1,550 research outputs found

    Network calibration and metamodeling of a financial accelerator agent based model

    Get PDF
    We introduce a simple financially constrained production framework in which heterogeneous firms and banks maintain multiple credit connections. The parameters of credit market interaction are estimated from real data in order to reproduce a set of empirical regularities of the Japanese credit market. We then pursue the metamodeling approach, i.e. we derive a reduced form for a set of simulated moments h(\u3b8,s) through the following steps: (1) we run agent-based simulations using an efficient sampling design of the parameter space \u398; (2) we employ the simulated data to estimate and then compare a number of alternative statistical metamodels. Then, using the best fitting metamodels, we study through sensitivity analysis the effects on h of variations in the components of \u3b8 08\u398. Finally, we employ the same approach to calibrate our agent-based model (ABM) with Japanese data. Notwithstanding the fact that our simple model is rejected by the evidence, we show that metamodels can provide a methodologically robust answer to the question \u201cdoes the ABM replicate empirical data?\u201d

    Leveraging Smartphone Sensor Data for Human Activity Recognition

    Get PDF
    Using smartphones for human activity recognition (HAR) has a wide range of applications including healthcare, daily fitness recording, and anomalous situations alerting. This study focuses on human activity recognition based on smartphone embedded sensors. The proposed human activity recognition system recognizes activities including walking, running, sitting, going upstairs, and going downstairs. Embedded sensors (a tri-axial accelerometer and a gyroscope sensor) are employed for motion data collection. Both time-domain and frequency-domain features are extracted and analyzed. Our experiment results show that time-domain features are good enough to recognize basic human activities. The system is implemented in an Android smartphone platform. While the focus has been on human activity recognition systems based on a supervised learning approach, an incremental clustering algorithm is investigated. The proposed unsupervised (clustering) activity detection scheme works in an incremental manner, which contains two stages. In the first stage, streamed sensor data will be processed. A single-pass clustering algorithm is used to generate pre-clustered results for the next stage. In the second stage, pre-clustered results will be refined to form the final clusters, which means the clusters are built incrementally by adding one cluster at a time. Experiments on smartphone sensor data of five basic human activities show that the proposed scheme can get comparable results with traditional clustering algorithms but working in a streaming and incremental manner. In order to develop more accurate activity recognition systems independent of smartphone models, effects of sensor differences across various smartphone models are investigated. We present the impairments of different smartphone embedded sensor models on HAR applications. Outlier removal, interpolation, and filtering in pre-processing stage are proposed as mitigating techniques. Based on datasets collected from four distinct smartphones, the proposed mitigating techniques show positive effects on 10-fold cross validation, device-to-device validation, and leave-one-out validation. Improved performance for smartphone based human activity recognition is observed. With the efforts of developing human activity recognition systems based on supervised learning approach, investigating a clustering based incremental activity recognition system with its potential applications, and applying techniques for alleviating sensor difference effects, a robust human activity recognition system can be trained in either supervised or unsupervised way and can be adapted to multiple devices with being less dependent on different sensor specifications

    Artificial Intelligence Technology

    Get PDF
    This open access book aims to give our readers a basic outline of today’s research and technology developments on artificial intelligence (AI), help them to have a general understanding of this trend, and familiarize them with the current research hotspots, as well as part of the fundamental and common theories and methodologies that are widely accepted in AI research and application. This book is written in comprehensible and plain language, featuring clearly explained theories and concepts and extensive analysis and examples. Some of the traditional findings are skipped in narration on the premise of a relatively comprehensive introduction to the evolution of artificial intelligence technology. The book provides a detailed elaboration of the basic concepts of AI, machine learning, as well as other relevant topics, including deep learning, deep learning framework, Huawei MindSpore AI development framework, Huawei Atlas computing platform, Huawei AI open platform for smart terminals, and Huawei CLOUD Enterprise Intelligence application platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence

    How Do Central Banks React to Wealth Composition and Asset Prices?

    Get PDF
    We assess the response of monetary policy to developments in asset markets in the Euro Area, the US and the UK. We estimate the reaction of monetary policy to wealth composition and asset prices using: (i) a linear framework based on a fully simultaneous system approach in a Bayesian environment; and (ii) a nonlinear specification that relies on a smooth transition regression model. The linear framework suggests that wealth composition is indeed important in the formulation of monetary policy. However, the attempts of central banks to mitigate undesirable fluctuations in say, financial wealth, may disrupt housing wealth. A similar result can be found when we assess the reaction of monetary authority to asset prices, although concerns about "price" effects are smaller. The nonlinear model confirms these findings. However, the concerns over wealth and its components are stronger once inflation is under control, i.e. below a certain target. Some disruptions between financial and housing wealth effects are still present. They can also be found in the reaction to asset prices, despite being less intense.monetary policy rules, wealth composition, asset prices.

    Artificial Intelligence Technology

    Get PDF
    This open access book aims to give our readers a basic outline of today’s research and technology developments on artificial intelligence (AI), help them to have a general understanding of this trend, and familiarize them with the current research hotspots, as well as part of the fundamental and common theories and methodologies that are widely accepted in AI research and application. This book is written in comprehensible and plain language, featuring clearly explained theories and concepts and extensive analysis and examples. Some of the traditional findings are skipped in narration on the premise of a relatively comprehensive introduction to the evolution of artificial intelligence technology. The book provides a detailed elaboration of the basic concepts of AI, machine learning, as well as other relevant topics, including deep learning, deep learning framework, Huawei MindSpore AI development framework, Huawei Atlas computing platform, Huawei AI open platform for smart terminals, and Huawei CLOUD Enterprise Intelligence application platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence

    Nature’s Optics and Our Understanding of Light

    Get PDF
    Optical phenomena visible to everyone abundantly illustrate important ideas in science and mathematics. The phenomena considered include rainbows, sparkling reflections on water, green flashes, earthlight on the moon, glories, daylight, crystals, and the squint moon. The concepts include refraction, wave interference, numerical experiments, asymptotics, Regge poles, polarisation singularities, conical intersections, and visual illusions

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Supervised Learning for Coverage-Directed Test Selection in Simulation-Based Verification

    Get PDF
    • …
    corecore