes state and boundaries 

in different time spans. 

 

1.4.  Design a research methodology and thesis framework 

 

The thesis and its constituent parts, as shown in figure 1.3, were prepared under three themes 

and eight chapters.  

 The literature review theme 

This theme spans two chapters (chapters two and three) and two sections of chapters four and 

six in which gaps and omissions within the current theories, methodologies and technologies 

are discussed.  

1.4.1.1. Chapter two  

This chapter introduces and reviews the philosophical aspects and origins of systems theory, 

cybernetics, information theory and system boundaries from the 1950s onwards. Following 

this, some fundamental definitions in the system’s field which assist in deep understanding the 

rest of thesis will be explained.  

 

1.4.1.2. Chapter three 

In this chapter the Input Variable Selection (IVS) as a methodology to help with the reduction 

of irrelevant inputs on a system’s output is explained in detail. This is followed by a discussion 

on the shortcomings of existing sensitivity analysis (SA) methods in real-time systems. 
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Figure 1.3. Schematic flow of the thesis 

 

             1.4.1.3. Chapter 4.2 and 6.2 

In section 4.2 the existing clustering methods have been analysed and their strengths and 

weakness are reviewed. In section 6.2, literatures in Fuzzy controllers auto extraction rules has 

been explained.  

 

These two chapters and two sections help to clarify the eco-system of complex systems 

definitions. They also identify the existing gap in SA methods and weakness of clustering and 

visualisation methods in dealing with big data in real-time. 
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 The methodology theme 

This theme comprises three chapters (chapters four, five and six) addressing the approach taken 

to provide solutions to the problems described in the previous chapters. The theme therefore 

covers the efficiency of the proposed sensitivity analysis technique, its application via an 

empirical study and the proposed method application in conjunction with fuzzy controllers. 

1.4.2.1. Chapter four  

This chapter introduces the new methodology of EventiC with reference to the manufacturing 

industry. The chapter details EventiC’s improvements to the quality of real-time event 

recording by collecting, collating and classifying data gathered and generated within complex 

embedded devices/systems from internal and external events.  

1.4.2.2. Chapter five  

In this chapter the proposed research is implemented upon our industrial partner’s raw data, 

obtained from the SCADA of their cement production plant. The EventiC application is applied 

to the SCADA outputs to control and optimize three main key performance factors in the 

cement industry: production rate; environmental impact; and product quality. 

1.4.2.3. Chapter six  

The proposed method application of EventiC in integration with fuzzy controllers is discussed 

in chapter six. The chapter reveals how the integrated EventiC/fuzzy controllers are able to 

automate fuzzy controllers in input variable selection and fuzzy rules/inference table design. 

 The validation and conclusion theme 

This final theme introduces the validation and verification of the proposed method application 

in chapter seven with final conclusions offered in chapter eight. 

1.4.3.1. Chapter seven  

The penultimate chapter validates and verifies the proposed method by comparing the proposed 

sensitivity analysis methodology with its predecessor method, EventTracker. The efficiency of 

the proposed sensitivity analysis method and other differences between EventiC and 

EventTracker form an additional topic of discussion.  

1.4.3.2. Chapter eight 

The final chapter concludes the research work and discusses the potential for future work and 

development. 
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2. Systems Theory: Its Origins and Foundations 

This chapter will review the origins of systems theory, cybernetics, and information theory 

from the 1950s onwards. Following this, the fundamental definitions used in systems theory 

will be defined, explained and explored. It is proposed that this account of systems theory will 

aid the author to further conceptualise what is meant by evolving system boundaries. 

 

The objective of this chapter is to develop a deeper understanding of systems /complex systems 

theory and its inter-relationship with both sub-components and the wider environment. This 

understanding could help better define and possibly contribute to a new perspective about the 

definition of system boundary. It is believed that such a re-examination of current systems 

theory provides the potential for a critical exploration of a boundless, rather than bound, system 

framework regarding the complex relationships and interactions between events and 

perceptions, and the world that systems represent. This boundless, rather than bound, system 

framework enables the wider acquisition, exchange and process of data from any given 

physical or virtual system. 

2.1.  Origins of systems theory 

Systems theory originated in the late 1920s in the work of the philosopher and biologist Ludwig 

Von Bertalanffy and was subsequently furthered by Ross Ashby in the 1960s (Ashby, 1964). 

In the early 1950s systems theory integrated with cybernetics, and in the late 1950s with the 

fuzzy set approach in engineering science. Von Bertalanffy considered to be the founder and 

principal author of general systems theory was both reacting against reductionism and also 

attempting to revive the unity of science. His proposal was for a unified principle of sciences 

with the organizational structure of the individual areas able to join together to form a whole. 

 

Von Bertalanffy (1972) defined general systems theory as a universal science of wholeness. 

The meaning of the somewhat mystical expression, ‘The whole is more than the sum of its 

parts’ can be understood, in simple terms, to mean that the constitutive characteristics are not 

explainable only from the characteristics of the isolated parts. The characteristics of the 

complex, therefore, appear as new or emergent (Laszlo, 1972). Von Bertalanffy (1968) posited 

that a system is a complex of interacting elements, open to and interacting with their 

environments. In addition, such systems can acquire qualitatively new properties through 

emergence, thus they are in continual evolution. Systems are generally self-regulating (through 
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feedback) and system thinking concerns itself with addressing both part-to-whole and whole-

to-part thinking about making connections between various elements so that they fit together 

as a whole. 

 

In 1948 cybernetics and information theory emerged from two publications, by Wiener and 

Shannon respectively Cybernetics: or Control and Communication in the Animal and the 

Machine (Wiener, 1948), and A Mathematical Theory of Communication (Shannon, 1948). 

Shannon’s theory popularized later by Warren Weaver (Weaver, 1949) represents the 

beginning of the then so-called ‘information theory’. Today, Shannon’s name is associated 

almost exclusively with mathematical information and communication theory, with these terms 

often used and considered synonymously. Whilst Shannon focused on the measurement and 

coding of ‘information’ in general communication systems, the concept of ‘information’ led 

Wiener to the idea of feedback as a principal of control. Wiener developed a theory of feedback 

and governance operating across any simple or complex system. He understood feedback 

processes to be those of information manipulation and decision making (Seising, 2010). 

 

In summary, this thesis suggests a need to return to the origins of cybernetics to re-define 

system cybernetics. A cybernetic system, in general terms, should be self-governing, intelligent 

and possess interrelationships and internal dynamics of the components within the overall eco-

system of systems and their environment. 

 Cybernetics 

Wiener used cybernetics as an umbrella term to define the study of control and communication 

in the animal and machine worlds. His research reached a climax in the interdisciplinary field 

of cybernetics with his examination ‘time series’ relating to a series of measurable events, 

recurring constantly or discretely. From this, Wiener developed his prediction theory, in which 

an operator called ‘predictor’ was applied in each case to the preceding element of the time 

series. In theory, this predictor corresponds to a mathematical calculation scheme; in practice, 

such as predicting the flight path of an enemy object it was realized by a technical apparatus 

(Wiener, 1949, cited in Seising, 2010, p. 8).  

 

Cybernetics not only evolved as a separate field with specific theories and methodologies, but 

also created the foundation for spreading the concepts and ideas of the general principles of 
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systems organization, control, and evolution to other research areas, such as decision making, 

machine learning, knowledge engineering, etc. (Arnold, Siemers & Adamson, 2014).  

 

 The fuzzy concept of information 

Inspired by Wiener’s Cybernetics, Shannon’s and Weaver’s The Mathematical Theory of 

Communication, Lotfi A. Zadeh (Zadeh, 1952) introduced a new approach to deal with the 

fundamental problem of systems communication. One of the problem that initiated Zadeh’s 

thoughts about not precisely specified quantitative measures led to his famous theory of fuzzy 

set in 1965 (Zadeh, 1965).Due to his highly influential General System Theory, which was a 

revolution in its time, understanding regarding the behaviour of complex systems has evolved 

from a classic systems theory to modern theories, and substantial progress has been made in 

the development of highly complex systems in various subject areas. This theory will be 

introduced in detail and integrated with the proposed event modelling EventiC technique in 

chapter six. 

2.2.  Definition of system 

The concept of ‘system’ serves to identify those manifestations of natural phenomena and 

processes that satisfy certain general conditions. In the broadest conception, ‘system’ can be 

understood as a complex of interacting components, together with the relationships among 

them, that permits or allows the identification of a boundary-maintaining entity or process.  

 

Ackoff (2000) defined system identification as a set of two or more interrelated elements with 

the following properties: 

 Each element has an effect on the functioning of the whole. 

 Each element is affected by at least one other element in the system. 

 All possible subgroups of elements also possess the first two properties.  

 

INCOSE (2015) defines system: 

 A set of interacting components-whether human-made, naturally-occurring, or a 

combination of both. 

By replacing the concept of element with component, the definition of ‘system’ covers any 

kind of formal (e.g. mathematics), effective (e.g. imaginative), or existential (e.g. real-time) 

grouping. In each case, a ‘whole’ made up of interdependent components in interaction is 



16 

 

identified as the system. In its most basic definition, a system is a group of interacting 

components that conserves some identifiable set of relations with the sum of components plus 

their relations (i.e. the system itself) conserving some identifiable set of relations to other 

entities (including other systems). Systems theory differentiates between system structure (the 

inner composition of a system) and behaviour (its outer presentation). 

 

Figure 2.1 shows a black box. The external behaviour of a system is the relationship it imposes 

between its input and output time histories. The system’s input-output behaviour includes the 

pairs of data records (input time segments paired with output time segments) gathered from a 

real system or model. The internal structure of a system includes its state and state transition 

mechanism plus the state to output mapping. Knowing the system structure allows us to analyse 

and/or simulate its behaviour (Zeigler, 1999). 

 

 

Figure 2.1. Basic system concept 

 

 

System is one of those primitive concepts of which understanding might be left to intuition 

rather than an exact definition. Nonetheless, three representative definitions can be found in 

the literature on the subject (Cassandras &Lafortune, 2008): 

 

 An aggregation or assemblage of things combined by either nature or man so as to form 

an integral or complex whole (Keating et al., 2003). 

  A regularly interacting or interdependent group of items forming a unified whole 

(Ramadge&Wonham, 1989). 

  A combination of components that act together to perform a function not possible with 

any of the individual parts (Blanchard, 2004). 
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Boulding (1956) described General Systems Theory as a level of theoretical model building 

that lies between the generalized constructions of pure mathematics and the specific theories 

of specialized disciplines. Whilst mathematics attempts to organize highly generalized 

relationships into a coherent system, it is a system however, which does not have any necessary 

connections with the real world around us.  

 

There are two prominent points to draw from these definitions. Firstly, a system is associated 

with a function which it is presumably intended to perform. It is worth indicating at this point 

that a system should not always be associated with physical objects and natural laws. For 

example, systems theory could be utilised as a framework for describing economic 

mechanisms, population dynamics or modelling human behaviour. Secondly, a system consists 

of interacting components. 

 

In the next section, an important structural concept named ‘reduction to components’ will be 

explained. Questions such as ‘How can a system be broken down into component systems?’ 

and following on from this, the concept of composition, i.e., ‘How can a system's components 

be coupled together to form a larger system?’ could help to meet the research challenge of 

providing a dynamic and self-organising embedded system platform which has a secure 

interaction with its environment. 

 Reduction to components 

The principal of heuristic innovation within the system approach is what may be called 

‘reduction to components’ as practiced in the methodologies of classical science. Phenomena 

in the observed world are generally too complex to be understood by modelling all of their 

parts and interactions. Some form of simplification is necessary. Traditionally, a scientist 

simplifies complexity by dividing items into individual components and views such items in 

isolation from the complex set of relations that connect them with their environment, and 

ultimately, the rest of the world (Hooker, 1981). 

 

The term ‘reduction to components’ has led to the accumulation of substantial information 

about specific entities and the interactions amongst them. ‘Reduction to components’ helps 

system analysts to learn how one component reacts to particular system stimulants/inputs and 

how each reacts to it part. However, this type of knowledge proves deficient in one important 
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respect for it does not disclose how complex things behave when exposed to a complex set of 

influences. In the real world almost every system contains a large number of components and 

is exposed to a large number of complex external events (Laszlo &Krippner, 1998). 

In consequence, another heuristic become necessary, capable to simplifying complex system. 

 The system approach 

Prior to the mid-twentieth century, definitions of ‘system’ were based upon dividing a ‘whole’ 

and all that it contained into smaller and distinct parts, predominantly for analysis and study in 

isolation (Cassandras & Lafortune, 2008). This approach to empirical phenomena is based on 

the belief that it is better to have specific detailed knowledge of smaller and more well-defined 

items than general knowledge of bigger and less well-defined ones. Therefore, attention is 

given to a system’s parts regardless of their position, instead of a focus upon their interacting 

and integrated ensemble (Distefano et al., 2012). 

 

In contrast to this, the ‘system approach’ considers the world in terms of an integrated system. 

It focuses on the ‘whole system’, instead of its components, as well as on the complex 

interrelationships amongst its constituent parts.  

 Reduction to dynamics 

With regards to those systems that are too complex to be understood by modelling all of their 

parts and interactions, some form of simplification is necessary. The ‘reduction to dynamics’ 

method concentrates on the dynamics that define the characteristic properties, functions and 

relationships that are internal or external to the system. This method could be seen to cover the 

deficiencies of the ‘reduction to components’ approach.  

 

In this method in contrast to 'reduction to components' which deconstructs a system to its 

smaller components and then analyses each component separately, investigation starts with 

identifying a system’s stimulants /inputs and behaviours/outputs. The next step is to examine 

the impact of such stimulants on a system’s behaviour. The key emphasis in this method is its 

focus on stimulant/behaviour (input/output) relationships and bonds, in addition to the 

examination of elements and components (Laszlo &Krippner, 1998). 

 System and environment 

An important dynamic dependent feature relates to the effects of the external environment upon 

the system. In systems theory, the term 'environment' refers to those sets of objects whose 



19 

 

change in attributes affect the system, as well as those objects whose attributes are changed by 

the behaviour of the system. ‘System environment’ thus depends on the system 

characterization, on what is comprised in the system specification and what is instead classified 

as external environment. With reference to Ackoff (2000), the environment of every system 

includes three levels of purpose: the purpose of the system; its parts; and of the system of which 

it is a part, the suprasystem, or highly complex system. 

2.3. From systems theory to complex systems 

Research underlying what is currently called ‘complexity’ started many years ago. Its origins, 

according to Prigogine (1995) lie in ‘dissipative structures’, or how regimes of order come into 

being and retain their forms amidst a constant dissipation of resources and energy. In early 

1960, this idea became popularized as general systems theory (von Bertalanffy, 1956; Miller, 

1978) and open systems (Kast &Rosenzweig, 1972) all of whose applications were basic and 

foundational. 

 

In the same period of time (i.e., after 1960) researchers in a wide variety of subject areas were 

experimenting with non-linear models of dynamic systems. Several major fields of study were 

born of these explorations, including cybernetics (Wiener, 1948; Wiener, 1965), system 

dynamics (Forrester, 1958; Maruyama, 1963), computational genetic algorithms (Neumann & 

Burks, 1966), complex adaptive systems (Holland, 1975), deterministic chaos theory (May, 

1976), catastrophe theory (Zeeman, 1977), and synergetic (Haken, 1977). More recently, 

Lewin and Bak (1993) and Waldrop (1993) have developed syntheses of some of these models 

using ‘complexity’ as an overarching framework. 

 

Modern science popularized the interpretation of the simple phenomena of physics. A 

reductionist science par excellence, emerged as the prominent example of how the apparent 

chaos of the phenomena surrounding us can be make sense of by the human mind. The reason 

for the early success of physics was its ability to study objects that could be set out in terms of 

a mere few variables. The variables could be kept separated from their environment, with 

specifically-targeted, reproducible experiments performed on them. The dream of a ‘theory of 

everything’ drives the quest for the ultimate building blocks of the universe and for the 

explanation of its origin, an endeavour constituting one of the frontiers of science (Miguel et 

al., 2012, p.2). 
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However, Anderson (1972) stated that a constructionist hypothesis could not by any means be 

implied by a reductionist hypothesis. A constructionist hypothesis will be broken down when 

confronted with the twin difficulties of scale and complexity. Most of the subjects or objects 

of scientific enquiry express these difficulties. For instance, a mere few variables cannot 

describe a living being. Furthermore, a human being cannot be isolated from society without 

changing its basic nature, and the functionality of the human body emerges from a network of 

interacting cells. These are examples of what are currently called ‘complex systems’. A 

developing body of knowledge is being collected about these complex systems, with a large 

number of researchers struggling to obtain a deeper knowledge of their features and the 

necessary sets of concepts and tools required to deal with them. As Helbing (2008) has written, 

these developments are gradually leading to a coherent and fundamental science of complexity. 

 

Conventional system analysers claim that simple systems behave simply, complex systems 

express complex behaviour and different systems behave differently. However, this claim 

could not be considered universally correct. Understanding a complex system’s function, 

structure and response to any excitation is fundamental and the basic problem of setting the 

level of complexity and detail can lead to conflicting difficulties. As implied from the very 

name ‘complex systems’, as much data as possible should be collected to model a complex 

system, unless accuracy is being sacrificed for more simplicity. However, the safety and 

security of systems are areas where simplicity cannot take priority over complexity. This issue 

reflects the difficulty of finding a balance and compromise between avoiding both over 

complexity and over-simplification.  The issue, of course, is also related to the problem of 

finding the right variables as mentioned previously. 

 

The current literature about complexity of systems, defines complexity as: 

 The degree to which a system's design or code is difficult to understand because of 

numerous components or relationships among components (ISO/IEC 2009).  

 Consisting of interdependent, diverse entities that respond to their local and global 

environments (Page 2009). 

 

Sillitto (2009) described the inability of a human mind to grasp the whole of a complex problem 

and predict the outcome as behavioural or subjective Complexity. While there are ways to 

reduce this complexity and improve the fit of technical systems into the complex environment, 
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they are not the focus of this primer. Sillitto’s Objective Complexity describes technical or 

system characteristics that lead to the subjective complexity or difficulty. As systems 

engineers, we have the ability to modify these characteristics; they are also the ones most 

frequently addressed by complex systems science. 

 

The conventional approach to solving complexity breaks down a problem into parts, 

recursively, until the parts are simple enough that we understand them and can design solutions; 

we then re-assemble the parts to form the whole solution. The approach works well for systems 

whose parts interact in fixed ways (also known as “complicated” systems—an example might 

be a car), even when there are many interacting parts and the systems may have unpredicted 

behaviour (Sheard et al., 2015). 

 

In the new system frame of data engineering science, the primary problem is often not data 

availability but the challenge of extracting relevant knowledge from the available big data and 

in devising useful data acquisition for understanding the behaviour of a system.  

 Complex versus complicated systems 

Complicated systems have a large number of sub-systems and components which integrate in 

a well-understood way and have well-defined roles leading to a promised effect, e.g. modern 

plants with millions of physical parts, or millions of lines of software coding. Complex systems 

also have a large number of components, where their interactions lead to collective emergent 

behaviours that cannot be derived as a simple resultant from the individual components’ 

behaviour. Prominent examples of complex systems are our brain or an airplane. All domain-

based sciences such as biology, chemistry, physics, robotics, medicine and so on, study 

complex systems (Helbing, 2008). 

 

Whilst there are many reasons as to why a system might be considered complex, there is no 

agreement on what should be the precise definition of complex. Table 2.1 presents a list of 

features typical of complex systems, along with some examples of systems displaying those 

aspects (Miguel et al., 2012). Although many systems could inherit several if not all of these 

features, any one of them can make a system appear complex, but together they can make 

systems very difficult to understand and control. A key characteristic of complex systems is 

their ability to reconfigure themselves to create new systems with completely different 

properties. 
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Table 2.1. Reasons why systems might be considered to be complex 

Many heterogeneous interacting parts Cities, companies, climate, crowds, political parties, 

ecosystems. 

Complicated transition laws Markets, disease, transmission, cascading, failure rioting, 

professional training. 

Unexpected or unpredictable emergence  Chemical systems, accidents, system breakdown spontaneous 

social initiatives, foot and mouth disease. 

Sensitive dependence on initial conditions Weather systems, investments, traffic jams forest fires. 

Path-dependent dynamics  The evolution of the qwerty keyboard, racial conflicts, first to 

market. 

Networked hierarchical connectives Social networks, ecosystems, the internet voting systems, 

postal systems. 

Interactions of autonomous agents  Road traffic, dinner parties housing markets, soccer games, 

crowd dynamics. 

Self-organization or collective shifts Revolutions, fashions, choirs, demonstrations, property rental 

markets. 

Non-equilibrium dynamics Fighter aircraft, share prices, the weather armed conflict, social 

networking. 

Combinatorial explosion  Chess, commutations systems, data states for a program. 

Adaptively to changing environments Biological systems, manufacturing design, retail systems. 

Co-evolving subsystems Land-use, transportation, computer virus software. 

Ill-defined boundaries Genetically modified crops, nations, pollution, markets. 

Multilevel dynamics Companies, armies, aircraft, internet, transportation. 

 

 Simple versus comprehensive model 

Complex systems do not need be complicated, although in reality they often are. Simple models 

are necessary to expose the fundamental mechanisms and provide the entry point for basic 

questions. The aim of simple models is to gain understanding of the so-called stylized facts of 

the system, i.e. to capture some essence of the real system, in other words to provide 

simplifications, abstractions or typical observations (with the caveat that simple models are not 

able to analyse all the foundations of a system). Another positive of simple models is that they 

easily facilitate analytical treatment and, therefore, give a useful and often deep insight into the 

mechanisms explaining the behaviour of the system. Complicated model are constructed and 

become more complicated from the extension of such simple models through gradually 

capturing additional details of the system. Simple models can also be very useful in proving 
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that statements made about a system are incorrect. They therefore play a significant role in the 

validation of a process. On the other hand, simple models often prove only what everyone 

already supposed, for example, some basic system relationships. In this case, the model, though 

simple, captures some of the important features of the real system. This then serves as a starting 

point for more complicated models, with the hope of correctly capturing even more features of 

the real system. 

 

Knowledge representation is a fundamental issue of complex systems. Many studies of what 

are today considered complex systems have traditionally relied on blind statistical analysis. 

The observation of these systems provides correlations of different types. Sometimes these 

correlations are considered to be some type of ‘law of nature’ that can be reproduced by ad-hoc 

modelling. To go beyond the knowledge provided by such correlations and be able to establish 

cause-effect implications is a fundamental challenge. This issue was raised, for example by 

Granger (1969),who investigated causal relations in econometric models and more recently by 

Hempel et al. (2011) who have worked in this direction, in the context of directed networks 

inference. However, knowledge representation still requires new approaches to data collection 

and interpretation. 

 Modularity in technology 

Modularity is used to deal with system complexity as a general set of principles. By breaking 

down a complex system into smaller pieces which can then communicate with one another 

only through standardized interconnections within a standardized framework, one can remove 

what would otherwise be an unmanageable spaghetti tangle of systemic interconnections 

(Langlois, 2002). Modularity ideas are not new in the literature of systems architecture (Simon, 

2003; Badwin& Clark, 2003). However, because of the increased complexity of modern 

technology, modularity is becoming ever more important today. 

 

The world is full of complex systems. Nature provides a large number of complex organisms 

and ecosystems, and complex mechanical, organizational, intellectual and social systems have 

been constructed by humans. Simon defined a complex system as one made up of a large 

number of parts that interact in a non-simple way. In such systems, the whole is more than the 

sum of the parts, at least in the important pragmatic sense that, given the properties of the parts 

and the laws of their interaction, it is not a trivial matter to infer the properties of the whole 

(Simon, 1981, cited in Langlois, 2002). Therefore, complexity is a matter concerning both the 
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total number of distinct parts the system comprises, and of the nature of the interconnections 

or interdependencies amongst those parts. 

 

Reducing the number of elements and components in a system by grouping and clustering 

elements into, or by hiding elements within a smaller number of subsystems is a way to deal 

with complexity. Simon argued for the criterion of decomposability in modular design, which 

he offered both as an instruction for human designers and as a direction of the systems found 

ready-made in nature. 

 

From a system’s perspective, modularity can be considered as a continuous definition of the 

degree to which a system’s elements can be decomposed and recombined, alongside the 

tightness of coupling between components. It is also the degree to which the rules of the system 

design enable the mixing and matching of elements and components (Schilling, 2000, cited in 

Ndouet al., 2010). Modularity permits components to be produced separately, or loosely 

coupled (Sanchez & Mahoney, 1996) and used interchangeably in different configurations 

without compromising system integrity (Garud&Kumaraswamy, 1995). Modularity has also 

has been applied in managing complex organisations (Cusumano, 1997). For example, Mikkola 

(2003) used modularity to interface shared components in standardized product architecture. 

 

In a world of change, modularity is generally worth the cost. The real issue is normally not 

whether to be modular, but how to be modular. Which modularization, which structure of 

encapsulation boundaries, will result in the best system decomposition? The aim is to find the 

modularization that minimizes interdependencies and most cleanly decomposes the system. 

The question therefore is how to do this modularization? How can we find the natural 

boundaries of isolation (Langlois, 2002)? The issue of defining the boundaries of encapsulation 

is the main challenge in the system dynamic setting. This subject needs more research and this 

thesis attempts to define a new approach in the encapsulations of boundaries. The research 

findings will present a solution that removes all the pre-specified boundaries of isolation that 

exist in complex systems. 
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2.4. Basic system definitions 

In this section, some fundamental definitions in the field of systems theory, which will be used 

in the following chapters, will be explained. These definitions have predominantly been taken 

from (Cassandras & Lafortune, 2008; Ramadge & Wonham, 1989; Zeigleret al., 2000). 

 System model 

Scientists and engineers are concerned with the quantitative analysis of systems and the 

development of techniques to design, control, and provide explicit measurements of system 

performance based on well-defined criteria. Therefore, the purely qualitative definitions given 

in section 2.2 are not enough. Instead, a model of an actual system is sought. Intuitive thought 

suggests thinking of a model as a device that simply duplicates the behaviour of the system 

itself. 

 

Figure 2.2 illustrates the simplest possible modelling process. A system is ‘something real’ (for 

example, an engine, an airplane, a plant, or a human brain), whereas a model is an ‘abstraction’ 

(a set of mathematical equations). Often, the model can only approximate the true behaviour 

of a system. 

