
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-29-2016 12:00 AM

Leveraging Smartphone Sensor Data for Human Activity Leveraging Smartphone Sensor Data for Human Activity

Recognition Recognition

Xizhe Yin
The University of Western Ontario

Supervisor

Weiming Shen

The University of Western Ontario Joint Supervisor

Xianbin Wang

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Xizhe Yin 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Yin, Xizhe, "Leveraging Smartphone Sensor Data for Human Activity Recognition" (2016). Electronic
Thesis and Dissertation Repository. 4292.
https://ir.lib.uwo.ca/etd/4292

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.lib.uwo.ca%2Fetd%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Fetd%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4292?utm_source=ir.lib.uwo.ca%2Fetd%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Using smartphones for human activity recognition (HAR) has a wide range of applications

including healthcare, daily fitness recording, and anomalous situations alerting. This study fo-

cuses on human activity recognition based on smartphone embedded sensors. The proposed

human activity recognition system recognizes activities including walking, running, sitting,

going upstairs, and going downstairs. Embedded sensors (a tri-axial accelerometer and a gy-

roscope sensor) are employed for motion data collection. Both time-domain and frequency-

domain features are extracted and analyzed. Our experiment results show that time-domain

features are good enough to recognize basic human activities. The system is implemented in

an Android smartphone platform.

While the focus has been on human activity recognition systems based on a supervised

learning approach, an incremental clustering algorithm is investigated. The proposed unsuper-

vised (clustering) activity detection scheme works in an incremental manner, which contains

two stages. In the first stage, streamed sensor data will be processed. A single-pass cluster-

ing algorithm is used to generate pre-clustered results for the next stage. In the second stage,

pre-clustered results will be refined to form the final clusters, which means the clusters are

built incrementally by adding one cluster at a time. Experiments on smartphone sensor data

of five basic human activities show that the proposed scheme can get comparable results with

traditional clustering algorithms but working in a streaming and incremental manner.

In order to develop more accurate activity recognition systems independent of smartphone

models, effects of sensor differences across various smartphone models are investigated. The

impairments of different smartphone embedded sensor models on HAR applications are pre-

sented. Outlier removal, interpolation, and filtering in pre-processing stage are proposed as

mitigating techniques. Based on datasets collected from four distinct smartphones, the pro-

posed mitigating techniques show positive effects on 10-fold cross validation, device-to-device

validation, and leave-one-out validation. Improved performance for smartphone based human

activity recognition is observed.

With the efforts of developing human activity recognition systems based on supervised

learning approach, investigating a clustering based incremental activity recognition system

with its potential applications, and applying techniques for alleviating sensor difference effects,

a robust human activity recognition system can be trained in either supervised or unsupervised

way and can be adapted to multiple devices with being less dependent on different sensor spec-

ifications.

Keywords: Activity recognition, supervised learning, sensors, incremental clustering, fil-

ter, interpolation, outliers

ii

Acknowledgements

I would like to express my foremost gratitude to my advisor, Dr. Weiming Shen, for his

invaluable guidance and support throughout my master’s studies. I want to thank him for giving

me freedom to pursue research topics that I am interested in, and being helpful and supportive

whenever I need advice. His insights motivated me through my studies.

I own my sincere thanks to my co-advisor, Dr. Xianbin Wang. Besides his valuable sug-

gestions and continuous help on the research topic, he shared advices on my future career and

encouraged me to look around for today’s industrial demands.

I would like to thank examiners Dr. Abdallah Shami, Dr. Jagath Samarabandu, and Dr.

Evgueni Bordatchev for taking the time to review my thesis and provide valuable suggestions.

I would like to thank peer students in Dr. Wang’s group, and other professors and students

in the ECE department at University of Western Ontario.

Finally I thank my family for giving me unconditional love, support, and encouragement

all the time.

iii

Contents

Certificate of Examination i

Abstract i

List of Figures vi

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Sensor based Human Activity Recognition . 1

1.2 Research Motivations . 4

1.3 Research Objectives . 4

1.4 Contributions . 5

1.5 Thesis Organization . 6

2 Background and Literature Review 8
2.1 Data Mining and Machine Learning . 8

2.1.1 Classification Algorithms . 9

Decision Tree (DT) . 9

Naive Bayes . 10

k-Nearest Neighbors (kNN) . 11

Support Vector Machines (SVMs) . 12

Artificial Neural Networks (ANNs) 14

2.1.2 WEKA Machine Learning Framework 16

The WEKA Workbench . 16

Core of WEKA . 18

WEKA API . 20

2.2 Human Activity Recognition based on Supervised Learning 20

iv

2.2.1 Human Activity Recognition Based on Single or Multiple Accelerom-

eter Sensors . 22

2.2.2 Human Activity Recognition Based on the Combination Accelerome-

ters and Other Types of Sensors . 23

2.2.3 Human Activity Recognition Based on Smartphone Sensors 24

2.2.4 Other Smartphone Based Sensing Systems 25

2.3 Human Activity Recognition based on Unsupervised Learning 26

2.4 Summary . 27

3 Human Activity Recognition Based on Supervised Learning 28
3.1 Introduction . 28

3.2 Data Collection . 29

3.3 Feature Extraction . 31

3.3.1 Time-domain Features . 31

3.3.2 Frequency-domain Features . 31

3.3.3 Feature Selection . 32

3.4 Classification . 33

3.5 Experimental Results and Analyses . 33

3.5.1 Experiment Setup . 33

3.5.2 Result Analyses . 35

3.5.3 Extension . 42

3.6 Summary . 44

4 Incremental Clustering for Human Activity Recognition 46
4.1 Introduction . 46

4.2 Methodology . 47

4.2.1 Data Collection . 47

4.2.2 Feature Extraction . 47

4.2.3 Activities . 47

4.2.4 The Proposed Two-stage Clustering Algorithm 48

4.3 Experimental Results and Analyses . 56

4.3.1 Incremental Clustering Results . 56

4.3.2 Different numbers of initial points . 57

4.3.3 Different window sizes . 57

4.4 Summary . 59

5 Sensor Heterogeneity Effects 60

v

5.1 Introduction . 60

5.2 HAR on Multiple Devices . 62

5.2.1 Data Collection on Multiple Devices 62

5.2.2 Feature Extraction . 63

5.2.3 Classification and Evaluation . 63

5.2.4 Results on Original Datasets . 64

5.3 Mitigating Techniques for Sensor Differences 66

5.3.1 Sensor Differences . 67

5.3.2 Possible Mitigating Techniques . 69

5.3.3 Result Analyses and Discussions . 70

5.4 Summary . 75

6 Conclusions and Future work 76
6.1 Conclusions . 76

6.2 Future Work . 77

Bibliography 79

Curriculum Vitae 84

vi

List of Figures

2.1 The maximum margin, where the margin is defined as the perpendicular dis-

tance between the decision boundary . 13

2.2 A model of a neuron or node that forms a weighted sum of M inputs and output

the result through a nonlinearity . 15

2.3 Example for the two-layer neural network . 16

2.4 The WEKA Explorer GUI . 17

3.1 Activity recognition process . 29

3.2 The definition of the coordinate-system in Android [1] 30

3.3 The sensor data collection app (left) and the recognition app (right) 30

3.4 Raw acceleration data . 34

3.5 Raw gyroscope data . 34

3.6 J48 decision tree (1 for walking, 2 for running, and 3 for sitting) 37

3.7 The mean values of accelerator data for Walking 37

3.8 The mean values of accelerator data for Running 38

3.9 The mean values of accelerator data for going upstairs 38

3.10 The mean values of accelerator data for going downstairs 39

3.11 The mean values of accelerator data for Sitting 39

3.12 The standard deviation of angular velocity for Walking 40

3.13 The standard deviation of angular velocity for Running 40

3.14 The standard deviation of angular velocity for going upstairs 41

3.15 The standard deviation of angular velocity for going downstairs 41

3.16 The standard deviation of angular velocity for Sitting 42

4.1 Data visualization for the mean value of accelerometer 48

4.2 Data visualization for the standard deviation of accelerometer 49

4.3 Proposed framework . 50

4.4 The flowchart of the first stage clustering . 54

4.5 The flowchart of the second stage clustering 55

4.6 The effect of different m, when n = 20 . 58

vii

4.7 The effect of different window size, when m = 8 58

5.1 The performance evaluation on time-domain features 65

5.2 The performance evaluation on frequency-domain features 66

5.3 The box plots of acceleration offset in X-axis 68

5.4 The box plots of gyroscope offset in X-axis 68

5.5 Activity recognition performance using outlier removal 71

5.6 Activity recognition performance using linear interpolation 71

5.7 Activity recognition performance using low-pass filter 72

5.8 Activity recognition performance using C4.5 decision tree classifier 72

5.9 Activity recognition performance using SVM classifier 73

5.10 Activity recognition performance using random forest classifier 73

5.11 Activity recognition performance using Naive Bayes classifier 74

5.12 Activity recognition performance using multilayer perceptron classifier 74

viii

List of Tables

1.1 Activity detection applications in the market 2

1.2 Product Features (the app index is shown in Table 1.1) 3

3.1 Features extracted . 32

3.2 The Training Set . 35

3.3 Classification Results Using 12 Features . 36

3.4 Classification Results Using 12 Features for 5 Activities 43

3.5 Confusion Matrix of J48 Classifier . 44

3.6 Classification Results Using Frequency Domain Features 44

4.1 Dataset Overview . 56

4.2 Performance . 57

5.1 Phone Sensors Information . 63

5.2 Evaluation Matrix on Original Datasets for Random Forest (in F-Measure) . . 65

ix

List of Abbreviations

ANN Artificial Neural Network

API Application Program Interface

BMR Basal Metabolic Rate

BSN Body Sensor Network

CRF Conditional Random Field

DT Decision Tree

ECG Electrocardiogram

FFT Fast Fourier Transform

GMM Gaussian Mixture Model

GPS Global Positioning System

HAR Human Activity Recognition

HMM Hidden Markov Model

ID3 Iterative Dichotomiser 3

IMU Inertial Measurement Unit

KNLR Kernel Nonlinear Regression

kNN k-Nearest Neighbor

LPF Low Pass Filter

MEMS Microelectromechanical Systems

MLP Multilayer Perceptron

NB Naive Bayes

x

PCA Principal Components Analysis

PT Postural Transition

ROC Receiver Operating Characteristic

SMA Signal Magnitude Area

SVM Support Vector Machine

WEKA Waikato Environment for Knowledge Analysis

xi

Chapter 1

Introduction

1.1 Sensor based Human Activity Recognition

A Human Activity Recognition (HAR) system can automatically recognize physical activi-

ties [2], which is a key research issue in mobile and ubiquitous computing. An HAR system

performs tasks of recognizing different human daily activities from simple to complex. The

sensors involved in an HAR system can be video sensors, inertia sensors, and environment

sensors. The GPS receiver can also be used for activity recognition but is limited to outdoor

environments.

Based on the installation of sensors, HAR systems can be divided into three categories:

wearable devices based sensing systems, smartphone sensing systems, and smart living envi-

ronments. Although wearable devices and smart living environments can deliver good activ-

ity detection results, smartphone based applications are an increasingly prominent solution as

smartphones have become an indispensable part of our daily life. Especially with the rapid

evolution of hardware, ever-increasing computing and networking capacity, and rich embed-

ded sensors, smartphone based HAR systems can tell us different kinds of human activities in

real time using machine learning techniques. In addition, using smartphones for human activ-

ity recognition has a wide range of applications including healthcare, daily fitness recording,

anomalous situation alerting, personal biometric signature identification, and indoor localiza-

tion and navigation. All this benefits from the fast development of mobile phone software and

hardware.

Smartphones in the market have embedded sensors, and the advanced MEMS (micro-

electro-mechnical systems) design has enabled low-power and high-quality sensors for mobile

sensing. The best-known MEMS sensors in smartphones are accelerometer and gyroscope, but

there are a lot more MEMS sensors in today’s mobile device like electronic compass, pressure

1

2 Chapter 1. Introduction

sensor, light sensor, and microphone.

In the Android environments, the most commonly used and installed sensors can be cate-

gorized as follows [3]:

• Motion sensors: the motion sensors are based on inertial force.

• Environmental sensors: these sensors measure environmental parameters, like tempera-

ture and pressure, using barometers or thermometers.

• Position sensors: these sensors include orientation sensors and magnetometers, measur-

ing the physical position of the device.

There are already plenty of mobile sensing applications in Google’s Play store (updated in

April 2016, shown in Table 1.1). Some of the apps incorporate other smart devices like bands

and watches.

Index Vendor App Name Downloads
1 FitnessKeeper Inc. Runkeeper-GPS Track Run Walk 10,000,000

2 Google Inc. Google Fit 10,000,000

3 ITER S.A Fade: fall detector 5,000

4 MapMyFitness Inc. Map My Fitness Workout Trainer 1,000,000

5 Microsoft Corporation Microsoft Health 100,000

6 Noom Inc. Noom Walk Pedometer 5,000,000

7 ProtoGeo Moves 1,000,000

8 Runtastic Runtastic Running & Fitness 10,000,000

9 Hamideh Kerdegari Smart Fall Detection 1,000

10 Strava Inc. Strava Running and Cycling GPS 5,000,000

11 tayutau Pedometer 10,000,000

Table 1.1: Activity detection applications in the market

The features and functionalities of these mobile apps can be summarized as follows (Table

1.2):

• Activity Tracking

– Automatic Mode: User’s activities can be recognized automatically without user

annotation. These applications can only detect some simple activities such as walk-

ing, running, and cycling. Most of the applications have to use GPS data or gait

analysis.

1.1. Sensor based Human Activity Recognition 3

Features App Index
Automatically 2, 7

Activity Tracking Semi-automatic 1, 4, 5, 8, 10

Manually 2, 4

Burned Calorie Calculation 1, 4, 5, 8, 10, 11

Chart/Graph Activity Records 1, 2, 4, 5, 7, 8, 10, 11

Fall Detection 3, 9

Food Log 4, 5

Health & Fitness Knowledge 5

Pedometer 2, 6, 7, 11

Routes on Map 1, 4, 5, 7, 8, 10

Social Networking 1, 4, 6, 10

Table 1.2: Product Features (the app index is shown in Table 1.1)

– Semi-automatic Mode: The tracking tasks are trigged by users. The applications

will then recognize activities accordingly. The tracking tasks are terminated by the

apps automatically or manually by the users.

– Manual Mode: In these applications, users will denote the type of activities they

are performing during the tasks.

• Burned Calorie Calculation:

Calculate the burned calories for individual activity events. The formulas of calorie

expenditure are obtained from physiology studies. Currently, most calorie calculators

will first calculate the Basal Metabolic Rate (BMR) and then obtain the total daily energy

expenditure by the activity factor. According to different activity intensities (sedentary,

lightly, moderately, very, and extremely active), the activity factor varies.

• Chart/Graph Records: Record and display activities through charts and graphs.

• Fall Detection: Detect falls as an anomaly behavior and send alerts to caregivers.

• Food Log: Users can record and track their daily meals. Such manually inputed food log

can be used for future analyses.

• Health & Fitness Knowledge: Provide articles and training courses on related fitness

domain knowledge.

4 Chapter 1. Introduction

• Pedometer: It can tell the user how many steps he/she has walked that day. It is popular

in today’s smart devices as a daily exercise counter and motivator. Today’s step counters

integrated in devices are based on MEMS inertial sensors and algorithms to detect steps.

With the accurate multi-axis acceleration readings from advanced MEMS sensors, the

best pedometer can be accurate to within ±5% error [4].

• Routes on Map: Track the user’s activity and display on map. Record the geographic

information where she/he goes or stays.

• Social Networking: Users can share their progress and activities on social networks.

1.2 Research Motivations

Although there are already various applications in the market as illustrated in the previous

section, most of them do not make full use of the smartphone embedded inertial sensors. The

granularity of such applications is also not sufficient. In some applications, only the activities

of walking and motionless are recorded. Some applications that only use GPS signals fail to

function in indoor environments.

The effectiveness of employing machine learning techniques on smartphone based sensor

data is marked to be investigated, with the purpose of recognizing human activities. Different

domain features and data processing techniques need to be studied. The unsupervised scheme

for activity recognition on smartphones is rarely investigated in the literature. In addition,

there have been very few studies on alleviating the impacts of mobile sensing performance

differences across multiple devices. Our research is motivated by the demand of fulfilling the

lack of studies on those topics in order to develop more accurate HAR algorithms.

