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Abstract— Constrained random test generation is one of
the most widely adopted methods for generating stimuli for
simulation-based verification. Randomness leads to test diversity,
but tests tend to repeatedly exercise the same design logic.
Constraints are written (typically manually) to bias random
tests towards interesting, hard-to-reach, and yet-untested logic.
However, as verification progresses, most constrained random
tests yield little to no effect on functional coverage. If stimuli
generation consumes significantly less resources than simulation,
then a better approach involves randomly generating a large
number of tests, selecting the most effective subset, and only
simulating that subset. In this paper, we introduce a novel method
for automatic constraint extraction and test selection. This
method, which we call coverage-directed test selection, is based on
supervised learning from coverage feedback. Our method biases
selection towards tests that have a high probability of increasing
functional coverage, and prioritises them for simulation. We
show how coverage-directed test selection can reduce manual
constraint writing, prioritise effective tests, reduce verification
resource consumption, and accelerate coverage closure on a large,
real-life industrial hardware design.

Keywords—Design Verification, Supervised Learning,
Coverage-Directed Test Generation, Test Selection, Machine
Learning for Verification, CDG, EDA

I. INTRODUCTION

Functional verification is the process of ensuring the func-
tional correctness of a hardware design with respect to its in-
tended specification [1]. A popular method of performing func-
tional verification is simulation-based verification. Simulation-
based verification is a process in which the design under test
(DUT) is stressed by test stimuli within a simulation engine,
with the resulting DUT behaviour being checked against
expected behaviour according to the specification. Deviations
between DUT behaviour and the specification indicate possible
faults, referred to as ‘bugs’, in the design logic. Exercised DUT
functionality is recorded in a coverage database. Coverage is
an important measure of verification progress and test quality.
Based on analysis of the coverage reports, verification effort
can focus on uncovered areas.

Constrained random test generation, illustrated in Figure
1, is currently the state-of-the-art test generation method.
Random test generation allows for automatic generation of
diverse test stimuli. Constraining random tests ensures they
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Fig. 1: Constrained Random Test Generation

are legal and meaningful with respect to the specification.
However, many of the generated tests are redundant in that
they repeatedly explore the same DUT functionality while con-
suming significant verification resources. Constrained random
tests are generally ineffective at exercising hard-to-reach or
yet uncovered DUT functionality.

A logical unit of DUT functionality that has been identified
for verification and remains unexercised is called a coverage
hole. Writing constraints that target coverage holes is tedious
work often carried out manually by senior verification engi-
neers with deep knowledge of the DUT on a trial-and-error
basis.

Automatic test biasing based on coverage feedback leads to
more effective testing. Coverage feedback consists of coverage
data derived from coverage reports, and previously simulated
test data. Effective tests are those that are legal, meaningful,
and useful at exercising the DUT functionality required to
plug coverage holes. Effective testing significantly increases
functional verification productivity by freeing engineers from
manually biasing test generation. Coverage is also closed
faster, resulting in faster project completion.

In this paper, we introduce coverage-directed test selection
(CDS) as a novel, machine learning-based [2] approach to
automatic test biasing during simulation-based verification.
Although we largely focus on using the method for test
selection, our approach can also be adapted for test generation
through techniques such as constraint extraction using decision
tree classification. The CDS method is applicable to any design



in which labelled coverage feedback data can be presented in
a tabular structure (i.e., with features as columns and rows as
training examples), and where simulation can be decoupled
from coverage collection.

This paper is structured as follows. Section II introduces
related research, and how the limitations of the research mo-
tivated this work. Section III provides a detailed introduction
to CDS. Section IV describes the environment in which the
CDS experiments were conducted. Section V presents and
discusses the results derived from performing CDS using a
variety of supervised learning algorithms. Section VI presents
suggestions for future research directions and concludes the
paper.

II. RELATED WORK

Coverage-Directed Test Generation (CDG) [3] provided an
early attempt at using artificial intelligence (AI) to automate
test biasing during simulation-based verification. CDG meth-
ods, exemplified by [3], [4], use AI techniques to build a model
mapping test generation parameters, to the coverage exercised
by generated stimuli. The model is used to bias test generation
towards plugging coverage holes to achieve faster coverage
closure.

The approach in [3] utilised a Bayesian Network to learn the
relationship between test generation constraints and coverage,
then subsequently querying the Bayesian Network for new
constraints that have a high probability of exercising a given
coverage point. Although the results showed that the CDG
method could indeed accelerate coverage progress, it was also
clear that the method required significant domain knowledge
to be encoded into the model.

Encoding domain knowledge into an AI model is largely a
manual endeavour which has to be undertaken by verification
engineers who understand the design. Therefore, the problem
of verification engineer time and effort being taken by manual
work still remains. It could be argued that the time and
effort expended during the model building phase is a one-off
cost. But if the design changes significantly across projects
– a likely outcome given the ever-expanding complexity and
functionality of modern hardware – then a large part of that
manual work has to be done again.