 

 

Figure 2.2. Simple modelling process 

 

 Static and dynamic systems 

In static systems the output is always independent of past values of the input. In dynamic 

systems, the output depends upon past values of the input. Differential or difference equations 

are generally required to describe the behaviour of dynamic systems. 
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 Time-varying and time-invariant systems 

The behaviour of a time-invariant system does not vary with time. This property, also called 

stationary, implies that we can apply a specific input to a system and expect it to always respond 

in the same way. 

 Linear and nonlinear systems 

A linear system satisfies the condition in equation 2.1. 

 

F (𝒂𝟏𝒖𝟏 +𝒂𝟐𝒖𝟐) = 𝒂𝟏F (𝒖𝟏) + 𝒂𝟐F (𝒖𝟐)                         Equation 2.1 

 

Where𝑢1, 𝑢2 are two input vectors, 𝑎1,𝑎2 are two real numbers, and F(u) is the function.  

 Continuous -state and discrete-state systems 

In continuous-state systems, the state variables can generally take on any real (or complex) 

value. In discrete-state systems, the state variables are elements of a discrete set (for example, 

non-negative integers). 

 Deterministic and stochastic systems 

A system becomes stochastic whenever one or more of its output variables are a random 

variable. In this case, the state of the system is described by a stochastic process, and a 

probabilistic framework is required to characterize the system's behaviour. 

 Discrete-time and continuous-time systems 

In a continuous-time system, all input, state, and output variables are defined for all possible 

values of time. In discrete-time systems, one or more of these variables are defined at discrete 

points in time only, usually as the result of some sampling process (Cassandras &Lafortune, 

2008, p. 46). 

 

2.4.7.1. Discrete-Time Systems 

The basic notion of time in the physical world is the assumption of time as a continuous 

variable. If the input and output variables of a system are defined at discrete time instants only, 

the result is called a discrete-time system. In contrast to the continuous-time systems 

considered up to this point there are several good reasons why we might need to adopt the 

approach of a discrete-time system (see figure 2.3). One of the main reasons is that some 
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systems are inherently discrete-time, such as economic models based on data that is recorded 

only at discrete, regular intervals. 

 

 

Figure 2.3. Continuous-time and discrete-time sample paths 

 

 The concept of events 

An event may be identified with a specific action taken (for example, somebody presses a 

button). It could be a spontaneous occurrence dictated by nature (for example, a plant shuts 

down for reasons too complicated to comprehend), or it may be the result of several conditions 

which are suddenly all met. 

2.4.8.1. Discrete-event systems  

When the state space of a system is naturally described by a discrete set like {0, 1, 2, . . .}, and 

state transitions are only observed at discrete points in time, we associate these state  transitions 

with ‘events’ and talk about a discrete-event system (DES). Discrete-event systems will be 

discussed further in the following chapters. 

2.4.8.2. Time-driven and event-driven systems 

In time-driven systems, the system state continuously alters as time changes. In event-driven 

systems, it is only the occurrence of asynchronously generated discrete events that forces 

instantaneous state transitions. The state remains unaffected between eventoccurrences. Figure 

2.4 illustrates a comparison of sample paths for continuous systems and discrete-event systems. 
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Figure 2.4. Comparison of sample paths for Continuous-Variable Dynamic Systems 

(CVDS) and Discrete Event Systems (DES) 

 

 Response times 

The time between the presentation of a set of inputs to a system (excitation) and the realization 

of the required behaviour (response), including the availability of all associated outputs, is 

called the response time of the system. 

 Real-time systems 

A real-time system is one whose logical correctness is based on both the correctness of the 

outputs and their timeliness (Laplante, 1993). 

2.5. The concept of system control 

The concept of system control has so far been limited to the basic issue of what happens to the 

system output with reference to a given input. Systems, however, do not normally work in a 

vacuum. In fact, it has been seen that every definition of a system contains the idea of 

performing a particular function. In order for such a function to be performed, the system needs 

to be controlled by choosing the right input so as to fulfil a desired behaviour (Dorf & Bishop, 

2011). 
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Therefore, the input to a system is often presented as a control signal aimed at achieving a 

targeted behaviour (Figure 2.5). Conceptually, for a simple scalar case, this desired behaviour 

can be shown by a reference signal r (t), and the control input to the actual system as: 

 

 

 

 

Figure 2.5. State space modelling with control input 

 

This relationship is referred to as a control law. Thus, given the function r(t) describing a 

desired behaviour for the system, the task as a controller is to select u(t) = γ(r(t), t) to be the 

input function to the system. The extension to the vector case, where multiple reference signals 

are specified, leads to the control law equation 2.2.     

 

U (t) = γ(r, t)                                                    Equation 2.2 

 

Where γ (·) denotes the column vector whose entries are the p scalar functions              

𝑢𝟏(t) =γ𝟏(r (t), t),...,𝑢𝒑(t) = γ𝒑(r (t), t). 

2.6. The concept of feedback 

The idea of feedback is intuitively simple: use any available information about the system’s 

behaviour in order to continuously adjust the control inputs. Feedback is used in everyday life 

in different forms. When driving, the car’s position and speed are monitored by the driver so 

as to continuously make adjustments through control of the steering wheel, accelerator and 

brake pedals. In heating a house, a thermostat is used which senses the actual temperature in 

order to turn a furnace on or off. 
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 Open-Loop and Closed-Loop systems 

The possibility of using feedback in the controlled system model of figure 2.6 leads to one 

additional system classification. A system with a control input of the form u (t) = γ(r (t), t) is 

referred to as an open-loop system. In contrast, a system with a control input of the form u (t) 

= γ(r (t), x (t), t) is referred to as a closed-loop system. The distinction between these two forms 

of control is fundamental. In open-loop control, the input remains fixed regardless of the effect 

(good or bad) that it has on the observed output. In closed-loop control, the input depends on 

the effect it causes on the output. In the closed-loop case, it is assumed that the information 

feedback is some function of the state variables (not explicitly shown in the diagram), which 

is then included in the control law γ (r, x, t). Note that it may not be desirable to include 

information about all the state variables in the model. The loop formed by the feedback process 

in figure 2.6 gives rise to the term ‘closed-loop’ system. 

 

 

Figure 2.6. Open-loop and closed-loop systems 

 

2.7. Summary of systems theory 

This chapter has reviewed the origins and concepts of system theory, complex systems and has 

also addressed some fundamental definitions in systems theory and modelling.  

Throughout system history, as the complexity of systems and their contexts has grown, current 

methods and tools have increasingly fallen short of what is needed in the face of this reality. A 

common approach been to seek clever ways to simplify, or reduce, the subjective complexity 

so that the problem and the system are understandable. Scientific advances have, in fact, often 

come from elegant simplifications that model the important variables or forces that dominate 
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behaviour. However, this is not always possible – complexity often cannot be simplified away 

without losing the essence of the problem or possible solutions. Further, this simplification 

leads to an inability on the part of the solution to be able to engage with the complexity that 

remains despite our preference to assume it away. 

 

This system knowledge leads this research to define and present a solution that removes all the 

logical boundaries of isolation that exist in complex systems. This solution comes from 

knowledge of systems behaviour with regard to their excitations. The following chapter 

reviews input selection approaches which are related to a system’s inputs/stimulus section. 

Data integration with regard to selecting appropriate inputs to a system will lead this thesis to 

a novel technology which will be proposed in chapter four.  
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3. A Review of the Input Variable Selection (IVS) 

 

Systems are becoming increasingly complex as they are developed to meet the requirements of 

possessing the necessary intelligence and physical capabilities to maintain system integrity  

when faced with perturbations in their operating environment that arise from both known and 

unknown internal and/or external event sources. The infrastructure and complex knowledge 

built within and around these information systems generally struggles with (a) the large flow 

of raw input data that clogs the communication channels; and (b) the complexity of algorithms 

and methods that are designed to interpret and control the state of such systems. The 

computational effort thus increases exponentially, leading to higher energy and time-to-action 

costs (Tavakoli, 2010). This effort could be reduced by identifying and filtering inputs of lesser 

important data. 

 

In this chapter a general overview of complex system boundaries are presented, and the existing 

concepts and methodologies which could help in the reduction of the computational time of 

data integration and improving the quality of decisions are introduced.  This chapter defines 

the concept of Input Variable Selection (IVS) and reviews existing methods to reveal how a 

data integration solution can be developed to encompass the effort of data acquisition and 

aggregation from the entire data source. At the same time the importance of quantifiable 

measures of data sources will be reviewed. At the end of this chapter the subject of gaps in data 

integration and management will be introduced. These gaps will lead the research to its key 

research question in section 1.1 which was 'How the new knowledge acquired through better 

sensing of systems internal dynamics and its interaction with its environment allow us to better 

define boundaries of the system?'. Replying to this question needs a deep knowledge of 

definition of input and output with respect to systems definition which in this chapter will be 

provided an appraisal of the literature. 

 

An important factor that facilitates data interpretation and information modelling is an 

appreciation of the effect system inputs have on each output at their time of occurrence. The 

methods for such interpretation are generally referred to as Input Variable Selection (IVS) in 

engineering and as Sensitivity Analysis (SA) in mathematical literature. The purpose of IVS 

techniques are to maximize the quality of data acquisition and interpretation. For example, the 

human nervous system could collect data from its surroundings and translate this into highly-
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specialized knowledge such as colour, sound, temperature, and so on. The conversion of 

millions of data pieces to a smaller number of specific, critical knowledge enables a quick 

response to situations (Tavakoli, 2010). Furthermore, the selection of proper conversion 

techniques could improve the quality of decisions. Therefore, the cause-effect relationship 

between the input variables and performance parameters generates the knowledge about the 

system. The term ‘important’ with reference to IVS has been translated into two separate 

categories, those of ‘usefulness’ and ‘relevance’ (Kohavi& John, 1997; Blum & Langley, 

1997). 

 

In the following sections, brief introductions to the most relevant IVS and SA methods are 

provided. 

 

3.1. IVS and feature selection 

Attempts to select relevant inputs within the time-constrained system to avoid computational 

overhead due to redundant inputs are categorised within IVS methodologies. The objective of 

variable selection is three-fold: to improve the prediction performance of the predictors, to 

provide faster and more cost-effective predictors, and to provide a better understanding of the 

underlying process that generates the data (Caruna, 2003). Furthermore, there are additional 

potential benefits regarding variable selection: facilitating data visualization and data 

understanding, reducing measurement and storage requirements, reducing training and 

utilization times and defying the ‘curse of dimensionality’ (COD) to improve prediction 

performance. 

 

Feature Selection (FS) is also classified as one of the most prevalent techniques to reduce 

dimensionality amongst practitioners. Although the concept of IVS and FS appear similar, 

there are marginal differences between them. An ‘input variable’ is generally referred to as a 

piece of information about the system which is later used to continuously represent the model 

of the system, whilst ‘feature’ refers to particularised knowledge about a series of data in the 

system. Therefore, ‘feature’ could be created locally or temporarily to simplify decision 

making systems. Local and non-sequential data could be useful in data mining (Hand et al., 

2001), but a continuous flow of input data is critical in certain applications. 
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FS aims to choose a small subset of the relevant features from the original ones according to 

certain relevant evaluation criteria (Bolón-Canedo et al., 2013; Elghazel&Aussem, 2013) 

which usually leads to better model interpretability. A feature could be derived either from 

input variables (Feature Construction) or based upon data mining (Feature Extraction) 

(Tavakoli, Mousavi &Posland, 2013). 

 

Feature selection has been successfully applied in a large number of applications and research, 

such as pattern recognition (Gheyas& Smith, 2010), text categorization (Fenget al., 2012; 

Uğuz, 2011), image processing (Dai et al., 2014), bioinformatics (Yu & Liu, 2004), 

biomedicine (Wang et al., 2014), and so forth. For example, Tabakhaniet al. (2014) proposed 

a new method in FS based on ant colony optimisation which has a low computational 

complexity and thus can be applied to high dimensional datasets. Their method seeks to find 

the optimal feature subset through several iterations without the use of any learning algorithms. 

Moreover, the feature relevance has been computed based on the similarity between features, 

which leads to the minimization of redundancy. 

 

IVS can therefore be described as a direct result of the collection of raw input data from the 

data source. In distinction, FS is knowledge extracted by the mining of data collected from 

input variables. Regression (Uysal&Güvenir, 1999) and cluster analysis (Jain, 2010) are two 

of the most used techniques in dimensionality reduction. The advantages and disadvantages for 

knowledge discovery using regression techniques are discussed in the following sections, 

whilst cluster analysis techniques will be explained in the next chapter.  

 Regression 

Hand et al. (2001) defined regression as the task of estimating relationships between a 

dependent variable and a number of independent variables. Independent variables could be 

assumed as input variables of a system, whilst, the dependent variable is interpreted as the 

model's key performance indicator (KPI). Jain (2010) used the regression method for predicting 

and learning the numeric features of a model when there is no predictive model between 

independent and dependent variables. This method has also been used to build a new set of 

independent variables to replace the original set of independent variables which leads to the 

same effect. The term ‘derived variable’ has been created for this purpose by the data mining 

community. Well known methods within data mining techniques in this area are Projection 

Pursuit Regression (PPR) and Principal Component Analysis (PCA). PPR forms an estimation 
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model by transforming the training set onto lower dimensional projections as a solution for 

high dimensional data sets and PCA is a multivariate orthogonal transformation cluster analysis 

(Hassan &Habeb, 2012). 

 

The regression method can be seen to be invalidated by the heterogeneous nature of data 

distribution. It also becomes quickly and extremely unreliable in high dimensional input data 

analysis; this phenomenon is called the ‘curse of dimensionality’ (COD). Banks et al. (2003) 

describe how the number of possible regression structures increases faster than exponentially 

with dimensionality. In comparing the performance of regression methods by conducting 

experiments on ten well known regression methods the results of their research concluded that 

no particular regression method is capable of supporting the scale and heterogeneity of 

variables in volatile industrial systems whilst keeping the computational cost low. 

 

In the context of IVS, the relationship between the input variables and system performance are 

considered as system knowledge. In this context, input variables with different levels of 

relationships are classified into different categories. From another viewpoint, some functions 

are required to measure and study the level of impact of each independent variable on the 

dependent variable or system performance. In the following section, a discussion with respect 

to sensitivity analysis will be opened up. 

 

3.2. Sensitivity analysis (SA) 

In simulation models, assumptions represent uncertain information regarding the model that 

cannot be obtained from the system in reality. These model assumptions could be about a 

variable value or a heuristic decision by the system manager. The effect of input uncertainty 

on the model output is evaluated by Sensitivity Analysis (SA) (Saltelliet al., 1999). SA is a 

technique to minimize the cost of data acquisition and subsequently its interpretation, by 

eliminating the input variables that have the least impact on the system (Volkova, Iooss & Van 

Dorpe, 2008; Cloke, Pappenberger & Renaud, 2008; Hu & Shi, 2010; Tavakoli, 

Mousavi&Broomhead, 2013; Fock, 2014). The purpose of sensitivity analysis methods is to 

measure the true impact of a system’s input on a system’s output. However, focusing only on 

the most valuable information has a significant impact on the behaviour of systems. Sensitivity 

indexing is a systematic approach for expressing the relationships between the inputs and 
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outputs of a system. However, due to the epistemic uncertainties of system input-output 

relationships finding a true representation is challenging (Krzykacz-Hausmann, 2006).  

 

The selection of a suitable sensitivity analysis method according to (Tavakoli, 

Mousavi&Broomhead, 2013) requires firstly to be aware of the relationships between input 

and output variables. The selection of appropriate methods for sensitivity analysis are classified 

by three major factors. These factors are: the analytical relationship between input and output 

data; the statistical distribution of input variables; and finally, the computational overhead. 

 

 The analytical relationship between input and output data 

Analytical SA methods attempt to describe the impact of changes in one variable in relation to 

others using analytical models. SA methods such as differential analysis, coupled/decoupled 

direct and Green’s function are categorised as various analytical SA methods (Saltelli, 2002). 

In those cases where mathematical equations do not exist between the respective system 

variables, statistical techniques attempt to extract the relationship from input-output variables. 

Morris (Jinet al., 2007), the Fourier Amplitude Sensitivity Test (FAST) (McRae et al., 1982), 

Monte Carlo (Sobol, 2001) and Latin Hypercube (Hora& Helton, 2003) are some examples of 

these techniques. Their reliance on historical data and the generation of data samples which fit 

to probabilistic equations are prominent characteristics of these techniques. The entropy 

method (Krzykacz-Hausmann, 2006) is a method that is less reliant on analytical methods for 

extracting sensitivity indices. In the following sections these methods are explained.  

 The statistical distribution of input variables 

Input data series distribution normally influences the sensitivity indices of a system. For 

example, some sensitivity analysis methods, such as those based on linear regression, can 

inaccurately measure sensitivity when the system performance is nonlinear with respect to its 

inputs. Correlation-based SA methods (Cohenet al., 2013) are not able to recognise nonlinear 

relationships between the input and output series of a model. In such cases, variance-based 

measures are more appropriate. Variance-based and entropy-based indices are sensitive to 

heteroscedastic data series (Krzykacz-Hausmann, 2001).  

 

Saltelli and Annoni (2010) classified two more constraints in the choice of SA methods: 
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 Input correlation: correlation between input variables must be considered. Most 

sensitivity analysis methods assume the model inputs are independent. 

 Parameter interactions: the excitation of two inputs at the same time causes variation 

in the output larger than that of varying each of the inputs alone, causing interactions 

to happen. Such interactions are present in any model that is non-additive, but will be 

neglected by methods such as one-at-a-time (OAT) perturbations. A total order 

sensitivity index can measure the effect of such interactions.  

 

 The computational overhead 

SA methods are hungry to computational processes. The majority of SA methods capture a 

large batch of input variables running a number of times. Subsequently, SA values are 

measured based on the number of iterations needed to perform the SA algorithm. Whilst 

different methods have their own approach to determine the SA indices, their commonality is 

a requirement for extensive computational processing.  

 

Tavakoli, Mousavi and Broomhead (2013) proposed the EventTracker sensitivity analysis 

which has a clear advantage over analytical and computational IVS methods since it tries to 

understand and interpret system state changes in the shortest possible time with minimum 

computational overhead. The objective of this thesis is also proposes a novel sensitivity 

analysis method for time-constrained applications. 

 

Related works 

Figure 3.1 presents the most widely used SA methods in three different categories regarding 

their input/output relationships. In this section a review of the latest analytical, sample-based 

and heuristic SA techniques is provided. 
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Figure 3.1. Different SA methodologies 

 

 Analytical methods 

Analytical and numerical methods measure the impact of change in one variable on the others 

by means of a mathematical equation that describes the relationship between variables. 

Isukapalli (1999) classified differential analysis with Green’s function and couple/decoupled 

direct methods both widely-used analytical methods. 

3.2.4.1. Differential analysis  

Differential analysis, also referred to as the direct method, is explained here first because this 

method provides the foundation for almost all the other sensitivity analysis techniques.  

 

A sensitivity coefficient is essentially the ratio of the change in output compared to the change 

in input whilst all other parameters remain constant (Krieger et al., 1977). This scenario is 

defined as the 'base case' of a model. Differential techniques are structured on the behaviour of 

a model for a base-case scenario, i.e., all parameters are set equal to their mean value. 

Differential sensitivity analysis is based on partial differentiation of the aggregated model. 

When an explicit differential equation describes the modelled relationship, the sensitivity 

coefficient for a particular independent variable is calculated from the partial derivative of the 
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dependent variable with respect to the independent variable (Caruana & De Sa, 2003). Methods 

such as the Neumann expansion and perturbation methods (Buonomo & Lo Schiavo, 2010) 

could help to extract these coefficients by approximating differential equations. However, 

complex and nonlinear relationships between system variables cannot be guaranteed in this 

type of analysis. 

 

Morisawa and Inoue (1974) used the differential method to select desirable conditions for 

underground waste disposal sites in Japan. However, they reported that with the direct method, 

the magnitude of variable sensitivity is dependent upon the base-case scenario. A major 

drawback is that this localized behaviour may not be applicable for areas far removed from the 

base case. 

 

3.2.4.2. Green’s function 

In the Green’s function method, the sensitivity equations of a model are obtained by 

differentiating the model equations. The sensitivity equations are then solved by constructing 

an auxiliary set of Green’s functions. This method minimizes the number of differential 

equations that are solved for sensitivity, and replaces them with integrals that can be easily 

calculated (Isukapalli, 1999). The concept of Green’s function stems from the knowledge that 

the total output of a linear time invariant system can be formulated by a summation of terms 

that adds all outputs of the system for all single points (Beylkinet al., 2008).  Disadvantages 

regarding the application of Green’s function are its constraint to a linear and time-invariant 

system, and also its ability to work only with ordinary differential equations which govern 

dependent variables with respect to independent variables. In real applications it is often 

difficult to separate independent variables and dependent variables. Additionally, working one 

variable at a time for multi-dimensional systems could be computationally expensive 

(Tavakoli, Mousavi & Poslad,2013). 

3.2.4.3. Coupled/Decoupled direct method 

The coupled direct method involves the differentiation of model equations and the subsequent 

solution of the sensitivity equations. The sensitivity equations are then solved along with the 

original model equations (Coupled Direct Method) or separately (Decoupled Direct Method). 

The decoupled method is reported to be more efficient than the Green’s function 

method (Isukapalli, 1999). In common with other analytical methods, prior knowledge of the 

model equations is a requirement. The couple/decoupled methods also exhibit the feature of 
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being model-oriented and expert-hungry. These features make them less attractive for practical 

applications when compared to SA methods that do not require model equations. 

 Sampling based methods 

Sampling based methods do not require access to model equations. These methods run a 

number of models at a given set of sample points, and attempt to establish a relationship 

between inputs and outputs using the model results at the predefined sample points. This may 

be required due to the non-existence of analytical relationship between model variables, the 

lack of expertise to identify such a relationship, or due to changes in the configuration of inputs 

and outputs. Consequently, the effort required by expert interference is often costly and may 

vary. On these occasions, sampling based SA methods tend to establish a model equation. They 

do so by identifying certain statistical features in the distribution of the data series of the two 

variables. 

 

The general shortcoming of sampling based methods is their reliance on historical data. Their 

reliability decreases when there is little time for collection and interpretation of the historical 

data. Cloke et al. (2008) applied their model to 1280 sample values of 20 input parameters. 

Each cycle of sample generation and model execution took between 2 and 52 h per set of 

samples. The overall execution cycles took almost 46 days. This example reveals the significant 

shortcoming of sampling based analysis for volatile systems that require quick analysis and 

reaction.  

 

Some of the most widely used sampling based sensitivity/uncertainty analysis methods are: 

Monte Carlo and Latin Hypercube Sampling, Analysis of Variance (ANOVA), Fourier 

Amplitude Sensitivity Test (FAST), Sobol and Entropy-based Epistemic sensitivity analysis. 

 

3.2.5.1. Monte Carlo and Latin Hypercube methods 

The Monte Carlo method is one of the most widely used techniques for uncertainty analysis. 

This method performs sampling from a possible range of input variable values followed by 

model evaluations for the sampled values until a statistically significant distribution of outputs 

is obtained. An important part of every Monte Carlo analysis is the generation of random 

samples. These generating methods produce samples from a specified distribution (typically a 

uniform distribution). The random numbers from this distribution are then used to transform 
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model parameters according to a predetermined transformation equation (Griensven et al., 

2006). 

 

Problems such as optimization and simulation can be addressed through the Monte Carlo 

analysis method. Since this method requires a large number of samples and/or model runs, their 

applicability is sometimes limited to simple models. In the case of computationally intensive 

models, the time and resources required by this method could be prohibitively expensive. To 

mitigate such an overhead a degree of computational efficiency is accomplished by the use of 

the Modified Monte Carlo (MMC) method which samples from the input distribution in an 

efficient manner (Andrieu et al., 2010; Liu et al., 2013). 

 

The Latin Hypercube Sampling (LHS) method was first developed by (McKay & Conover, 

1979) and is one such widely used variant of the standard Monte Carlo method. In this method, 

the range of probable values for each uncertain input parameter is divided into intervals of 

equal probability. Thus, the whole parameter space, consisting of all the uncertain parameters, 

is partitioned into cells having equal probability, and these are sampled in an ‘efficient’ manner 

such that each parameter is sampled once from each of its possible intervals. The procedure of 

LHS for selecting K different values from each of N variables𝑋1,𝑋2, ..., 𝑋𝑁 can be summarised 

as: (i) Divide the range of each variable into K at equal intervals; (ii) From each interval, 

randomly select a value with respect to the probability density in the interval; (iii) The M values 

thus obtained for 𝑋1 are paired randomly with the K values of𝑋2. These K pairs are combined 

in a random manner with the K values of 𝑋3 to form K triplets, and so on, until a (K × N) matrix 

is formed. The advantage of this approach is that the random samples are generated from all 

the ranges of possible values, thus giving insight into the extremes of the probability 

distributions of the outputs(Hora & Helton, 2003). 

 

An important challenge faced when applying Monte Carlo methods in time-sensitive 

applications is the effort required to estimate the distribution of the input variables prior to 

sample generation. This can be computationally very expensive, particularly with high 

dimension input variables. LHS sampling can generate the input distribution with fewer 

sampling iterations than the Monte Carlo sampling to achieve a similar accuracy (Zi, 2011). 

 



42 

 

3.2.5.2. Analysis of variance (ANOVA) methods  

The One-At-a-Time (OAT) method of processing input variables can at times make it 

impossible to capture the complexity of the relationship and interaction that exists between 

multiple input variables and an output variable. The ANOVA method aims at decomposing 

and measuring the variance of the output distribution, when all inputs are varying, into partial 

variances (Saltelliet al.; 2000; Armstrong et al., 2000; Volkova et al., 2008). 

 

For the output of a system represented as an analytic function of input variables, e.g.  

Y=𝑓(𝑋1, 𝑋2, … , 𝑋𝑝), the relative importance of the independent inputs can be quantified by 

the fractional variance which is defined as the fractional contribution to the output variance 

due to the uncertainties in inputs. This can be estimated using an ANOVA decomposition 

formula for the total output variance Var (Y) (Yu and et al., 2009). 

 

 

Where                                                                                                                     Equation 3.1 

                               Equation 3.2 

A partial variance 𝑉𝑖 represents the main, or first order, effect of an input i on the output that 

corresponds to the variance when all other inputs are constant. Higher order effects 𝑉1,2,…,𝑝are 

combined effect for 2 or more inputs. The partial effects can be estimated with special sampling 

schemes that are often computationally hungry. 