1.3 Research Objectives

Based on the motivations described above, the study in HAR is still not sufficient. Three

objectives of this thesis are derived to solve the problem of recognizing activities in different

schemes by learning and leveraging smartphone sensor data with emphasis on considering the

sensor difference effects. The objectives are as follows:

• A full study as well as developing human activity recognition applications under the

supervised learning scheme is demanding. Collecting and recording smartphone sensor

readings for different human activities in real scenarios is the preliminary of this work.

1.4. Contributions 5

With regard to this, the effectiveness of various features extracted from raw sensor data

will be investigated.

• Besides the supervised learning scheme, developing a method for clustering based activ-

ity recognition is proposed, which can help avoid the intensive labelling work. Specif-

ically, the new method is expected to work in an incremental way that can deal with

streamed sensor data.

• The third objective of our study is to address the issue of sensor heterogeneities across

various smartphone embedded sensor models, as there are few studies in the literature

focusing on the applicability of HAR systems for multiple platforms. In this study, tech-

niques to alleviate the sensor difference effects are proposed and examined in order to

obtain an improved performance of HAR applications.

1.4 Contributions

In this thesis, the activity recognition problem is studied by learning the advanced smartphone

embedded multi-module sensor data. Based on a comprehensive literature survey and machine

learning techniques, methods for both supervised and unsupervised learning for HAR are pro-

posed. The main contributions of this thesis work can be summarized as follows:

• The proposed supervised learning based human activity detection system recognizes ac-

tivities including walking, running, sitting, going upstairs, and going downstairs. Em-

bedded sensors (a tri-axial accelerometer and a gyroscope sensor) are employed for mo-

tion data collection. A two-stage data analysis approach is used for prediction model

generation: short period statistical analysis (maximum, minimum, mean, and standard

deviation) and long period data analysis using machine learning. Both time-domain and

frequency-domain features are extracted and analyzed. Our experiment results show that

two time-domain features, mean and standard deviation, are good enough to recognize

basic human activities. The system is implemented in an Android smartphone platform.

• An unsupervised (clustering) activity recognition scheme that works in an incremental

manner is proposed, which contains two stages. In the first stage, streamed sensor data

are processed. A single-pass clustering algorithm is used to generate pre-clustered results

for the next stage. In the second stage, pre-clustered results are refined to form the final

clusters, which means the clusters are built incrementally adding one cluster at a time.

Experiment results on smartphone sensor data of five basic human activities show that

6 Chapter 1. Introduction

the proposed scheme can get comparable results with traditional clustering algorithms

but working in a streaming and incremental manner, which is promising for automatic

annotated data collection activity discovery.

• In achieving a robust HAR system through various smartphone types, sensing hetero-

geneities are investigated through various smartphone sensors. Sensor heterogeneities

are identified, such as sensor biases, sampling rate heterogeneity, and sampling rate in-

stability. Possible mitigating techniques (interpolation, outlier removal, and filters) are

investigated to alleviate these differences. Testing results show that the outlier removal

and low pass filter have positive effects on alleviating the sensor differences.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides an overview of basic concepts and algorithms in machine learning and

data mining as well as a description of the WEKA framework used in this thesis work. A

comprehensive literature review for supervised activity recognition is made, followed by four

categories: HAR based on single or multiple accelerometers; HAR based on a combination of

sensors; HAR based on smartphones; and other smartphone assisted sensing systems. Existing

studies on unsupervised activity recognition are then briefly reviewed.

Based on the background and literature review provided in Chapter 2, Chapter 3, 4, and 5

present studies that fulfill the research issues proposed in section 1.3. Chapter 3 describes the

proposed supervised HAR system. Starting with the data collection procedure, feature extrac-

tion methods are presented. Both time-domain and frequency domain features are examined.

After the classification, there are satisfied classification accuracies for recognizing five basic

activities using popular machine learning algorithms (C4.5 Decision Tree, SVM, Naive Bayes,

and MLP). The classification results are presented and discussed in the last part of this chapter.

In Chapter 4, the unsupervised learning problem in HAR systems is studied. An incremen-

tal clustering method is introduced. The methodology involves the data collection and time-

domain feature extraction. Then, the two-stage incremental clustering algorithm is presented

followed by the clustering results on our collected dataset. Finally, the effects of two param-

eters (initial data point number and data window size) in the proposed incremental clustering

algorithms are examined and results are discussed at the end of the chapter.

A study on the sensor heterogeneity effects is presented in Chapter 5. Firstly, a series of

experiments for HAR on multiple devices are conducted, in which recognition performance

degradation is observed. Next, the causes of sensor differences are discussed. To mitigate

1.5. Thesis Organization 7

such differences, techniques (outlier removal, interpolation, and filtering) are proposed and

validated. Detailed results on datasets collected from multiple smartphones and results for

different classifiers are presented. Discussions based on the results are provided to reveal the

techniques that have positive effects and the classifiers that are relatively less affected by the

sensor differences.

In the end, Chapter 6 summarizes the contributions of this thesis and suggests some poten-

tial future work.

Chapter 2

Background and Literature Review

2.1 Data Mining and Machine Learning

Nowadays, an overwhelming amount of data is generated in the world and it is continuing

to increase. Although such an amount of data can always be stored in disks, there is a gap

between the generation of data and the understanding of data. To resolve this issue, data min-

ing and machine learning techniques are utilized to discover patterns in data and make future

predictions.

To better understand how to adopt a machine learning approach in a specific problem,

we need to define a training set {x1, ..., xN} that contains N instances to train and tune the

parameters of a model. The categories (or labels) of each instance in the training set are known

in advance. In most cases, the categories are labelled manually during the data collection stage.

The category of each instance in the training set can be expressed as the target vector t. The

output of running a machine learning algorithm can be expressed as computing a function

f (x) that takes a new instance as input and outputs a vector y, where y is in the same form

as the target vectors. The form of the function f (x) can be determined in the training (or

learning) phase based on the training set. Once the model is generated, we can utilize it to

make predictions on the test set.

In some application scenarios, it will be easier to solve the machine learning problem if

the original input variables are transformed into some new space of variables, which is called

pre-processing [5]. Sometimes feature extraction has the same meaning as pre-processing.

Note that both the test data and training data must be pre-processed using the same procedure.

In addition, as the feature extraction might speed up the computation of the model, some infor-

mation might be discarded. We have to be careful to check whether such kind of information

is important in order to avoid harming the overall accuracy of the machine learning system.

8

2.1. DataMining andMachine Learning 9

The classification of machine learning problems can be summarized as follows. If the train-

ing data is comprised of input vectors x and the corresponding target vectors t, such kind of

machine learning problems are known as supervised learning problems. The supervised learn-

ing problems can be further divided into two categories: classification problems and regression

problems. The aim of the classification problem is to assign each input to a discrete category,

while the regression model will output one or more continuous variables. Another class of

machine learning problems is the unsupervised learning problems, where the training data set

only contains the input vectors x without labels. Unsupervised learning can be used for discov-

ering groups with similar properties, which is called clustering, or it can be used to estimate

the distribution of input data.

2.1.1 Classification Algorithms

In this subsection, some popular classification algorithms that are related to the scope of this

thesis are briefly reviewed: Decision Tree (DT), Naive Bayes (NB), k-Nearest Neighbor (kNN),

Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs).

Decision Tree (DT)

Decision Tree (DT) is a non-parametric supervised learning method for classification. There

are various decision tree implementations. Among them, ID3 (Iterative Dichotomiser 3) was

developed by Ross Quinlan in 1986 [6]. It first calculates the entropy (or information gain) for

each feature in the data set S. Then it splits the data set S into subsets according to the feature

which has the minimum entropy (or information gain). After that, a decision tree node is

generated containing that feature. This procedure recurses until there are no remaining features.

C4.5 is an extension of the ID3 algorithm [7]. J48 is its Java implementation integrated

in the WEKA data mining tool. Different from ID3, C4.5 can deal with both continuous and

discrete features, handle training data with missing values, and support tree pruning after cre-

ation. C4.5 is referred as a statistical classifier. Let S be the data set for training. f req(Ci,S) is

the number of instances in S that belongs to class Ci. The number of instances in data set S is

|S|. Then the entropy of set S is defined as:

In f o(S) = −

k∑
i=1

((
f req(Ci,S)
|S|

) · log2(
f req(Ci,S)
|S|

)), (2.1)

where k is the number of classes.

If set S is partitioned in accordance with n outcomes of one feature X, then the information

10 Chapter 2. Background and Literature Review

entropy after using feature X to split S into n partitions can be formulated as:

In f oX(S) =

n∑
i=1

((
|Si|

|S|
) · In f o(Si)), (2.2)

where Si is the subset of S in which all the instances belong to class Ci.

Using the above formulas, the information gain on feature X is defined as:

Gain(X) = In f o(S) − in f oX(S). (2.3)

In the C4.5 algorithm, the splitting criterion is the normalized information gain defined above.

For each feature in the data set, the normalized information gain is calculated. Then the feature

which has the highest normalized information gain is chosen and a decision node is generated

based on the selected feature. The recursion procedure continues until there are no remaining

features to split.

The advantages of decision trees are that they are simple to understand and visualized

easily. The trees can be easily expressed by Boolean logic. So decision trees use a white box

model compared with a black box model (e.g. an artificial neural networks), which makes it

easy to interpret. In order to generate the tree, little data preparation is required. However

decision trees have some disadvantages. If the data are not well-generalized, over-complex

trees may be formalized. Techniques like tree pruning and setting the maximum depth of the

tree are necessary to avoid the overfitting problem. What’s worse, there are some concepts that

are hard to learn through a decision tree.

Naive Bayes

One of the supervised classifiers is the Naive Bayes classifier which is based on the Bayesian

theorem. To explicitly explain it, we first get the basic Bayes theorem:

p(c j|d) =
p(d|c j) · p(c j)

p(d)
, (2.4)

where p(c j|d) is the probability of instance d being in class c j, which is also what we are

going to compute. p(d|c j) is the conditional probability of instance d given the class c j. This

conditional probability also means that being in the class c j makes d have some probability.

p(c j) is the probability of the occurrence of class c j (the frequent of class c j occurred in the

data set). p(d) is the probability of instance d occurring.

The above shows the Bayes classification process when there is only one feature for an

input instance. When there are multiple features in the dataset, the conditional probability

2.1. DataMining andMachine Learning 11

p(d|c j) can be estimated by:

p(d|c j) = p(d1|c j) · p(d2|c j) · · · p(dn|c j). (2.5)

Here we assume that features have independent distributions. p(di|c j) is the conditional proba-

bility of instance d given the class c j for the ith feature.

Then the equation 2.4 can be rewritten as:

p(c j|d) =
p(c j) ·

∏n
i=1 p(di|c j)

p(d)
. (2.6)

Since p(d) is a constant given by the dataset, the classification can be expressed as:

p(c j|d) ∝ p(c j) ·
n∏

i=1

p(di|c j). (2.7)

The estimated class ĉ j can be derived as:

ĉ j = arg max
c j

p(c j) ·
n∏

i=1

p(di|c j). (2.8)

The advantages of the Naive Bayes classifier are that it is fast to train and make classifica-

tions, it is not sensitive to irrelevant features, and it can handle real and discrete data. However,

the Naive Bayes classifier assumes features are independent, which is one of its drawbacks.

k-Nearest Neighbors (kNN)

The k-Nearest Neighbors algorithm is a non-parametric technique for classification and regres-

sion. It is also among one of the simplest machine learning algorithms. The kNNs is a kind

of instance-based classifier, which means it does not abstract any information from the train-

ing data during the training stage. For an unknown instance, it is labelled as the same class

as that of the majority of its k nearest neighbors. The nearest neighbors are measured by a

distance function. The most commonly used distance functions are the Euclidean distance, the

Manhattan distance, and the Minkowski distance, which are defined as follows. The Euclidean

distance:

d(x, y) =

√√
k∑

i=1

(xi − yi) = ‖xi − yi‖2. (2.9)

12 Chapter 2. Background and Literature Review

The Manhattan distance:

d(x, y) =

k∑
i=1

|xi − yi|. (2.10)

The Minkowski distance:

d(x, y) = (
k∑

i=1

(|xi − yi|)q)1/q. (2.11)

Another issue of k-Nearest Neigobor algorithm is the computation of the k nearest neighbors.

The naive neighbor search method is the brute-force computation of distance between the pairs

of points in the dataset. However this approach is only feasible for small datasets. To efficiently

search the nearest neighbors, a variety of tree-based structures have been introduced, such as

K-D tree and ball tree.

The advantage of kNN classifier is that it is a simple method and works well on basic

machine learning problems. However, it does not learn anything from the training data. And

if the dataset is large with high dimensions, the searching of k neighbors can be slow and

inefficient. What’s worse, kNN classifier can be easily affected by noisy data.

Support Vector Machines (SVMs)

The support vector machine method is considered as an optimization algorithm. The basic

ideas of SVMs are that it creates optimal hyperplane for linearly separable patterns, and for

the patterns that are not linear separable, kernel functions can be used to transform the original

data into new space. SVMs and kernel methods have a theoretical model that guarantees the

performance. In addition, SVMs are not affected by local minima and the curse of dimen-

sionality. For simplicity’s sake, we first consider the two-class classification problem with the

linear model:

y(x) = wTφ(x) + b, (2.12)

where φ(x) represents a feature-space transformation. The training dataset has N input vectors

x1, ..., xn, and the corresponding targets are t1, ..., tN where tn ∈ {−1,+1}. When a new data

instance x comes, it will be classified according to the sign of y(x). If the training dataset is

linearly separable and the function 2.12 satisfies y(x) > 0, the data instance has tn = +1; If

y(x) < 0, the data instance has tn = −1. So that there is a constraint that tny(xn) > 0 for all

training data instances.

2.1. DataMining andMachine Learning 13

margin

y = 1

y = 0

y = -1

Figure 2.1: The maximum margin, where the margin is defined as the perpendicular distance
between the decision boundary

Then the concept of the margin is introduced. It is defined as the smallest distance between

the decision boundary, as shown in Figure 2.1. The support vectors are defined as the data

instances that lie closest to the decision boundary, which are the most difficult to classify. The

SVMs maximize the margin around the decision hyperplane. This is formulated as a quadratic

programming problem. As formula 2.12 indicates, the perpendicular distance of a instance x
from the decision hyperplane is |y(x)|/‖w‖. As denoted above, if all the instances are correctly

classified, there is tny(xn) > 0. The distance of an instance xn to the decision boundary is:

tny(xn)
‖w‖

=
tn(wTφ(xn) + b)

‖w‖
. (2.13)

In order to maximize the margin, the parameters w and b are optimized. The maximum margin

can be derived by solving:

arg max
w,b

{ 1
‖w‖

min
n

[tn(wTφ(xn) + b]
}
. (2.14)

14 Chapter 2. Background and Literature Review

To solve this optimization problem, it can be transformed [5] into:

arg min
w,b

1
2
‖w‖2. (2.15)

Then Lagrange multipliers an ≥ 0 are introduced with the Lagrangian function:

L(w, b, a) =
1
2
‖w‖2 −

N∑
n=1

an{tn(wTφ(xn) + b) − 1}, (2.16)

where a = (a1, ..., aN)T . The dual problem of optimizing the maximum margin can be expressed

as:

Maximize : L̃(a) =

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm) (2.17)

Subject to:

an ≥ 0, n = 1, ...,N (2.18)

N∑
n=1

antn = 0. (2.19)

When the model is trained, the class of a new instance can be evaluated by function 2.12. The

above descriptions are the two-class SVM classification scenario. In practice, there may be

problems involing K > 2 classes. One approach to deal with multiclass problem is to call

the one-versus-the-rest approach. It divides the dataset into two classes, Ck and the remaining

K − 1 classes. Another class is called one-versus-one approach. It trains K(K − 1)/2 two-class

SVMs for all possible pairs of classes. The instance to be classified is determined by a voting

according to which class has the highest votes.

Artificial Neural Networks (ANNs)

ANNs are models that are composed of many nonlinear computational nodes in parallel and

perform like biological neural networks [8]. The best known model of ANNs is the feed-

forward neural network, which is also known as the multilayer perceptron. The nodes or neu-

rons in the neural network are connected via weights and updated during the learning process.

For a neuron the structure is represented in Figure 2.2. Figure 2.3 shows the example of a

two-layer neural network. The single neuron is based on the linear combinations of nonlinear

2.1. DataMining andMachine Learning 15

functions φ j(x), represented as:

y(x,w) = f (
M∑
j=1

w jφ j(x)), (2.20)

where the f (·) is the nonlinear activation function, φ j(x) is the basis function. The whole

network function using sigmoidal activation functions can be written as:

yk(x,w) = σ(
M∑
j=1

w(2)
k j h(

D∑
i=1

w(1)
ji xi + w(1)

j0) + w(2)
k0). (2.21)

The sigmoid function σ(a) = 1
1+exp(−a) is used as the activation function. The nonlinear func-

tions h(·) are the hidden unit activation functions and are chosen to be sigmoidal functions or

the ’tanh’ function. w(1)
ji refers to the weight from the node i to the node j in the first layer of

the neural network.

The training of the neural network involves minimizing the error function:

E(w) =
1
2

N∑
n=1

‖y(xn,w) − tn‖
2. (2.22)

The parameter w can be found by minimizing E(w) through the maximum likelihood solution

[5]. However, in practice the error function E(w) can be nonconvex, the local maxima may be

found.

Input ●
●●

Output

y

1

0

))((),(
M

j
jj xwfwxy

0x

1x

1Mx

Figure 2.2: A model of a neuron or node that forms a weighted sum of M inputs and output the
result through a nonlinearity

The advantages of artificial neural networks are that they are nonlinear models and are

easy to train and use compared with statistical methods. Furthermore neural network models

can implicitly reflect the nonlinear and complex relationships of the inputs [9]. However,

neural network models are a black box that is limited to explicitly describe the structure of

16 Chapter 2. Background and Literature Review

approximated functions by the network. What’s worse, training neural network models needs

greater computational efforts. In the meanwhile, such models are prone to overfitting.

…
...…

…
…

...

…
...…

…
…
…
…
…

...

…
...

0x

1x

Dx

0z

1z

Mz

1y

Ky

inputs outputs

)1(
MDw

)2(
KMw

)2(
10w

Hidden units

Figure 2.3: Example for the two-layer neural network

2.1.2 WEKA Machine Learning Framework

WEKA stands for Waikato Environment for Knowledge Analysis, which started in 1992 [10]

and was funded by the New Zealand government. The purpose of WEKA project was to create

a collection of learning algorithms as well as a framework inside which new algorithms can

be implemented. Now this machine learning algorithms toolkit is an open-source Java-based

machine learning software framework.

The WEKA Workbench

The WEKA project provides functions that researchers can use to try out and compare different

machine learning methods on new datasets. In addition, APIs are provided for customized

solutions and explorations. Classification, regression, clustering, and attribute selection are

integrated in the workbench.

The main graphical user interface of WEKA is call the “Explorer” (shown in Figure 2.4),

which has six components: Preprocess, Classify, Cluster, Associate, Select attributes, and Visu-

2.1. DataMining andMachine Learning 17

alize. The “Preprocess” panel is used for data preprocessing. Different preprocessing tools are

called “filters” in WEKA. The second panel called “Classify” includes various classification

and regression algorithms. Validation methods as well as evaluation visualization like ROC

curves can be drawn in this panel. In addition, WEKA also supports unsupervised learning

algorithms. Evaluation and visualization of the clustering algorithms are provided in the third

panel. The fourth panel enables the methods for association rule mining, which is used for

discovering interesting relations between items in datasets. Attributes selection is another im-

portant task in practical machine learning and data mining. The “Select attributes” panel gives

access to some attribute selection algorithms, such as principal components analysis (PCA),

information gain evaluation, and gain ratio attribute evaluation. The last panel is the data visu-

alization, which provides the color scatter plot of the data matrix that can be visualized.

Figure 2.4: The WEKA Explorer GUI

18 Chapter 2. Background and Literature Review

Core of WEKA

New learning algorithms, pre-processing filters, and usability improvements and supports have

been added to WEKA since version 3.4. There are more than 690 Java class files.

Some of the classification algorithms in WEKA 3.6 include

• Bayesian logistic regression [11]: the Bayesian logistic regression approach for text

categorization with a Laplace prior to avoid overfitting.

• Bayes net: Bayes network learning using diverse searching algorithms and quality mea-

sures, such as hill climber, genetic search, and simulated annealing.

• Naive bayes [12]: a Naive Bayes classifier using estimator classes.

• LibLINEAR [13]: WEKA provides a wrapper class for the libnear tools, which support

logistic regression and linear support vector machines.

• LibSVM [14]: a wrapper class is provided for the libsvm tools, which support solv-

ing SVM optimization problems, multiclass classifications, probability estimation, and

parameter selection.

• Multilayer perceptron: a classifier that can use backpropagation to classify instances.

The built network can be monitored and modified during the training time. The nodes

used in the network are all sigmoid.

• RBF network: a normalized Gaussian radial basis function network.

• IB1: a nearest-neighbour classifier implementation that uses normalized Euclidean dis-

tance.

• IBK: a K-nearest neighbours classifier. The value of K can be selected by cross-validation.

• J48: a C4.5 decision tree implementation [7].

• Random forest: an implementation for constructing a forest of random trees, which is

also a combination of tree predictor [15].

Some of the clustering algorithms in WEKA 3.6 include

• Cobweb: an implementation for the incremental system of hierarchical conceptual clus-

tering.

• DBSCAN [16]: a basic implementation of density-based spatial clustering of applica-

tions with noise.

2.1. DataMining andMachine Learning 19

• EM: a simple implementation of expectation maximization clustering algorithm, which

will find the MLE of the marginal likelihood by applying the expectation step (E step)

and the maximization step (M step).

• Hierarchical clusterer: implementations of a number of agglomorative clustering algo-

rithms. The agglomorative clustering is a ”bottom up” method, which means each in-

stance starts in its own cluster.

WEKA has also integrated a number of preprocessing tools, which are called ”Filters” in

WEKA’s Preprocess panel. Some of the filters include:

• Supervised filters: filters that take class distributions into account.

– Add classification: adding the classification, the class distribution, and the error

flag to the dataset.

– Attribute selection: an attribute filter that is flexible and support various search and

evaluation methods, such as Cfs subset evaluation, Chi square attribute evaluation,

Gain ratio attribute evaluation, Best first search, Genetic search, and Greedy step-

wise search.

– Resample: a filter that can produce a random subsample of a dataset using either

replacement or without replacement.

• Unsupervised filters: filters that work without taking any class distributions into account.

– Add cluster: a filter that can add a new nominal attribute, which represents the

cluster assigned to each instance. Different clustering algorithms can be selected in

the filter.

– Add values: a filter that can add the labels from a given list to a denoted attribute.

– Add: a filter that can add a new attribute to the dataset.

– Numeric to nominal: a filter that can convert numeric attributes to nominal ones.

– Remove: a filter that can remove a range of attributes from the dataset.

– Replace missing values: a filter that can replace all missing values for nominal and

numeric attributes in a dataset.

– Normalize: a filter that can normalize numeric values in the dataset. The resulting

values can be [0,1] or in the range [-1,+1].

– Standardize: a filter that can standardize numeric attributes in the dataset, which

makes the dataset have zero mean and unit variance.

20 Chapter 2. Background and Literature Review

– Remove with values: an instance filter that can filter the instances according to the

value of an attribute.

– Remove range: an instance filter that can remove a given range of instances in a

dataset.

– Interquartile range: a filter that can detect outliers and extreme values based on

interquartile range.

– Wavelet: a filter that performs wavelet transformation.

WEKA API

Although WEKA provides graphical user interface, it also defines API (application program-

ming interfaces) that make it possible to embed WEKA’s functions into other projects. The

most common components in WEKA are

• weka.core.Instances: class for handling instances (data to be processed, trained, and

tested).

• weka.filters.Filter: class for instance filters. Filters take instances as inputs, perform

some transformations, and output the results.

• weka.classifiers/weka.clusterers: interface classes. When implemented, predictions or

clusterings can be made.

• weka.classifiers.Evaluation: class for evaluating machine learning models with options

of different evaluation mode.

• weka.attributeSelection: class for removing or modifying attributes in the dataset.

The above classes are the most common used components when using WEKA in our own

codes. The basic steps for solving a classification problem are: building feature vector, training

a classifier, testing a classifier, and using a classifier. More details about WEKA framework

can be found in the WEKA developer’s manual [17].

2.2 Human Activity Recognition based on Supervised Learn-
ing

Human activity recognition (HAR) has been widely studied in the literature. Research in ma-

chine learning developed a number of inference methods. Probabilistic methods are widely

2.2. Human Activity Recognition based on Supervised Learning 21

used for human activity systems, such as Hidden Markov Models (HMMs), Conditional Ran-

dom Fields (CRFs), and Bayesian networks. Discriminative approaches, such as Support Vec-

tor Machines (SVMs), C4.5 decision trees, and neural networks, are also successfully applied

in the area of HAR.

The task of activity detection can be performed by employing variety of sensors, including

video cameras, environmental sensors (light, relative humidity, temperature, and pressure sen-

sors), and wearable sensors. The sensors used can be on-board smartphone sensors or sensors

installed in wearable devices.

Although camera sensors can provide a rich and unique set of information that cannot be

obtained from other types of sensors, camera-based methods require continuously monitoring

a person’s activities, which requires vast storage space and computation resources. In addition,

people may feel uncomfortable being watched by cameras continuously [18]. An example of

such a camera-based indoor human activity monitoring system can be found in [19], which

provides continuous video monitoring and intelligent video processing. Another purpose for

utilizing camera sensors is providing the ground truth for human activity recognition systems.

For instance, in [20], the proposed activity recognition system employs varieties of sensors,

where the cameras are used for documentation and visual annotation. In the daily routines

recognition system [21], snapshots taken by the mobile phone’s built-in camera are used for

annotations.

Environmental sensors can track and record the user’s interaction with the environment.

For example, in the experimental environment of [20], wireless Bluetooth acceleration and

gyroscope sensors are attached on objects used in the test scenario, recording the usage of

objects. Moreover wired microphone arrays are used at room side in order to sense ambient

sound. In addition, reed switches are instrumented on doors, drawers, and shelves to sense

usage as well as provide ground truth. However, the limitations of the environmental sensors

are that they are restricted to certain circumstances and building layouts, which makes the

HAR system not universal. One well designed and trained HAR system may not be simply

immigrated to another ambient environment. Also, the deployment cost of such sensors are

relatively high.

Wearable sensors that are worn on human body can determine physical states and char-

acters of the subject’s daily activities. Such sensors include inertial sensors (accelerometers

and gyroscopes), GPS, and even magnetic field sensors are widely used in activity recognition

applications.

22 Chapter 2. Background and Literature Review

2.2.1 Human Activity Recognition Based on Single or Multiple Accelerom-
eter Sensors

In some studies, one or more accelerometers attached to different parts of human body are

used for activity recognition. Dong and Biawas [22] presented a wearable sensor network that

was designed for human activity detection. In their system, each of three sensors, which were

worn on ankle, thigh, and wrist, was equipped with an ADXL202 accelerometer. The mean

and entropy of acceleration were computed over time windows and were used for activity

detection. Ten dynamic activities (bicep curls, riding a bike briskly/slowly, jogging, jumping,

walking briskly/slowly, sweeping, squatting, and stair climbing) can be detected with good

accuracy. Similarly, Curone et al. [23] used one wearable tri-axial accelerometer for activity

detection. Signal magnitude area (SMA) [24] was introduced in their method, which was

an effective measurement for identifying activity intensity. In their system, human postures

(upright standing, move trunk and arms, picking up objects, moving lying down, etc.) can

be detected in real time. Al-Ani et al. [25] combined wavelet and hidden Markov models

for on-line human activity detection. A bi-axial accelerometer ADXL202E was attached on

the belt of the person to identify activities (walking slowly, walking quickly, sitting down-

getting up, fall during walking, fall from a position upright). In Bao and Intille’s study [26],

acceleration data were collected from 20 individuals and fed into decision tree classifiers to

detect 20 daily activities. With five bi-axial accelerometers attached on different locations

of human body, the HAR system can reach a reasonable accuracy. They also reported that

with just two accelerometers (thigh and wrist), the recognition performance dropped slightly.

Mannini and Sabatini [27] applied Hidden Markov Models on the dataset provided by Bao

and Intille [26] and got satisfied classification accuracy. Banos et al. [28] employed a group

of accelerometers attached to different parts of the body (hip, wrist, arm, ankle, and thigh) for

tracking four activities: walking, sitting, standing, and running. Zhang et al. [29] tested the

number of accelerometers and settings that may affect the accuracy to identify eight activities,

standing, walking, running, jumping, lying, sitting, tooth brushing, and eating. SVM was used

for their data classification.

There have been some datasets created and published by researchers and used by others

around the world. WISDM (Wireless Sensor Data Mining) is a dataset published by Fordham

University, which contains data collected in controlled and laboratory conditions [30]. Only

the cell phone-embedded accelerometer is used in the data collection. The sampling rate is

20Hz and the total number of instances is 1,098,207. The number of attributes is six (user

index, activity type, timestamp, x-acceleration, y-acceleration, and z-acceleration). 29 sub-

jects are involved in the collection task. Six activities are labelled (walking (38.6%), jogging

2.2. Human Activity Recognition based on Supervised Learning 23

(31.2%), upstairs (11.2%), downstairs (9.1%), sitting (5.5%), standing (4.4%)). From the raw

time series data, time-domain features are extracted in the publisher’s study, such as the aver-

age value, standard deviation, average absolute difference, average resultant acceleration, time

between peaks, and binned distribution.

The Skoda mini checkpoint dataset is another dataset published by the Wearable Computing

Group in ETH [31]. It describes one subject performing ten different manipulative gestures

in a car maintenance scenario. The ten activities include write on notepad, open/close hood,

check gaps on the front door, open left front door, check trunk gaps, check steering wheel, etc.

In total, there are 20 3D acceleration sensors (10 on the left arm and 10 on the right hand used

for data collection).

2.2.2 Human Activity Recognition Based on the Combination Accelerom-
eters and Other Types of Sensors

Some other studies combine multiple sensors, such as gyroscopes, microphones, and magnetic

field sensors. In the abnormal activity detection system proposed by Yin et al. [32], three

MTS310CA sensor boards were attached to different parts of a human body with seven fea-

tures selected as inputs (light, temperature, microphone, bi-axial accelerometer, and bi-axial

magnetometer). In their approach, a one-class support vector machine (SVM) and a kernel

nonlinear regression (KNLR) were employed for the two-phase training and activity detection.

Their work makes it possible for abnormal activity models to be automatically derived without

the need to explicitly label the abnormal training data. Lee and Masc [33] proposed a system

using a bi-axial accelerometer, a digital compass sensor, and a gyroscope that can detect sit-

ting, standing, walking, going up a stairway, and going down a stairway. In Najafi et al. [34],

the authors attached one kinematic sensor, which was composed of one gyroscope and two

accelerometers, to the subject’s chest. The physical activity monitoring system can not only

detect body postures (sitting, standing, and lying), but also different postural transitions (PTs)

(i.e., lying-to-sitting, sitting-to-lying, and turning the body in bed). Subramanya et al. [35]

introduced a customized wearable sensor system, which is consisted of a tri-axial accelerome-

ter, two microphones, phototransistors, temperature and barometric pressure sensors, and GPS

to identify activities including walking, running, going up/down stairs, driving a vehicle, and

going indoors using graph models. Parkka et al. [36] also built a system using many different

sensors (three accelerometers with two on chest and one on wrist, one microphone attached to

wrist, and one compass attached to chest) to recognize activities such as lying, sitting/standing,

walking, Nordic walking, running, rowing, and cycling. Decision trees and artificial neural

networks were tested in their system. In Tapia et al. [37], five tri-axial accelerometers and

24 Chapter 2. Background and Literature Review

a wireless heart rate monitor were used to identify activities with intensities. Banos et al.

[38] examined the effect of signal segmentation and reported that the interval of 1-2 seconds

would provide the best trade-off between recognition speed and accuracy. Since body sensor

networks (BSNs) based activity detection systems usually have difficulties in real-world appli-

cations due to the programming complexity and the lack of high-level software abstractions,

Fortino et al. [39] developed a programming framework called signal processing in node

environment (SPINE) to support rapid development of BSN applications.