 

Where E(𝑌 𝑋𝑖 = 𝑥𝑖⁄ ) denotes the expectation of conditions on 𝑋𝑖 having a fixed value 𝑋𝑖, and 

V stands for variance over all the possible values of 𝑋𝑖.Sensitivity index of output to each input 

variable is (Saltelli, 2002):  

                                                                      𝑺𝒊=
𝑽𝒊

𝑽(𝒚)   
                                                      Equation 3.3 

           



43 

 

To achieve these variables, when no explicit relationship exists between inputs and output, a 

numerical approach based on sample generation can be adopted. Using this technique, the level 

of computational overhead, in terms of model runs required to produce output values for each 

input sample grows rapidly. The amount of computational overhead, in terms of the number of 

model runs (for producing output values per each input sample set) can be derived using the 

equation 3.4. 

 

M=𝑁 × ∑
𝑝!

(𝑝−1)!𝑖!

𝑝
𝑖=0  Equation 3.4 

 

Where N is the sample size, and p is the number of input variables (Saltelli, 2002),for instance, 

with 100 samples and 5 input variables, the number of execution runs is 1,358, which is 

extremely high. Therefore this method would not be applicable in real-time applications. 

 

The computational cost of a numerical calculation is defined in terms of the number of model 

runs necessary to estimate the sensitivity measure. The cost for computing all terms in the 

variance decomposition is given by (Rabitz&Aliş, 1999). 

 

3.2.5.3. Fourier Amplitude Sensitivity Test (FAST) Method 

The Fourier Amplitude Sensitivity Test (FAST) method was proposed by Cukier et al. (1973) 

to study chemical reaction systems. The FAST is a variance-base method based on Fourier 

transformation of uncertain model parameters into a frequency domain, thus reducing the 

multidimensional model into a single dimensional one. FAST is an example of improvements 

in computational efficiency of the ANOVA-based SA methods. In opposition to ANOVA 

methods, the data distribution of input variables cannot be estimated from the acquired 

historical data. Instead, all distributions of input variables are considered to be uniform and 

within a specific range. Therefore, generated samples in this range follow a periodical function 

(Minnebo et al, 2007). 

 

The FAST method assumes that all model parameters are independent from each other. The 

parameter is sampled from the following transformation function (Zi, 2011). 

 

𝑷𝒊 = 𝑷𝒊
𝒐𝒆𝒖𝒊 = 𝑷𝒊

𝒐𝒆𝑮𝒊(𝐬𝐢𝐧 𝒘𝒊𝒔)                        Equation 3.5 



44 

 

 

Where𝑝𝑖
0is the reference value for parameter i.  

S is a scalar variable. 

𝑤𝑖 is an element in a set of linearly independent integer frequencies. 

Gi is a defined transformation function that transforms the probability density of the parameter 

into s space. 

 

If assumes 𝑓(𝑠)=𝑓(𝐺1(sin 𝑤1𝑠) , 𝐺2(sin 𝑤2𝑠) , … , 𝐺𝑘(sin 𝑤𝑘𝑠)). 

The model output can be calculated by  

 

�̂�(y)=
𝟏

𝟐𝝅
∫ 𝒇(𝒔)𝐝𝐬                                                      

𝝅

−𝝅
Equation 3.6 

 

The partial variance in FAST method is approximated by: 

 

 

                    Equation 3.7 

 

 

 

The FAST sensitivity index is calculated with the following approximation  

                                                      Equation 3.8 

 

Saltelliet al. (1999) developed extended FAST (eFAST) which allows the computation of the 

total contribution of each input factor to the output’s variance. The eFAST method has a better 

transformation function than the classic FAST method because it provides uniform distributed 

samples for the parameters. The main advantage of eFAST is its robustness, especially at low 

sample size and its computational efficiency. However, Marino et al. (2008) implemented 
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eFAST in a biological case and indicated its computational cost as its major drawback, 

especially for computing sensitivity indices. This experiment highlights how a large number of 

iterations are required to achieve an acceptable degree of accuracy in eFAST. 

3.2.5.4. Sobol Method 

In 1990 a Russian mathematician Ilya M. Sobol (1990) developed a method for SA which was 

considered a natural extension of the FAST approach. His method is categorized in variance-

based sensitivity analysis methods because this method computes the ANOVA decomposition 

of the output variance. 

 

Consider the function 𝑓 (x) =𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) defined in the n-dimensional unit cube. Under 

Sobol's assumptions this function could be decomposed into summands of increasing 

dimensions (Saltelli & Bolado, 1997): 

 

Equation 3.9 

Where𝑓0 is a constant and the integrals of every summands over any of its own variables in 

zero: 

Equation 3.10 

 

The total variance of (x) can be written as  

 

While 

                                Equation 3.11 

is a contribution to the total variance due to a generic term 𝑓𝑖1…𝑖𝑠
 in the series development. 

Sensitivity  𝑆𝑖1…𝑖𝑠
  can be introduced: 

 

 𝑆𝑖1…𝑖𝑠
=  𝐷𝑖1…𝑖𝑠

/ 𝐷 

D=∑ 𝐷𝑖
𝑛
𝑖=1 + ∑ ∑ 𝐷𝑖𝑗1≤𝑖≤𝑗≤𝑛 + ⋯ + 𝐷12…𝑛                     Equation 3.12 
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It follows that ∑  𝑆𝑖1…𝑖𝑠
=1  which ,for example, 𝑆1 is the main effect of parameter  𝑥1, , 𝑆12 is 

the interaction effect, i.e. that part of the output variation due to  𝑥1 , 𝑥2 parameters. Finally 

 𝑆123 ..𝑛  is that fraction of the output variance which cannot be explained by summing terms of 

lower order. This ANOVA like decomposition is similar to the FAST one. 

 

The advantage of Sobol with respect to FAST is its capability to compute higher-order terms 

in the variance series development. It is therefore relevant when those terms make a significant 

contribution to the output variance. However, Sobol indices are computationally more 

expensive, although they converge to the analytical values. Furthermore, Sobol indices provide 

a unique way to estimate the effect of variables as well as interaction terms of any order. 

3.2.5.5. Entropy-based sensitivity analysis 

Entropy is a well-known function in the theory of information, which presents the loss of 

information within a system and then, by way of contrast, the amount of information (Auder, 

2008). The entropy of a discrete random variable x ranging in𝑥1,… , 𝑥𝑛 with respective 

probabilities𝑝1,… , 𝑝𝑛is: 

 

        H(x) =− ∑ 𝒑𝒌
𝒏
𝒌=𝟏 𝐥 𝐧(𝒑𝒌)                                              Equation 3.13 

 

This quantity does not only depend on the values of x, but also on their probabilities. Using 

entropy definitions, Krzykacz-Hausmann (2001) introduced the entropy–based SA method to 

deal with the high computational effort and time-demanding issues of sampling-based SA 

methods like the Monte Carlo sampling method. This method proposes an approximation 

approach that measures the entropy of variable distributions from original samples. It has been 

proposed that in order to determine sensitivity indices one needs only to establish the value of 

independent input variables (denoted by X) and dependent output variables (denoted by Y). 

The sensitivity indices are defined as:  

 

ή𝒊   =  𝟏 −
𝑯(𝒀

𝑿𝒊
⁄ )

𝑯(𝒀)
                                        Equation 3.14 
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Where H(Y) is the entropy values and 𝐻(𝑌
𝑋𝑖

⁄ ) are the values of conditional entropy, which is 

a representation of the information learnt on Y by the knowledge of X. 

 

This method replaces the time consuming sample generation of X and evaluation of Y by 

simple random sampling using piecewise uniform density function estimations. The entropy-

based method has been applied in many areas, for example, Chen et al.(2014) introduced a 

concept called neighbourhood entropy which was established to evaluate the uncertainty of a 

neighbourhood information system. Consequently, the entropy-based roughness and 

approximation roughness measures of the neighbourhood system were presented. The results 

show that the entropy-based approximation roughness can provide more information for 

evaluating the uncertainty in neighbourhood decision systems. 

 Heuristic based methods 

The input variable selection process based on heuristic methods normally relies on the 

knowledge of system experts. This knowledge manifests itself in the form of experience, 

engineering and modelling expertise, or special algorithms. For example, but not exclusively, 

methods such as Fuzzy Inference Models, Genetic Algorithms (GA) and Artificial Intelligence 

(AI) (e.g. artificial neural networks) all fall into this category. 

 

The strength of heuristic methods in solving complex data modelling and control systems is 

well-recorded in literature and industry. For example, cement factories worldwide are being 

controlled by the direct knowledge of expert kiln operators. Fuzzy control of cement kilns has 

been one of the first successful applications of fuzzy control in industry. Expert knowledge has 

a direct impact on identifying the fuzzy inference rules that optimise the key performance 

indicators of the manufacturing process. To reduce reliance on direct expert input which is 

extremely time consuming and prone to variation, automatic learning methods such as AI 

techniques have been used. The AI techniques look into the pattern of acquired data and derive 

the necessary knowledge for measurement or optimization plans. GA techniques are also 

considered as one of the methods to derive knowledge from a known set of data points 

(genomes) and use the principles of random mutation and filtering of unwanted genes. The GA 

can be built with arbitrary flexibility and can be successfully trained using any combination of 

input variables (May et al., 2011). For example, Madhanagopal et al. (2014) have used GA 

effectively for automating IVS processes in decision making units. However, this technique is 
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reliant on a system's expert knowledge (to predefined rules) and is computationally-hungry, 

which is a significant shortcoming of this technique. 

 

3.3. Conclusion 

This chapter reviews the existing literature on Input Variable Selection and feature selection 

methods. Input variable selection and feature selection are solutions to the problem of 

dimensionality reductions. However, feature selection is used for more specific purposes than 

input variables. Replying to the key research question about removing system boundaries and 

meeting the research objectives, finding an IVS and FS method that does not generate extra 

computational effort to construct new variables, it is necessary to know the relationship 

between input variables and the system output (i.e. the system’s performance parameters).  

 

The method for measuring input variables based on their influence on system outputs, the so-

called sensitivity analysis, can be selected based on preferences and priorities on the 

relationship between input and output variables, the data distribution of variables, and perhaps 

most importantly, the computational cost of the method. Based on these attributes, according 

to the knowledge of authors, with the exception of (Tavakoli, Mousavi & Broomhhead, 2013) 

there is no sensitivity analysis method that competently works with complex systems with 

regards to heterogeneity and large number of input variables in real-time (with time 

constraints).Therefore, a new approach in real-time sensitivity analysis methodology will be 

introduced in chapter four. Its various applications in different industries and comparison of its 

efficiency to event-based EventTracker sensitivity analysis will be discussed in later chapters. 
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4. Event Clustering Data Grouping Technique 

(EventiC) 

 

Complex man-made electro-mechanical devices require high-quality information on which to 

base timely responses to events occurring in their volatile environments. These devices are 

required to meet the ever increasing demand on performance, responsiveness, adaptability, 

regain composure in cases of internal/external destabilization, and importantly work at optimal 

levels of energy efficiency and utilization  (Bolton 2003).  In other words the main challenges 

of design are to assemble systems that operate safely and economically regardless of the 

internal and external destabilizing factors. Due to the interrelatedness of modern complex 

systems and the demands from these systems to operate in extreme conditions, designing ever 

more complex and more adaptive systems is a major challenge for system designers. 

 

In pursuit of meeting the challenges posed by the modern and evolving complex systems, 

recently, conceptualized and coined as Cyber-Physical Systems (CPS) technology – the Event 

Clustering Sensitivity Analysis called EventiC is suggested as a unique and novel data and 

knowledge engineering platform to meet the challenges of “the dynamic, autonomous, adaptive 

and self-organizing embedded systems, and seamless and secure interaction of the embedded 

system/cyber-physical systems with their environment”. The proposed concept endeavours to 

create a logical and simple basis to manage the interrelationships and internal dynamics of the 

components within the eco-system of embedded systems and their environment (Danishvar et 

al., 2014). Its sole purpose is to take the first step in understanding the causal relationships 

between the system and its operational environment as the system changes state and 

boundaries. As the first of its kind, EventiC will be able to evaluate in real-time the impact of 

every relevant event on the performance, control, stability and overall behaviour upon the 

system. 

 

The challenge that EventiC deals with is to overcome the shortcoming of EventTracker 

(Tavakoli et al. 2010). Whilst EventTracker deals with 1 to many correlations, the EventiC 

cluster is intended to deal with many to many relationships, thus developing the most effective 

grouping techniques become important. 
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What distinguishes the proposed event clustering technique from other automated data pattern 

and knowledge derivation techniques is its simplicity and speed in extracting all the available 

data in the system domain, converting and then processing the necessary information in near 

real-time. There is no reliance on a set of predefined rules such as good/bad data, historical 

trends, or investigations into long-term patterns. More importantly, unlike Heuristic 

techniques, EventiC does not rely on prejudgment of data relevancy that normally emanates 

from expert interference – it is an unbiased method. It achieves a correlation analysis 

throughout the analysis span and deals with too many relationships of input and output 

parameters. To the best knowledge of the author, no such challenge has been achieved to date. 

4.1. The basic concept of Event Clustering 

The basic assumption of the Event Clustering technique (Bolton, 2003; Danishvar et al., 2013; 

Danishvar et al., 2014) is that the state of a system during its life span can be broken down into 

a series of consecutive discrete events. The change in the state of a system can be triggered by 

various events. These events are instigated by changes in the state of the input variables 

(sensors and actuators). In real-time this can help to group such important events with the 

performance indicators of the system. It is important to understand that the discrete unaware 

event described here implies that the system is not aware of the previous event. 

 

The challenge of explaining or interpreting the state (being) of a physical entity (i.e. system) 

has fascinated philosophers, system theorists and engineers.   The underpinning philosophy of 

the proposed technology is based on René Descartes’ philosophy of ‘Discours de la méthode’, 

or “breakdown every problem into as many separate elements as possible” (Hoff, 2013), and 

then reassemble it in the form of an eco-system of causality of the smallest units. The concept 

of ‘coincidentia oppositorum’ or the ‘fight among parts’ from the renowned fifteenth-century 

thinker Nicholas of Cusa (Minnebo & Stijven, 2011; Hoff , 2012 ) has also been adopted and 

can be interpreted as the concept of the causal interrelationships (mathematical law) of parts in 

the whole.  

 

In the language of engineering, how the excitation of the system, driven by events and 

demonstrated by measurable inputs that contribute/affect the behaviour, stability and safety of 

a system is explained and simplified in figure 4.1. 
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Figure 4.1. A system and controller in closed-loop 

The scientific and technological challenge is to be able to assemble a system (process) 

definition i.e. ‘Character Equation’ (CE) that genuinely/accurately represents the complex 

system in timely fashion. The current theoretical systems and control approach has successfully 

followed the ‘Discours de la méthode’ of Descartes, and have isolated individual systems with 

near perfect character functions. In the realm of physical (phenomenological) models (i.e. 

Newtonian, Kirchhoff's circuit laws, etc.), numerical and analytical models (finite element 

analysis, statistical inference models, etc.), and finally where processes become difficult to 

explain via character functions, heuristic models (neural networks, genetic algorithms, fuzzy 

inference, etc.) significant achievements can be observed. However, the principle of finding a 

perfect solution is the assumption regarding the knowledge of all excitation parameters at the 

outset. Therefore control systems even for complex vehicles/processes normally become a 

multitude of isolated problems working independently. The challenge becomes even more 

complex if the system needs to understand excitation and respond to it accordingly. Generally, 

the three aforementioned methods come to the aid, since they rely on historical events and 

records. However, currently there are very few solutions that can make sense of the data in 

real-time and respond to the excitation in an optimal manner. 

 

The problem of timeliness has been solved with the inclusion of controllers (e.g. micro-

controllers, programmable logic controllers, etc.) within the circuitry of systems, thus creating 

a level of integration. At present this integration is in primitive form manifesting itself in 

Supervisory Control and Data Acquisition Systems (SCADA). Whilst they are powerful 

recorders, managers and bundlers of data they possess little added value beyond that. In effect 

these real-time systems, at all levels, conduct very little raw data processing and interlinking. 

The interlinking and analysis of data is the responsibility of higher level systems (e.g. digital 

controllers, neural networks, fuzzy controllers, artificial intelligence techniques, or simply 
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direct human intervention). By the time these systems properly learn the patterns, the complex 

system has moved on. Only if the incident happens again, will the models be able to decipher 

and find the appropriate response to the excitation. Borrowing from von Bertalanff, Problems 

must be intuitively seen and recognised before they can be formalised mathematically” (von 

Bertalanffy, 1956), otherwise, mathematical formalism may impede rather than expedite the 

exploration of this very real problem. It is this thesis’ belief that such a visualisation of the 

observable world is the key to solving complex problems, and it is proposed that EventiC can 

take a logical step towards such visualisation. 

4.2. Data clustering methods for big data 

Clustering is an unsupervised learning class of methods in which objects are grouped into a set 

of disjointed classes, called clusters, so the objects within such classes possess close similarity. 

The goal of data clustering, also known as cluster analysis, is to find the natural groupings of 

a set of patterns or events. Webmaster (Merriam-Webmaster online Dictionary, 2015) defines 

cluster analysis as a statistical classification technique for discovering whether the individuals 

of a population fall into different groups by making quantitative comparisons of multiple 

characteristics. 

 

There is a vast body of knowledge in the area of clustering and large numbers of clustering 

algorithms have presented themselves to analyse the massive volume of data generated by 

modern applications. However, a review of the literature on clustering techniques reveals that 

despite the massive volume of algorithms used on a variety of applications such as machine 

learning (Bishop, 2006), k-means (Pena et al., 1999), data mining and pattern recognition 

(Aggrawal&Zhai, 2012), self-organising maps (SOMs) (Xiao et al., 2003),hierarchical 

clustering (Eisen et al., 1998), evolutionary algorithms (Hruschka, 2009), bio-informatics 

(Yeung, 2001) and others, it is not easy to decide the most appropriate algorithm for any given 

data set to satisfy both the requirements of the computation efficiency and result quality. 

 

It is generally observed that different clustering results are produced when clustering is applied 

to the same dataset while adopting different clustering methods, different sets of parameters 

for the same method, or the same stochastic method over multiple runs (Vega-Pons & Ruiz-

Shulcloper, 2011). However, there is no one superior method which overcomes all other 

methods in quality in all cases. Therefore, it is a common question to ask: which of those 
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different sets of results should be considered, or initially, which clustering method should be 

adopted? 

 Clustering algorithm categories  

Fahad et al. (2014) have conducted a comprehensive survey of the most utilised clustering 

algorithms on big data. Figure 4.2 shows an overview of framework of clustering taxonomy. 

 

 

Figure 4.2. An overview of clustering taxonomy (Fahad et al., 2014) 

 

Partitioning-based methods are based on divided data objects into a number of partitions, where 

each partition represents a cluster. K-means algorithm (MacQueen, 1967) which is most 

utilised clustering algorithm in literature, has a centre which is average of all points and 

coordinates representing the arithmetic mean.  

 

Hierarchical-based method organised the data in a hierarchical framework depending on the 

medium of proximity. These proximities are obtained by the intermediate nodes. The initial 

cluster gradually divides into several clusters as the hierarchy continues. Hierarchical 

clustering methods can be bottom-up or top-down. A bottom-up clustering starts with one 

object for each cluster and recursively merges two or more of the most appropriate clusters. 

Chameleon (Karypis et al., 1999) is one of the well-known algorithm of this category. The 

hierarchical method's shortcoming is in their inability to undo a step. 

 

Density-based methods separate the data object based on their regions of density, boundary 

and connectivity. In this method, a cluster has been defined as a connected dense component 

and grows in any direction that density lead to. The advantages of this method are filtering out 

noise (outliers) and discovering clusters of arbitrary shape. OPTICS introduced by Ankerst et 
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al. (1999) contains information which is equivalent to the density-based clustering's 

corresponding to a broad range of parameter settings. This method for medium sized data sets 

can be represented graphically and for very large data sets, introduced an appropriate 

visualization technique. Both are suitable for interactive exploration of the intrinsic clustering 

structure offering additional insights into the distribution and correlation of the data. 

 

Grid-based methods divided the space of the data objects into grids. Then, fast processing time 

is the main advantage of this approach. This method first employ a uniform grid to collect the 

regional statistic data and, then, perform the clustering on the grid, instead of the database 

directly. The performance of grid-based approach normally depends on the size of the grid 

which is usually much less than the database (Liao et al, 2004). 

 

Finally, model-based clustering methods are based on optimisation fit between some pre-

defined models and the given data. These pre-defined models are generate of mixture standard 

probability distributions. There are two main approaches based on the model-based methods: 

Natural network and statistical approaches. Natural network which self-organising maps 

(SOMs) (Xiao et al., 2003) is an example of these approaches, uses a set of connected 

input/output units, where each connection has own weight related to it. In the other side, 

statistical approach uses probability measures in determining the clusters. 

 Criterion to benchmark clustering methods 

In evaluating clustering techniques for big data, there are three criteria which able to classify 

the strengths and weaknesses of every algorithm. Volume of data, velocity of data flows in 

real-time systems and variety of data types are the three major aspects in the clustering of big 

data which have to been considered. These three Vs (Volume, Velocity and Variety) are the 

core aspects and characteristics of big data which have to be taken into account when choosing 

an appropriate clustering algorithm.  

 

(i) Volume 

Volume refers to the capability of a clustering algorithm to handle a large volume of data. The 

most popular classic clustering methods for their simplicity of implementation and execution 

of time performance, such as partitioning clustering (e.g. K-means algorithms), density based 

and hierarchical clustering, are limited to domain size and therefore not suitable for big data 

(Ayed & Halima, 2014).  
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(ii) Velocity 

Velocity refers to the speed of a clustering algorithm on big data. The complexity of algorithms 

and run-time performance are criteria which must be considered. Time consuming algorithms 

which must be used several times to improve the clustering quality, are therefore not 

appropriate applications to run on real-time systems where new set of data samples feed into 

the data acquisition layer with a specified frequency.  

 

(iii) Variety 

Variety refers to the ability of a clustering algorithm to deal with different types of data. Most 

of the traditional clustering algorithms run either on numeric or categorical data. Numerical 

data could be either analogue or digital data and it is difficult to apply traditional clustering 

algorithms directly into such kinds of data. 

 

Table 4.1 compares the five clustering methods with respects to 3Vs. Volume refers to ability 

of algorithm to handle high dimensional dataset and variety shows type of dataset. Furthermore, 

Velocity return time which algorithms needs to improve the clustering quality. Some methods 

must be used several times to improve quality and it takes long to handle big dataset. This 

comparison confirms the lack of a clustering method which is able to handle big dataset in real-

time (i.e. fast) with no limitation on its data type.  

 

Table 4.1. Comparison between five clustering method with respect to 3Vs 

 

Method Volume (High 

Dimensionality) 

Variety (Type of 

Dataset) 

Velocity ( Time 

complexity) 

Partitioned-based K-means 

(MacQueen, 1967) 

No Numerical Slow 

Model-based SOMs (Xiao et al., 

2003), 

Yes Multivariate data Slow 

Density-based OPTICS (Ankerst 

et al., 1999) 

No Numerical Slow 

Hierarchical-based Chameleon 

(Karypis et al., 1999) 

Yes All type of data Slow 

Grid-based method (Liao et al, 

2004). 

No Special data Fast 
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In summary, the literature review on existing clustering algorithms for big data shows a huge 

amount of memory and time are required for data clustering. In addition, algorithms are too 

complex to implement and the majority of these algorithms handle only historical data in 

datasets. With early experiments with various clustering techniques reported in the literature 

and evaluated with the platform devised in the laboratory, showed that the Rank-Order-

Clustering (ROC) method as the most suitable method of grouping in real-time. It could handle 

large volume and a variety of data sources with excellent efficiency and effectiveness. More 

importantly ROC has shown excellent capabilities to handle large data in real-time – fulfilling 

the most important aspects of the proposed solution. 

 

4.3. Rank Order Clustering (ROC) technique 

The Rank Order Clustering (ROC) technique introduced by King (1980a) uses matrix 

manipulation methods to rearrange the rows and columns of a matrix in an iterative manner. 

The method ultimately, and in a finite number of steps, results in a matrix form in which both 

the rows and columns are arranged in order of decreasing value. It is an effective algorithm to 

determine clusters of occurrence in block diagonal format. This approaches limited in that it is 

based on the assumption that groups of data will be highly similar and placed into mutually 

exclusive blocks. In the cluster analysis method, a group of data values are ‘similar’ according 

to a ‘similarity criteria’. They can either be replaced by a new value representing the group 

(clumping) or assigned a unique type of label (partitioning) (Groover, 2014; Ghosh& Dan, 

2011; Jain, 2010). 

One of the most popular usages of this method is in cellular manufacturing (CM). CM is the 

grouping of processes, people and machines to produce a family of products with similar 

manufacturing process characteristics. It is an application of a well-known philosophy called 

Group Technology (GT). “GT is a manufacturing philosophy in which similar parts are 

identified and grouped together to take advantage over their similarities and in design and 

production processes” (Groover, 2007). 

 

Group Technology has been defined as the realization that it is possible to divide a large 

problem into manageable groups and solve it efficiently. The focus within GT is to form cells 

that host parts and machines with the highest relevancy. This assists designers, manufacturers 

and plant-layout experts to optimize production flow and movement of material. Production 
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flow analysis and cluster analysis algorithms are the most commonly used tools to group parts 

and machines into cellular configurations (Groover, 2007; Vakharia, 1986). 

 

A primary concern in CM is to determine the part families and machine cells. This is known 

as the cell formation (CF) problem which dissects the manufacturing systems into cells to 

reduce setup times, tool requirements and work-in-process inventories, and also improve 

product quality and productivity, shorten lead-times, and enhance the overall control of 

operations (Ünler&Güngör, 2009). The CF problem has long been identified as the tricky 

problem in grasping the concept of CM, which begins with two fundamental tasks: 

 

(i) Machine-cell formation, where similar machines are grouped and dedicated to 

manufacture part-families.  

(ii) Part-family construction, where parts of similar design, features, attributes and 

shapes are grouped and manufactured within a cell.  

 

In the proposed event clustering technique the ROC has been used to build a cause-effect 

grouping of system inputs (originating from sensors/actuations) and outputs (performance 

indicators of the system). 

 The ROC algorithm 

In this section a step-by-step implementation of the ROC method is explained. 