Among these studies, Chavarriaga et al. [40] made their dataset public, which is called the

Opportunity Dataset. This dataset is brought into the public in order to deal with the bench-

marking requirements for activity recognition. Previously, each research group reports the

results of their proposed methods based on their own dataset with specific experimental setups.

It is hard to compare and assess different methods on various experimental environments. This

dataset is proposed by the Wearable Computing Group in ETH. The dataset aims at providing

a platform that enables the comparison of different methods in the same condition.

In this dataset, the researchers provide 18 labelled sessions from four subjects. In addi-

tion, four different tasks are identified: multimodal activity recognition (modes of locomotion),

automatic segmentation task, multimodal activity recognition of gestures, and recognition of

gestures with noise. The sensors deployed in the environment are described as follows. Five

IMUs are mounted in a motion jacket, 12 bluetooth accelerometers and two inertial sensors are

placed on the feed. In each task, only a subset of the provided sensors are used.

For the modes of locomotion task, four sub-activities are further identified: standing, walk-

ing, sitting, and lying. For the automatic segmentation task, classes are null class and activity

class. For the task of gesture recognition, right-arm gestures performed in a daily activities

scenario are recognized. Classes include open/close dishwasher, open/close doors, clean table,

move cups. etc. In the last task, rotational and additive noise is added to the testing dataset for

recognizing gestures.

2.2.3 Human Activity Recognition Based on Smartphone Sensors

As mentioned above, with ever increasing computing power, convenient Internet connections,

and numerous mobile applications, smartphones have been an indispensable role in our daily

life. What’s more, even low-end smartphones have a set of sensors (accelerometer, GPS, and

gyroscope, etc.), which make it possible to use a smartphone to detect human activities. In

[41], a mobile phone based fall detection system was proposed and implemented in the Android

platform. In their experiments, the mobile phones were still attached to different locations of

human body. In [42], a hierarchical SVM classifier was used for recognizing walking, going-

2.2. Human Activity Recognition based on Supervised Learning 25

upstairs, going-downstairs, running, and motionless. The features selected from accelerometer

data were standard deviation of Y axis, correlation of Y, Z axis, autoregressive fitting of Y

axis, and the signal magnitude area (SMA). Also, the mean, standard deviation, and skewness

of pitch were selected for classification. Boyle et al. [43] proposed a gait-based-recognition

system to identify walking activity. The wavelet transform was employed to extract features

from raw data and the k Nearest Neighbors (kNN) algorithm was used to perform the clas-

sification. Miluzzo et al. [44] developed the CenceMe application, which can distinguish

sitting, standing, walking, and running from acceleration data collected by a Nokia N95 smart-

phone. In Brezmes et al. [45], the authors implemented a real-time classification system

for some basic human activities from accelerometer data, including walking, climbing-down

stairs, climbing-up stairs, sitting down, standing up, and falling. Their monitoring system was

decentralized, which meant no server processing data are involved. Kwapisz et al. [30] built

another HAR system which can identify six human activities. The data were collected from

smartphone embedded accelerometers placed in the subjects’ front pants leg pockets. Chiang et

al. [46] proposed a portable activity pattern recognition system to identify physical activities.

Accelerometer and GPS data were collected and four classifiers were tested. Anjum et al. [47]

proposed a smartphone application using accelerometer and gyroscope sensors as well as GPS

signals to detect seven activities. C4.5 decision tree classifier was reported to yield the best

performance. All the systems reviewed above are based on the supervised learning approach

for activity detection. Kwon et al. [48] examined the unsupervised learning method for human

activity recognition based on smartphone sensors. A comprehensive survey on smartphone

sensor based activity recognition can be found in [49].

The Heterogeneity Human Activity Recognition (HHAR) dataset is a public dataset based

on smartphone sensors for HAR studies collected from a variety of different device models and

use-scenarios, which reflects the sensing heterogeneities when HAR applications are deployed

in real-world scenarios [50]. This dataset contains the sensor readings of nine users with six

different activities: biking, sitting, standing, walking, stair up, and stair down. Smartphone

embedded accelerometer and gyroscope sensors are employed in the study, which work at

the highest sampling rate the device allows. Different from other public datasets, the HHAR

dataset incorporates four smartwatches (two models) and eight smartphones (four models).

2.2.4 Other Smartphone Based Sensing Systems

Besides detecting human activities, smartphone based sensing systems can perform other tasks.

Such tasks include monitoring electrocardiogram [51], in which a smartphone is integrated

with a customized phone-case-type ECG sensor to support the pervasive healthcare apps.

26 Chapter 2. Background and Literature Review

Medrano et al. [52] proposed a smartphone based fall detector, where detection algorithms,

like nearest neighbor, and one-class support vector machine, are tested for fall detection. Casi-

lari et al. [53] systematically reviewed the existing efforts of Android device-based solutions

for fall detection with built-in sensors. A wearable and context-aware ECG monitoring sys-

tem is proposed in [54], which is integrated with built-in smartphone sensors (accelerometer,

gyroscope, and orientation sensors) with a self-designed ECG sensor. The system can provide

improved diagnosis accuracy for abnormal ECG pattern in different activities.

2.3 Human Activity Recognition based on Unsupervised Learn-
ing

In the literature, activity detection is considered as a supervised learning problem. For the su-

pervised scheme, a training dataset is needed with the ground truth labels of different activities.

However, the labeling work may be tedious and labor-intensive. In this respect, unsupervised

approaches are investigated by some researchers [21] [55] [56]. Kwon et al. [48] proposed

unsupervised learning methods for human activity recognition using smartphone sensors and

studied the performances of different clustering methods even when the number of activities is

unknown. Huynh et al. [21] explored an unsupervised learning method based on the concept

of multiple eigenspaces to detect individual activities in accelerometer data. A sensor network

based smart home environment was proposed in [55], where an unsupervised approach was

claimed useful for detecting activities. The authors in [56] employed the unsupervised method

for activity recognition with three accelerometers attached to human body. Their results re-

ported were comparable to supervised learning methods.

To the best of our knowledge, the most similar work to incremental activity clustering is

Ong et al. [57], which contains incremental clustering concepts that can automatically dis-

cover human activities from unlabeled RGB-D sensors. However, Ong’s method is based on

video sensors and the number of clusters is not specified. In [58], another incremental learning

framework is proposed using video sensors. The probabilistic neural networks and adjustable

fuzzy clustering based incremental learning framework [59] is a supervised method rather than

working in an unsupervised way. In [60], the authors introduce a tree-based clustering method

that can deal with overlapping clusters, which allows overlapping clusters to be obtained when

data increase. It has to be noticed that in the literature, when we talk about incremental clus-

tering, it has two meanings [61]: (1) Single pass incremental algorithms where data points

are processed at each iteration and cluster centers are refined [62] [63] [64]; (2) Algorithms

where clusters are built incrementally [65] [66]. An HAR system that incorporates both the

2.4. Summary 27

unsupervised learning and the two kinds of incremental features is rarely studied.

2.4 Summary

In this chapter, we first review some basic concepts that are fundamental for the rest of this

thesis. Data mining and machine learning methods and algorithms are presented from the

mathematics point of view. Then a comprehensive literature review is given based on the

different categories of HAR scenarios. Under the supervised learning scheme, HAR systems

are divided into four classes according to the deployment methods of sensors and sensor types.

The background and literature review provide a good foundation for us to develop our own

HAR applications based on both supervised and unsupervised learning as well as explore the

HAR applicability across multiple devices in the next three chapters.

Chapter 3

Human Activity Recognition Based on
Supervised Learning

3.1 Introduction

Most smartphones are embedded with tri-axial accelerometers and gyroscopes as well as other

motion and environment sensors. Using smartphones for human activity recognition has more

flexibility than wearable devices, along with a wider range of applications including healthcare,

daily fitness recording, and anomalous situations alerting.

In this chapter, a smartphone based human activity recognition system is proposed to detect

human activities including walking, running, sitting, going upstairs, and going downstairs. As

standing still or putting the phone on a table is similar to the situation of sitting, sitting is used

in this paper to represent the motionless state. Also, it is assumed that people carry a smart-

phone in pockets with a fixed position. The smartphone based applications perform the tasks

of collecting sensor data and making predictions. Both time and frequency domain features are

extracted from the data collected by smartphone embedded sensors. Several machine learn-

ing algorithms (J48, SVM, Naive Bayes, and Multilayer Perceptron) are employed to make

classifications. The system is implemented in an Android platform.

Figure 3.1 shows a basic process of smartphone based human activity recognition system

based on supervised learning. The data collection and feature extraction are performed using

a smartphone while the model generation is performed in a computer. Then the model is

implemented in another app for activity prediction. In the training phase, the label information

serves as the ground truth for the purpose of training and evaluating. In the prediction phase,

the same features are extracted and fed into the generated classifier model in order to get the

corresponding predicted activity label.

28

3.2. Data Collection 29

Figure 3.1: Activity recognition process

3.2 Data Collection

In this study, the signals detected from the embedded accelerometer and gyroscope in smart-

phones are used to infer different human activities. To collect the sensor data, one subject puts

a smartphone in his/her pocket with a fixed position and performs some activities. Preliminary

data collection and analyses show little difference when the smartphone is placed in different

orientations or in different pockets, which would make the smartphone based detection system

simpler and more practical. However, in order to make the data easy to analyze, the phone’s po-

sition of placement is fixed when performing the data collection tasks. An Android application

is running during the experiments. Sensor data are saved as CSV files. In order to increase the

classification accuracy, data recorded at the beginning and the end of each activity is trimmed

from the data files. Due to the Android APIs [3], the sensor data are recorded with a sampling

rate of 50000 microsecond (20 Hz) [26].

The incoming data are the raw accelerometer and gyroscope readings in three axes. The

definition of the coordinate-system is shown in Figure 3.2. Figure 3.3 shows the description of

the sensor data collection app and the recognition app based on decision tree. When it starts,

raw sensor data are recorded accompanied with some personal information (height, weight,

age, and gender). In addition, the placement of the smartphone is stored. The activity label is

pre-set before the collection starts.

30 Chapter 3. Human Activity Recognition Based on Supervised Learning

Figure 3.2: The definition of the coordinate-system in Android [1]

Figure 3.3: The sensor data collection app (left) and the recognition app (right)

3.3. Feature Extraction 31

3.3 Feature Extraction

The changes of accelerometer and gyroscope values along each axis of the smartphone are

monitored. A fixed window length of 64 data points for time-domain (256 data points for

frequency-domain data) with a 50% overlap is used in the feature extraction stage. In the

literature, features that can be extracted are summarized in [67].

3.3.1 Time-domain Features

For each window, some basic statistical characters can be calculated from raw sensor data.

• Mean. The mean value of each window along each axis.

• Max, Min. The maximum and minimum values of each window along each axis.

• Range. The difference between maximum and minimum values.

• Standard deviation, Variance. The standard deviation and variance of each window along

each axis.

• Correlation coefficient. The correlation coefficient is calculated along each pair of axes

of the sensor data.

• Signal Magnitude Area (SMA). SMA is calculated as the sum of the magnitude of each

of the three-axis sensor signal (accelerometer or gyroscope) [68]:

S MA =
1
t
(
∫ t

0
|x(t)|dt +

∫ t

0
|y(t)|dt +

∫ t

0
|z(t)|dt) (3.1)

• Signal Vector Magnitude (SVM). SVM can provide a measure of movement intensity,

which is useful for fall detections [69]. It is defined as:

S V M =
1
n

n∑
i=1

√
x2

i + y2
i + z2

i (3.2)

3.3.2 Frequency-domain Features

Frequency-domain features have been widely used to capture the periodical nature of signals.

A commonly used algorithm to extract frequency domain features is the Fast Fourier Transform

(FFT). Typical frequency-domain features include:

32 Chapter 3. Human Activity Recognition Based on Supervised Learning

• Energy. The spectral energy is calculated as the squared sum of discrete FFT component

magnitudes.

• Entropy. The information entropy is calculated using the normalized information entropy

of the discrete FFT component and it can help differentiate signals that have similar

energy features [26].

• Time between peaks. Time between peaks in the sinusoidal waves [30].

• Binned distribution. It is computed as follows. First determine the range of values (max-

imum minimum) for each axis. Then divide this range into 10 equal size bins. Finally

calculate the fraction of the values in each of the bins [30].

3.3.3 Feature Selection

In our study, the mean and standard deviation values in time-domain and energy and entropy in

frequency-domain are extracted, which show satisfactory results. Some sensitivity analysis has

been done and these features are deemed to be more sensitive and useful for this application:

According to decision tree algorithm, these features selected above seem to be irrelevant with-

out much loss of information, while the redundant features are removed during the decision

tree generation. In addition, such features are relatively easy and efficient to be computed and

extracted.

For each sensor, its three axes are regarded as three individual features. As two sensors are

monitored and there are 2 time-domain features and 2 frequency-domain features for each axis

as well as three axes for each sensor, a total of 24 features are extracted (shown in Table 3.1).

The activity types are labeled manually in each file. The fixed sliding window size with 50%

overlap has demonstrated success in [26].

Features from accelerometer and gyroscope sensors
◦ The mean value of X, Y, and Z-axis (window size 64, 50% overlap)

◦ Standard deviation of X, Y, and Z-axis (window size 64, 50% overlap)

◦ Energy of X, Y, and Z-axis (window size 256, 50% overlap)

◦ Entropy of X, Y, and Z-axis (window size 256, 50% overlap)

Table 3.1: Features extracted

3.4. Classification 33

3.4 Classification

A number of classifiers (Decision Tree, SVM, Naive Bayes, and Multilayer Perceptron) that

have been reviewed in Section 2.1 are studied on the collected smartphone sensor data. The

features extracted from the raw data can be either time-domain or frequency-domain features.

To evaluate the effectiveness of different classifiers, cross validation is used as the evaluation

method. More specifically, the 10-fold cross validation is performed in our tests. After feature

extraction, the smartphone sensor dataset is divided into 10 subsets. One of the 10 subsets is

used as the test set and the remaining nine subsets are put together to form a training set. This

procedure repeats 10 times. Then the average performance across 10 trials is calculated. The

performance metrics selected to evaluate the classification methods are precision and recall.

Precision (P) is defined as the number of true positives (Tp) over the number of true positives

and the number of false positives (Fp):

P =
Tp

Tp + Fp
(3.3)

Recall (R) is defined as the number of true positives (Tp) over the number of true positives and

the number of false negatives (Fn):

R =
Tp

Tp + Fn
(3.4)

Accuracy is also used for comparing the classification results, which is defined as:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(3.5)

3.5 Experimental Results and Analyses

In this section, four different classifiers (Decision Tree, Naive Bayes, SVM, and MLP) are

tested to recognize activities. The performances and some observations are discussed below.

3.5.1 Experiment Setup

Using the apps described in Figure 3.3, tri-axial acceleration and gyroscope data (angular ve-

locity in 3 axes) are collected and used for predicting activities like walking, running, sitting,

going upstairs, and going downstairs. A smartphone is loosely placed in a person’s pocket with

fixed orientations. The user can also denote their height, weight, age, and gender for future

34 Chapter 3. Human Activity Recognition Based on Supervised Learning

reference. Then the smartphone’s placement position (upward or downward) and the activity

labels are recorded. This procedure repeats several times for each activity. The default sam-

pling rate is 50000 microsecond (20 Hz). Figure 3.4 and Figure 3.5 show the raw accelerometer

and gyroscope data of five activities concatenated together.

Figure 3.4: Raw acceleration data

Figure 3.5: Raw gyroscope data

3.5. Experimental Results and Analyses 35

Time-domain and frequency-domain features are calculated individually. For the time-

domain features, a window size of 64 with a 50% overlap is used, while the frequency domain

features are derived with a window size of 256 samples. The training set is described in Table

3.2. A 10-fold cross-validation method is employed for testing and WEKA framework is used

in our study.

Activity Type
Number of Instances

(in time domain)
Number of Instances

(in frequency domain)
Walking 1386 346

Running 1365 341

Sitting 1472 368

Going upstairs 784 196

Goding downstairs 487 122

Total 5494 1373

Table 3.2: The Training Set

3.5.2 Result Analyses

Table 3.3 reveals that all classifiers can achieve a recognition performance (in precision and

recall) of 96%∼100% for the dataset that contains three activities, walking, running, and sitting.

However, the multilayer perceptron classifier takes the longest time to build a model, which is

a disadvantage if we want to perform the training step in a smartphone. For the SVM classifier,

parameter settings will significantly affect the system performance. When the sigmoid function

is used as the kernel type in SVM, the accuracy is only 63.25%. The optimal SVM parameters

for one problem may vary from one to another.