 

Step1: Populate machine-part incident matrix (MPIM), where elements are presented as “0” or 

“1”. A 0 indicates no operation and a 1 indicates an active operation. Parts are arranged in 

columns and machines are in rows (figure 4.3). 

 

 

 

 

 

 

 

 

 P1 P2 P3 P4 P5 

M1 0 1 1 0 1 

M2 1 0 0 1 0 

M3 0 1 1 0 1 

Figure 4.3. Machine-part incident matrix 
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Step 2: A weight for each row i and column j (in a m by n matrix) are calculated using equation 

4.1(King, 1980b). 

 

                         Row i: Wi = ∑ ɑik2n−kn
K=1  

                        Column j: Wi = ∑ ɑkj2
n−km

K=1  

Equation 4.1 

 

 

Step 3: Read the series of 1 and 0s from left to right in the matrix as binary number 2𝑖(0 to i-1 

number of rows) Rank the rows in order of decreasing values. In the case of a tie, rank the rows 

in the same order as they appear in the current matrix. 

 

Step 4: Numbering from top to bottom, is the new order of rows the same as the rank order 

determined in the previous step. 

 

Step 5: Reorder the rows in the part-machine incidence matrix by listing them in decreasing 

rank order (Figure 4.4). 

 

 P1 P2 P3 P4 P5 Decimal 

Value 

Rank 

M1 0 1 1 0 1 13 2 

M2 1 0 0 1 0 18 1 

M3 0 1 1 0 1 13 3 

 24 23 22 21 20   

 

Figure 4.4. Incident matrix row ranking 

Step 6: In each column of the matrix, read the series of 1s and 0s from the top to the bottom 

of the binary number 2𝑗(0 to j-1 number of rows) rank the columns in order of decreasing 

value.  

In the case of a tie, rank the columns in the same order as they appear in the current matrix. 

 

Step 7: Numbering from left to right, is the current order of columns the same as the rank order 

determined in the previous step. 
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Step 8: Reorder the columns in the part-machine incidence matrix by listing them in decreasing 

rank order, starting with the left column (Figure 4.5). 

 

 P1 P2 P3 P4 P5 Decimal 

Value 

M2 1 0 0 1 0 22 

M1 0 1 1 0 1 21 

M3 0 1 1 0 1 20 

Decimal 

Value 

4 3 3 4 3  

Rank 1 3 4 1 5  

 

Figure 4.5. Incident matrix column raking 

 

The final solution matrix with a block diagonal structure is depicted in figure 4.6. It shows 

parts assigned to machines with the largest membership index value. It proves parts 2, 3 and 5 

are grouped into machines 1 and 2 and parts 1 and 4 are grouped into machine 3.  

 

 P2 P3 P5 P1 P4 

M2 1 1 1 0 0 

M1 1 1 1 0 0 

M3 0 0 0 1 1 

 

Figure 4.6. Block diagonal structure matrix 

 

4.4. EventiC method’s basic parameters 

EventiC defines an input and output occurrence matrix [+ -] at pre-specific time intervals. This 

matrix subsequently describes the relationships between causes that trigger events (trigger data) 

and the actual events (event data) enabling the construction of a discrete event framework for 

sensitivity analysis. A short description of discrete event systems, together with the definitions 

of trigger data and event data are provided in the following subsections. The basic parameters 

of the proposed Event Clustering methods are borrowed from (Tavakoli, 

Mousavi&Broomhead, 2013). 
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 Discrete Event Systems 

A Discrete Event System (DES) as opposed to a continuous system is defined by the disparate 

occurrence of events in a specified time span. This event is any change in a system state. The 

state of the system changes when input variable changes lead to any change in system outputs. 

Therefore, in DES, only the attributes that represent the occurrence of an event are considered.  

 Trigger Data and Event Data 

Any input variable whose value transition registers an event is defined as Trigger Data (TD) in 

the DES. The series of data that represents the state of the system at a given time is described 

as Event Data (ED). Consequently, the numbers of TDs and EDs could be different, and an ED 

series could be impacted differently to a TD series. 

 

                               ED :.{ TD1, TD2,....TDn}                                       Equation 4.2 

 

 Trigger Threshold (TT) 

The Trigger Threshold (TT) is a given numerical value that the values of the Trigger Data series 

are compared to TT like Event Threshold (ET), it is a proportion or percentage of an overall 

range of values of Trigger Data series over the time scale. 

 Event Threshold (ET) 

 Each transition between subsequent values of ED series is examined by Event Threshold (ET). 

This value is a proportion of an overall range of values of the ED series over a time scale. It is 

therefore expressed in the form of a percentage. 

 Actual Value of the Data (AD) 

The series of data that represent the actual value of the data at a given time is described as 

actual data (AD).   

 

4.5. Event clustering method’s algorithm 

In dealing with real-time event driven systems, the main logic of the proposed method is based 

on the assumption that changes to input variables may be interpreted as an event. Each single 

event or combination of events could subsequently result in a change in the system state. The 

proposed event clustering method describes variables and the system state as a collection of 

events. 
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The algorithm is supposed to function in real-time. The Event-Driven Incidence Matrix 

(EDIM) is designed based on sorting the rows for inputs and the columns for process outputs 

(explained in section 4.2). Incidence matrix elements can take a value of 0 and 1. The value is 

1 when both or neither of the input/output event data is triggered, otherwise it is 0. This 

operation is similar to a logical Exclusive-NOR functionality as shown in table 4.2.   

 

Table 4.2. Exclusive-Nor Functionality 

 

 

 The assumption of the proposed method 

The Event clustering method is based on the following assumptions:   

 Assumption 1: Delays 

The delay between EDs and the corresponding TDs is negligible and all TDs results into a 

specific ED (for all intent and purposes instantaneous). 

 Assumption 2: Thresholds 

The triggers and event thresholds are a pre-specified range of signal fluctuation for every data 

series and determinedly the system expert which remains fix within sampling time. Thresholds 

are usually based on a percentage of a signal’s real value which has to meet to be assumed as 

an event. For example, a signal with a value of 100 units and a 1% threshold is detected as an 

event if its value exceeds 101 or decreases 99 units at the next analysis span (sample).   

 Assumption 3: Homogeneity of the data series 

The event data series is assumed to be covariance stationary (The mean and variance stays 

constant during the analysis span).  
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 Trigger-event detection 

Equation 4.3 and 4.4 show the relationship between each event triggered by input at t and input 

at t-1 with respect to changes in output. Each change to the output in a given time span can be 

expressed as an event and the positive value of the inputs as triggers, thus output can be defined 

as Event Data (ED). Both tInput   and  1tInput  can be considered as Trigger Data (TD). 

 

ttt TDInputInputif   

Trigger

1)( 
 

 

      Equation 4.3 

 

t

Event

tt EDOutputOutputif    )( 1

 
Equation 4.4 

 

 

Figure 4.7 shows that within each time span, (input, output) pairs are detected and used to 

generate the elements of the incidence matrix. The ROC method is then applied to the incidence 

matrices. The weighted rows and columns are clustered in the upper-left part of the EDIM. The 

resulting EDIM shows the ranked relevance of each input to the output. The ROC exercise 

leads to the cluster of the most relevant group of input event data (sensors and actuators) against 

output event data (plant performance indicators).   

 

 

Figure 4.7. Trigger-event Detection functionality on each time scale 
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 Sample scan size 

Input and output data series scan frequency is discussed in section 4.3.1. Sample size (i.e. the 

number of samples which build the incident matrix) is chosen by the system expert. There is 

no maximum sample size for the data series but usually 250 samples are taken as minimum 

sample size. The data is then passed to the EventiC algorithm to build the incident matrix. 

Figure 4.8 shows 4 sample scans and their analysis operations in four consequent sample slots. 

 

 

Figure 4.8. Trigger event detection functionality over whole sampling time 

 An example to understand the implementation of the ROC algorithm 

An example here helps to advance understanding for the proposed sensitivity methods. One of 

the methods to detect system state transitions is to detect and track the changes that occur with 

input and output variables. Figure 4.9 shows the actual value of 8 inputs and 5 output variables 

at t1 and t2 sampling scan times.  

 

In this section a step-by-step implementation of the ROC method is explained by using this 

example. 

Step 1. Assign a 5% threshold for all inputs and outputs (an example which has to been chosen 

by a system expert).    

Step 2. Trigger data (TD) and event data (ED) detection with respect to chosen threshold and 

equations 4.3 and 4.4. Figure 4.10 shows the TDs and EDs at T2. Remember that “1” is 

allocated to triggered and “0” to non-triggered events. 
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Input variables no.   t1 actual value  t2 actual value 

1 10 17 

2 8 13 

3 12 7 

4 5 5 

5 70 66 

6 50 50 

7 10 9.5 

8 11 9.2 

Output variable no. t1 actual value t2 actual value 

1 50 52 

2 150 180 

3 11 12 

4 20 21 

5 15 6 

 

Figure 4.9. Actual value of an example Input/output at t1 and t2 

Input variables no.   TDs at t2 

1 1 

2 1 

3 1 

4 0 

5 1 

6 0 

7 0 

8 1 

Output variable no. EDs at t2 

1 0 

2 1 

3 1 

4 0 

5 1 

 

Figure 4.10. Build TDs and EDs from actual value in table 4.2 

 

Step 3. Build an incidence matrix from TDs and EDs in figure 4.11. 

Step 4. In this section a step-by-step of the ROC method explained in section 4.2.1 is 

implemented on the TDs and EDs incident matrix. Figure 4.12 shows TDs 4, 6 and 7 are 

related to the ED1 and ED4 at the scan time. 
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TDs/EDs 1 2 3 4 5 

1 0 1 1 0 1 

2 0 1 1 0 1 

3 0 1 1 0 1 

4 1 0 0 1 0 

5 0 1 1 0 1 

6 1 0 0 1 0 

7 1 0 0 1 0 

8 0 1 1 0 1 

 

Figure 4.11. TDs and EDs incident matrix 

 

TDs/EDs 1 4 2 3 5 

4 1 1 0 0 0 

6 1 1 0 0 0 

7 1 1 0 0 0 

1 0 0 1 1 1 

2 0 0 1 1 1 

3 0 0 1 1 1 

5 0 0 1 1 1 

8 0 0 1 1 1 

 

 

Figure 4.12. Final diagonal ROC matrix 

 

 Average sensitivity analysis (SA) weight 

In order to find the average SA weight, all diagonal ROC matrices for whole sample numbers 

have to be implemented. The normalised weight of each input variable acts as the coefficient 

of the system outputs. Figure 4.13 shows an assumed example averaged the SA weight of TDs 

and EDs.  For example, TD1 SA weight over ED1 is equal to 0.95 i.e. input 1 has a 95% effect 

over the model’s output 1. An industrial case study will be reviewed in the next chapter to 

explain the procedure with details. 
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TDs/EDs 1 2 3 4 5 

1 0.95 0.80 0.50 0.40 1 

2 1 1 0.10 0. 15 0.40 

3 0.50 1 0.32 0 0 

4 0.65 0.70 1 0.62 0.85 

5 0.24 0 0.90 1 1 

6 0 0.75 1 0.82 0.91 

7 0.95 0 0.85 0.70 0.75 

8 0 0.80 1 1 0.23 

 

Figure 4.13. Averaged SA weight of an example TDs /EDs 

 

 Cut-off threshold 

Cut-Off Threshold (CT) is a mechanism to deduct the less important input variables and is in 

the range 0 ≤CT≤ 1(Tavakoli, Mousavi &Broomhead, 2013). For example, when CT=0.60, all 

inputs with an average SA weight of less than 0.6 or 60% are deducted. Figure 4.13 shows the 

updated format of figure 4.14 with CT=60%. 

 

TDs/EDs 1 2 3 4 5 

1 0.95 0.80   1 

2 1 1    

3  1    

4 0.65 0.70  1 0.62 0.8

5 

5   0.90 1 1 

6  0.75 1 0.82 0.9

1 

7 0.95  0.85 0.70 0.7

5 

8  0.80 1 1  

 

Figure 4.14. Average SA weight of the example with CT=60% 
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4.5.9.1. False negative test  

Besides a cut-off threshold, a false negative test is conducted to ensure that the inputs are not 

unnecessarily discounted. For instance, figure 4.13 proves inputs 1, 2, 3 do not have much 

affect over output 3 so could be filtered out. A false negative test has to be conducted by a 

system expert analyst to confirm these eliminations.  

4.6. Event clustering sensitivity analysis design process 

In order to answer research key questions which needs to overcome the shortcomings of the 

existing SA and clustering methods, an effective and efficient way for sensitivity analysis of 

data in time series is introduced in this chapter. EventiC propose a flexible data integration and 

clustering system architecture that helps with cost reduction of computations involved in data 

integration, clustering and visualization. Existing clustering algorithms for big data shows a 

huge amount of memory and time computation are required for data clustering. In addition, 

algorithms are too complex to implement and the majority of these algorithms handle only 

historical data in datasets. 

 

The proposed event clustering sensitivity analysis not only using an efficient algorithm to 

perform sensitivity analysis, but also implementing a technique which distinguish from other 

automated data pattern and knowledge derivation techniques with its simplicity and speed in 

extracting all the available data in the system domain and converting and then processing the 

necessary information in near real-time. It achieves a correlation analysis throughout the 

analysis span and deals with too many relationships of input and output parameters. To the best 

knowledge of the author, no such challenge has been achieved to date. The generic nature of 

the EventiC solution is assumed to cover a wider range of data type which executed in real-

time. Therefore, the main challenges here come from computational and time constraint. 

 

Table 4.3 shows the proposed EventiC clustering with respect to 3Vs. It confirms that only 

EventiC clustering method is able to handle big dataset in real-time (i.e. fast) with no limitation 

on its data type, i.e. data type could be analogue, digital, binary and so on, since EventiC's 

algorithm build the incidence matrices regarding to variations of each data in time domain.  
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Table 4.3. EventiC clustering method with respect to 3Vs 

Method Volume (High 

Dimensionality) 

Variety (Type of 

Dataset) 

Velocity ( Time 

complexity) 

EventiC clustering method Yes All type of data Fast 

 

 

EventiC solution tries to overcome to these challenges in the following steps: 

 

(i) Data collection and pre-processing 

(ii) Choose an appropriate sampling rate  

(iii) Define system key performance factors and indicators 

(iv)  Implementing ROC algorithm with a few pre-setting. 

(v) Normalisation of ROC matrices 

(vi)  Find alternative solutions to process optimisation 

 

All above steps will be explained in detail in chapter 5. 

 The computational structure of EventiC sensitivity method 

Sensitivity analysis methods generally consists of two step which has been shown in figure 

4.15. The first stage is to produce an iterative production of model outputs based on model's 

input changes (Isukapalli, 1999) and the second stage is to calculate sensitivity indices based 

on model's inputs and generated output values.  

 

Figure 4.15. Overall structure of sensitivity analysis method 

Based on access to system's model equation or using sampling-based model this structure might 

be modified. However, in EventiC sensitivity analysis method which is a casual statistical 

analysis method, method performs statistical measurements on the changes of the actual real 

time generated data which are produced by system input sources. Figure 4.16 shows the overall 

process of EventiC sensitivity analysis method. 
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Figure 4.16. Overall structure of EventiC method 

 

The key feature of the proposed EventiC method is the quick filtering unimportant data that at 

times may overwhelm the data processing platforms. It may be safe to claim that with regard 

to the time domain, EventiC method may be classified as a Local Sensitivity Analysis method. 

 

Moreover, to estimate sensitivity indices, EventiC method does not require any prior 

knowledge about the analytical relationship between input and output variables. EventiC, in 

this sense, can be considered as a Global Sensitivity Analysis method or better say model-free 

method. 

4.7. Conclusion on Event clustering sensitivity analysis 

Event clustering data grouping technique (EventiC) has been introduced in this chapter as a 

technique to solve sensitivity analysis problems in time-constrained complex systems. EventiC 

makes systems more intelligent in dealing with real-time events and provides a more accurate 

representation of the system, with a higher level of mathematical formalism leading to more 

intelligent controllers and decision making. This accurate real-time data engineer will increase 

precision and reduce the response time. The technology removes all the logical boundaries of 

isolation that exist in complex systems with the principle that every acquirable knowledge or 

data (input) affects the output unless proven otherwise.  Therefore EventiC is not only capable 

of filtering unwanted data, but is capable of including information that was thought irrelevant 

to the behaviour of the system. This feature is unique and novel.    

 

This technique will allow designers, engineers and system analysts who are pushed by pressing 

and extreme demands on performance, energy efficiency, safety, volatility of complex 

environments, alongside ever constraining regulations to revisit their models in use and modify 

them if necessary. In the next chapter more advantages of the Event Clustering technique are 

discussed using the framework of a cement production industry case study. 
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5. An Industrial Case Study 

The purpose of this chapter is to introduce the proof of concepts proposed in the previous 

chapter by implementing the real-time unaware Event Clustering sensitivity analysis method 

(EventiC) and demonstrate its capability in one of the most challenging industrial industries, 

that of cement production.  

 

The cement production process has a pressing requirement to become more proactive and 

predictive in improving the quality and efficiency of operation whilst maintaining its 

production rate with respect to market demands. The implementation of EventiC should lead 

to: (a) providing production and operation managers with the knowledge of causal relations 

between events that affect production. (b) Offering production engineers the necessary 

knowledge regarding the optimal state of production processes and machine behaviours. (c) 

Providing the process optimizer and decision aid system with accurate information about the 

relationship between key performance factors within the actual shop-floor control parameters, 

and finally (d) suggesting ways that can mitigate pollutant emissions and energy consumption, 

thus improving the kiln’s energy efficiency and minimising costs. The author believes that the 

expected achievement can be realized through the installation of advanced EventiC monitoring 

and optimal control solutions specifically designed for the manufacturing process in the cement 

industry. Furthermore, an application of EventiC to detect unknown factors which affect the 

behaviour of a system will be introduced. 

 

5.1. The cement production selection as a case study for EventiC 

application and other alternatives 

One of the challenges in this research thesis was the selecting of an appropriate case study for 

the purpose of proof to the proposed EventiC technology. Cement production has been chosen 

for this purpose for:  

(i) The economy of the cement manufacturing process is one of the most challenging 

compared to other industries. This challenge is due to the levels of environmental 

impact and regulations, energy consumption and variation of raw material during the 

production life cycle. 
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(ii)  Cement's kiln is a most complex and complicated system with hundreds sensors and 

actuators which make it impossible to model with mathematical or analytical equations. 

Meanwhile, when the cement kiln is referred, it involves not only the kiln but also the 

adjacent systems. 

(iii) Cement's kilns dataset are accessible and non-confidential in compare with other big 

and confidential industries. 

(iv) Due to cement important role in infrastructure development, a number of research 

projects are conducted to establishing a more efficient and effective production method 

in cement plants. 

 

These reasons turn cement's kiln a suitable experiment to our EventiC, a complex system with 

a high number of system's input (sensor and actuator) and a few number of key performance 

factors (system’s output). However, the application of EventiC is not limited to cement industry 

and could be applied to any industries with big and complex environments, for examples 

vehicular transport (aircraft, automobile and other vessels), financial market or Internet of 

Things. It also could be applied in bio-informatics, for instance, in gene expression datasets 

which consists of big heterogeneous gene dataset, sophisticated computational and 

clustering/visualization methods (Basel et al., 2013).  

 

The cement kiln control begins with using a fuzzy controllers as one of the first successful 

applications of the fuzzy controller in industry. Holmblad and Ostergaard used the first fuzzy 

controller for a cement kiln control in 1978. They saw that the results were much better than 

when the kiln was directly controlled by humans (Wang, 1994). Nowadays, the cases of using 

the fuzzy logic controllers for controlling the cement kilns have been increased. This is based 

on this fact that the fuzzy logic controllers do not need an accurate model of the plant. By fuzzy 

logic controller, a remarkable improvement of the cement quality and a decline in the 

production expenses has been achieved. Several first designs of such controllers have been 

proposed and/or implemented in (Devedzic, 1995), (Bo et al, 1997), (Ruby, 1997) and (Tayel 

et al, 1997), which have been designed based on the knowledge of the operators. In next 

chapter, the auto extraction of a fuzzy control system for industrial processes using of EventiC 

application will be introduced. This integration could be replaced to the proposed solution in 

(Mendes et al., 2011) which uses GA to manipulate the parameter selection of the fuzzy system. 
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5.2. The cement production industry 

The main objective of this section is to gain a substantial understanding of the cement kiln 

process in order to optimize and control the functionalities of kilns. The EventiC algorithm will 

be integrated with the kiln process in the next section. 

 

The cement production industry plays an important role in a country’s infrastructure, thus a 

number of research projects have been carried out towards establishing a more efficient and 

effective production method in cement plants. Furthermore, due to the consumption of high 

energy within the production process, there are intensive efforts to mitigate emissions and 

costs. Analysis of the current situation in the cement industry leads to the outcome that 

sustainability, energy efficiency, cost reduction and CO2 emissions mitigation are the basic 

principles of the industry. 

A major stage of cement production is the formation of clinker, a process executed in the kiln 

(Conesa et al., 2008). Therefore, an area that will be carefully examined is the optimization of 

energy consumption in the kiln process. 

 

Energy consumption, its impact on the environment and the cost of production are significant 

in the cement industry. The goal is therefore to examine different scenarios to both reduce the 

effects of emissions produced by the cement industry and increase kiln productivity. As much 

as productivity of a cement plant is a market objective, the pressure for emissions reduction is 

more intensive, because CO2 emitted by cement production is a major contributor to air 

pollution. 

 

On a global scale, the construction industry is one of the most important and highly competitive 

markets. As a key ingredient of concrete, cement holds together roads, bridges, buildings and 

other structures (Battelle, 2002). The cement production process has several stages, from the 

extraction of raw materials to the storage and delivery of the final product. The current analysis 

will focus mainly in the procedure that takes place in the kiln.  

 

The kiln process is highly intensive in terms of energy consumption and thermal demand as 

the raw material reaches relatively high temperature levels, of about 1350-1550°C. Due to its 

high volume of production, the cement industry is one of the major contributors of Green House 

Gas (GHG) emissions. The amount of pollutants is expected to increase at a high rate, as the 
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demand for cement production is projected to increase considerably within the next few years. 

However, the existing methods for reducing CO2 emissions do not seem capable of offsetting 

such growth (Damineli et al., 2010). In order to create an efficient and environmentally 

sustainable industry, serious attention needs to be given to the optimization of the cement 

production processes.  

 Cement kiln process 

Figure 5.1 represents a general overview of the cement production process (IEA & WBCSD, 

2009). 

 

Figure 5.1. Cement production overview 

 

The cement manufacturing process is divided into five main stages that are outlined below 

(Battelle, 2002; Cement sustainability initiative, 2015): 

1. Extraction of raw material 

Calcium carbonate, silica, alumina and iron ore are raw materials needed for the formation of 

cement. These materials are gathered from limestone rock, chalk, shale or clay quarries, either 

by extraction or through blasting. 

2. Raw mill 

After the completion of the mining process the raw materials are prepared prior to thermal 

processing. In order to achieve a better efficiency within the kiln process, the materials need to 

be milled to the relevant size, mixed in the correct proportions and then dried. Once dried, this 

homogenised raw material is stored in large silos as a powder called flour. Older plants utilise 
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a wet process to prepare the raw material whereby the materials are mixed with water to form 

slurry. 

3. Kiln process 

The raw material is moved into the kiln through a process called 'sintering'. The burner 

produces heat to maintain a material temperature of between1350-1550 °C. The resultant 

material is known as clinker, which is a mixture that contains hydraulic calcium silicates. 

4. Cement mill 

The clinker is stored until required for the final step of creating the end product, and if needed, 

it is ground to a fine powder and mixed with gypsum and other additives. These 'additions' can 

affect the cement’s properties, altering its permeability, workability and resistance to sulphates. 

Depending on the required final product the amount of clinker may range between 30% and 

95%. 

5. Shipping 

Cement, as a final product, can be stored in silos and then be transported in bulk or in bags as 

required. 

 Kiln system 

The kiln system involves not only the kiln, but also the pre-heater and the cooler. A simplified 

diagram of the kiln system and its subsystems is shown in Figure 5.2: 

 

 

Figure 5.2. The kiln system diagram 
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The kiln system consists of the following three parts (Mousavi et al., 2011): 

 

 Pre-heater tower 

In order to be heated before entering the kiln, the raw material passes through the pre-heater 

which is a tower with a series of cyclones (usually there are four cyclones stages, as shown in 

figure 5.2). The high temperature that is required for this process (around 900°C) is reached 

through a combination of hot air coming from the kiln and the direct injection of burning 

material with the aid of a calciner (Fidaroset al., 2007). 

 

 Kiln 

The main process of cement production takes place in the kiln, where clinker is produced. The 

kiln process is highly energy intensive and accounts for about 90% of the total energy 

consumption (Kabir et al., 2010). The two main processes executed in the kiln furnace are 

calcination and sintering. These two procedures are very energy demanding, as they both 

require high levels of heat transfer. 

 

Calcination is a chemical conversion process in which calcium carbonate (CaCO3, limestone) 

is converted to lime (CaO), the primary component of cement. CaCO3 is decomposed at about 

800- 900°C producing CaO and emitting CO2 as a by-product. This process is described by the 

following general reaction in equation 5.1. 

 

                        CaCO3 +heat --CaO + CO2 Equation 5.1 

 

 

After the calcination, CaO reacts with silica, alumina and ferrous oxide in order to form the 

clinker, at a temperature of 1350-1550°C. 

 

Sintering is the process where the raw material is heated in order to form the clinker. The 

material requires a temperature of about 1450°C, which is reached by fuel combustion. The 

fossil fuels that are used emit large amounts of CO2, thus researchers have tried to find 

alternatives to replace the traditionally used fuels (i.e. coal, petroleum coke, fuel oil, natural 

gas). 

 

 Clinker cooler 
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When clinker exits the kiln it has a temperature that makes it impossible to handle. Therefore 

the main objective of the cooling system is to cool the clinker so that it is able to be handled 

and stored. However, the process needs to be rapid, for slow cooling makes the material 

unstable in lower temperatures (below 1250°C), meaning it could revert to belite. This frees 

CaO, which is undesirable with regards to clinker quality. This means that the cooling process 

needs to be done precisely. Finally, the excess heat is reused in the form of hot air in the 

preheating stage. 