Decision Tree and Naive Bayes are both simple and efficient classifiers. In addition, J48

can generate a decision tree for identifying activities. From the decision tree, it is observed that

not all 12 features are necessary for identifying activities. Figure 3.6 shows a generated J48

pruned tree. In this case, only 6 features (mean value and standard deviation of accelerometer

in X axis, mean value of accelerometer in Z axis, and standard deviation of gyroscope in X,

Y, and Z axis) are enough for detecting the three activities. What’s more, for the gyroscope

sensor, only the standard deviation values are needed according to the generated decision tree.

This indicates that the standard deviation of a period of sensor data is more sensitive than the

raw sensor readings when the smartphone is placed in pockets as it can tell us the intensity of

different activities. The visualized data for different activities are shown in Figure 3.7 to Figure

36 Chapter 3. Human Activity Recognition Based on Supervised Learning

Walking Running Sitting
Weighted

Average

Precision

Decision

Tree
0.994 0.993 0.991 0.992

SVM 1 0.897 1 0.967

Naive

Bayes
0.987 0.998 0.987 0.991

Multilayer

Perceptron
1 0.998 0.983 0.993

Recall

Decision

Tree
0.995 0.987 0.995 0.992

SVM 0.903 1 0.985 0.963

Naive

Bayes
0.999 0.982 0.99 0.991

Multilayer

Perceptron
0.998 0.983 0.998 0.993

Table 3.3: Classification Results Using 12 Features

3.16, which demonstrate the standard deviations in a period of time are the ideal features to

identify activities. Figure 3.7 and Figure 3.8 plot the mean values of acceleration in all axes for

walking and running. Y-axis values are around the same level (around 10m/s2 because of the

gravity) while X and Z-axis values vary significantly that help distinguish the two activities.

The direction of how the smartphone is placed in pocket and the coordination system defined

in smartphone make the Y-axis irrelevant to different activities. Figure 3.11 plots the mean

acceleration in three axes for sitting. It shows sitting has the minimum standard deviation

around three axes. Going upstairs and downstairs (Figure 3.9 and Figure 3.10) are activities

similar to walking but with larger variances.

Figure 3.12 to Figure 3.16 plot the standard deviation of angular velocity for all three

axes of five activities. For walking and running, the standard deviation of x, y, and z vary

differently. The standard deviations of sitting are almost zero as sitting is inactive activity that

the smartphone changes very little. From the plots we can observe that standard deviations are

more informative and sensitive than the real sensor readings and other statistical values.

3.5. Experimental Results and Analyses 37

Figure 3.6: J48 decision tree (1 for walking, 2 for running, and 3 for sitting)

0 50 100 150 200 250
−15

−10

−5

0

5

10

Data Points

M
ea

n
V

al
ue

 o
f A

cc
el

er
at

io
n

(m
/s

2)

X axis
Y axis
Z axis

Figure 3.7: The mean values of accelerator data for Walking

38 Chapter 3. Human Activity Recognition Based on Supervised Learning

0 50 100 150 200
−15

−10

−5

0

5

10

Data Points

M
ea

n
V

al
ue

 o
f A

cc
el

er
at

io
n

(m
/s

2)

X axis
Y axis
Z axis

Figure 3.8: The mean values of accelerator data for Running

0 50 100 150 200 250 300 350 400 450
−15

−10

−5

0

5

10

15

Data Points

M
e

a
n

 V
a

lu
e

 o
f

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

X axis

Y axis

Z axis

Figure 3.9: The mean values of accelerator data for going upstairs

3.5. Experimental Results and Analyses 39

0 50 100 150 200 250 300 350 400 450
−15

−10

−5

0

5

10

Data Points

M
ea

n
V

al
ue

 o
f A

cc
el

er
at

io
n

(m
/s

2)

X axis
Y axis
Z axis

Figure 3.10: The mean values of accelerator data for going downstairs

0 200 400 600 800 1000 1200 1400
−8

−6

−4

−2

0

2

4

6

8

10

Data Points

M
ea

n
V

al
ue

 o
f A

cc
el

er
at

io
n

(m
/s

2)

X axis
Y axis
Z axis

Figure 3.11: The mean values of accelerator data for Sitting

40 Chapter 3. Human Activity Recognition Based on Supervised Learning

0 50 100 150 200 250
0

5

10

15

20

25

30

Data Points

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 A

ng
ul

ar
 V

el
oc

ity
 (

ra
d/

s)

X axis
Y axis
Z axis

Figure 3.12: The standard deviation of angular velocity for Walking

0 50 100 150 200
0

5

10

15

20

25

30

Data Points

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 A

ng
ul

ar
 V

el
oc

ity
 (

ra
d/

s)

X axis
Y axis
Z axis

Figure 3.13: The standard deviation of angular velocity for Running

3.5. Experimental Results and Analyses 41

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

Data Points

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
A

n
g

u
la

r
V

e
lo

c
it
y
 (

ra
d

/s
)

X axis

Y axis

Z axis

Figure 3.14: The standard deviation of angular velocity for going upstairs

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

Data Points

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 A

ng
ul

ar
 V

el
oc

ity
 (

ra
d/

s)

X axis
Y axis
Z axis

Figure 3.15: The standard deviation of angular velocity for going downstairs

42 Chapter 3. Human Activity Recognition Based on Supervised Learning

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

Data Points

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 A

ng
ul

ar
 V

el
oc

ity
 (

ra
d/

s)

X axis
Y axis
Z axis

Figure 3.16: The standard deviation of angular velocity for Sitting

3.5.3 Extension

As three basic activities (walking, running, and sitting) can be well-recognized, the whole

dataset is tested with two additional activities, going upstairs and downstairs. Using 12 time-

domain features selected in Table 3.1, the performance of different machine learning algorithms

for identifying the five activities is analyzed. Results are shown in Table 3.4.

Although they all have precision and recall scores over 89%, SVM classifier outperforms

all other classifiers in identifying going upstairs and downstairs. The precisions for the Naive

Bayes classifier to identify going upstairs and downstairs are only 75.8% and 62.2%, while

SVM reaches 91.8% and 90.0%. It is believed that the performance of SVM can be further

improved if its parameters are tuned.

Even if the C4.5 Decision Tree is an efficient classifier with low complexity in implemen-

tation, it has difficulties to model a large number of complex activities. What’s worse, it can

be easily confused while identifying walking, going upstairs and downstairs. As can be seen

in Table 3.5, the confusion matrix shows that there is a large probability going downstairs is

misclassified as walking or going upstairs.

Finally, the effectiveness of frequency-domain features is also examined. The testing results

indicate that frequency-domain features (energy and entropy) can also be used for activity

3.5. Experimental Results and Analyses 43

recognition and get satisfied results (as shown in Table 3.6). According the results in [26],

a window size of 512 samples is suitable for fast computation of FFT components. If the

sampling frequency is 50 Hz, each window represents 10.24s. The energy and entropy are

extracted from the sliding windows for activity recognition. However, 10.24s may be too

large for an activity recognition system to capture different activities. It has been proven that

the interval of 1-2 seconds is the best trade-off between recognition accuracy and recognition

speed [38].

Once the model has been trained, it can be used to detect different activities. However, the

input of the detection model is only one data instance, and it is defective. In our experiments,

although the precision and recall for identifying 3 activities reaches as high as 96%, the output

can change quickly from one activity to another. To improve the robustness when using the

trained model for real-time detection, one promising way is to consider the context information

to determining the activity undertaken by a person.

Walking Running Sitting
Going

Upstairs

Going

Downstairs

Weighted

Average

Precision

Decision

Tree
0.967 0.993 0.997 0.913 0.868 0.965

SVM 0.977 0.771 0.998 0.918 0.9 0.916

Naive

Bayes
0.883 0.994 0.965 0.758 0.622 0.892

Multilayer

Perceptron
0.973 0.988 0.988 0.893 0.891 0.962

Recall

Decision

Tree
0.967 0.997 0.993 0.897 0.891 0.965

SVM 0.908 1 0.991 0.742 0.628 0.905

Naive

Bayes
0.903 0.979 0.99 0.583 0.791 0.89

Multilayer

Perceptron
0.978 0.984 0.98 0.935 0.84 0.962

Table 3.4: Classification Results Using 12 Features for 5 Activities

44 Chapter 3. Human Activity Recognition Based on Supervised Learning

Classified As –> Walking Running Sitting
Going

Upstairs

Going

Downstairs

Walking 1340 5 1 25 15

Running 0 1361 0 4 0

Sitting 0 2 1462 3 5

Going Upstairs 33 1 1 703 46

Going Downstairs 13 2 3 35 434

Table 3.5: Confusion Matrix of J48 Classifier

Walking Running Sitting
Going

Upstairs

Going

Downstairs

Weighted

Average

Precision

Decision

Tree
0.935 0.991 0.992 0.867 0.836 0.949

Naive

Bayes
0.913 0.991 0.992 0.911 0.84 0.947

Multilayer

Perceptron
0.968 0.994 0.995 0.888 0.933 0.967

Recall

Decision

Tree
0.954 0.991 0.986 0.867 0.836 0.949

Naive

Bayes
0.968 0.982 0.981 0.832 0.861 0.946

Multilayer

Perceptron
0.971 0.979 0.984 0.934 0.918 0.966

Table 3.6: Classification Results Using Frequency Domain Features

3.6 Summary

With the evolution of both software and hardware of smartphone devices, smartphone based

human activity recognition systems take advantage of these advanced technologies. When

compared with wearable devices, smartphones are pervasive with sensing functionalities inte-

grated as well as power management, all of which make smartphones ideal for phone-based

activity recognition to detect and predict our daily activities.

This chapter examine the data analysis and supervised learning approach for activity recog-

3.6. Summary 45

nition model. As exhibited by the experiment results, the time-domain features (standard de-

viation and mean values) are efficient enough to recognize some basic human activities, which

are also simple and practical to be extracted from smartphone sensor readings.

Experimental results also reveal that the proposed system can recognize simple human

activities (walking, running, sitting, going upstairs, and going downstairs) with a satisfied ac-

curacy (over 89%). Popular machine learning algorithms (C4.5 Decision Tree, SVM, Naive

Bayes, and MLP) are tested, and among these options, Decision Tree is believed to be a better

solution to be integrated into smartphone applications. As a decision tree model, it is easy to

compute when implemented as a set of IF-THEN rules. Compared with time-domain features,

although frequency-domain features can get satisfied classification results as well, extracting

frequency-domain features are not practical in real applications due to the longer sampling

intervals.

Chapter 4

Incremental Clustering for Human
Activity Recognition

4.1 Introduction

It is necessary to introduce the incremental clustering for the current unsupervised activity

recognition approach as a new application scenario. The reasons are as follows. First, in

order to take advantage of unsupervised learning (we do not need to label data manually and

will still be able to get comparable results to supervised methods.), the incremental clustering

method is one step further than traditional clustering methods. By dealing with streamed sensor

data collected by smartphone sensors, we do not need to get the entire dataset and can start

clustering at any time. Also, as incremental clustering can be a pre-processing procedure for

auto-annotated data collection, it would be a great help if we can process data at mobile devices

instead of sending data to a remote server. Streaming and incremental techniques can meet the

requirements such as memory and computing constraints of smartphones.

In our work, we incorporate both the streaming algorithm [64] and incrementally cluster-

building procedure [66] to achieve the human activity detection purpose. The proposed system

contains two stages. The first stage will process the streamed phone sensor data one by one

and output the pre-clustered results. Then in the second stage, another incremental clustering

procedure will be performed. With a user denoted number of human activities, the pre-cluster

results will be refined and the final clusters formed. The advantages of our approach are that

it can start and stop at any time with limited memory space and most importantly the second-

stage incremental clustering (adding one cluster at one time) can be a compensation for the

performance loss in the streaming stage.

46

4.2. Methodology 47

4.2 Methodology

4.2.1 Data Collection

Experiments were conducted using smartphone embedded sensors (accelerometers and gy-

roscopes) to collect data describing five common activities (walking, running, sitting, going

upstairs, and going downstairs). Each of the activities was performed for two to five minutes.

The embedded accelerometers and gyroscopes would provide tri-axial acceleration and angu-

lar velocity at the sampling frequency of 20Hz. The sampling frequency is sufficient enough

to capture daily physical activities. In our data collection app (as shown in Fig 3.3), personal

information (without name and ID to protect privacy) is also recorded and a user chooses what

kind of activities he/she is performing, which means each data point was labeled with the

corresponding activity. Even though we were going to cluster the data later, such labelling

information can help us evaluate the quality of clustering results. In addition, we assume the

smartphone’s orientation is fixed when in the subject’s pocket.

4.2.2 Feature Extraction

The features were computed on a fixed window size of 64 consecutive data points with a 50%

overlap. For each window, statistical features, including mean and standard deviation, were

calculated. In addition, we also computed frequency domain features based on the Fast Fourier

Transform (both the energy and entropy). However, due to our previous study on supervised

learning methods, time domain features are good enough to get satisfied classification results.

In this respect, we just omit the frequency domain features and use only the time domain fea-

tures for clustering. In other words, for clustering purpose, our dataset consists of 12 features

from the time domain (the mean and standard deviation of X, Y, and Z axis from the accelerom-

eter and gyroscope).

4.2.3 Activities

As we choose five activities: walking, running, sitting, going upstairs, and going downstairs, it

is possible to see how the patterns of acceleration and angular velocity differentiate for those

activities.

Figure 4.1 shows the data visualization of the accelerometer’s mean value. The X, Y, and

Z axis in the coordinate system are the same as the three axes of the accelerometer. It is

obvious from the figure that three activities, walking, running, and sitting, are easily separable.

However, it is difficult to distinguish going upstairs and downstairs from walking as these three

48 Chapter 4. Incremental Clustering for Human Activity Recognition

Figure 4.1: Data visualization for the mean value of accelerometer

activities overlap together in the coordinate space. The confusion matrix in Table 3.5 also

shows the similarity of going upstairs and downstairs. The same observation can be obtained

for the standard deviation of the accelerometer as shown in Figure 4.2.

4.2.4 The Proposed Two-stage Clustering Algorithm

In this section, we will give the description of the two-stage incremental clustering framework.

All the clustering procedures are assumed to be done within the smartphone (as shown in Figure

4.3). The necessities of performing incremental clustering in mobile devices are as follows. If

we want to cluster sensor data at the server side, we have to either transmit the whole dataset

or the streamed sensor data to the server continuously, which would be a burden for both the

server and mobile devices. What’s more, in order to cluster data within the processing ability

and memory constraints of mobile devices, a streaming manner is needed, which means we do

not need to manipulate the whole dataset, on the contrary single data point can be processed

from smartphone sensors using only limited memory space.

The two-stage algorithm is based on the traditional K-Means algorithm. It has three steps:

1) choose K points arbitrarily for the K initial cluster centers; 2) Assign every point in the

dataset to the closet cluster and update the cluster centers accordingly; 3) If the cluster centers

do not move, the algorithm terminates; otherwise, go to step 2. However, the traditional K-

Means algorithm can only work on the entire dataset and will converge to a local minimum

[66].

The first stage of our algorithm is a single pass streaming clustering algorithm modified

4.2. Methodology 49

Figure 4.2: Data visualization for the standard deviation of accelerometer

from [64]. The flow chart of this algorithm is shown in Figure 4.4. First parameters are

selected: the number of initial points m and the window size n for streaming. The algorithm

then starts the initialization: choosing the first m points in the stream to be the initial candidate

centroids. Assign weight wi = 1 to each centroid. After the initialization, the incremental

clustering is performed. For each sequent data point p in the stream, a counter is set up to

track if we reach the window size. Then p is assigned to the nearest candidate centroid ci, and

the centroid is updated according to wi and p. After updating, wi is incremented by one. This

procedure keeps going until the counter meets the preset window size. If the counter reaches

n, all the candidate centroids in the list will be updated as follows: first a survival probability

is calculated, which will be compared with a random number drawn uniformly from [0, 1].

Based on the comparison result, centroid ci is either retained for the next n points or killed.

After resetting all the weights to 1, the algorithm returns to the incremental procedure. The

first stage continues running until there are no data points in the stream. Usually the initial

number of clusters m is larger than the real number of activities. Thus the streaming stage will

produce a pre-clustered result, which will be refined in the next stage.