 The kiln's key performance factors and indicators 

One of the most important tasks in order to be able to examine the operation of each system 

and provide applicable solutions for the improvement of the production process is to identify 

the key performance factors and indicators of the production process. 

5.2.3.1. Definition of key performance factors and indicators  

Key performance factors (KPF) are factors of a system which are normally determined by 

experts in that system and are related to their influence on the profit margins of the system. For 

instance, KPF in a manufacturing system could be categorized as: levels of customization, 

productivity, resource utilization, efficiency and inventory management. These factors can be 

defined loosely and in general terms (i.e. subjective terms) which then need to be broken down 

into key performance indicators (KPI). These indicators are objective and normally metricized. 

For example, Mousavi et al. (2006) classified the performance of production system costs using 

five key factors: 

1. Resource Utilisation (RU) 

2. Customer Satisfaction (CS) 

3. Productivity (PR) 

4. Inventory Management (IM) 

5. Efficiency (EF) 

These factors can then be prioritized according to the system’s preferences and requirements. 

Their importance may vary from one market to another, or between different competitive 

strategies. 
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Figure 5.3 demonstrates a typical example of the relationship between a key performance factor 

(in this example, customization) and key performance indicators (Mousavi et al., 2006). 

 

 

Figure 5.3. KPIs of the customization factor in a manufacturing system (Mousavi et al., 

2006) 

 

5.2.3.2. KPF and KPI in cement production   

The nature of the cement industry is complex, dynamic and competitive. However, managers 

of systems have to measure and monitor the most important performance factors and indicators 

that will improve the cement production. Chan (2004) suggested that when deciding about the 

suitable KPFs and KPIs the following factors should be taken into account: 

 KPFs and KPIs are general indicators of performance that relate to significant aspects 

of outputs. 

 Only a limited and manageable number of KPFs and KPIs are possible to handle.  

 Data collection must be made as simple as possible. 

 

The key factors that influence kiln systems are multiple and in some cases interrelated. The 

most important ones are divided into two categories: the on-line and off-line parameters. 
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Values for the online parameters can be gathered by real-time data acquisition. For instance, 

the variables in the cooler are the flow at the fan inlet, motor amperage, fan discharge pressure 

and the temperature of recovered air. The variables in the kiln are the pressure at the kiln hood, 

the amount of fuel, air pressure and flow in the burner, kiln speed and motor amperage, plus 

gas temperature and pressure in the chamber. In the cyclone tower, inlet and exit pressure and 

temperature of the gas, material temperature and gas analyser are the major variables. Finally, 

in the exhaust fan the most important parameters are inlet speed, pressure and temperature, and 

amperage of the exhaust fan. 

 

In contrast, off-line parameters are the results of laboratory data analysis about clinker, hot 

meal in the kiln inlet chamber, raw material from the first cyclone and raw meal mill discharge. 

 

In cement production, the process that takes place in the kiln is not only important, but also 

somewhat complicated due to the large number of interconnected variables. Therefore, a major 

objective of this chapter is to focus on the kiln system process and implement EventiC on a 

kiln’s SCADA and then take into account different scenarios that will optimize a kiln’s 

functionalities. 

 

The cement production key performance factors are classified as following:  

A. Environmental impact and energy consumption  

Cement manufacturing processes have several direct impacts on the environment. The major 

factors that are connected with cement production and affect the environment are the following 

(Cembureau, 1999): 

1. Dust (stack emissions and fugitive sources)  

2. Gaseous atmospheric emissions (NOx, SO2, CO2, VOC and others)  

3. Other emissions (noise and vibrations, odour, process water, production waste) 

4. Resources consumption (energy, raw materials) 

 

Fuel oil, natural gas, petroleum coke, coal, wood pellets and tyres are all used as energy sources 

in the cement furnace. Raw materials and fuels have large concentrations of sulphur. The high 

temperatures that are needed for raw materials’ processing cause them to release considerable 

amounts of SO2. In addition, the high temperature in the combustion process and the chemical 

composition of materials result in the formation of NOx. Moreover, during calcination process, 
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the organic carbon of raw materials causes the emission of CO, CO2 and VOC. Finally, in the 

past, the combustion of fossil fuels produced high volumes of CO2emissions. However, 

successful efforts have been more recently been made to reduce the amount of CO2 emitted by 

fossil fuels. 

 

On a global scale, it is estimated that the cement industry is responsible for about 5% of man-

made CO2 emissions (Naranjo et al., 2011). During the cement production process, the 

following three factors affect CO2 emissions: 

 Lime production 

 Cement kiln dust 

 Fuel combustion 

 

In the kiln process, the measurement of energy consumption is a representative indicator of the 

system’s performance. The mixture needs to be heated at very high temperatures, thus the kiln 

requires intense energy consumption. 

 

Literature reviews in the cement industry show a linear relationship between kiln temperature 

and energy consumption (Dimitrios& Evangelopoulos, 2012). Figure 5.4 shows their 

relationship and methodology for the calculation of energy consumption. It should be 

mentioned that the ideal kiln temperature is between 1350°C to 1550°C.  

 

 

Figure 5.4. Calculation of energy consumption 

Source: (Dimitrios, 2012) 
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Moreover, assuming that 90% of the total energy consumption is consumed in the kiln, the 

model calculates the total energy consumption for a given amount of cement produced. The 

calculation formula is as follows: 

 

Total energy consumption = 

 1.1 * kiln energy consumption * tonnes of cement produced  

Equation 5.2 

 

 

B. Efficiency of cement kiln production  

One of the most challenging elements of the cement manufacturing process is energy 

efficiency. The heating process performed in the kiln is highly energy intensive with an average 

fuel consumption of 2.95 GJ per ton of cement produced for well-equipped advanced kilns 

(Engin& Ari, 2005). The energy efficiency of kilns is affected by several factors. There is a 

wide range of different existing technologies that give numerous options to the manufacturing 

industries. However, the longevity of kilns, which is around 50 years, makes it difficult for a 

company to change its existing technologies with new ones very frequently. In addition, it is 

hard to evaluate the cost effectiveness of a kiln replacement as it involves serious consideration 

of many different factors, such as installation costs, maintenance, suitability of the 

characteristics for meeting customers’ demands and compatibility with the existing designed 

processes (Saidur et al., 2011). 

C. Cement Quality 

In the cement industry, the term ‘quality’ with reference to cement does not necessarily refer 

to ‘high quality’ products as there are different types of cement for different uses. Thus, quality 

does not only derive from a system’s performance, but is also affected by demands and 

reflected in customers’ satisfaction. In order to represent the different needs for outputs, three 

types of cement are assigned: high quality, medium quality and low quality cement. The 

parameter that controls this categorisation is the existence of free lime in the mixture. 

 

Table 5.1 indicates the outputs of cement quality with reference to three different kiln 

temperatures. 
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Table 5.1. Type of cement quality VS kiln temperature (Yaoet al., 2010) 

Type of cement quality Average Kiln temperature 

high quality cement 1550 °C 

medium quality cement 1450 °C 

low quality cement 1350 °C 

 

 

As shown in Table 5.1, kiln temperature is directly related to the quality of the final product. 

Measuring and controlling the temperature of a kiln is a complex task which is affected by 

several different factors. According to a relevant study, the model of a rotary kiln temperature 

control system has a high order time, and nonlinear, coupled, multivariable, parametric time-

varying characteristics, so it is difficult to obtain an effective analytical model (Yao et al., 

2010). 

D. Productivity (production rate) 

Productivity can be associated with yield. Yield is defined as the variation in percentage of the 

final product in output over input feed. The significance of the kiln function and its contribution 

to the whole process of cement production sets the kiln temperature as one of the major 

performance indicators of the kiln. Along with kiln temperature, raw material selection is an 

essential input that conducts the productivity of the kiln (Saidur et al., 2011). There are other 

indicators which effect productivity such as kiln feed rate, kiln fans and the kiln’s inner motor 

torque. All of these will be discussed in the next section. 

5.3. A case study for EventiC application  

This section tries to map the design requirements that you have now explained better in Chapter 

4 to an obvious EventiC's design process. 

 

With a case study, raw information sourced from the existing SCADA of a cement plant has 

been used. The data acquisition of the SCADA system consists of 196 sensors and actuators 

that are used to monitor the kiln and its surrounding equipment. Appendix A includes the kiln 

schematic, names of sensors/names of actuators, and all the raw data taken from the SCADA 

of our industrial partner. EventiC's design process are drawn in table 5.2. 
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Table 5.2. EventiC's design requirement and design process 

 

Design requirements EventiC's design process 

Systems with no limited boundary? Data collection stage and quick response 

ROC algorithm 

Volatile system? Data sampling frequency stage 

Find appropriate corrective actions to 

optimal functionality 

kiln operation's key performance factors and 

indicators definition 

How to detect real-time events? Build event-driven incident matrices 

Big systems which need quick responses 

and high computational? 

 Quick response ROC algorithm 

How to improve data quality? Filter out irrelevant data at the dataset 

  

 

These steps will be explained in details in the following of this chapter. 

 5.2.1. Data collection and pre-processing 

As explained above, the raw data source is the existing cement plant SCADA system. In terms 

of data acquisition the SCADA system consists of 196 sensors and actuators that provide 

EventiC with input event data (TD) that monitors and controls the kiln and its peripheral 

equipment. Data collection was conducted over a one month production period, collecting 

approximately 43,000 data samples. After collecting data from the rotary kiln, the data was 

pre-treated for identification processes. One of the main reasons for data pre-treatment is high 

frequency noise and spikes on the main raw data, for sometimes immeasurable disturbances 

occur and take the system out of its normal operating points. To solve the problem of high 

frequency noise and spikes, pre-processing methods (applying proper filters) is conducted 

(Nelles, 2001) to obtain better data for identification process. 

 Sampling frequency 

During the sampling of continuous signals, some information might be annihilated. Therefore, 

it is essential to choose a proper sampling frequency which does not interfere with the control 

system. Zhu (2001, p.57) proposed three methods for the sampling of continuous signals in 

system identification. 
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Smallest time constant           Ts=τ min /3 Equation 5.3 

 

Bandwidth                              fs=10f0 Equation 5.4 

 

Settling Time                          Ts=Tst/20 to Tst/100 Equation 5.5 

 

In our experimentation, in order to obtain sampling frequency, the study of output signals 

shows the smallest time constant of the system is three minutes. Then, according to equation 

5.3, the data sampling rate of the system is set at 1 per minute. The event modelling process 

was conducted over one month of production (i.e. approximately 43,000 data samples). 

 Implementation of EventiC on kiln operation 

The EventiC algorithm resides over the data tables of the factory control and monitoring 

system, where the cause-effect relationship between triggers of inputs (TDs) and triggers of 

events (EDs) are measured. The EventiC algorithm generates a new output matrix at each 

system scan rate (a scan per minute). 

 

The output event data (EDs) is collected from the sensors and counters that measure the 

production rate (the output of the kiln is defined as the volume of the satisfactory product 

leaving the kiln), energy consumption (the kiln temperature is directly related to energy 

consumption) and CO2 emission. 

 

In the following sections each of these key performances will be evaluated. 

5.3.3.1 Production rate  

Product leaving the kiln is one of the existing 196 sensors and actuators in the kiln. As 

explained, the data sampling rate of the system is set at 1 per minute. The event clustering 

process was conducted over a month production period (producing approximately 43,000 data 

samples). The EventiC algorithm resides over the data tables of the factory control and 

monitoring system, where the cause-effect relationship between triggers of data (changes in 

sensors outputs) and events (changes in system outputs) are measured. A new output matrix is 

generated on each scan of the system; the normalised weight of each input variable acts as the 

coefficient of the system outputs (Average SA weight). Figure 5.5 shows the EventiC 

application of all 196 inputs over the kiln’s production rate as a model’s performance output. 
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Figure 5.5. The kiln's production rate SA with respect to 196 inputs over 1 month 

sampling snapshots with 90% cut-off threshold 

 

5.3.3.1. The Cut-off (CT) threshold  

As mentioned in section 4.5.6, the CT is a mechanism to deduct the less important input 

variables and is in the range 0 ≤CT≤ 1. A false negative test is conducted to ensure that the 

inputs are not unnecessarily discounted.  Figure 5.6 shows the percentage of filtered TDs over 

the plant production rate with regard to different CT and the ratio of false negative in the 

experiment.  

 

 

Figure 5.6. Percentage of filtered TDs per CT and the ratio of false negatives over the 

production rate. 

 

In the experiment, an arbitrary CT of 90% (horizontal dashed green line in figure 5.5) has been 

chosen to eliminate the false negatives. Based on this CT, 18% of triggered inputs (36 TDs) 
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have been filtered out (The red bars in figure 5.5).Thus the remaining 82% of input sensors 

represent all the necessary input variables that affect the state of the kiln. 

 

In table 5.3, nine of the event data inputs and their corresponding weights on the kiln’s 

production rate are listed. The input variables in bold represent the inputs that have the highest 

impact on the kiln’s production rate. The weighting mechanism mentioned earlier is based on 

the number of times the input-output event data coincided during the analysis span comprising 

43,000 data points. Regarding the inputs’ SA weight, kiln temperature, I/h return, kiln fan and 

motors have influence over the kiln’s production rate and the other of the kiln’s sensors and 

actuators have effects over other key performance indicators. Appendix B includes all 196 

sensors and their sensitivity weight over the kiln’s production rate. 

 

Therefore, following the event modelling concept explained in chapter four, the key 

performance input vector for the kiln’s production rate which is  𝑉 = [𝑥1, … 𝑥9]is deducted to 

the more reliable input vector 𝑉 = [𝑥1, … 𝑥5]. This input vector dimension reduction prepares 

much more reliable and effective state models of the kiln's system. 

 

Table 5.3. Averaged SA weight of a selected number of the kiln’s input data over the 

kiln's production rate 

Input Name Sensitivity Level of kiln 

Production Rate 

Subjective 

Importance level 

with CT=90% 

Kiln temperature 92 % High 

CO  output 63 % Low 

I/h return in kiln 90% High 

Kiln fan 98% High 

CO2 output 97% High 

Motors pulls material 

from kiln 

92% High 

Injected O2 to kiln 37% Low 

Injected NO2 to kiln 54% Low 

Injected SO2 to kiln 36% Low 

 

5.3.3.2. Kiln’s CO2 emission 

In this section, the kiln’s CO2 emission as a major cement industry’s environmental pollutant 

is considered as a model’s key performance (output) and then the EventiC algorithm was 

conducted over it for 1 month sampling snapshots. Figure 5.7 illustrates the normalised weight 

of each input variables over the kiln’s CO2 emission.  
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Figure 5.7. The kiln's CO2 emission SA with respect to 196 inputs over 1 month sampling 

snapshots. 

 

In table 5.4, 9 of the event data inputs (9 out of 196 existing sensors and actuators) and their 

corresponding weights over CO2 emissions are listed. It confirms that 4 of these inputs (with 

CT=90%) have a considerable contribution on environmental pollutants and others have less 

effect with different effect weights. Thus, a key performance input vector for the kiln’s 

CO2emissions deducted to  𝑉 = [𝑥1, … 𝑥4] provide a much more reliable and effective system 

state model for the kiln. 

 

Table 5.4. Averaged SA weight of some selective kiln’s input data over CO2emission 

 

Input Name 

 

Sensitivity Level of Kiln 

CO2 output 

Kiln output 97% 

Kiln temperature 92 % 

CO  output 64 % 

I/h return in kiln 56% 

Kiln fan 97% 

Motors pulls material from kiln 97% 

Injected O2 to kiln 37% 

Injected NOx to kiln 54% 

Injected SO2 to kiln 36% 

 

5.3.3.3. Kiln’s energy consumption  

As shown in figure 5.4 and with equation 5.2, the kiln’s energy consumption is directly related 

to kiln temperature. Thus in this section kiln temperature is assumed as a model’s output instead 

of kiln’s energy consumption. Figure 5.8 shows the EventiC algorithm output. 
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Figure 5.8. The kiln's temperature SA with respect to 196 inputs over 1 month sampling 

snapshots. 

 

In table 5.5 nine out of the 196 existing sensors and their corresponding weights over kiln 

temperature are listed. It shows that 5 of these inputs make a considerable contribution on the 

kiln’s energy consumption and others have less effect with different effect weightings. 

 

Table 5.5. Averaged SA weight of some selective kiln input data over kiln temperature 

 

Input Name 

 

Sensitivity Level of kiln 

temperature  

Kiln output 93 % 

CO  output 90 % 

I/h return in Kiln 55% 

Kiln fan 93% 

CO2 output 91% 

Motors pulls material from kiln 93% 

Injected O2 to Kiln 38% 

Injected NOx to Kiln 53% 

Injected SO2 to kiln 37% 

  

 

5.4. EventiC and real-time plant control 

In this section we will discuss how EventiC becomes a stability/optimisation tool in process 

control, or can alternatively provide high quality data for higher level 

optimization/autonomous/intelligent systems to conduct their tasks. 

 

One of the major features of the proposed EventiC is the grouping and clustering series of 

relevant inputs to system outputs. In essence, the clustering mechanism in the EventiC bundles 

inputs and outputs together using an incident matrix in real-time (see figure 4.5). This 

capability allows the grouping of key system input parameters to system output parameters. 



88 

 

For the purpose of optimization, or returning a system back to stability from an excitation that 

caused instability, to quickly identify the source of excitation (i.e. input) and its level of impact, 

would allow the controller (automatic or human interference) to return the state of the input 

back into the normal state (corrective measure), or if the system is running an optimization 

process based on some key performance indicator. As an example, imagine the energy 

consumption of the kiln running at a steady state ranging between 2-2.5 KW/h. The optimal 

energy consumption would be the minimum value, whilst the kiln retains the same performance 

specifications. EventiC will be able to advise on the most economical way to maintain the 

settings of actuators to keep the kiln energy consumption at 2.1 KW/h at all times. For example, 

let the state of a system, demonstrate a period of instability caused by excitation (0≤t≤Ts) and 

then reach a steady-state stability as shown in figure 5.9. 

 

 

Figure 5.9. System state in time 

 

A system in a steady-state (e.g. kiln production) needs to remain in that condition. However, 

there is the possibility that an internal cause (within the kiln) or an external cause (outside the 

kiln) provokes an excitation that destabilises the kiln. At this juncture the most important 

information is to identify the source of excitation (real-time) and quickly identify the impact 

on the system. Knowing the clusters of input variables and their impact on returning the system 

back to a stable condition is vital. 

 

This section tries to suggest ways that can improve the functionality of kilns, reduce their 

energy consumption, mitigate the environmental impacts of their processes, and at the same 



89 

 

time, keep the kiln efficiency at the required levels. The deployment of different scenarios will 

show how the parameters that are examined can be beneficial for the industry, whilst 

maintaining the required standards of the cement produced. 

 

As discussed in the previous section, the proposed event clustering technique is used as an 

input variable selection technique to provide high-quality input data to the higher-level 

optimization, autonomous or intelligent systems in a short period of time. Using the example 

of the cement plant and kiln operations, it can be demonstrated how this technique becomes a 

stability/optimization tool for process control. 

 

One fascinating observation whilst conducting the experiments was the realization that 

reaching a specific output (i.e. production rate) may not necessarily be the result of a single 

cluster of system inputs (i.e. system settings). Figure 5.10 shows the five highest plant 

production rates at 9.68-9.76 ton/hour over the analysis span (i.e. one month production) in our 

experiment. 

 

 

Figure 5.10. Actual value of production rate and its maximum points over 1 month 

sampling snapshots. 

 

These five maximum plant production rates and their corresponding clusters of inputs (i.e. plant 

settings) are listed in table 5.6. The information shows that it is possible to maintain the highest 

production rate using five practical alternative settings. This was not possible before. By 



90 

 

referring to the data series, and with respect to simple production economics, it shows that the 

control system can be set at the lowest possible cost (i.e. the least energy consumptive rate or 

at the minimum CO2 emissions rate) at maximum production rate. In this case solution 1 (row 

1) demonstrates a solution that keeps the production rate at maximum and retains the lowest 

temperature in the kiln (less energy consumption). Solution 2 (row 2) represents the minimum 

CO2 emission, whilst maintaining the maximum production rate.    

 

Table 5.6. Five alternative clusters of input variables 

and maximum kiln production rates 

 

 

Tables 5.7 and 5.8 provide the information with regards to the input variable clusters that 

determine the energy consumption and CO2 emission of the kiln. 
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Table 5.7. Five alternative clusters of input variables in minimum kiln’s energy 

consumption 

 

 

 

Table 5.8. Five alternative clusters of input variables in minimum kiln’s CO2 emission 

 

 

Knowledge of the clustering of input variables and their impact on achieving a given 

performance function allows timely intervention by controllers to retain stability and optimal 

performance. The knowledge of the relationship between key system parameters (i.e. control 

inputs) and performance parameters (i.e. output) allows engineers/practitioners to provide 

alternative solutions to a given problem in a short matter of time. Furthermore, these alternative 
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solutions, with knowledge of each solution’s cost, leads the system manager to maximize 

profit. This unique feature is immensely important, because engineers/practitioners can select 

a number of good solutions, and should a solution fail to work, they will be offered alternative 

ones. The ability to return to stable or optimal condition in real-time using alternative solutions 

is unique to EventiC and may also potentially have an impact on the efficiency of control 

systems. 

 

In the following section we demonstrate the application of EventiC to meet customers’ 

satisfaction in their orders. 

 Cement quality as a key performance indicator 

The quality of produced cement is directly related to the kiln temperature. The best cement 

quality is produced at a kiln temperature of 1550°C. The quality drops to medium at 1450°C 

and the lowest passable quality is around 1350°C.  

Table 5.6 shows the clusters of system settings in which the kiln temperature average is about 

1350°C. Consequently, low-quality cement is produced with these clusters of inputs. Table 5.9 

shows the clusters of inputs in which kiln temperature is at the range of medium-quality cement 

(about 1450°C) and the EventiC algorithm optimizes the best point of set to meet the maximum 

production rate and minimum CO2 emissions. 

 

Table 5.9. Five alternative clusters of input variables for medium quality of cement 

 



93 

 

 Environmental impact as a key performance indicator 

Due to high demand in the construction sector the cement industry remains a major emitter of 

Green House Gases (GHG). The existing methods for reduction of pollutant emissions do not 

seem to be capable of offsetting such growth (Mahasenan et al., 2003). Therefore, controlling 

the levels of emissions is a major challenge for the industry. In this example we focus on CO2 

emissions. The key factors that determine levels of CO2 emissions are lime production, cement 

kiln dust and fuel combustion patterns. The complexity is compounded in hybrid fuel systems. 

They may be fuelled by natural gas, coal, coke, oil, and organic material – each with a specific 

burning profile and emissions levels.  

 

The amount of CO2 emitted by the cement industry should pass the host country's regulations 

and international standards. Thanks to EventiC, the input cluster displayed in table 5.8shows 

the best system setting where CO2 emission is at a minimum and production rate is at 

maximum. 

5.5. The detection of unknown factors affecting the behaviour of a 

system 

EventiC is not only an intelligent recorder of events, but is also a tool that enables preliminary 

data and knowledge construction. It is a complimentary middleware between the plant and its 

operational environmental.  By including information about events that were not thought of by 

engineers at the outset of design and modelling, EventiC could fundamentally shift perceptions 

of rigid system boundaries to more dynamic boundaries.  

 

Figure 5.11 illustrates the current approach to complex systems which breaks large systems 

into isolated and more abstract smaller systems for the purpose of explaining and controlling 

them. The principle of isolation is now becoming less practicable in modern complex systems. 

If a system designer is able to analyse a wider range of potential influences, then more accurate 

models may be able to be produced. 
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Figure 5.11. Input/output relationship in current systems 

 

The concept of EventiC is based on managing the interrelationships and internal dynamics of 

the components within the eco-system of embedded systems and their environment. It achieves 

this automatically, thus lessening the time for detection, classification and analysis of known 

and previously unknown input data. Assuming that all inputs influencing the system are 

potentially related to the outputs of the system, this method finds potentially non-intuitive and 

complex relationships unlikely to be identified by conventional systems analysis. Figure 5.12 

shows how EventiC could integrate isolated systems together to detect potentially unknown 

factors in predictive models. This feature allows engineers to build more effective, safe and 

responsive systems that become part of the volatile environment they function in. 

 

 

Figure 5.12. Input / Output interrelationship via EventiC 

 

For example in our experiment, it was confirmed that the ‘speed of the motor which pulls 

material from the kiln’ has a 92% sensitivity impact on the kiln’s production rate. In most 

cement literature, the speed of the motor’s impact is not mentioned at all and is ignored. Thus 
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one of the major advantages of EventiC methodology is recognising such influencing 

parameters that are unknown to controllers and modellers. 

5.6. Visualisation of input/output correlation with EventiC 

Big data applications need to handle many divergent types of input sources, from physical 

(sensor/IoT) to customer satisfaction software (ex. SAP), causing it messy, imprecise, and 

incomplete.  Due to big data quantitative (volume and velocity) and qualitative (variety) 

challenges, it resembles something like “the elephant to the blind men”. It is imperative to enact 

a major paradigm shift in data mining and learning tools so that information from diversified 

sources must be integrated together to unravel information hidden in the massive and messy 

big data, so that, metaphorically speaking, it would let the blind men “see” the elephant (Kung, 

2015).  

 

EventiC provides a big picture to help users to visualise system's input/output correlations via 

decomposition of data which comes from divergent source and then composition of cause-

effect clustering of system's input events (originating from sensor/actuations) and output events 

(i.e. performance indicators/factors). At each system's sampling scan, a matrix of I/O 

coincidence is produced, akin to recording a clip in a film. A time span for recording is 

specified, which is based on a number of observations that provides sufficient levels of 

confidence intervals. This visualization improves and explores the application of the proposed 

novel technique in a more demanding and complex environments. 

 

Figure 5.13 illustrates this composition and decomposition. 

 

 

 

Figure 5.13. Data decomposition and composition in EventiC 
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5.7. EventiC application implementation 

EventiC algorithm is coded in MATLAB 2012 package. This application is able to access to 

our industrial partner’s PLC (Programmable Logic Controllers) via industrial software called 

'DataBridge'. These two software packages will be introduced shortly before presentation of 

the EventiC application.  

 MATLBAB 

MATLAB (Matrix Laboratory) is a high-level language fourth-generation programming 

language developed by Math Works. MATLAB allows matrix manipulations and creates an 

interactive environment for numerical computation, visualization, and programming. With 

MATLAB, engineers and scientists can analyse data, develop algorithms, and create models 

and applications. The language, tools, and built-in math functions enable the exploration of 

multiple approaches and reach faster solutions than with spreadsheets or traditional 

programming languages such as C/C++ or Java. 