The second stage is the incremental procedure, where the number of clusters K starts from

one and is increased by one until a user defined value is reached. The first initial cluster center

is randomly selected from pre-clustered data obtained in Stage 1. In each iteration, the data

point with the greatest distortion Ii will be assigned to the closet cluster center and the current

cluster centers in the list will be updated accordingly. After each iteration, if the cluster centers

do not move and K have not reached the specified value, the number of clusters K will increase

50 Chapter 4. Incremental Clustering for Human Activity Recognition

Figure 4.3: Proposed framework

by one and a new iteration starts. According to Pham et al. [66], adding cluster centers one

by one will lead to a better clustering result and reduce the overall cluster distortion. The

Euclidean distance is employed to measure distances between data points.

The distortion error of cluster z is defined as:

Iz = S z − N[d(wz,w0)]2 (4.1)

Where N is the cluster’s capacity (number of data instances belonging to the cluster), S z is the

sum of the squared distances between data instances in cluster z and the center of the Euclidean

space, and wz is the center of cluster z. A cluster Ci is characterized as a triple (wi,Ni, S i).

In order to illustrate why adding cluster centers one by one can lead to a better result, two

operations are defined: removing cluster center Ci and moving a cluster to a new position.

When removing a cluster center Ci is taken out. The worst case is that all instances belonging

to Ci will be re-assigned to the second nearest cluster C j without affecting any other clusters.

This operation can be formulated as follows [66]:

Nk = Ni + N j (4.2)

wk =
1
Nk

Nk∑
i=1

xk
i (4.3)

S k = S i + S j (4.4)

4.2. Methodology 51

Then the increase of the distortion ∆I can be derived as:

∆I = Ik − Ii − I j

=
NiN j

Ni + N j
[d(wi,wk)]2 (4.5)

When a cluster center is moved, the sum of cluster distortion errors decrease. If the cluster

Cz is assumed to be a hyper-cube with uniform distribution density p, the following results can

be obtained:

Iz =

∫ d
2

− d
2

∫ d
2

− d
2

...

∫ d
2

− d
2

[d(x, x0)]2 pdx(1)dx(2)...dx(Nd)

=
NzNdd2

12
(4.6)

Then the decrease of the distortion errors is:

∆D =
Nz1Nz2

Nz
[d(wz1,wz2)]2

=
3Iz

4Nd
(4.7)

If we first remove a cluster center and than insert a new cluster center, the sum of the

distortion errors will be changed by a value ∆M = ∆I − ∆D. It is obvious that ∆M < 0

will lead to a better clustering result. For the extreme case, let ∆I = 0, which means there is

no removal operation. It equals to the fact that the number of initial clusters is set to 1 and

increased by 1 in each iteration. This process repeats until a specific number of clusters is

reached. The pseudocodes of the two stages are described in Procedure 1 and Procedure 2.

The flow charts are shown in Figure 4.4 and Figure 4.5.

52 Chapter 4. Incremental Clustering for Human Activity Recognition

Procedure 1 First Stage Clustering
1: procedure firstStage(m, n) . The number of initial points m and the window size n
2: Select m points as c1, ..., cm . Initialize the candidate centers
3: Assign weights wi to each of these centers.
4: Count ← 0 . Set up a counter
5: for each sequent data point p in the stream do
6: Count ← Count + 1
7: Find the nearest candidate center ci to the point p
8: ci ←

wi·ci+p
wi+1 . Update the selected center

9: wi ← wi + 1 . Update the weight
10: if Count mod n == 0 then
11: for each center ci in the list do
12: pi ←

wi∑m
i=1 wi

. Calculate survival probability
13: Draw δ ∼ U(0, 1)
14: if pi > δ then
15: Retain the center ci . Use it in the next n points
16: else
17: Kill the center ci

18: Select a random point from the current window as ci

19: end if
20: wi ← 1 . Reset the weight to 1
21: end for
22: end if
23: end for
24: return pre-clustered m centers
25: end procedure

4.2. Methodology 53

Procedure 2 Second Stage Clustering
1: procedure secondStage(pre-clustered data)
2: K ← 1 . The initial number of final clusters K is set to 1
3: checkPoint1:
4: if K == 1 then
5: Select a random point as the cluster center from the pre-clustered data
6: else
7: Select the point with the greatest distortion Ii as the new center
8: end if
9: checkPoint2:

10: Assign and update . Similar with the traditional K-Means
11: if the cluster center moves then
12: goto checkPoint2
13: else
14: while K hasn’t reached a specified value do
15: K ← K + 1
16: goto checkPoint1
17: end while
18: end if
19: return final K cluster centers
20: end procedure

54 Chapter 4. Incremental Clustering for Human Activity Recognition

Start

Parameters selection
 Fix the number of initial points m (11)
 Fix the window size n (20)

Incremental Clustering:
For each sequent data point p in the stream, do:

Initialize
 Select m points, to be the

initial candidate centers.
 Assign a weight to each of these

centers.

Count = Count + 1;

Find the nearest
candidate center ci

to the point p

Update center:

Update weight:

Count % n == 0?

No

Yes

Update candidate centers:
For each center in the list, do:

Calculate probability of survival:

Draw δ ~ U(0, 1)

Retain the center ;
Use it in the next n points

Kill the center ;
Select a randon point from

the current window as

YES NO

1w

pcw
c

i

ii
i

mcc ,...,1

1iw

1 ii ww

i

i
i w

w
p

?ip

ic ic

ic

ic

1iw

Is there any new point
in the stream?

YES

Stop

No

Figure 4.4: The flowchart of the first stage clustering

4.2. Methodology 55

START

INPUT:
K = 1;
Pre-clustered data;

Normal training:

K == 1?

Select a point to be
the cluster center

(randomly)

Select the point
with the greatest

distortion
as the new center

Assign & Update

Does the cluster
centre move?

If K reaches a specified value
OR

A best solution is found
Increase K by 1

No

STOP

Not yet

YES

YES NO

YES

iI

Figure 4.5: The flowchart of the second stage clustering

56 Chapter 4. Incremental Clustering for Human Activity Recognition

4.3 Experimental Results and Analyses

4.3.1 Incremental Clustering Results

The two-stage algorithm is implemented in the WEKA data mining framework [10] and tested

on the dataset containing 2840 data points which are computed from raw sensor readings. The

overview of the dataset can be seen in Table 4.1. In order to evaluate the clustering results,

label information in the dataset is used and the classes to clusters evaluation is employed for

the testing. A series of experiments were conducted with our collected sensor data. Details are

discussed as follows.

First we got the baseline performance of traditional K-Means clustering, where K, the num-

ber of clusters, is set the same as the real number of activities (five daily activities: walking,

running, sitting, going upstairs, and going downstairs). Then we evaluated the performance of

the two-stage incremental algorithm with different parameter m, which is the number of initial

number of points in the streaming procedure. In addition, the algorithm is compared with a

variant produced without the second-stage incremental clustering (i.e., only using streaming

procedure to produce the five activity clusters). The two-stage incremental algorithm is also

compared with another simple sequential k-Means algorithm which is described in [70]. Based

on a repetition of 10 times for each algorithm, the results are shown in Table 4.2.

Activity Type Number of Instances
Walking 722

Running 1012

Sitting 807

Going upstairs 147

Going downstairs 152

Total 2840

Table 4.1: Dataset Overview

As it can be seen in the table, our two-stage incremental clustering algorithm can get com-

parable results with the traditional K-Means and reaches an accuracy over 72% on the testing

dataset. The proposed two-stage incremental clustering algorithm also outperforms the sequen-

tial K-Means in [70]. Although K-means is simple, it outperforms GMM on human activity

sensor data. What’s more, if the second stage of our algorithm is removed, a significant perfor-

mance loss is observed, which in return shows the effective of the second stage in compensating

the performance drop in streaming stage. Such losses come from processing the streamed data

4.3. Experimental Results and Analyses 57

Methods Incorrectly Clustered Instances (%)
K-Means 24.4542% ±7.4061%

Sequential K-Means 44.2807% ±10.6600%

Proposed Incremental Clustering

(n=20, m=8)
27.7475% ±9.1320%

Streaming stage only 33.1843% ±7.5452%

Gaussian Mixture Model (GMM) 31.9648% ±4.6392%

Table 4.2: Performance

one by one and make it impossible to access the entire dataset.

4.3.2 Different numbers of initial points

The incorrectly clustered rate was examined when choosing different numbers of initial points

m. As stated before, m is the number of clusters that obtained in the first stage and will be fed

in to the second stage. The result is shown in Figure 4.6. The experiments reveal that the best

number of initial points seems to be m = 8. When m is reduced to 5, the algorithm degrades

into the streaming only situation. Larger values of m will not lead to a better clustering result.

4.3.3 Different window sizes

The effects of choosing different window sizes were compared. The comparison is shown in

Figure 4.7, where m is fixed to 8 (m = 8). The best window size is around 20. Neither a larger

nor a smaller window size would lead to a better performance.

58 Chapter 4. Incremental Clustering for Human Activity Recognition

The number of initial points (m)
5 6 7 8 9 10 11 12 13 14

In
co

rr
ec

tly
 c

lu
st

er
ed

 in
st

an
ce

s
ra

te

20

25

30

35

40

45

50

Figure 4.6: The effect of different m, when n = 20

The size of streaming window (n)
5 10 15 20 25 30

In
co

rr
ec

tly
 c

lu
st

er
ed

 in
st

an
ce

s
ra

te

20

25

30

35

40

45

50

Figure 4.7: The effect of different window size, when m = 8

4.4. Summary 59

4.4 Summary

This chapter proposes a two-stage incremental clustering approach applied on the smartphone

sensor based human activity recognition (HAR) system. The proposed method can deal with

streamed phone sensor data and carry out the clustering within mobile devices. The first stage

of the algorithm is a single pass clustering procedure, while the second stage will increase the

final number of clusters one by one to reduce the overall distortion error. We also show the

necessity in introducing such an incremental clustering method into human activity detection

as a new scenario. First, the unsupervised learning approach is needed for activity detection

as it can be used for auto-annotated data collection. Also, in order to process data on mobile

devices within limited memory space and computation power, streaming technology will be a

great help. The second stage incremental clustering can help alleviate the performance loss in

the streaming stage. Our experiments show that the proposed algorithm can reach compara-

ble results with traditional clustering algorithms but working in a streaming and incremental

manner. And the effects of different number of initial points and window size are explored.

Chapter 5

Sensor Heterogeneity Effects

5.1 Introduction

Generally, an HAR system has two components: software and hardware. The hardware pro-

vides the foundation of the HAR system, especially the inertial sensors, which are indispens-

able. The software is incorporated with data processing techniques and recognition algorithms.

Only with the robust hardware and reliable software, can an HAR system work to determine

human activities. The hardware involves different kinds of devices that vary from customized

wearable devices, smart watches, smart bands, and smartphones. In addition, inside these de-

vices, sensors are made by different manufacturers with different specifications. Data collected

by sensors will be sent to the software level through API calling and be used for activity recog-

nition. The software treats the sensor readings as input and outputs activity types that the sensor

data imply. The most important parts of the HAR software are how it deals with sensor data

and how its algorithms are used for activity recognition. Recently, with the rapid development

of machine learning techniques, the recognition methods have shifted from threshold methods

to statistical learning approaches. Advanced machine learning algorithms are employed and

tested in HAR systems, such as SVM, decision trees, neural networks. Even the most ad-

vanced deep learning algorithms have shown positive effects on sensor based human activity

recognition [71].

However, the ultimate goal of HAR software is to generate a universal model that can

work regardless of the hardware differentiation. Different mobile device vendors have their

own HAR software and work on specific hardware platforms. For example, Samsung’s fitness

app S Health [72] is different from Sony’s fitness APP Lifelog [73] in the UI design and

inner function implementation. The same situation happens with Apple’s Health app [74].

Such fitness apps can only work on specific smartphone modules, while a third party HAR

60

5.1. Introduction 61

software cannot meet user’s demand of cross-platform activity recognition recording. Thus it

is necessary and important to investigate whether the HAR software is flexible and irrespective

with different hardware sensor performance indexes.

A successful HAR system can not only recognize different subjects’ activities but also

perform well on various hardware platforms. Here we identify two HAR system application

scenarios:

• HAR system on multiple users: In the first scenario, an HAR system is capable of recog-

nizing multiple users’ activities. It may have an integrated model for multiple subjects.

Due to the behavior differences of people with diverse physical characters, the activity

features may vary slightly, which leads to a deviation of recognition results on multiple

users. One possible solution to alleviate the multi-subject issue is to employ the users’

physical characteristics such as weight and height to match the model prepared in ad-

vance. Such method proposed in [75] would not require the end user to collect and label

his/her sensor data for training.

• HAR system across multiple devices: The second scenario is that an HAR system can

recognize activities across diverse hardware platforms. This scenario is needed in HAR

applications as a user can have multiple devices that record and recognize his/her ac-

tivities. However, usually there is only one trained model for this user as he/she would

not collect labeled sensor data and train activity data for all individual devices. One dif-

ficulty is that sensors from different manufacturers are often different in precision and

resolution. Even if mobile device sensors come from the same manufacturer, due to the

rotation error and misalignment relative to the circuit [50], data coming from these sen-

sors may also have deviations. We will show and discuss in the following sections that

such deviations harm HAR system performances.

Most researchers focus on the evaluation method that is often based on only one device.

However it may not be applicable on other devices even though they have the same type of in-

ertial sensors. This issue is not that serious when HAR applications only identify simple human

activities, say running and walking. This is because with the help of embedded pedometer and

GPS signals, it is easy to identify if a user is moving or still, and this is also how most existing

applications work. When we go further and try to recognize more complex activities, including

jogging, walking, going upstairs/downstairs, and even lifting, the sensor differences matter as

multiple inertial sensors (accelerometer, gyroscope, etc.) are involved and subtle distinctions

on sensor readings will influence what activity it is. We discovered that a dataset collected from

one mobile device is not applicable on another mobile device. If we apply the trained model

62 Chapter 5. Sensor Heterogeneity Effects

on other devices, a significant performance loss is observed. Further, it is impractical to collect

sensor data for each device as it is time consuming and the labeling work is labor intensive.

In this chapter, the issue of sensor differences through multiple mobile devices are stressed.

The causes of sensor differences such as sampling rate instability, the diversity of sensor cal-

ibration metrics and resolution range due to various sensor vendors are discussed. Then the

effects of sensor differences based on a dataset collected from four smartphones in Scenario

2 identified above are reported. Various feature extraction and representation techniques and

popular classifiers in the HAR research literature are evaluated. Some mitigating techniques

are proposed and examined. Testing results for outlier removal, interpolation, and low-pass

filter are presented. In addition, the performance of popular classifiers on tolerating sensor

differences is investigated.

5.2 HAR on Multiple Devices

To conduct experiments on human activity recognition across multiple devices, a series of pro-

cedures to collect data from four different smartphone models are designed and performed.

Features in time domain and frequency domain are selected based on the current HAR re-

search. Then classifications are performed using some popular supervised machine learning

techniques. In this stage, different evaluation methods are tested, comparing the performance

of applying one dataset on another device as well as the performances of different classifiers in

adapting the sensor differences.

5.2.1 Data Collection on Multiple Devices

To collect sensor data for the case study, one subject performs five simple activities using a sen-

sor data collection app implemented in the Android platform. The five activities are: Walking,

Running, Sitting, Going Upstairs, and Going Downstairs. The labels are preset by the user be-

fore performing activities. The length for each activity is about five minutes and the sampling

rate is set to be 50000 microsecond (20 Hz). To reduce complexity and remove irrespective dis-

turbances, the tested smartphone has two fixed positions when placed in the subject’s pocket:

”Upward” and ”Downward”. This procedure is repeated four times as there are four testing

smartphones from different manufacturers (OnePlus One, Sony Xperia Z1 Compact, Samsung

Galaxy S Infuse, and Motorola Nexus 6) (as shown in Table 5.1).

According to a previous study [26], the sampling rate for inertial sensor based activity

recognition studies is sufficient when it is within 20 Hz to 50 Hz. In our experimental setting,

the sampling frequency is fixed to 20Hz. The raw sensor readings are collected and stored,

5.2. HAR onMultiple Devices 63

Model Device ID
OS Version
(Android)

Sensor Vendor & Model
Accelerometer Gyroscope

OnePlus One A0001 5.1.1
STMicroelectronics

LIS3DH

STMicroelectronics

L3GD20

Samsung Galaxy S SGH-I997R 2.3.3
STMicroelectronics

K3DH

STMicroelectronics

K3G

Nexus 6 shamu 6.0.1 Invensense Invensense

Sony Z1C M51w 4.4.2 BOSCH BMA2X2 BOSCH,BMG160

Table 5.1: Phone Sensors Information

which enables us to investigate various preprocessing and feature calculation techniques.

5.2.2 Feature Extraction

The smartphone embedded accelerometer and gyroscope data along each axis are collected. To

extract time-domain features, a fixed window size of 64 data instances with a 50% overlap is

set up in our study. Both the mean and standard deviation values along X, Y, and Z axis for

each sensor are calculated based on the sliding window. Based on our investigation in Chapter

3, other time-domain features are not sensitive or significant and therefore are not considered.

In addition, frequency-domain features (energy and entropy) are extracted (window size of 256

and 50% overlap).

5.2.3 Classification and Evaluation

In the classification stage, five popular supervised machine learning algorithms are tested: C4.5

decision tree, SVM, Random Forest, Nave Bayes, and Multilayer Perceptron. Each algorithm’s

performance is examined to check which classifier is relatively less affected by the differential

sensor data.

In order to measure the performance of the classification results, the weighted average F-

measure is employed, which is a better score than precision and recall. The weighted average

F-measure considers both the precision and the recall:

WeightedAvg.F − Measure =

∑c
i=1 Fi − Measure∑c

i=1 wi
(5.1)

Where the Fi − Measure is the F-Measure of the ith class and the wi is the number of

64 Chapter 5. Sensor Heterogeneity Effects

instances of class i present in the test dataset. The F − Measure is defined as:

F − Measure =
2 ∗ precision ∗ recall

precision + recall
(5.2)

To evaluate the impacts of different accelerometer and gyroscope sensors on human activity

recognition systems, three testing modes are identified and compared to each other:

1. 10-fold cross validation: As described in Section 3.4, for the cross validation, first the

dataset is broken into 10 subsets equally. Then training is performed on 9 subsets and

testing on the remaining subset. This procedure repeats 10 times to obtain the average

score.

2. Device-to-device validation: As we have four distinct smartphones in our study, we train

the dataset from one smartphone, and test the model on the other three smartphones.

Device-to-device validation straightly assesses the impact of different sensors of smart-

phones.

3. Leave-one-out validation: In this mode training is performed on the dataset synthesized

from all available smartphone models, except for one, which is retained for testing only.

This mode considers the real-world HAR system deployment scenario: the training is

done based on various different smartphone modes, while the testing is done on one

unknown smartphone type.

5.2.4 Results on Original Datasets

The evaluation is performed on the datasets described above using the three evaluation modes.

Both time-domain and frequency-domain features are examined. An example of a validation

matrix for Random Forest is shown in Table 5.2. The bold diagonal represents the results for

10-fold cross validation. Each smartphone type is trained and tested on itself with a cross

validation method. The row ’leave-one’ represents the leave-one-out validation. Figure 5.1

and Figure 5.2 show the performances of different validation modes on all classifiers.

5.2. HAR onMultiple Devices 65

Testing Set
Training Set A0001 M51w SGH-i997R shamu

A0001 0.981 0.672 0.556 0.781

M51w 0.641 0.972 0.732 0.653

SGH-i997R 0.798 0.828 0.979 0.79

shamu 0.803 0.762 0.873 0.975
Leave-one-out 0.828 0.889 0.811 0.906

Table 5.2: Evaluation Matrix on Original Datasets for Random Forest (in F-Measure)

Figure 5.1: The performance evaluation on time-domain features

66 Chapter 5. Sensor Heterogeneity Effects

Figure 5.2: The performance evaluation on frequency-domain features

As it can be seen in both Figure 5.1 and Figure 5.2, with the 10-fold cross validation mode,

all classifiers reach a nearly perfect performance, which is also reported in many HAR re-

searches. However, the other two validation modes provide a more realistic performance eval-

uation. In the device-to-device evaluation, the testing is done on a different smartphone type

from the training smartphone type carried out by the same subject. It indicates a large degrada-

tion of the HAR system’s performance. The performance of leave-one-out validation is better

than the device-to-device validation as it integrates all the available smartphone models except

the testing one. In the real-world scenario, the leave-one-out method seems to be a possible

metrics for measuring the performance of HAR systems. But it still takes a lot of efforts and

requires the user to collect as much data as possible on various distinct devices.

5.3 Mitigating Techniques for Sensor Differences

In this section, the issue of sensor differences based on the testing results in Section 5.2.4 is

stressed. First of all, the sensor deviations along three axes and various smartphone models are

demonstrated. Then the reasons causing such performance degradation are discussed. Some

mitigating techniques are proposed and investigated in this section.

5.3. Mitigating Techniques for Sensor Differences 67

5.3.1 Sensor Differences

When assessing the impacts of sensor differences on HAR systems, according to the data anal-

yses on the sensor data collected from different smartphone models, significant heterogeneities

among those sensor readings are found, which will greatly impair the performance of human

activity systems.

According to Stisen et al. [50], the sensor differences can be categorized as follows:

1) Sensor Biases

Smartphone embedded accelerometer and gyroscope sensors have different specifications

in precision, resolution, and range, which also generate various biases. Although initial

calibration is done by the manufacturers, considering gains and offsets on each of the three

sensor axes, errors can still exist due to the rotation of the accelerometer package relative

to the circuit board and the errors in soldering and assembly process. Unexpected shocks

like falls on the ground may also make the device sensor misaligned and cause unwanted

biases.

2) Sampling Rate Heterogeneity

Smartphones from different manufacturers use various sensor models that support distinct

maximum sampling rates. Training HAR systems individually for each sampling rate is

impractical as the ground truth data collection is time consuming and costly.

3) Sampling Rate Instability

One main reason for the sampling rate instability is the multitasking effect. As smartphones

support running a large number of applications, this may cause high CPU loads during

periods of time. The Android operating system often gives different priorities among cur-

rently running tasks and this may affect the sensor’s sampling rate for HAR applications

running on the device. A high CPU load impacts actual sampling rates and the instability

varies differently across devices models even if they run the same OS version and the same

concurrent programs.

To demonstrate the sensor biases, we draw the box plots of acceleration and gyroscope

magnitudes for the investigated smartphones (shown in Figure 5.3 and Figure 5.4).

68 Chapter 5. Sensor Heterogeneity Effects

Phone Models

A0001 M51w SGH-i997R shamu

A
c
c
e
le

ra
ti

o
n

 (
m

/s
2
)

-4

-3

-2

-1

0

1

2

3

4

5

Accelerometer Offset in X-axis

Figure 5.3: The box plots of acceleration offset in X-axis

Phone Models

A0001 M51w SGH-i997R shamu

A
n

g
u

la
r

V
e
lo

c
it

y
 (

ra
d

/s
)

0

5

10

15

20

25

30

Gyroscope Offset in X-axis

Figure 5.4: The box plots of gyroscope offset in X-axis

The box plots in Figure 5.3 and Figure 5.4 show examples of sensor biases. Labels in

X-axis are four different sensor models embedded in four different smartphones. The Y-axis

represents the value of accelerometer and gyroscope readings for walking. As it can be seen

in the picture, four sensors have different mean values and different quartile range as well as

different whisker length. The red-cross marks in Figure 5.3 and Figure 5.4 indicate the outliers

in the dataset. Points are drawn as outliers if they are larger than q3+w(q3-q1) or smaller than

5.3. Mitigating Techniques for Sensor Differences 69

q1-w(q3-q1), where q1 and q3 are the 25th and 75th percentiles, respectively, and w is the

maximum whisker length. The default w is 1.5 corresponding to approximately 2.7 and 99.3%

coverage if the data are normally distributed. All these sensor biases would significantly lower

the performance of human activity detection system.

5.3.2 Possible Mitigating Techniques

Three possible mitigating techniques to alleviate the sensor differences are investigated and

assessed: outlier removal, interpolation, and a simple low pass filter (LPF). All these tech-

niques are applied in the time domain at the data preprocessing stage. Their effectivenesses are

examined and discussed.

1) Outlier Removal

As indicated in Figure 5.3 and Figure 5.4, the red-cross marks are the outliers present in

the datasets. These outliers from raw sensor readings are supposed to be generated by the

sampling instability, which means in the smartphone’s runtime, some unwanted extreme

values will be recorded. It is believed that if these outliers are removed, the impairments

caused by sensor differences will diminish.

In this study, the outliers are removed using the formula Q3 + OF ∗ IQR < xQ3 + EVF ∗ IQ

to detect outliers, where Q3 is the 25% quartile, IQR is the interquartile range, OF is the

outlier factor (equals to 3.0), and EVF is the extreme value factor (equals to 6.0).

2) Interpolation

As our sampling frequency 20Hz is a relatively low rate in HAR studies. To examine the

effects of higher frequency the original data are interpolated to 50 Hz via up-sampling. The

interpolation technique used is the linear interpolation, which employ linear polynomials to

build new data instance between two adjacent input instances.

3) Low-Pass Filter (LPF)

A low-pass filter is also used to smooth the raw sensor data in order to eliminate noisy

scattered data instances. The parameter in the LPF is set to be 0.7.

The starting point of employing these candidate techniques is to alleviate the sensor data

differences caused by the sensor biases and sampling instability. Results are shown in Figure

5.5 to Figure 5.12.

70 Chapter 5. Sensor Heterogeneity Effects

5.3.3 Result Analyses and Discussions

Figure 5.5, Figure 5.6, and Figure 5.7 are compared with Figure 5.1. Figure 5.5 to Figure 5.7

show the results for our three candidate solutions. Figure 5.8 to Figure 5.12 show the details

for each of the five classifiers.

Clearly, the outlier removal can improve the HAR performance for almost all classifiers

and validation methods. It is especially efficient for the SVM, Random Forest, and multilayer

perceptron classifiers. Take the Random Forest classifier as an example, the F-score of 10-fold

cross validation after removing outliers is 0.98525, which is higher than the original 0.97675.

For the device-to-device validation, the F-score is 0.69058, which is 16.5% higher than original

one (0.5972). For the leave-one-out validation, the F-score after removing outliers is also better

than original score (0.88875 vs. 0.84975).

However, up-sampling linear interpolation cannot improve the F-score. It even impairs the

HAR performance as shown in Figure 5.8 to Figure 5.12. The reason for the impairment may

be that just simply interpolating raw sensor data would escalate the sensor differences.

The LPF, for most cases, is as efficient of a method as the outlier removal. In the case of

Random Forest, the F-score of 10-fold cross validation after removing outliers is 0.9865, higher

than the original F-score. For the device-to-device validation, the F-score of LPF is 0.7445,

nearly the same as the original 0.74075. For the leave-one-out validation, after processing data

using filters, the F-score is also better than original score (0.8835 vs. 0.8585).

To conclude, both outlier removal and LPF have positive effects in alleviating the sensor

differences among various smartphone models. But interpolation in time-domain features will

not improve and may even harm the HAR performance. In addition, the performance of leave-

one-out validation is higher than the device-to-device validation. However, in the real-world

scenario, it is impractical to collect and train data from various devices for each user, while

testing is done on an unknown device, especially for the situation of the fast evolution of

smartphone hardwares. Therefore the mitigating techniques should focus on the device-to-

device validation scenario.

5.3. Mitigating Techniques for Sensor Differences 71

Figure 5.5: Activity recognition performance using outlier removal

Figure 5.6: Activity recognition performance using linear interpolation

72 Chapter 5. Sensor Heterogeneity Effects

Figure 5.7: Activity recognition performance using low-pass filter

Figure 5.8: Activity recognition performance using C4.5 decision tree classifier

5.3. Mitigating Techniques for Sensor Differences 73

Figure 5.9: Activity recognition performance using SVM classifier

Figure 5.10: Activity recognition performance using random forest classifier

74 Chapter 5. Sensor Heterogeneity Effects

Figure 5.11: Activity recognition performance using Naive Bayes classifier

Figure 5.12: Activity recognition performance using multilayer perceptron classifier

5.4. Summary 75

5.4 Summary

In this chapter, the issue of sensor differences when applying HAR systems across multiple de-

vices is stressed. A case study involving four distinct smartphones is conducted to investigate

the sensor differences and assess some potential mitigating methods. By analyzing the impair-

ments caused by smartphone sensor differences, we show the necessity to introduce mitigating

techniques for multi-device activity recognition systems. To alleviate the sensor biases and

sampling instability, three preprocessing techniques are examined. Among them, the outlier

removal and LPF have positive effects, while up-sampling interpolation does not help improve

the system performance.

Chapter 6

Conclusions and Future work

6.1 Conclusions

Smartphone based human activity recognition (HAR) has a wide range of applications includ-

ing healthcare, fitness, and anomalous situations alerting. This study focuses on detection of

human activities including walking, running, sitting, going upstairs, and going downstairs. Em-

bedded smartphone sensors including a tri-axial accelerometer and a gyroscope sensor are used

for motion data collection. Both time-domain and frequency- domain features are extracted and

analyzed.

Firstly, the research issue on human activity recognition based on smartphone sensors is

investigated. We found that smartphone based human activity recognition systems take advan-

tage of the evolutionary software and hardware of smartphone devices and are more flexible

compared with other wearable devices. Various data processing and machine learning tech-

niques are explored and supervised learning approach for the HAR problem is examined. Our

data collection, analyses, and experiments show that the time-domain features extracted from

the raw smartphone sensor readings are good enough to recognize some basic human activ-

ities with satisfied classification accuracy. By investigating some popular machine learning

algorithms (C4.5 Decision Tree, Support Vector Machine, Naive Bayes, and Multilayer Per-

ceptron), we conclude that for detecting basic human activities, C4.5 Decision Tree is a better

solution to be integrated in smartphone applications. In addition, compared with time-domain

and frequency-domain features, time-domain features are more reliable and practicable for

real-time recognition, though both of these features can generate good classification results.

It is believed that there is a need for HAR applications to not only work in a supervised man-

ner but also in an unsupervised way, and preferably work incrementally, which can reduce the

computation burden of the mobile devices. Therefore, an incremental clustering algorithm for

76

6.2. FutureWork 77

human activity recognition is proposed. The proposed two-stage incremental algorithm deals

with streamed data from smartphone sensors and perform clustering within mobile devices. It

first works in a single pass manner, and then it increases the number of final clusters one by

one with the criterion of minimizing the distortion error until the user pre-defined number of

clusters is reached. The first stage can help save memory space and computation power when

performing clustering in the mobile devices, while the second stage helps alleviate the perfor-

mance loss in the first streaming stage. The proposed algorithm can reach comparable results

with classical clustering methods. The effects of different numbers of initial points and win-

dow sizes are also explored. This work is promising as it can be used for data auto-annotation

without any priori knowledge.

In addition the impacts of sensor differences on multiple mobile devices when deploying

HAR applications are studied. A case study is conducted to assess the effects of smartphone

sensor differences. Using three different validation methods, we show how the sensor differ-

ences impair the HAR performance. Thus it is necessary to introduce some mitigating tech-

niques. Three pre-processing techniques are examined (linear interpolation, outlier removal,

and low pass filter). Both the outlier removal and the low pass filter have positive effects on

alleviating the sensor differences, while up-sampling interpolation does not help improve the

system performance.

In summary, this thesis provides solutions for human activity recognition employing smart-

phone embedded sensors. For the supervised learning approach, various features and classifiers

are examined and satisfied results are obtained. However the best sampling rate and window

size for smartphone sensing systems remain to be determined. For the unsupervised approach,

we show the effectiveness of the incremental clustering method. It is promising to work on

multiple devices as it does not need the labelling work and training process. The proposed

incremental clustering method is based on the classic K-Means algorithms, which is simple

and efficient but may not be capable of clustering more activities. Although some techniques

are provided to alleviate sensor differences and have shown positive effects, these techniques

are the most basic and simple ones. To see significant improvements of HAR across multiple

devices, either more advanced filters or more complex interpolation needs to be introduced.

In addition, detecting outliers in the dataset more efficiently is another issue we should pay

attention to. All these open problems lead to the future work described below.