 

MATLAB has a range of applications, including signal processing and communications, image 

and video processing, control systems, test and measurement, computational finance, and 

computational biology. More than a million engineers and scientists in industry and academia 

use MATLAB, the language of technical computing.  

 DataBridge industrial environment 

DataBridge is software built by our industrial partner with a focus on the interconnection 

between the process control devices and monitoring /optimization systems. The software was 

developed for flexibility, extensibility and modularity objectives. 

 

DataBridge combines multiple modules, ensuring a flexible and extendable working 

environment. Each algorithm or method is enclosed inside a plugin, also called a module, and 

from now onwards named a bank. The implementation and algorithm execution of each bank 

is independent from other banks, but the data interface is completely compatible for 

transmitting the data between modules and creating efficient control networks. 

 

The DataBridge base concept is divided into group and bank modules. In each new project, 

DataBridge creates an acquisition group and for each group, three banks are created:  

 Extract 
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 Transform 

 Load 

 

The cycle control execution period is defined in a group, and the modules that perform the 

desired control network are declared in the same place. Instead of a period control cycle, it is 

possible to have other types such as those triggered based on events. 

 

The extract module or the source module, defines the type of communication between the 

source and DataBridge. Here, the variables that will be used in the control network are chosen, 

treated (transformed) by other plugins and loaded, at the end, to the output device. The software 

due to its modular capability and flexible permits creates different plugins to communicate with 

a large number of industrial communication protocols and other data servers. Examples of 

currently supported protocols are OPC, Modbus, Ethernet IP, CSV and even SQL. 

 

Transform is the section used by the software to process the data from an extract module to a 

load module. The process algorithms are developed in these kind of modules for executing the 

desired tasks. For example, if you need one output that will be the sum of the two input 

variables, then you can use the plugin sum as a transform plug-in. The result from the sum 

plugin will be sent into load module, which sends the result to the desired output. The load 

module is the counterpart of the extract module. This provides the mechanisms to transfer the 

data from DataBridge to the field devices. It contains all the protocols, developed in the extract 

modules, such as OPC, Modbus, Ethernet IP, CSV and even SQL (DataBridge User Manual, 

2011). 

 

DataBridge’s output is stored as an excel file in MATLAB roots and is ready to feed into the 

EventiC application. Appendix C shows a sample of DataBridge’s output for the first 60 

samples. 

 EventiC algorithm implementation 

As explained above, EventiC application is coded in the MATLAB package. The reason for 

choosing MATLAB was because of its capability to manipulate matrices easily. MATLAB is 

also a high-level programming visual environment and DataBridge outputs were in matrix 

format, so the clusters’ presentation and manipulation were easily applicable for the research 

purpose.  
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Figure 5.14 illustrates the output of EventiC with respect to 196 inputs over 43,000 sampling 

snapshots with a 1% (0.01) sensors threshold. In the application, user set up the EventiC 

initiation which are: thresholds, search slot, cutting rate and input file and model’s outputs or 

KPIs. Then the EventiC algorithm runs and presents SA weight and outputs diagrams of 

selected outputs and clusters of inputs/outputs with related inputs.  

 

 

 

Figure 5.14. The output of EventiC with respect to 196 inputs over 43,000 sampling 

snapshots with 1% (0.01) sensors threshold 

5.8. A Summary to the EventiC applications case study 

As test beds, the application of the real-time event clustering method has been deployed and 

reported on a real world case study in this chapter. As an experiment, the kiln (cooking) process 

in the cement industry has been reviewed and the key features and ability of the real-time event 

clustering technique to rapidly generate an event-driven incidence matrix and measure the 

degrees of influence of the kiln’s input sensors on various outputs has been demonstrated. The 

experiment equipped a kiln with 196 sensors scanned at one minute intervals. The acquired 

data provided EventiC with sufficient information to optimize the number of relevant input 

variables and provide accurate knowledge of the system state over a 1 month period (43,000 

observations). The results of the EventiC algorithm shows that 18% of TDs have little effect 
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on the kiln production rate, therefore they can be totally ignored when measuring the kiln’s 

production rate. This experiment has been repeated with regard to the kiln’s energy 

consumption and CO2 emissions as a major environmental pollutant. 

 

EventiC’s advantages over plant control and production optimization has been reviewed and 

the following three main benefits can be summarised. 

 

1. A minimization of the negative consequences of variations in energy sources and raw 

materials by improving the production process and quality monitoring, control, and specialized 

optimization methods. 

2. A reduction in energy consumption and an increase in resource utilization by deploying new 

processes of monitoring, control and optimization techniques. 

3. A reduction in the industry’s environmental impact through clever usage of raw materials 

and energy. 

 

EventiC achieves this by: (a) interpreting changes in the values of input-output (I/O) data at 

the event level, (b) detecting if I/O events coincide, and (c) groups I/O events as related events. 

This processing happens in a specified time interval, known as the scan rate whose duration 

can potentially range from microseconds through to minutes. At each scan a matrix of I/O 

coincidence is produced, akin to recording a clip in a film scenario. This scenario is unique and 

could be assumed as an ID for each I/O coincidence a time span for recording is specified, 

which is based on a number of observations that provides sufficient levels of confidence 

intervals (e.g. 250 clips). The weighting of an input on output is calculated as the number of 

coincidences in the time span. Once the relationship between the inputs, outputs and their 

weightings are established, for the purpose of modelling and control we revert back to the 

actual value of the inputs and the outputs. The translation of system parameters to events and 

grouping the relevant I/O events in near real-time may be considered as a novel approach in 

the understanding and processing of large-scale raw data/signals.     

 

In the next chapter the application of the proposed technology will be used as an automatic 

input variable selection tool in fuzzy controllers.    
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6. An Application of EventiC in Input Variable 

Selection: A case study for Fuzzy Controller 

 

The purpose of this chapter is to integrate the EventiC algorithm to a Fuzzy Logic Controller 

(FLC) designed for rotary cement kilns (based on the real behaviour of a cement kiln) to 

automatically extract all fuzzy parameters and reduce the rule base of fuzzy control complex 

systems. The FLC learning is performed by the proposed EventiC through a set of controlled 

input/output data. Causal relationship modelling and parameter weighing mechanism of the 

proposed EventiC method has been used to extract fuzzy control inference rules. Therefore, 

EventiC could be utilised as a more cost-effective alternative for the input variable selection of 

fuzzy controllers. 

 

A conventional controller needs a mathematical model, which is either very difficult or 

frequently impossible to obtain. Whilst a relatively accurate model of a dynamic system can be 

developed it is often too complex to adopt in a controller development, especially on the many 

control design procedures that require restrictive assumptions for the plant. There are two main 

reasons that hamper the design and development of successful model-based controllers in 

industry. Firstly, the complexity of interpreting the system state may not necessarily lend itself 

to direct model-based control solutions, as at times these solutions prove to be unrealistic and 

impractical to implement in the real world. Secondly, useful heuristics are sometimes ignored 

by modellers because they do not fit into a specified mathematical framework. To overcome 

these shortcomings the industrial fuzzy controller as an expert controller (using semantic rules, 

based on the fuzzy control theory) can be adopted. This provides a formal methodology for 

representing, manipulating and introducing human knowledge about how to control a system 

without heavy reliance on complex mathematical modelling. Therefore one can view the fuzzy 

controller as an artificial decision maker that operates in a closed-loop system in real-time. To 

design the fuzzy controller, the control engineers must gather information as to how the 

artificial decision maker should act in the closed-loop system. In manufacturing environments 

this information derives from a human operator who performs the control tasks. This said, on 

occasion the control engineer can come to an understanding of the plant’s dynamics and write 

down a set of rules about how to control the system without outside help. However, the 

complexity of kiln operations does not lend itself to classical control functions. As an 
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alternative the industry has adopted fuzzy controllers. For the most part fuzzy controller 

inference rules are derived either from direct expert knowledge of the process, or automatically 

by techniques such as neural networking or genetic algorithms. These methods generally rely 

either on historical data derived by experience or machine-learning algorithms such as in the 

case of neural networks and genetic programming. 

 

Thanks to the proposed Event Clustering method, its causal relationship modelling and 

parameter weighing mechanism, bodes well with fuzzy control inference rules. Therefore, 

EventiC sitting top of a typical data acquisition system (e.g. SCADA) is fully capable of 

automatically translating into cause-effect events. The combination of these event sets 

(EventiC inputs) forms a set of performance variables (EventiC outputs) and the fuzzy 

inference rules and parameters will be made available to the fuzzy modeller. As an alternative 

to its own simple optimizer EventiC can also function as an improved IVS method to both 

classical and modern (e.g. numerical, analytical, genetic, fuzzy, etc.) controllers-optimizers. 

Not exclusive of fuzzy controllers, we will describe how EventiC can be used to extract the 

parameters of a FLC.  

 

This chapter will be structured by an initial summary of fuzzy controllers and their application 

in the cement production process. Following this, the issues and variables to be defined and 

controlled in a rotary kiln are addressed. Finally, in the latter section of the chapter, an overview 

of the proposed EventiC-fuzzy controller (EFC) for the rotary cement kiln is presented. 

6.1. Fuzzy systems 

Fuzzy theory was introduced in 1965 by Lotfi A. Zadeh in his paper ‘Fuzzy Set’ (Zadeh, 

1965).Zadeh proposed the fuzzy algorithms concept, fuzzy decision making and fuzzy ordering 

respectively in 1968, 1970 and 1971. In 1973, Zadeh proposed the foundation for fuzzy control 

in his paper, ‘Outline of a new approach to the analysis of complex systems and decision 

process’ (Zadeh, 1973) 

 

Mamdani and Assilian (Mamdani&Assilian, 1975) applied the basic framework of a fuzzy 

controller to control a steam engine. In later decades, several studies have been presented that 

show the application of fuzzy controllers to control complex nonlinear processes that cannot 

be easily modelled by mathematical equations. Recently, FLCs have been used for a wide 

variety of industrial system and consumer products, from control to signal processing, 
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communications, manufacturing and expert systems for business. However, the most 

significant applications have concentrated on control. FLCs are rule-based systems which can 

be useful to control those systems which are controlled by skilled human operators without any 

mathematical knowledge of the process dynamic (Herrera et al., 1995).   

 

FLCs are based on a set of fuzzy control rules that draw upon an expert’s common sense and 

experiences. However, there still exist many difficulties in designing fuzzy systems to solve 

certain complex nonlinear problems. For a better understanding, an outline of the limitations 

of conventional controllers and the benefits of fuzzy controllers are provided in Table 6.1. 

 

Table 6.1. Limitations of conventional controllers versus the benefits of fuzzy 

controllers 

 

 

 

 Fuzzy system concept 

Fuzzy logic is a form of many-valued logic and deals with reasoning rather than fixed and exact 

logic. Compared to traditional binary sets, fuzzy logic variables may have a value that ranges 
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in degree between 0 and 1. Figure 6.1 shows the range of logical values in Boolean and fuzzy 

logic where the value may range between completely white and completely black.    

 

 

Figure 6.1. Range of logical values in Boolean (left) and fuzzy logic (right) 

 

Fuzzy Logic Systems (FLS) are knowledge-based systems which use an expert’s common 

sense and experiences in the form of fuzzy IF-THEN rules. These systems are typically 

characterized by a group of four main elements: 

 Knowledge-Base  

 Fuzzifier 

 Inference engine 

 Defuzzifier 

 

This general scheme can be seen in figure 6.2. 

 

Knowledge Base   

 

 

 

           Input                                                                                                   Output 

 

 

            Fuzzy Inputs                                                Inferred Fuzzy Output 

 

 

Figure 6.2. General scheme of a Fuzzy Controller (FC) 

In the following sections, a brief explanation of the elements that constitute the FLS will be 

performed.  

Data Base  Rule Base  

Fuzzifier Defuzzifier

r 

Inference Engine 
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6.1.1.1 Knowledge-Base  

The knowledge-base is one of the most important components of a fuzzy system, since all 

other components rely on it. The fuzzy rules are composed in two parts: the antecedent (IF 

part) and the consequent (THEN part).Therefore, a knowledge-base composed by a set of N 

fuzzy IF-THEN rules R:  

 

Rj: IF x1 is Aj1 , . . . and xn is Ajn THENU is Bj                                      Equation 6.1 

 

Where Aji and Bjare the linguistic terms characterized by fuzzy membership function µAin (x) 

=U---> [0, 1] and µBj(u)=U---> [0,1] , respectively j=1,2,…,N ,where N is the number of fuzzy 

rules; xi( i=1,2,..,n) are the fuzzy system input variables, and U is the output.  

The most commonly used membership function types are the trapezoidal, triangular and 

Gaussian membership functions, as represented in figure 6.3. 

 

 

Figure 6.3. Examples of membership functions: a) Trapezoidal b) Triangular c) 

Gaussian 

 

Reznik (et al., 2000) classified the designing of the fuzzy logic rule base as needing to consist 

of 4 procedures: 

1. Determining the process states and control variables of the system. 

2.  Determining the right input variables for the controller. 

3. Creating a suitable fuzzy logic rule for the specific system (IF-THEN rule). 

4. Creating the fuzzy interference engine (this will be explained in detail, later in this 

section). 

6.1.1.2 Fuzzifier 

The next fuzzy system element is the fuzzifier. This element is responsible for mapping the 

real values of the input linguistic variables, x, into corresponding fuzzy sets described by 

membership functions X.  The fuzzifier has the main goal of transforming the input real value 
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Ř in a fuzzy set as defined by a universe of discourse S. There are many methods to fuzzify the 

inputs, sometimes as in equation 6.2, only the singleton fuzzifier is considered, due to its 

simplicity of implementation. However, other fuzzifier methods can be consulted in (Reznik, 

1997) 

 

                Singleton fuzzifier: μ A0(x) = {
1, 𝑖𝑓 𝑥 = 𝑥
0, 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

 

                                                      Equation 6.2 

Where x is the concrete input value. 

 

Another way which is also comparatively simple for implementation is the Gaussian Fuzzify 

method which has been used in much research due to its simplicity of the statistical input data 

(Wang & Mendel, 1992). Figure 6.4 shows the formula of Gaussian membership functions and 

its corresponding graph, where wc is the mean or centre value of the value, and wd is the 

reciprocal of the standard deviation of the function (ws is the connection weight, which in 

normal situations is equal to 1) (Watanabe et al., 1996). 

 

                                   

Figure 6.4. Gaussian Membership function 

 

The output of this element will be the input of the interference engine part which requires the 

fuzzy subset inputs to be able to function with the fuzzy logic rules of the FCS. 

6.1.1.3 Fuzzy Inference Engine (FIE) 

The FIE uses the collection of fuzzy IF-THEN rules to map the fuzzy input set X into the fuzzy 

rule consequent Bj. The collection of the fuzzy rule outputs are then combined into an overall 

inferred fuzzy output U. Generally, each rule will be processed individually according to the 
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state of input creating. The basic methods to process the antecedent part (IF part) are: 

intersection, union, and complement, which are defined by t-norm, s-norm and c-norm, 

respectively. Table 6.2 shows the most common operator, the t-norm operator, for the 

Intersection method. 

 

Table 6.2. Formula used in t-norm (intersection) 

 

 

After the antecedent value calculation, the implication operator will be implemented to 

interpret the fuzzy propositions as the fuzzy relation. The methods which are commonly used 

for the implication operator are Mamdani implications as shown in table 6.3. 

 

Table 6.3. Formula used in implication operator 

 

Next, in order to produce an overall output fuzzy set of the system, the result of all fuzzy rules 

will be aggregated using an aggregation operator. The output will be used as an input of the 

defuzzifier in the next section. The methods to be implemented for aggregation are presented 

in table 6.4. 
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Table 6.4. Aggregation formula 

 

 

6.1.1.4 Defuzzifier 

Finally, the defuzzifier is the fuzzy system element responsible for mapping the output fuzzy 

set of the FIE into a real value output. It calculates all the results from the interference engine 

according to the input and combines them to produce the most feasible result. The result of this 

method will be in the form of the crisp value for system adjustment. 

 

The method of defuzzification is different according to the context of the system. One of the 

most popular approaches to defuzzification, is the implied fuzzy set, Centre of Gravity (COG) 

and this is used in many designs of fuzzy controller. Equation6.3 shows the classic way to 

calculate the crisp output by this method; moreover, it doesn’t require much mathematical 

effort.  

 

                                             𝒖𝑪𝒓𝒊𝒔𝒑 =
∑ 𝒙𝒊 ∫ 𝝁𝒊𝒊

∑ ∫ 𝝁𝒊𝒊
                                                   Equation 6.3 

 

6.2.  Fuzzy system controller 

Fuzzy controller is the controller operating on the knowledge-base, utilizing the fuzzy logic in 

order to convert the expert knowledge and information into an automatic control system. Some 

of the most important reasons regarding the attraction of fuzzy controller implementation are 

its high capability in operating within different system environments, the low cost of 

developing the controller, rules which are easy to understand and modify whilst still respecting 

the nature of the system, and the general ease of the concept by which the non-specialist can 

design, operate, and implement it. 
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 Types of Fuzzy Controller 

Reznik (1997) classified fuzzy controllers into three types according to their features; 

A. Simple Fuzzy Controller 

A single-level structured controller with no hierarchical rules would be counted as a simple 

fuzzy controller. Its lack of adaptive ability means that most of the features of this type of 

controller are fixed, such as the input and output scaling factor, and even the input and output 

themselves. The numbers of the input class are fixed and influence on the numbers of the 

controlling rules. 

B.  Complex and /or Multilevel Fuzzy Controller 

Complex controller features are mostly similar to the simple controller. The only difference is 

that this type of controller will have a more complicated structure than the simple one. It 

possesses a hierarchical rule structure and multilevel structure with few controllers within. 

C. Adaptive and/or self-organizing Fuzzy Controller 

With an adaptive ability, this type of controller can change according to the actual system. Most 

of the features are theoretically flexible and can be tuned to be more compatible with the 

system, for example, the shape of the membership function of each class. However, there are 

still some limitation; practically, the input and output of the controller still need to be fixed. 

 Design of membership function 

Regardless of the differences between each type of controller, a crucial step in the design of 

fuzzy rule based systems is to derive the desired fuzzy rule base. The knowledge required for 

the rule base can be obtained either from human experts or from measuring instruments in the 

form of numerical data. Therefore, there are two possible ways for designing fuzzy rule based 

systems. 

 

6.2.2.1. Subjective approach to fuzzy rules generation 

In this approach, the source for deriving the linguistic rules is direct expert knowledge and 

intuition about the system. It is this knowledge that is expressed in the form of logical IF-THEN 

rules. The fuzzy controller developed by Mamdani in 1975 (Mamdani&Assilian, 1975), 

modelling the performance of a human operator, is considered to be the first example of this 

approach. Since then, various fuzzy modelling techniques for the design of controllers have 

been developed (Sugeno, 1985; Yager & Filev 1994). 
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The advantage of this approach is that it is intuitive and natural. Also, the rules are more 

interpretable by other users because they are written in natural language, so any modifications, 

if required, can easily be done. 

6.2.2.2. Objective approach to fuzzy rules generation 

In general, it is not easy to determine the most suitable fuzzy rules and membership functions 

to control the output of a plant, when the only available knowledge concerning the process is 

the empirical information transmitted by the human operator. During the last two decades, rule 

generation or knowledge extraction from numerical examples has been intensively developed 

by various researchers (Shi &Mizumoto, 2001; Rojas et al., 2000; Aliev et al., 2001; Delgado 

et al., 2009; Takagi &Sugeno, 1985). Most of these methods have involved iterative learning 

procedures or complicated rule generation mechanisms such as the neuro fuzzy learning 

method, genetic-algorithm based methods, and the fuzzy c-means method (Krishnapuram & 

Freg, 1992). 

 

Neuro-fuzzy learning algorithms derived from the Artificial Neural Network (ANN) algorithm 

to determine its parameters (fuzzy set and fuzzy rules) by mimicking the actions of an expert 

who solves complex problems, in other words, any ANN should be trained. Training is 

performed with a presentation of the sampling data. In some cases, thousands of data examples 

may be required to be presented in a randomised order, and the learning techniques often 

demand human supervision to guarantee convergence (Wang & Li, 2003; (Mitra & Hayashi, 

2000). This automates also speeds up the knowledge acquisition process. Such models help in 

minimizing human interaction and the associated inherent bias during the phase of knowledge 

base formation and also reduce the possibility of generating contradictory rules. This technique 

can adaptively adjust membership functions and fine-tune rules to achieve better performance. 

The disadvantages of this approach are that ANN may require a high computational power and 

a long period for training, both of which are not available in some control applications. There 

is thus a need to optimize the training process, and the application of genetic algorithms (GA) 

is one of these ways. 

 

The combination of fuzzy logic and genetic algorithms (Aliev et al., 2001; Barajas & Reyes, 

2005; Juang & Lu, 2005; Mendes et al., 2011: Herrera et al., 1995) allows an optimal number 
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of fuzzy rules in rule base and optimal values for centres and shapes of membership functions. 

Another advantage of genetic algorithms is that they do not require the differentiable function 

for optimization. The auto extraction of a fuzzy control system for industrial processes as 

proposed in (Mendes et al., 2011) uses GA to manipulate the parameter selection of the fuzzy 

system. It consists of a 5-level-hierarchical structure model. The first layer represents the 

number of input sets and their time delay. The second level matches the inputs to their 

antecedent and consequent fuzzy membership functions according to the fuzzy rules. The third 

and fourth levels are responsible for the individual rule and rules set selection regarding the 

input population from the first level. Finally, the fifth level represents the information which is 

necessary for the fuzzy controller, such as the aggregation method of the antecedent, the 

interference engine, the defuzzifying method, and the data from the previous level. Another 

method for the auto extraction rules of the fuzzy control systems is introduced in (Carmona et 

al., 2010) using evolutionary algorithms. 

 

The disadvantages of these methods are the slow convergence and longer learning times of 

genetic algorithms because of the large number of rules to proceed. In this case, all rules are 

built using all possible combinations of fuzzy input values. 

 

Fuzzy clustering is considered to be one of the most important techniques for the automatic 

generation of fuzzy rules from numerical examples (Hoppner&Klawonn, 2000). This algorithm 

forms a fuzzy partition of data points into a given number of clusters. Each cluster represents 

one rule of the rule base. The number of cluster centres is the number of rules in the fuzzy 

system. In this way, the rule base size can be easily controlled through the control of the number 

of cluster centres. The disadvantage is that no clustering algorithm provides the means to 

determine the number of clusters, and hence the number of rules, in a fuzzy model. 

 

The above mentioned automated techniques for the generation of rules from numerical data are 

very efficient provided the available data is sufficient enough for training the model. However, 

in many environmental problems specifically related to noise pollution, the available data sets 

are very limited. An attempt has been made in (Zaheeruddin & Anwer, 2005) to develop a 
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fuzzy model for such real situations. This technique can be used as an alternative to develop a 

model when available data may not be sufficient to train the model.  

 

 Fuzzy rule reduction 

A fuzzy controller’s knowledge-base includes all the possible combination rules of fuzzy input 

values. Inevitably, the size of the rule grows exponentially as the number of controller inputs 

grows. As the complexity of a system increases, it becomes more difficult and eventually 

impossible to make a precise statement about its behaviour. As an example, consider a fuzzy 

controller, where number of inputs (n) =6 and linguistic values (m) =4. The total number of 

fuzzy rules will be  𝐾 = 𝑚𝑛 =46=40964. If we have 5 inputs the K=1024, i.e. 75% reduction 

and with 4 inputs k=256, we will save 93.8%. 

 

One of the simplest and oldest ways to reduce the rule size is the issuing of the Sliding Mode 

Control (Glower &Munighan, 1997). This approach has its disadvantages as the parameters for 

the switch function have to be selected by an expert, or designed through classical control 

theory (Hung et al., 1993). 

 

Jamshidi (1997) proposed the use of sensor fusion to reduce a rule base size with a combination 

of several inputs into one single input. The rule base size is reduced because the number of 

inputs are reduced. He also proposed to use the combination of hierarchical and sensory fusion 

methods. The disadvantage of the design of a fusion hierarchical fuzzy controller is that much 

reliance has to be put on the experience of the operator to establish the needed parameters. 

 

Ledeneva (2006) proposed three methods for finding the combination of the parameters for the 

rule base reduction methods. He automated estimation of sensory fusion and hierarchical 

methods and developed new areas of control to work more efficiently. His method offers great 

rewards to model nonlinearities without the necessity of using complex algorithms. 

 

6.3.  Fuzzy controller in the cement industry 

The basic process in a cement production plant is the baking of the raw material mix in a kiln. 

Cement kilns exhibit time-varying nonlinear behaviour in which both the physical and 

chemical reactions occurring in the kiln complicate its dynamic equations. The corresponding 
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equations have not been derived completely and accurately, while a lot of present variables are 

discarded in the equations (Noshirvani et al., 2009; Fallahpour et al., 2008). It is obvious that 

this may cause various problems in designing the controller for rotary kilns. 

 

Although cement is the final product of a cement factory, the output product of the kiln is called 

clinker. Producing high-quality clinker, realising efficiency improvement in input material and 

energy consumption are the goals of the cement industry. These are all achievable by deploying 

a desirable and appropriate kiln controller. Producing neither over burning nor under-burning 

clinker is acceptable for a rotary kiln. Some factors such as flame shape, secondary air 

temperature, ID fan speed all have considerable effects on the clinker quality (Fallahpour et 

al., 2008). 

 

Most cement factories throughout the world are controlled by the direct knowledge of expert 

kiln operators. Therefore, having accurate knowledge of the situation and state of the burning 

zone is critical for a kiln operator. 

 

The use of fuzzy controllers in cement kilns was one of the first successful applications of the 

fuzzy controller in industry. In 1978, Holmblad and Ostergaard used the first fuzzy controller 

for a complex industry process: the cement kiln. They saw that the results were much better 

than when the kiln was directly controlled by humans (Wang, 1994). 

 

Nowadays, the case for using fuzzy logic controllers to control cement kilns has increased. 

This is based on the fact that fuzzy logic controllers do not need an accurate model of the plant. 

By using a fuzzy logic controller, a remarkable improvement in cement quality and a decline 

in production expenses has been achieved. Several designs of such controllers have been 

proposed and/or implemented over recent years, which have been designed and based on the 

knowledge of the operators. Image processing has been proposed as a solution to control 

cement kilns. 