6.2 Future Work

The following ideas can be the potential future work based on our discussion in the previous

section:

78 Chapter 6. Conclusions and Future work

• It may be promising to incorporate more sensors (e.g. video and mircophone sensors)

to recognize more complex human activities, such as meeting, in elevator, driving, in

hand (dangling), and in hand (texting). Besides the supervised learning algorithms in-

vestigated in the thesis, the deep learning approaches are also inspiring to help train high

dimensional sensor data.

• Due to the limitation of fixed sampling rate and window size for smartphone sensing

systems, our work can highly benefit from more robust and adaptive sampling meth-

ods. Sensing adaptively can bring us benefits of reducing energy consumptions without

sacrificing the recognition accuracy.

• In order to mitigate sensor differences, more complex and adaptive filters seem promising

and need further investigation. Interpolations for both up-sampling and down-sampling

at different frequency are needed. In addition, the criterion of detecting outliers in the

dataset can be extended statically. The concept of autonomic systems [76] may also be

brought into smartphone based HAR applications to alleviate sensor differences across

multiple devices.

• Further interesting future work for this study would be the investigation of high level

human activities. It has been noticed that with the recognized basic human activities,

high level human activities can be identified using topic models. The ability of sensing

high level activities based on smartphone and topic models can be an exciting avenue to

explore.

Bibliography

[1] “Android coordinate-system,” 2016. [Online; accessed 27-May-2016].

[2] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition using
body-worn inertial sensors,” ACM Computing Surveys (CSUR), vol. 46, no. 3, p. 33, 2014.

[3] Google, “Android api description,” 2016. [Online; accessed 28-March-2016].

[4] C. G. Ryan, P. M. Grant, W. W. Tigbe, and M. H. Granat, “The validity and reliability
of a novel activity monitor as a measure of walking,” British journal of sports medicine,
vol. 40, no. 9, pp. 779–784, 2006.

[5] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[6] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–106,
1986.

[7] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[8] R. Lippmann, “An introduction to computing with neural nets,” IEEE Assp magazine,
vol. 4, no. 2, pp. 4–22, 1987.

[9] J. V. Tu, “Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes,” Journal of clinical epidemiology, vol. 49,
no. 11, pp. 1225–1231, 1996.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka
data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 11, no. 1,
pp. 10–18, 2009.

[11] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian logistic regression for
text categorization,” Technometrics, vol. 49, no. 3, pp. 291–304, 2007.

[12] G. H. John and P. Langley, “Estimating continuous distributions in bayesian classi-
fiers,” in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,
pp. 338–345, Morgan Kaufmann Publishers Inc., 1995.

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A library for
large linear classification,” The Journal of Machine Learning Research, vol. 9, pp. 1871–
1874, 2008.

79

80 BIBLIOGRAPHY

[14] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[15] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise.,” in Kdd, vol. 96, pp. 226–231, 1996.

[17] “Weka developer manual,” 2016. [Online; accessed 18-June-2016].

[18] M. Zhang and A. A. Sawchuk, “Usc-had: a daily activity dataset for ubiquitous activity
recognition using wearable sensors,” in Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, pp. 1036–1043, ACM, 2012.

[19] Z. Zhou, X. Chen, Y.-C. Chung, Z. He, T. X. Han, and J. M. Keller, “Activity analysis,
summarization, and visualization for indoor human activity monitoring,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 18, no. 11, pp. 1489–1498,
2008.

[20] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukowicz,
D. Bannach, G. Pirkl, A. Ferscha, et al., “Collecting complex activity datasets in highly
rich networked sensor environments,” in Networked Sensing Systems (INSS), 2010 Sev-
enth International Conference on, pp. 233–240, IEEE, 2010.

[21] D. T. G. Huynh, Human activity recognition with wearable sensors. PhD thesis, Technis-
che Universität Darmstadt, 2008.

[22] B. Dong and S. Biswas, “Wearable networked sensing for human mobility and activity
analytics: A systems study,” in Communication Systems and Networks (COMSNETS),
2012 Fourth International Conference on, pp. 1–6, IEEE, 2012.

[23] D. Curone, G. M. Bertolotti, A. Cristiani, E. L. Secco, and G. Magenes, “A real-time
and self-calibrating algorithm based on triaxial accelerometer signals for the detection of
human posture and activity,” Information Technology in Biomedicine, IEEE Transactions
on, vol. 14, no. 4, pp. 1098–1105, 2010.

[24] C. V. Bouten, K. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, “A triaxial ac-
celerometer and portable data processing unit for the assessment of daily physical activ-
ity,” Biomedical Engineering, IEEE Transactions on, vol. 44, no. 3, pp. 136–147, 1997.

[25] T. Al-Ani, Q. T. Le Ba, and E. Monacelli, “On-line automatic detection of human activity
in home using wavelet and hidden markov models scilab toolkits,” in Control Applica-
tions, 2007. CCA 2007. IEEE International Conference on, pp. 485–490, IEEE, 2007.

[26] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” in
Pervasive computing, pp. 1–17, Springer, 2004.

[27] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human phys-
ical activity from on-body accelerometers,” Sensors, vol. 10, no. 2, pp. 1154–1175, 2010.

BIBLIOGRAPHY 81

[28] O. Banos, M. Damas, H. Pomares, A. Prieto, and I. Rojas, “Daily living activity recog-
nition based on statistical feature quality group selection,” Expert Systems with Applica-
tions, vol. 39, no. 9, pp. 8013–8021, 2012.

[29] L. Zhang, T. Liu, S. Zhu, and Z. Zhu, “Human activity recognition based on triaxial
accelerometer,” in Computing and Convergence Technology (ICCCT), 2012 7th Interna-
tional Conference on, pp. 261–266, IEEE, 2012.

[30] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone
accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp. 74–82, 2011.

[31] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Tröster,
“Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor
selection,” in Wireless sensor networks, pp. 17–33, Springer, 2008.

[32] J. Yin, Q. Yang, and J. J. Pan, “Sensor-based abnormal human-activity detection,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 20, no. 8, pp. 1082–1090, 2008.

[33] S.-W. Lee and K. Mase, “Activity and location recognition using wearable sensors,” IEEE
pervasive computing, vol. 1, no. 3, pp. 24–32, 2002.

[34] B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C. J. Büla, and P. Robert, “Ambu-
latory system for human motion analysis using a kinematic sensor: monitoring of daily
physical activity in the elderly,” Biomedical Engineering, IEEE Transactions on, vol. 50,
no. 6, pp. 711–723, 2003.

[35] A. Subramanya, A. Raj, J. A. Bilmes, and D. Fox, “Recognizing activities and spatial
context using wearable sensors,” arXiv preprint arXiv:1206.6869, 2012.

[36] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I. Korhonen, “Activ-
ity classification using realistic data from wearable sensors,” Information Technology in
Biomedicine, IEEE Transactions on, vol. 10, no. 1, pp. 119–128, 2006.

[37] E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Fried-
man, “Real-time recognition of physical activities and their intensities using wireless
accelerometers and a heart rate monitor,” in Wearable Computers, 2007 11th IEEE In-
ternational Symposium on, pp. 37–40, IEEE, 2007.

[38] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, “Window size impact in
human activity recognition,” Sensors, vol. 14, no. 4, pp. 6474–6499, 2014.

[39] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari, “Enabling effective
programming and flexible management of efficient body sensor network applications,”
Human-Machine Systems, IEEE Transactions on, vol. 43, no. 1, pp. 115–133, 2013.

[40] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán, and
D. Roggen, “The opportunity challenge: A benchmark database for on-body sensor-based
activity recognition,” Pattern Recognition Letters, vol. 34, no. 15, pp. 2033–2042, 2013.

82 BIBLIOGRAPHY

[41] S.-H. Fang, Y.-C. Liang, and K.-M. Chiu, “Developing a mobile phone-based fall de-
tection system on android platform,” in Computing, Communications and Applications
Conference (ComComAp), 2012, pp. 143–146, IEEE, 2012.

[42] J. Cho, J. Kim, and T. Kim, “Smart phone-based human activity classification and energy
expenditure generation in building environments,” in Proceedings of the 7th international
symposium on sustainable healthy buildings, vol. 2012, pp. 97–105, 2012.

[43] M. Boyle, A. Klausner, D. Starobinski, A. Trachtenberg, and H. Wu, “Poster: Gait-based
smartphone user identification,” in Proceedings of the 9th international conference on
Mobile systems, applications, and services, pp. 395–396, ACM, 2011.

[44] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman,
X. Zheng, and A. T. Campbell, “Sensing meets mobile social networks: the design, im-
plementation and evaluation of the cenceme application,” in Proceedings of the 6th ACM
conference on Embedded network sensor systems, pp. 337–350, ACM, 2008.

[45] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from accelerometer data
on a mobile phone,” in Distributed computing, artificial intelligence, bioinformatics, soft
computing, and ambient assisted living, pp. 796–799, Springer, 2009.

[46] J.-H. Chiang, P.-C. Yang, and H. Tu, “Pattern analysis in daily physical activity data
for personal health management,” Pervasive and Mobile Computing, vol. 13, pp. 13–25,
2014.

[47] A. Anjum and M. U. Ilyas, “Activity recognition using smartphone sensors,” in Consumer
Communications and Networking Conference (CCNC), 2013 IEEE, pp. 914–919, IEEE,
2013.

[48] Y. Kwon, K. Kang, and C. Bae, “Unsupervised learning for human activity recognition
using smartphone sensors,” Expert Systems with Applications, vol. 41, no. 14, pp. 6067–
6074, 2014.

[49] X. Su, H. Tong, and P. Ji, “Activity recognition with smartphone sensors,” Tsinghua Sci-
ence and Technology, vol. 19, no. 3, pp. 235–249, 2014.

[50] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne,
and M. M. Jensen, “Smart devices are different: Assessing and mitigatingmobile sensing
heterogeneities for activity recognition,” in Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pp. 127–140, ACM, 2015.

[51] S. Kwon, D. Lee, J. Kim, Y. Lee, S. Kang, S. Seo, and K. Park, “Sinabro: A smartphone-
integrated opportunistic electrocardiogram monitoring system,” Sensors, vol. 16, no. 3,
p. 361, 2016.

[52] C. Medrano, I. Plaza, R. Igual, Á. Sánchez, and M. Castro, “The effect of personalization
on smartphone-based fall detectors,” Sensors, vol. 16, no. 1, p. 117, 2016.

BIBLIOGRAPHY 83

[53] E. Casilari, R. Luque, and M.-J. Morón, “Analysis of android device-based solutions for
fall detection,” Sensors, vol. 15, no. 8, pp. 17827–17894, 2015.

[54] F. Miao, Y. Cheng, Y. He, Q. He, and Y. Li, “A wearable context-aware ecg monitoring
system integrated with built-in kinematic sensors of the smartphone,” Sensors, vol. 15,
no. 5, pp. 11465–11484, 2015.

[55] F. Vandewiele and C. Motamed, “An unsupervised learning method for human activity
recognition based on a temporal qualitative model,” in International Workshop on Be-
haviour Analysis and Video Understanding (ICVS 2011), p. 9, 2011.

[56] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat, “An unsu-
pervised approach for automatic activity recognition based on hidden markov model re-
gression,” Automation Science and Engineering, IEEE Transactions on, vol. 10, no. 3,
pp. 829–835, 2013.

[57] W.-H. Ong, L. Palafox, and T. Koseki, “An incremental approach of clustering for hu-
man activity discovery,” IEEJ Transactions on Electronics, Information and Systems. C,
vol. 134, no. 11, pp. 1724–1730, 2014.

[58] R. Minhas, A. A. Mohammed, and Q. Wu, “Incremental learning in human action recog-
nition based on snippets,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 22, no. 11, pp. 1529–1541, 2012.

[59] Z. Wang, M. Jiang, Y. Hu, and H. Li, “An incremental learning method based on proba-
bilistic neural networks and adjustable fuzzy clustering for human activity recognition by
using wearable sensors,” Information Technology in Biomedicine, IEEE Transactions on,
vol. 16, no. 4, pp. 691–699, 2012.

[60] H. Yu, C. Zhang, and G. Wang, “A tree-based incremental overlapping clustering method
using the three-way decision theory,” Knowledge-Based Systems, vol. 91, pp. 189–203,
2016.

[61] A. M. Bagirov, J. Ugon, and D. Webb, “Fast modified global k-means algorithm for
incremental cluster construction,” Pattern recognition, vol. 44, no. 4, pp. 866–876, 2011.

[62] M. Charikar, L. O’Callaghan, and R. Panigrahy, “Better streaming algorithms for clus-
tering problems,” in Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pp. 30–39, ACM, 2003.

[63] M. Cottrell, B. Hammer, A. Hasenfuß, and T. Villmann, “Batch and median neural gas,”
Neural Networks, vol. 19, no. 6, pp. 762–771, 2006.

[64] C. Gupta and R. L. Grossman, “Genic: A single-pass generalized incremental algorithm
for clustering.,” in SDM, pp. 147–153, SIAM, 2004.

[65] A. M. Bagirov, “Modified global k-means algorithm for minimum sum-of-squares clus-
tering problems,” Pattern Recognition, vol. 41, no. 10, pp. 3192–3199, 2008.

84 BIBLIOGRAPHY

[66] D. T. Pham, S. S. Dimov, and C. Nguyen, “An incremental k-means algorithm,” Proceed-
ings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineer-
ing Science, vol. 218, no. 7, pp. 783–795, 2004.

[67] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso, “Preprocessing techniques for con-
text recognition from accelerometer data,” Personal and Ubiquitous Computing, vol. 14,
no. 7, pp. 645–662, 2010.

[68] M. Mathie, Monitoring and interpreting human movement patterns using a triaxial ac-
celerometer. PhD thesis, The University of New South Wales, 2003.

[69] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, “Im-
plementation of a real-time human movement classifier using a triaxial accelerometer for
ambulatory monitoring,” Information Technology in Biomedicine, IEEE Transactions on,
vol. 10, no. 1, pp. 156–167, 2006.

[70] “Sequential k-means,” 2016. [Online; accessed 28-March-2016].

[71] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile sensing?,” in Pro-
ceedings of the 16th International Workshop on Mobile Computing Systems and Applica-
tions, pp. 117–122, ACM, 2015.

[72] “Samsung health app,” 2016. [Online; accessed 27-May-2016].

[73] “Sony lifelog app,” 2016. [Online; accessed 27-May-2016].

[74] “Apple health app,” 2016. [Online; accessed 27-May-2016].

[75] T. Maekawa and S. Watanabe, “Unsupervised activity recognition with user’s physical
characteristics data,” in Wearable Computers (ISWC), 2011 15th Annual International
Symposium on, pp. 89–96, IEEE, 2011.

[76] S. Galzarano, G. Fortino, and A. Liotta, “Embedded self-healing layer for detecting and
recovering sensor faults in body sensor networks,” in 2012 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pp. 2377–2382, IEEE, 2012.

Curriculum Vitae

Name: Xizhe Yin

Post-Secondary 2014 - 2016, M.E.Sc
Education and Department of Electrical and Computer Engineering
Degrees: Faculty of Engineering

University of Western Ontario
London, Ontario, Canada

2010 - 2014, B.Eng
Department of Automation
School of Information Science and Technology
University of Science and Technology of China
Hefei, Anhui, P.R. China

Related Work Teaching Assistant
Experience: The University of Western Ontario

2014 - 2016

Publications:

[1] Yin, X., Shen, G., Wang, X., Shen, W. Mitigating Sensor Differences for Phone-based
Human Activity Recognition, Proceedings of 2016 IEEE International Conference on Sys-
tems, Man, and Cybernetics (IEEE SMC 2016), Budapest, Hungary, Oct. 9-12, 2016.

[2] Yin, X., Shen, W., Wang, X. Incremental Clustering for Human Activity Detection Based
on Smart Phone Sensor Data, Proceedings of 2016 IEEE 20th International Conference
on Computer Supported Cooperative Work in Design (IEEE CSCWD 2016), Nanchang,
China, May 4-6, 2016, pp. 35-40.

[3] Yin, X., Shen, W., Samarabandu, J., Wang, X., Human Activity Detection Based on Mul-
tiple Smart Phone Sensors and Machine Learning Algorithms, Proceedings of 2015 IEEE
19th International Conference on Computer Supported Cooperative Work in Design (IEEE
CSCWD 2015), Calabria, Italy, May 6-8, 2015, pp. 582-587.

85

	Leveraging Smartphone Sensor Data for Human Activity Recognition
	Recommended Citation

	tmp.1482261721.pdf.yoi4e