 Cement production process 

Cement production process is comprehensively explained in chapter five. A short review of the 

process from the perspective of cement quality will be explained in this section. Figure 6.5 

shows the structure of a rotary kiln with the most important variables used for control purposes 

in simplified form (Fallahpour et al., 2007). The kiln is a long and complex tunnel, generally 
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with a cylindrical shape. The input materials include carbonates and silicates which should be 

burned to generate solid oxides and combustion gases. The burning process, which denotes to 

all activities done on the raw materials up to making the final clinker, is done in the pre-heater, 

kiln and cooler (Noshirvani et al., 2009). Raw meal must be preheated and completely dried 

before it is fed into the kiln. Hot smoke generated in the kiln during the clinker production is 

used to do that. The pre-heater is responsible to acquire the remaining moisture of the raw 

material and break up silicates, as well as partially calcinating the present carbonates in the 

material. 

 

 

 

Figure 6.5. A rotary kiln plant 

 

The main part of the burning is completed in the kiln. The kiln has two baking furnaces, which 

are the back-end and the burning zone. The calcification of raw material is first completed in 

the back-end and then fed into the main baking furnace. 

 

The cement kiln is a large cylindrical tunnel with its size is directly related to the factory size. 

The cylinder with a slope of about 4%, rotates around its axis and the raw meal dust sticks to 

its walls. This is then gradually baked and transformed to clinker (which is grained pieces of 

cement). This is transported away from the kiln and milled in a special mill to produce cement 

dust. Finally, the cylinder is slightly inclined down with clinker and cement dust slipping 

towards the cylinder output. On the side of the kiln, a flame is set to heat up the kiln between 

1350°C-1550°C and tiny air tunnels control the oxygen content in the kiln. On the other side 
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of the kiln, suction fans are set up close to the pre-heater cause entering the air. This affects 

upon the flame direction and gas combustion. 

 

Calcification is the first chemical reaction done on the raw mill at the kiln’s high temperature. 

The high temperature at the burning zone melts the input raw materials. Then, the main burning 

is gradually started and chemical reactions occur between the silicates and the present oxygen 

of the air. CO gas includes the main part of the combustion smokes. Finally, the cement crystals 

are made and go out from the kiln as the clinker (Fallahpouret al., 2007). 

The output clinker has a temperature from 1000-1200°C and is cooled at the end of the kiln 

ready to be transferred. Cooling the clinker has an effect on its quality. The main goal of the 

kiln control is to produce high-quality clinker. On the other hand, perfect control of the burning 

zone temperature is also an important factor regarding the quality of clinker. The control 

variables will be discussed in the next section. 

  

  Select effective input and output variables in the cement quality control 

In this thesis, a black box identification procedure for modelling the kiln production has been 

used. A review of literature and expert knowledge in the cement production process confirms 

five secondary variables (named KPI and explained in chapter five) which are controlled by 

nine other variables, effect on cement quality. Figure 6.6 classifies these variables. However, 

it should be noted that in cement kiln systems, the dependency degrees of inputs to outputs are 

not the same for all variables. 

 

CaCO3 +heat CaO(s) +CO2 (g)   

 

   Equation 6.4 
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Figure 6.6. Cement quality key performance indicators and relevant inputs 

 

Figure 6.6 shows that cement quality will be under controlled if nine control variables are 

controlled. These nine control variable are:   

 Raw material feed rate (MAT) which represents the raw material feed to the kiln. 

 Kiln fuel (FUEL) which is the fuel consumed to heat up the material in the kiln. 

 Rotational speed (KS) which controls the speed of material in the kiln and adjusts the 

volume of the input materials to the rotary kiln and the feed rate of the raw mix. In the 

case of more input materials, the kiln speed should be adjusted to complete the burning 

process.  

 Kiln fan (FAN) which controls the flow of fresh air into the kiln and adjusts the required 

O2 percent of burning in the system. Furthermore, blowing the air into the kiln causes 

CO gas out from the kiln and consequently, the reduction of the CO density in the kiln.  

 Kiln engine pulls the material output (KM) which is an engine in the kiln which pulls 

the material to output. 

 The secondary air temperature (AT) which is another input for the rotary kiln which 

blows air into the kiln. This hot air is usually provided during the cooling of hot clinker. 
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 The secondary air pressure (AP) which causes an increase in the present oxygen volume 

via the parameter of O2 in the kiln. 

 SO2 which are injected to process to improve the cement quality 

 NOx which are injected to process to improve the cement quality  

 

A summary of these kiln inputs including variable names which represent the variables in the 

rest of thesis are shown in table 6.5. 

 

Table 6.5. Kiln inputs from cement quality perspective 

 

 

The kiln operation produces five outputs to control the clinker with accepted quality, which 

are:  

 The % of CO at the pre-heather (CO) which represents the combustion efficiency. 

 The amperage of the kiln engine (KA) which indicates the current at which the kiln 

consumes, is proportional to the amount of both the kiln’s speed and load. 

 The pre-heater temperature (PT) which represents the temperature at the pre-heater. 

 The back-end temperature (KT) which is related to the quality of the produced clinker. 

 Oxygen gas content (O2) which is the dependence same as CO gas. This depends on ID 

fan speed, fuel and secondary air pressure in the kiln, as well. 

A summary of these kiln outputs including variables names, are shown in table 6.6. 
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Table 6.6. Output variables of the kiln 

 

6.4.   EventiC integration to cement fuzzy controllers 

As explained previously, the fuzzy controller’s knowledge-base includes all the possible 

combination rules of fuzzy input values with the size of the rule depending exponentially on 

the number of controller inputs. As the complexity of a system increases, it becomes more 

difficult and eventually impossible to make a precise statement about its behaviour. It is 

reasonable to consider though that the inputs of controllers have an effect upon it. Following 

on from this, the inputs which have either little influence or no influence on outputs should be 

discarded. 

 Input variables delay 

The cement kiln has delays in its operation (Makaremi et al., 2008). In other words, the results 

and effects of input variations may appear in the outputs with different delays. To have a 

controller with a high ability in the control of the real system, delays should be considered. 

However, inputs have different effects on each output, and so have different delays. Makaremi 

et al. (2008) used Lipschitz quotients to find the input delays in cement production. The results 

are shown in table 6.7. 

Table 6.7. Input variables delay estimation 

 

 

 

 

 

 

 Delays (Min) 

Variable   BT PT CO& O2 KA 

KRS  36  40 5  0 

FAN 0 5 0 0  

FUEL 4 10 5 25  

MAT 18 30  15  25 

AP 0  5 3 30  

KM 0 0 0 0 

SO2/NOx 0 0 0 0  

AT 0 0 0  0  
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6.4.2. EventiC application 

The 196 sensors and actuators that provided the raw data input received from our industrial 

partner’s SCADA has been fed into the EventiC application to find the effects of table 6.5’s 

input weights on table 6.6’s output variables in the cement process with relevant delays, as 

mentioned in table 6.7. The results of the EventiC output are shown in table 6.8. 

 Table 6.8. Categorization of output and input variables 

 

 As explained in chapter five, the proposed method challenges expert decisions. In this 

experiment, as shown in table 6.9, with CT=90%, three inputs (KM, NOx and SO2) have less 

effect on the outputs and could be discarded from the cement quality model. However, “I/h 

return in the kiln (IH)” which has not been considered in the literature, demonstrates an impact 

on the kiln’s output quality.  Reducing 2 out of 10 input variables, assuming 3 linguistic 

variables for the fuzzy controllers, decreases the fuzzy rule 
𝟑𝟗

𝟑𝟕 = 9 times and hence the 

controller synthesis 9 times faster. 

 Table 6.9. Categorization of the kiln’s input and output variables with CT=90% 

Sensor Type  BT PT O2 CO KA 

KRS  0.92 0.28 0.56 0.49 0.91 

FAN 0.93 0.92 0.98 0.90 0.41 

FUEL 0.95 0.96 0.93 0.91 0.31 

MAT 0.92 0.25 0.27 0.25 0.90 

AP 0.91 0.46 0.98 0.95 0.61 

KM 0.24 0.65 0.52 0.32 0.42 

IH 0.97 0.91 0.47 0.32 0.84 

AT 0.96 0.92 0.55 0.44 0.36 

NOx 0.45 0.46 0.46 0.46 0.53 

SO2 0.27 0.25 0.25 0.25 0.37 

Sensor Type  BT PT O2 CO KA 

KRS  *    * 

FAN * * * *  

FUEL * * * *  

MAT *    * 

AP *  * *  

KM      

IH * *  * * 

AT * *    

NOx      

SO2      
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6.4.3. EventiC/fuzzy controller structure 

The structure of the proposed integrated EventiC/fuzzy controller system for the cement kiln 

is shown in figure 6.7. Designing the intelligent controller of the kiln has been based on fuzzy 

logic. The design requires an identified model of the plant which has a perfect representation 

of the real characteristics of the kiln. It is noted that based on the EventiC output, the model 

has a five multi input single output (MISO) system which has seven inputs and one output. 

 

 

Figure 6.7. EventiC/fuzzy controller integrated structure 

 

As figure 6.7 shows the control scheme for a kiln plant, the set-points variables yd are the 

reference signals and applied to the input of the system. These are what the controller tries to 

track and reach. The vector u is the inputs mentioned in table 6.6 and denoted as the output of 

the controller. Finally, the vector yp includes the output variables of the plant which have the 

normal variables introduced in table 6.5. 

 

The categorization of input/output presented in table 6.9 could be segregated in tables 6.10, 

6.11 and 6.12.   

 

 

Table 6.10. Kiln’s inputs relationships with O2and CO 

 

 

 

 

Sensor Type  O2 CO 

FAN * * 

FUEL * * 

AP * * 



120 

 

Table 6.11. Kiln’s inputs relationships with KA 

 

 

 

 

 

Table 6.12. Kiln’s inputs relationships with BT and PT 

 

 

 

 

 

 

 

 

 

 

The controller designed in figure 6.7 based on the above description can be simplified and 

segregated into three distinct EventiC/fuzzy controllers (as presented in figure 6.8) which can 

then be used to control different variables of the kiln. In the first controller, the control effort 

signals are generated from the error signal of PT and BT. In the second and third controllers, 

the measured values for CO and O2and KA are compared with their authorized values. If the 

values are not in the normal range, the corresponding controller controls and generates the 

required control signals. These signals are the average of the outputs of the three EventiC-fuzzy 

controllers depicted in figure 6.8. 

 

Literature reviews in cement quality show that there are no reference set-points for O2, CO and 

the electrical current of the kiln (KA), since reaching a specific reference input for these 

variables at the controller is not a target for the control scheme. However, there are normal 

authorized ranges that passing may cause problems in cement production. If the value is not in 

the normal range, the corresponding controller acts and generates the required control signals. 

The ranges have been listed in table 6.13 (Ghosh, 2003). 

 

Sensor Type  KA 

KRS  * 

MAT * 

IH * 

Sensor Type  BT PT 

KRS  *  

FAN * * 

FUEL * * 

MAT *  

AP *  

IH * * 

AT * * 
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Figure 6.8. Segregated EventiC/fuzzy controllers integrated structure 

 

Table 6.13. Authorized ranges for O2, CO and KA variables 

 

 

 

 

 

Back-end and pre-heater temperature ranges are selected by experts in cement production and 

in our experiment have been presented in table 6.14. 

 

Table 6.14. Selected ranges for BT and PT variables 

 Back-end 

Temperature(°C) 

Pre-heater 

temperature(°C) 

Minimum 300 300 

Maximum 700 600 

 

 O2 CO KA 

Minimum 6 0 60 

Maximum 25 0.6 170 
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6.4.4. Controller scheme design 

6.4.4.1. Defining the controller’s layers 

The fuzzy controller consists of three layers which are:  

Layer 1: Input layer 

The input unit in this layer is the transformed process output error (e). This layer receives the 

error signal and uses a membership function to determine the relative contribution of the 

observed signals. 

 

Layer 2: Rule Layer 

The rule layer implements the link relating pre-conditions to consequences. Each rule has only 

one antecedent link from the input data. 

 

Layer 3: Output Layer  

All consequences are fully connected to outputs and are interpreted directly as the strength 

(weight) of the outputs. This layer performs centroid defuzzification to obtain inference output. 

 

The presented controller is equivalent to a simplified adaptive fuzzy inference system (Mota et 

al., 1993) which integrates with the EventiC model, where layer 1 corresponds to the antecedent 

part of the fuzzy control rules, and layers 2 and 3 correspond to the conclusion part. 

6.4.4.2. Input variable selection for cement quality and initialization point 

EventiC algorithm sits between the cement plant’s SCADA and fuzzy controller. It starts to be 

trained by reading the input and output events and calculations of SA weights over one month 

sampling per every minute. It also measures mean and standard deviations of inputs and outputs 

to build their membership functions. These membership functions are used for rule generation 

in IF–THEN form.  

6.4.4.3. Defining the membership function 

Defining the membership function is the second step of designing a fuzzy controller. 

Membership functions are defined based on the changes in set-points and errors. 

 

A. Controlled Variables memberships  

1. O2 and CO contents and KA: 
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The measured values for O2, CO and KA variables are compared with their authorized values 

(the range of table 6.13 is for good-quality cement). If the values are not in the normal range, 

the corresponding controller acts and generates the required control signals. The membership 

functions of CO, O2 and KA variables are shown in figures. 6.9, 6.10 and 6.11.In the subspaces 

that the membership functions for these variables in their normal range are not defined, they 

will not have any role and interference for control. However, if one of these inputs goes out 

from its normal range, the corresponding controller overrides the control procedure. 

 

 

Figure 6.9. The membership functions for error of O2variables 

 

Figure 6.10.The membership functions for error of CO variables 

 

 

Figure 6.11.The membership functions for error of KA variables 

 

 

2. BT and PT: 

Three Gaussian membership functions have been considered for handling the error of BT and 

PT input variables. To find input variables’ reference point, after the system meets its steady 
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state, EventiC finds BT and PT variances and their means as reference points. These values are 

shown in table 6.15 in our experiment. Figure6.12shows the error of BT input variable 

membership function.  

  
 

Table 6.15. BT and PT mean and variance 

after 1 month sampling 
 

 Back-end 
Temperature 

Pre-heater 
temperature 

Reference 
point(Mean) 

491 423 

Variance  90 28 

 
 
 

 
 
  

 

Figure 6.12. The membership functions for error of BT controlled variable 

 

B. Control variables membership  

Control variables membership functions as the kiln’s input variables are measured by the 

EventiC algorithm and at a system steady state are measured and presented in table 6.16.  

 

Table 6.16. Kiln control variables mean and variance after 1 month sampling 

 KRS FAN FUEL MAT AP IH AT 

Reference 

point(Mean) 

2.7 30 5.3 14 37 6.51 1335 

Variance 0.6 5 1 4 1 4 70 
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Figure 6.13 shows AP input variable membership function as an example between all inputs.  

 

 

Figure 6.13. The membership functions for error of APcontrol variable 

 

6.4.5.4. Control inference rules 

Rules are generated by traversing the trained (at least 250 samples in the system’s steady state) 

input/output weights as follows: 

 

1.  List all inputs that are known and have contributed to the outputs 

2. Arrange the list by decreasing the absolute value of the weights. 

3. Generate clauses for an IF–THEN rule from this ordered list. 

 

Fuzzy controllers require substantial knowledge and experience from knowledge-based 

controllers (EventiC here) in order to keep the kiln operation smooth. Kiln control is normally 

the most intricate and challenging part of a cement plant’s controls. Plants have to have the 

capability to immediately correct any errors that the plant expert controllers detect in the 

system. The control rules determined for the controller with 3 linguistic variables and 7 inputs 

are   37 =2187 rules. 

 

Tuning fuzzy control rules by training data in our experiments required the setting of an 

initializing point. A group of training data is a pair of input-output data, in which the output 

data are desired output values, and the input data are relevant fuzzy input values. Such tuning 

data represents the skilled-operator control behaviour. It is proposed a tuning method for 

obtaining high performance FLCs by mean of EventiC whose components have been described. 
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6.5. Summary and conclusion 

In this chapter, an adaptive FLC that modifies the fuzzy sets by using EventiC has been 

proposed. The objective is to determine the membership functions that produce maximum FLC 

performance according to the inference system. This method relies on having a set of weighted 

data against which the controller is tuned. Fuzzy rule extracted from EventiC algorithm. Fuzzy 

logic and EventiC possess contrasting application requirements. For example, fuzzy systems 

are appropriate if sufficient expert knowledge about the process is available, whilst the EventiC 

method is useful if sufficient process data is available or measurable. Both approaches build 

nonlinear systems based on bounded continuous variables, the difference being that EventiC 

systems are treated in a numeric quantitative manner, whereas fuzzy systems are treated in an 

symbolic qualitative manner. 

 

Therefore, the integration of EventiC and fuzzy systems leads to a symbiotic relationship in 

which fuzzy systems provide a powerful framework for expert knowledge and representation, 

whilst EventiC provides learning capabilities and exceptional suitability for computationally 

efficient hardware implementations. The significance of this integration becomes even more 

apparent by considering their disparities. EventiC does not provide a strong scheme for 

knowledge representation, whilst fuzzy logic controllers do not possess capabilities for 

automated learning. An EventiC/fuzzy should be able to learn linguistic rules and/or 

membership functions, or optimize existing ones. Then, systems can start without rules, and 

create new rules until meeting the outputs. 

 

In this chapter the advantages of EventiC/fuzzy techniques have been used to develop an 

intelligent control system for the cement kiln process. Cement production is a complex process, 

composed of a series of activities, and many variables which need to be manipulated and 

controlled. The EventiC/fuzzy controller is able to automatically extract all fuzzy parameters 

and design the structure of a FLC in order to control a nonlinear cement production process. 

The learning of the FLC is performed by the proposed EventiC, using the weight sets of 

input/output data, previously extracted by human experts or evolutionary algorithms. EventiC 

would reside on top of a typical data acquisition system (e.g. SCADA) and translate the data 

into cause-effect event models. It would link the set of events (EventiC inputs) to the set of 

performance variables (EventiC outputs). The fuzzy inference rules and parameters will be 
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made available to the fuzzy modeller. Figure 6.14 illustrates a schematic of the proposed 

method in cement quality control. 

 

 

Figure 6.14. The EventiC/fuzzy controller structure 

 

The proposed method does not require any prior knowledge concerning the fuzzy rule structure, 

membership function, implication and aggregation operators, defuzzification methods, or 

selection of adequate input variables. The main purpose of the EventiC application in FLCs is 

to develop a controller which constitutes a starting point for further adjustments. Additionally, 

the method may also be used to understand a process for which we have little or no information, 

as since it automatically extracts all fuzzy parameters; it is able to gather a knowledge-base 

about the process control. In order to validate the proposed methodology, it was applied to the 

cement production process. 
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7.  Assessment of the Efficiency and Validity of the 

EventiC 

The aim of this chapter is to validate and assess the efficiency of the proposed real-time EventiC 

sensitivity analysis techniques with EventTracker sensitivity analysis (Tavakoli,Mousavi & 

Broomhead, 2013b; Tavakoli, 2010). The objective of both techniques is to create an accurate 

representation of a system’s state (the relationship between excitation and state) using real-

time data. Both techniques are designed so that they can assemble sufficient knowledge about 

the internal/external eco-system of the causal relationships of events that will lead to a better 

understanding of systems’ behaviour integrated with existing systems modelling techniques 

(e.g. stability or optimisation).The reason for choosing EventTracker over other SA methods 

is that the two are similar and comparable in being applicable to real-time data. Moreover, the 

two methods do not rely on the availability of statistically reliable or the homoscedasticity of 

historical data. 

 

Chapter five's cement plant kiln experiment has been chosen to compare the similarity and 

dissimilarity of EventiC and EventTracker in suitability and applicability to industrial 

applications. At the beginning of comparison, the EventTracker sensitivity analysis technique 

will be reviewed concisely and then the results of both techniques will be analysed and 

compared. 

7.1.     EventTracker sensitivity analysis technique 

EventTracker (Tavakoli, 2010; Tavakoli, Mousavi & Broomhead, 2013b)is a non-empirical 

causal relationship sensitivity analysis platform that relates field data to performance and 

process parameters. Raw data obtained from large data acquisition devices is monitored and its 

effect on system parameters is measured and reported to the higher layers of the information 

system. 

 

In this way the EventTracker’s method is able to construct a discrete event framework 

(Tavakoli, Mousavi & Komashie, 2008) where events are loosely coupled with respect to their 

triggers for the purpose of sensitivity analysis. The method has a clear advantage over the 

analytical and computational IVS method since it tries to understand and interpret the system 

state change in the shortest possible time with minimum computational overhead. The 

shortcomings of other SA methods were in their reliance on historical data and the generation 
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of data samples which the system analyst then fits to known probabilistic equations. One 

method that was less reliant on analytical methods for extracting sensitivity indices was the 

entropy method. In this respect the entropy method was shown to be the closest technique but 

its shortcomings with regards to actual sensitivity, accuracy and computational efficiency 

became apparent when compared to the event tracking model, i.e. the ‘EventTracker’ in a real-

world case study. The key principle of EventTracker is that every performance parameter can 

be affected by the total number of inputs to the system, by a degree. In effect, whatever happens 

in the environment and during the production process has a casual effect on the other, and on 

the total system. Thus, every measurable parameter within the system can be defined within 

the global set of inputs and the degree that affects that parameter. EventTracker in this sense 

can be considered to be a truly global sensitivity analysis method. The approach does not 

require any prior estimation of the data distribution (see fig.7.1). 

 

 

 

Figure 7.1. General view of the EventTracker method for sensitivity analysis 

 

Tavakoli (Tavakoli, Mousavi & Broomhead, 2013b)designed various experiments such as a 

baking process and a refrigerator manufacturing process to compare the proposed event 

tracking sensitivity analysis method with a comparable method (that of entropy). An 

improvement of 10% in computational efficiency without loss in accuracy was observed. The 

comparison also showed that the time taken to perform the sensitivity analysis was 0.5% of 

that required when using the comparable entropy-based method. 

 

The EventTracker technique has also been deployed in (Tavakoli, Mousavi & Poslad, 2013)a 

sensor-based data system in well-drilling system to solve time-critical dimensionality reduction 

problems with limited computational resources to control and optimize the deep drilling 
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process (i.e. a complex component) to avoid disastrous malfunction of the complex drilling 

system. 

7.1. The EventTracker algorithm 

The EventTracker sequence algorithm follows a number of steps, which in brief, comprises the 

algorithm setting the parameters for Event Data and associated Event Trigger rules. The next 

step is to produce the input/output coincidence matrix based on the system specified scan rate. 

The third step is to extract the sensitivity indices of the parameters at specified intervals (set 

by system operators/engineers).The next step is to generate a normalised sensitivity index (SI) 

for each parameter in the analysis span (contiguous scan intervals). The penultimate step is to 

filter out the unimportant inputs by defining a cut-off threshold. For example, any input with 

less than 0.6 SI value is not influential enough on the specified output parameter. The final step 

is the validation and verification of results through a false-negative testing process. 

7.2. A case study for comparing EventTracker and EventiC techniques 

A major difference between EventTracker and EventiC techniques is fundamentally difference 

between their functionality. EventiC algorithm concept is based on clustering and grouping 

similar inputs and outputs in every time scale whilst EventTacker is analysing just an individual 

output correlation with inputs. EventiC designed to overcome the shortcoming of EventTracker 

(Tavakoli et al. 2010). Whilst EventTracker deals with 1 to many correlations, the EventiC 

cluster is intended to deal with many to many relationships. This main difference leads to a 

new clustering and grouping technique in system's input/output correlation area. As discussed 

in chapter 5, EventiC not only finds unknown/known relationships, but also it could find 

unknown/unknown relationship in system performance. It has the capability to identify group 

multiple causes to multiple effects. 

 

To validate the EventiC sensitivity analysis technique, chapter five’s experiment has also been 

conducted with EventTracker sensitivity analysis. The reason for choosing EventTracker over 

other SA methods is the similarity of these two methods in working with real-time data and 

that neither have a reliance on the availability of statistically reliable or the homoscedasticity 

of historical data. 

The results from deploying both methods over the existing 196 sensors and actuators in the 

SCADA of the cement manufacturing process are in table 7.1. The SA weights show that the 

sensitivity analysis results of both methods are very similar. 
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Table 7.1. Comparison of EventiC and Event Tracker's SA weight of a selected number 

of a kiln’s input data over kiln production rate 

Input Name Sensitivity Level of kiln 

Production Rate with EventiC  

Sensitivity Level of kiln 

Production Rate with 

EventTracker  

Kiln temperature 92 % 90% 

CO  output 63 % 61% 

I/h return in kiln 90% 87% 

Kiln fan 98% 95% 

CO2 output 97% 92% 

Motors pulls material 

from kiln 

92% 85% 

Injected O2 to Kiln 37% 35% 

Injected NO2 to Kiln 54% 44% 

Injected SO2 to kiln 36% 36% 

 

 

As has been discussed in section 5.2, the cut-off threshold filters out less important inputs with 

respect to their weights over the kiln output. This threshold is defined in both EventiC and 

EventTracker. An acceptable cut-off threshold that eliminates whole and less important inputs 

needs to conduct a false negative test. Figure 7.2 shows the minor differences in the cut-off 

(CT) thresholds which leads to the same filtered sensors. For instance, it shows that in EventiC 

with 90% CT, 18% of TDs are less important while in EventTracker with 87% CT, it finds 

18% less important TDs. Experimentation revealed that for this industrial experiment on the 

EventiC algorithm, with a CT of 90%, with 18% of TDs (36 TDs) filtered out, the percentage 

of false negatives drops to 0. 

 

The results also show that with the full 196 TDs, the EventiC algorithm took 40 seconds to 

calculate system output, whereas when using 160 TDs only 28 seconds were taken to achieve 

the same results i.e. a reduction of 30% in computation time. The computational time save for 

the EventTracker algorithm is 35%. 

 

Measuring the computational effort on a personal computer with Intel®Core i7 CPU & 4.00 

GB memory RAM, the average CPU utilization remains at 55% during the analysis run-time. 

The CPU utilisation using EventiC is10% better than EventTracker. Under the same 

experimental conditions, the CPU utilisation is 65%.  
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Figure 7.2. EventiC and EventTracker CT versus percent of filtered TDs 

 

Table 7.2 summarises the similarities and differences of these two techniques in ten different 

categories including their major grouping/individual SA feature. The algorithm was run in 

MATLAB 2010b (7.11.0). 

 

Table 7.2. Comparison table between EventiC and EventTracker techniques 

Comparison Table EventiC Event Tracker 

Grouping SA Yes No 

Real-time sensitivity analysis Yes Yes 

Applicable to large scale DAQ Yes Yes 

Responsiveness to system 
volatilities 

Yes Yes 

Complex and non-linear systems Yes Yes 

Reliance on  historical 
data/Statistical or model based 

equations 

No No 

Computational complexities No No 

CPU capacity 55% 65% 

Algorithm speed 40 seconds 45 seconds 

Computational time save 30% 35% 
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7.3. Conclusion 

In this chapter a comparison experiment between EventiC and EventTracker was conducted to 

validate the proposed EventiC sensitivity analysis method. The rational for choosing 

EventTracker over other SA techniques is the similarity that exists between these techniques. 

EventTracker, like EventiC also does not rely upon the availability of statistically reliable data 

or the homoscedasticity of historical data. 

 

These real-time SA techniques have been proposed to make systems more intelligent in dealing 

with real-time events and provide a more accurate representation of the system to the higher-

level of mathematical formalism leading to intelligent controllers and decision making. These 

accurate real-time data engineers will increase precision and reduce the response time. 

Furthermore, these techniques remove all the logical boundaries of isolation that exist in 

complex systems with the principle that every acquirable knowledge or data (input) affects the 

output unless proven otherwise.   

 

The logic behind the EventTracker and EventiC methods is the capture of the cause-effect 

relationship between input variables (triggers) and output variables (events) over given 

instances.  The comparison was conducted on kiln processing in the cement industry. 196 of 

the existing sensors in the kiln were fed into the EventiC and EventTracker networks to 

minimize input dimensions and find the state of the system in real-time with respect to kiln 

productivity (kiln output). Results show that 18% of input sensors had little effect on kiln 

productivity in both techniques with a small difference in their CT results. However, the 

experiment confirmed that CPU capacity usage in EventTracker is approximately 10% more 

than the EventiC technique although the algorithm running speed was fairly equal. 
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8.  Conclusion, contribution, and future work 

This thesis proposes a technological capability which enabled us to acquire, exchange, and 

process data from any given physical or virtual system boundlessly. It fundamentally shifts our 

perceptions of systems boundaries. Our interlinked super systems need to respond to externally 

generated stimuli within a finite-specified period (i.e. Real-Time). With expansion and 

fluctuation of modern systems, producing time-critical accurate knowledge about the state of 

the system remains and continues to remain a major challenge for engineers.  

 

The Hypothesis of this research was that: “all the available knowledge about the internal and 

external events surrounding a defined system has an effect on its state, unless proven 

otherwise.” Within the context of the thesis, the key questions that this thesis intended to 

address were: 

 

1. What would the implication of unbiased increase of input data and their potential 

relationships with one another and the system outputs be on our understanding of 

systems behaviour? Addressing the scalability problem. 

2. How would the new knowledge about the new interrelationships between systems 

components allow us to better define performance (e.g. cost, quality, reliability, and 

fidelity)? 

3. How would tracking and relating the events that represent the observable behaviour of 

the system lead to an increased insight to system functionalities and does it lead to more 

desirable improvements in the control of the system, and its optimal operation? 

The first question posed in the research question was answered in Chapters 2, 3 and 4, where 

the definitions of system and methods of knowledge engineering and management was 

presented. Moreover, by designing the experiments through the systems simulation and 

observations on the live activities of a cement plant, the scalability of the approach was 

facilitated. Using real-time feed data from the plant and cross correlating the system inputs and 

outputs it was possible to assess the issues of significant increase in quantity and quality of data 

to monitor the performance of the system. 
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Building a powerful eco-system of causal events is one of the most natural approaches to de-

cluttering complexity. Owing to the modern communication systems (i.e. Internet of Things), 

the engineering of Data and Knowledge of systems at near real-time speed is made possible. 

Our endeavour is to be able to understand (i.e. be able to explain), relate excitation with 

behaviour, to predict, to stabilize (Control), and to optimize (Operational Research) complex 

system at the shortest possible time. 

 

In order to turn the theory into practice the author presents the concept of Event clustering 

(EventiC) as a platform for managing the interrelationships and internal dynamics of the 

components within the eco-system of embedded systems and their environment. It is designed 

to manage the causal relationships between the system and its operational environment as the 

system changes state and boundaries. EventiC can be used as a robust input variable selection 

technique for real-time systems. By equipping the embedded monitoring and control systems 

with the proposed technique a real-time data modelling platform emerges. This will enable 

control engineers and system designers to build more adaptable and responsive systems in 

pursuit of optimal performance and attain the stability of systems. This unique system will not 

only achieve significant improvements in the design of systems in its currently tested 

environment (i.e. process manufacturing), but has the potential to be applied to aerospace, 

automotive and smart metering applications. This new platform will be a foundation for sharing 

and integrating multiple users in various applications. With this capability it will be able to 

create cyber-physical systems that understand the impact of known and previously ‘unknown’ 

internal and external destabilizing factors and find quick solutions to stay functional and 

sustainable.  

 

EventiC is not only an intelligent recorder of events, but an intelligent platform that enables 

preliminary data and knowledge construction. It is a complimentary middleware between plant 

and environmental information sources (raw data) with higher-level information management 

systems and optimization tools. Existing production control and management systems would 

benefit from the overlay of EventiC analysis within their existing data monitoring, reporting 

and analysis capabilities. Currently management in the production industry relies on known 

factors combined into predictive models, thus EventiC will be an instrument for detecting, 

classifying and analysing the impact of previously unknown factors. 
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The concept of real-time Event Clustering and data analysis, especially in the area of large 

scale data systems, is immensely important and the proposed method is ‘unique’. It is a 

foundation for dealing with the acquisition of large scale data and organising it in the form of 

linked interrelationships and clusters of relevance. This takes place at the lowest layer of 

interface between the physical system and the higher-level information framework. Thus, the 

proposed method should indeed be considered as the linking point between engineering and 

data modelling. 

 

The key novelty of this research is its capability to acquire large sets of data and group the 

relevant input event data to the key performance indicators of a system and then rapidly 

generate an event-driven incidence matrix and measure the degree of influence of input sensors 

on outputs. Moreover, EventiC does not require prior knowledge of the analytical or statistical 

relationships that may exist between input and output variables. These accurate real-time data 

engineers will increase precision and reduce the response time. These techniques remove all 

the logical boundaries of isolation that exist in complex systems with the principle that every 

acquirable knowledge or data (input) affects the output unless proven otherwise.  

 

The second question raised in this research question is addressed in chapters 5 and 6, where 

the state of the system or the output parameters of the system is defined by the Key Performance 

Indicators specified in the manufacturing industry. These indicators are product quality, 

productivity, production efficiency, resource utilisation, and inventory. They are represented 

by well-established transfer functions defined in manufacturing systems literature.  The raw 

data emitting from the sensors and actuators in the plant integrated by a SCADA system 

represent the input parameters of the system.  

 

The designed experiment enabled the simulation of acquisition of real-time data from the plant 

and conducting sensitivity analysis against the event that takes place during the production 

process. The observations took over 30 days at a rate of 1 minute sampling rate. 

 

The sensitivities of all KPIs were assessed against all 196 available input data series.  Whilst 

originally this was not the case. Individual KPIs were only connected to a pre-specified set of 

input series. Thus enabling us to assess the efficacy of de-modularity of the system. This 

resulted in improving the quality of input data, by reducing the number of data acquisition 

points by 18%. One needs to refer to the case study to recognise the challenges that a system 
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with over 196 data acquisition points that generate large amount of data in short periods of time 

poses for the system controller. Reducing the amount of input data in close to real-time is a 

major achievement. Furthermore, the advantage of the proposed method is not only in filtering 

unwanted data, but in putting new sets of input data into play (another novel and unique feature) 

that was not considered relevant by the system control engineers at the outset of the design 

process, for example, in the operation of a kiln. It is believed that this will lead to superior 

mathematical formalism of problems and control systems, leading to better transfer functions 

or other analytical methods. 

 

Finally to answer the third key question of the thesis, EventiC has been integrated into the 

cement kilns fuzzy controller to automate expert-knowledge based information in fuzzy 

controllers. The new modulations and extracted relationships between systems input and output 

parameters lead to better understanding of the system behaviour and more over reducing the 

lead time to return the system to optimal performance. This was proven by connecting resultant 

EventiC to the factory’s fuzzy controller, in which new membership functions showed to 

represent the dynamics of the system more effectively and accurately.  EventiC/fuzzy 

controllers can obtain appropriate fuzzy controller inputs and create fuzzy control rule 

inference tables. 

 

To validate the proposed EventiC sensitivity analysis method a comparison experiment 

between EventiC and EventTracker was conducted to ratify the results. The experiment 

confirmed that besides the event-clustering feature which is unique to EventiC, CPU capacity 

usage in EventTracker is approximately 10% more than with the EventiC technique but the 

algorithm running speeds were fairly equal. 

8.1. Contribution to knowledge 

This research has advanced the understanding of complex systems' internal dynamic and its 

interaction with environment, with particular reference to research key questions which leads 

to EventiC's technology in the following ways: 

 

1. Propose a data and knowledge engineering technique to meet the challenges of the 

dynamic, autonomous, adaptive and self-organising embedded systems, and, 

seamless/secure interaction of the embedded system/cyber-physical systems with their 

environment. 
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2. Propose a technique to achieve a correlation analysis throughout the analysis span and 

deals with too many relationships of input and output parameters via grouping of 

relevant input-output event data by order of its importance in real-time. 

4. Event clustering fundamentally shift our perceptions of systems boundaries with its 

quick ROC algorithm in processing the necessary information in near real-time which 

leads to better solutions for improving systems' performance (e.g. cost, quality, 

reliability, and fidelity). 

3. Event clustering visualise system inputs and key performance (outputs) event incidence 

occurrences matrices and find appropriate corrective actions to maintain stability and 

optimal functionality externally generated stimuli. 

4. Automatic extraction of the fuzzy controller parameters in integration with fuzzy 

controllers which leads to improvements in the control of the system, and its optimal 

operation. 

 

The above contributions have been made by undertaking the following activities and realising 

the following achievements: 

 

1. The introduction of Event-Clustering sensitivity analysis (EventiC) as a new paradigm 

in assembling the necessary knowledge (data analysis) for the purpose of systems 

modelling and control optimization. EventiC achieves this by simply (a) interpreting 

changes in the values of input-output (I/O) data as I/O events (b) detecting if the I/O 

events coincide, and (c) groups the I/O events, as related events. This (a)-(c) process 

happens at specified time intervals called scan rates. Scan rates can range from 

microseconds, to seconds, minutes, etc. Each scan registers a scenario of input-output, 

like a clip in a film. The weight of an input on output is calculated using the basic logic 

of the number of coincidences in a time span. Finally, and for the purpose of modelling, 

a return is made to the actual values of the I/O data. Such an approach could be 

considered a novel approach due to its process in understanding large-scale raw data. 

The automation of the preliminary data analysis has significantly reduced time-system 

modelling, design and validation. 

 

2. With the implementation of the proposed technology into the SCADA system of a 

cement production plant of our industrial partner the EventiC technique was able to set 
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the production system to an optimal point, maximizing production rates whilst 

minimizing environmental impacts. 

 

3. EventiC technology has also been integrated into the cement kilns fuzzy controller to 

automate some expert knowledge-based information in fuzzy controllers. 

 

8.2. Future work 

The opportunity to expand and build upon this thesis’ findings exist in various aspects 

including, but not limited to, the following two approaches: 

 

 Research which bounds to EventiC technology: 

 EventiC algorithm can be improved with much research on: definitions of instantaneous 

events, events with different delays and the scenarios of combination of events that lead 

to a specific output. 

 Some steps have already been taken to customize EventiC applications for engine safety 

issues in the aerospace and the automotive industries to find key performance 

indicators. Furthermore, EventiC's application in the financial market could develop 

with regards to measuring oil industry key performance parameters with reference to 

price volatility.  

 Introduce EventiC application for integrating the components of 'Internet of Things' 

(i.e. modern communication systems) at near real-time speed. 

 The EventiC approach in sensitivity analysis can find the thresholds triggers for each 

input/output from the nature of the system. 

 Improve and explore the application of the proposed technique in the demanding and 

complex environments of vehicular transport (aircraft, automobile and other vessels).  

 Impact of the research 

 The new knowledge and insight vis-a’-vis the relationship between system input and 

output parameters may open new opportunities for formulating and reformulating 

dynamical systems behaviour, 

 The production of industry based objective function models where key performance 

indicators can be combined to provide overall key performance factors of a system and 

then translate all in cost index. 
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8.3. Overall benefits of the research outcome 

The outcome of the research is a novel approach for engineering data and greater understanding 

of the deterministic relationship between a system state and the dynamism of its internal and 

external functioning. This method is able to lay the foundation for robust real-time, predictive 

and optimized models. Through allowing a superior interpretation of the state of a system, 

EventiC is able to propose and establish a more efficient and fluent mechanism in the design 

and modelling of systems. This will be achieved by exploring the methods of establishing 

connectivity between (a) the network of embedded devices, (b) the network of the embedded 

system, and (c) the internet of things. 
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Appendices 

 

Appendix A: Schematic of our industrial partner’s SCADA output including the 

list of sensor names 
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 Tag Variable Unit Description            

 L3AI01201.A1 L3AI01201 bar Pressão de Ar da queima 

 L3M101.SUPERV L3M101   Motor a entrada do forno 

 L3M112.SUPERV L3M112    

 L3M109.SUPERV L3M109    

 L3M106.SUPERV L3M106    

 L3I01.A1 L3I01 Amp Intensidade no motor L3M106         

 L3AI01202.A1 TERMO ºC Temperaturanacamaratermica 

 L3T12.A1 L3T12 ºC Temperatura no forno 

 L3S01_A0.A0 L3S01A0 % 

Percentagem da velocidade de rotação do motor do 

forno 

 L3S01.A1 L3S01 rpm Velocidade de rotação do motor do Forno 

 L3M330.SUPERV L3M330   Motor à saída do forno 

 L3T305.A1 L3T305 ºC Temperatura do material saída do forno 

 L3P311.A1 L3P311 mbar Pressão à saída do forno 

 L3M335.SUPERV L3M335   Motor do arrefecedor do forno 

 L3M405.SUPERV L3M405   Motor de tapete de transporte de clinquer 

 L3M433.SUPERV L3M433   Motor de transporte de stocks        

 L3M202.SUPERV L3M202    

 L3M209.SUPERV L3M209    

 L3M207.SUPERV L3M207    

 L3F200.A1 L3F200 t/h Tonelada/hora a saída do forno 

 L3M3237.SUPERV L3M237   Motor à saída do fornopuxa o material     

 L3W200.A1 L3W200 Ton Toneladas 

 L3Q200.A1 L3Q200 %CO Percentagem de oxido de carbono Final       

 L3CALTRCTR.CV L3CALTRCTR %  

 L3CALTRCTR.SET L3CALTRCTR bar  

 L3AI0972.A1 L3CALTR_P01 bar  

 L3AI0970.A1 L3CALTR_Q01 I/h  

 L3AI0971.A1 L3CALTR_S01 rpm  

 L3AI0973.A1 L3CALTR_T01 ºC  

 L3G01.A1 L3G01 %  

 L3G01_OUT.A0 L3G01 %  

 L3F03.A1 L3F03 I/h Retorno 

 L3T324.A1 L3T324 ºC Temperatura a entrada da ventilação 

 L3T322.A1 L3T322 ºC Temperatura a dentro da ventilação 

 L3T322_OUT.A0 L3T322 ºC Temperatura à saída da ventilação 

 L3Y363.SUPERV L3Y363   Comutadora entrada ….         

 L3P318.A1 L3P318 mbar Pressão no filtro de mangas 

 L3I312.A1 L3I312 Amp Intensidade do motor L3M366         

 L3M366.SUPERV L3M366    

 L3S310.A1 L3S310 rpm Rotaçõesporminuto de motor L3M366       

 L3T304.A1 L3T304 ºC Temperaturana entrada do arrefecedor 

 L3I311.A1 L3I311 Amp Intensidade do motor de arrefecimento L3M335       
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 L3T326.A1 L3T326 ºC Temperatura a saida do arrefecedor 

 L3T327.A1 L3T327    

 L3T13.A1 L3T13 ºC Temperatura de admissão do queimador 

 L3AI00063.A1 L3AI00063 Amp Intensidade do motor L3M207         

 L3P02.A1 L3P02 mbar Pressao de arnas entradas axial e radial do queimador 

 L3AI00060.A1 L3AI00060 kg/min Axial            

 L3AI00062.A1 L3AI00062 kg/min Radial            

 L3AI00061.A1 L3AI00061 kg/min Central            

 L3P01.A1 L3P01 mbar Pressao no queimador 

     

    AutomatoCarvão (S3)          

 Tag Variable Unit Description            

 S3Q03.A1 S3Q03 ppm Concentração de carvãonaatmosfera 

 S3W04.A1 S3W04 Ton Toneladas de carvão no moinho 

 S3F04.A1 S3F04 t/h Tonelada hora           

   S3F04 % Percentagem de tonelada hora         

 S3M832.SUPERV S3M832    

 S3M831.SUPERV S3M831    

 S3M831Y1.SUPERV S3M831Y1    

 S3M832Y1.SUPERV S3M832Y1    

   S3F02   Debitocarvãoqueimaforno 3        

     

    Torre de Condicionamento (K3)         

 Tag Variable Unit Description            

 K3L998.A1 K3L998 Nm3/h Caudal a saída da chamine 

 K3L997.A1 K3L997 % Dioxido de Carbono à saída (CO2), pág. 9 PDF 

 K3L996.A1 K3L996 mg/m3 Dioxido de Nitrogenio (NO2), pág. 9 PDF 

 K3L995.A1 K3L995 mg/m3 Acidocloridico 

 K3AI00212.A1 K3AI00212 mg/Nm3 Hafnium            

 K3AI00233.A1 K3AI00233 mg/m3 Particulas (2) / H2O; TOC; NH3; Temp.      

 K3AI00213.A1 K3AI00213 % H2O            

 K3AI00230.A1 K3AI00230 mg/m3 Total de Carbonoorganico 

 K3AI00231.A1 K3AI00231 ºC Tempratura 

 K3Q05.A1 K3Q05 mg/m3 Particulas (1) O2; CO; NO; SO2       

 K3AI00313.A1 K3AI00313 % Percentagem de oxigenio 

 K3AI00310.A1 K3AI00310 mg/m3 Oxido de Carbono (CO), pág. 9 PDF 

 K3AI00311.A1 K3AI00311 mg/m3 OxidoNitrico (NO), pág. 9 PDF 

 K3AI00312.A1 K3AI00312 mg/m3 Dioxido de Enxofre (SO2), pág. 9 PDF 

 K3P02.A1 K3P02 mbar Pressão a entrada da torre de condicionamento 

 K3T16.A1 K3T16 ºC Temperatura a entrada de torreconsicionamento 

 K3G12.A1 K3G12 % Percentagem ….           

 K3G43.A1 K3G43 % Entrada do 1P          

 K3T18.A1 K3T18 ºC Temperatura a entrada do 1P        

 K3T20.A1 K3T20 ºC Temperatura à saída do 1P        

 K3P13.A1 K3P13 mbar Pressão à saída do 1P        

 K3G42.A1 K3G42 %  

 K3T17.A1 K3T17 ºC Temperatura a entrada 1N         
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 K3T19.A1 K3T19 ºC Temperatura a saida 1N         

 K3P12.A1 K3P12 mbar Pressão a saida 1N         

 K3F07.A1 K3F07 t/h 

Tonelada hora vinda do elevador para as entradas de 

1N e 1P 

 K3T49.A1 K3T49 ºC Temperatura a entrada 2P         

 K3T51.A1 K3T51 ºC Temperatura a saida 2P         

 K3P15.A1 K3P15 mbar Pressao a saida 2P         

 K3T46.A1 K3T46 ºC Temperatura a entrada 2N         

 K3T50.A1 K3T50 ºC Temperatura a saida 2N         

 K3P15B.A1 K3P15B mbar Pressao a saida 2N         

 K3Q03.A1 K3Q03 CO Oxido de Carbono a entrada ciclone 3      

 K3Q02.A1 K3Q02 O2 Oxigenio a entrada ciclone 3        

 K3P03.A1 K3P03 mbar Pressao a entrada do cilone 3       

 K3T21.A1 K3T21 ºC Temperatura a entrada do ciclone 3       

 K3T52.A1 K3T52 ºC Temperatura a saidaciclone 3        

 K3P14.A1 K3P14 mbar Pressao a saida do ciclone 3       

 K3Y465.SET K3Y465    

 K3G14.A1 K3G14    

 K3P04.A1 K3P04 mbar Pressao a entrada 4N         

 K3T22.A1 K3T22 ºC Temperatura a entrada 4N         

 K3T25.A1 K3T25 ºC Temperatura a saida 4N         

 K3P05.A1 K3P05 mbar Pressao a entrada 4P         

 K3T23.A1 K3T23 ºC Temperatura a entrada 4P         

 K3T26.A1 K3T26 ºC Temperatura a saida 4P         

 K3T53.A1 K3T53 ºC Temperatura …...           

 K3P16.A1 K3P16 mbar Pressao …..           

 K3T24.A1 K3T24 ºC Temperatura a entrada do forno 

 K3P06.A1 K3P06 mbar Pressao a entrada do forno 

 K3Q01.A1 K3Q01 O2 Injecção de oxigenio a entrada do forno 

 K3Q06.A1 K3Q06 CO Injecção de Oxido de Carbono a entrada do forno 

 K3Q07.A1 K3Q07 NOx Injecção de NOx a entrada do forno 

 K3AI00211.A1 K3AI00211 SO2 Injecção de SO2 a entrada do forno 

 K3M487.SUPERV K3M487    

 K3T16.A1 K3I16 Amp Intensidade do motor K3M487         

 K3G37.A1 K3G37 % 

Percentagem de abertura da valvulapara o ventilador 

K3M487     

 K3M489.SUPERV K3M489    

 K3F09.A1 K3F09 %  

 K3P20.A1 K3P20 mbar Pressao a saida do K3M489 0 K3M487      

 K3AI1150.A1 K3AI1150 ºC Temperaturavinda do carvao 1        

 K3AI1151.A1 K3AI1151 ºC Temperaturavinda do carvao 2        

 K3AI1152.A1 K3AI1152 ºC Temperaturavinda do carvao 3        

 K3AI1153.A1 K3AI1153 ºC Temperaturavinda do carvao 4        

 K3P19.A1 K3P19 mbar Pressao no cilcone de carvao 

 K3T62.A1 K3T62 ºC Temperaturadentro do ciclone de carvao 

 K3AI1161.A1 K3T62A ºC Temperatura a saida do ciclone de carvao 

 K3Q09.A1 K3Q09 CO CO a saida do ciclone de carvao 

 K3Q08.A1 K3Q08 O2 O2 a saida do cilone de carvao 
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 K3Q10.A1 K3Q10 Nox NOx a saida do ciclone de carvao 

 K3M480C.SUPERV K3M480C   Motor do despoeiramento 

 K3M461.SUPERV K3M461   Motor que puxa o retorno gases       

 K3G36.A1 K3G36 % Posição do registo do arterceario 

 K3T60.A1 K3T60 ºC Temperatura do retorno 

 K3P17.A1 K3P17 mbar Pressao do retorno 

 K3M404.SUPERV K3M404   Ventilador para moinho de cru        

 K3I02.A1 K3I02 Amp Intensidade do motor K3M404         

 K3I15.A1 K3I15 Amp  

   K3S02   velocidade do ventiladorDopol (saida da torre)      

   K3F06   Debito da doseadoratremonhapoeiras 

   K3G14   Posição do registodevisao material a saida 

   K3F10   Velocidade do ventilador do filtro 

     

    ParametrosProcesso 

 Tag Variable Unit Description            

 POLAB_ANA73 SiO2 % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA74 Al203 % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA75 Fe203 % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA76 CaO % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA79 LSF % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA78 A/F % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA77 MS % Valor do resultado no POLAB (laboratorio)       

 POLAB_ANA81 R200 % Valor do resultado no POLAB (laboratorio)       

 L3K3PCA0[0] CAL LIVRE % Valor do resultado no POLAB (laboratorio)       

 OUTPUT_ANA73 SiO2 % Valor do resultadovaloremserviço 

 OUTPUT_ANA76 CaO % Valor do resultadovaloremserviço 

 OUTPUT_ANA79 LSF % Valor do resultadovaloremserviço 

 OUTPUT_ANA77 MS % Valor do resultadovaloremserviço 

 OUTPUT_ANA81 R200 % Valor do resultadovaloremserviço 

 CLIVRE_OUT CAL LIVRE % Valor do resultadovaloremserviço 

 MANUAL_ANA73 SiO2 % Valor do resultadovalor de entrada manual      

 MANUAL_ANA76 CaO % Valor do resultadovalor de entrada manual      

 MANUAL_ANA79 LSF % Valor do resultadovalor de entrada manual      

 MANUAL_ANA77 MS % Valor do resultadovalor de entrada manual      

 MANUAL_ANA81 R200 % Valor do resultadovalor de entrada manual      

 K3CAL_LIVRE CAL LIVRE % Valor do resultadovalor de entrada manual      

 K3RSD_ESP Peso/Litro g/L Valor do resultadovalor de entrada manual      

 S3RES_R90 R90_Carvao % Valor do resultadovalor de entrada manual      

 FACTOR_CLK_K3 F. C. Clinquer   Valor do resultadovalor de entrada manual      

 FACTOR_TERMICO_L3 P. C. Carvão   Valor do resultadovalor de entrada manual      

 FACTOR_TERMICO_CA P. C: Cmb. A.   Valor do resultadovalor de entrada manual      

 PESPC_CALTR Peso E. Cmb. A   Valor do resultadovalor de entrada manual      

 CODIGO_LER_SET CodigoCmb.   Valor do resultadovalor de entrada manual      
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Appendix B: The output of EventiC for 196 inputs over production rate (no. 137). 

In this example, the rate of data acquisition was 1 sample at every minute for a 

complete month. 
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Appendix C: SCADA output for the kiln’s 196 sensors in the first 30 samples 

(first 30 minutes) 
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