Building an AI model mapping coverage feedback to test
stimuli is generally known to be difficult in practice. This
can be due to several reasons, such as a lack of positive
training examples; different abstraction levels between test
stimuli and microarchitectural behaviour; lack of a suitable
distance metric; and the lack of suitable or adequate positive
training examples.

In this paper, we adapt CDG for biasing test selection,
while addressing several of its shortcomings. We first solve the
problem of lack of labelled training data by converting simu-
lation trace data from an unlabelled into a labelled state. We
proceed to model relationships between simulated test stimuli
and coverage using supervised learning. This generalises the
model building process to be performed by any classifier of
choice and removes the need to extensively encode domain

knowledge into the model structure. Relationships between test
stimuli and coverage are learnt automatically despite different
abstraction levels. We use coverage groups derived from the
verification plan to approximate distance between coverage
points, and to mitigate problems that would have arisen due to
the lack of positive training examples when targeting coverage
holes.

III. COVERAGE DIRECTED TEST SELECTION

Coverage-directed test selection (CDS) focuses on selecting
a small subset of pre-generated test stimuli based on the
constraints learnt by the CDS engine. This necessitates that
a large set of test stimuli have already been generated, for
example through a constrained random process.

If test stimuli generation takes a small amount of time and
computation, while simulation takes an exponentially longer
time plus significantly more computation, it is beneficial to
generate a large number of test stimuli, then subsequently bias
selection towards the most promising tests. CDS is therefore
ideal for verification environments where test generation is
‘cheap’, while simulation is ‘expensive’.

A. Constraint Extraction Theory

At the core of the CDS engine is a constraint extraction
process during which constraint learning and probability esti-
mation are performed for two possible outcomes, namely exer-
cising target coverage, versus not exercising target coverage.
The constraint extraction process takes previously simulated
test stimuli and coverage data as inputs.

There are two main aspects of constraint extraction that
require special attention: labelling based on coverage, and
constructing training sets. We now discuss each of these in
turn.

1) Labelling: Labelled data are required to train the clas-
sification model. A major issue immediately arises because
the target coverage points have never been exercised before,
meaning that positive training examples are not present in the
data.

To mitigate this lack of positive training examples, we
first group the functional coverage space into non-overlapping
coverage groups. Coverage grouping enables us to label the
training set based on the coverage groups, and also build
coverage feedback models at the coverage group level. We
derive coverage groups through the coverage hole analysis
method of partitioning [5]. Partitioning divides the coverage
space into manageable partitions based on information readily
obtained the verification plan. After identifying target coverage
groups, each group’s exercising test stimuli can be labelled as
positive examples.

The CDS engine can automatically inspect a coverage report
to identify target coverage groups containing coverage holes.
To ensure adequate training data is obtained, only coverage
groups exercised by a specified minimum number of test
stimuli are considered as target coverage groups.
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Fig. 2: Original data (left). Original data augmented with
reference data (right).

2) Training Set Construction: Each target coverage group’s
training set is constructed by adopting Hastie et al.’s [6]
method of transforming problems from unsupervised to su-
pervised learning. This entails augmenting an ‘original’ data
set with ‘reference’ data. We treat stimuli that exercised the
coverage group as ’original’ data generated from specific,
known constraint distributions. Conversely, we draw a sample
of ’reference data’ of the same size from tests that did not
exercise the coverage group, assuming they are generated from
unknown constraint distributions. We label reference data as
negative examples and pool the data sets.

The sampling step leads to balanced training sets in which
positive and negative examples are equally represented. Sam-
pling from different constraint distributions is likely to facili-
tate for the positive and negative examples to be separable due
to the high density of positive examples in specific regions of
the feature space. Figure 2 shows an example of original blue
data points sampled from a normal distribution, augmented
with an equal number of reference orange data points sampled
from a uniform distribution. A binary classifier can then be
trained to classify the original data from the reference data.
It can be seen that the separation of positive and negative
examples is generally made possible by data augmentation, but
it is imperfect and prone to some error based on the noisiness
of the data.

B. Constraint Extraction example using a Decision Tree

To further aid understanding, we now provide an example
of the constraint extraction process using classification and
regression tree (CART) [7] methodology. In general, a decision
tree is a function, f , that takes a vector, x, of n feature values
{x0, x1, ..., xn−1} as inputs; the function returns a decision, ŷ
(e.g., a class for classification, or a real value for regression)
as the output.

Suppose that the example DUT is a small radar signal
processor that either takes inputs from main memory or from
a radar receiver. During processing, the inputs are written to a
specific register determined by a data bin value and processed
according to their size. If output is required, the processed
results are stored in main memory.

The features for training the decision tree are the DUT’s

configuration fields, which control the device’s behaviour. The
DUT’s features are:

• input interface, with values {MEM, RDR}
• data size, with values {1, 2, 3, 4}
• output active, with values {0, 1}
• data bin, with values {0, ... , 232 − 1}
Broadly speaking, the multi-dimensional region defined by

the configuration fields and their values forms the coverage
model. This simple DUT’s coverage model would consist
of 6.87x1010 cross-product coverage points if all possible
combinations needed to be verified. In real designs, coverage
model sizes can be reduced by, for example, largely focusing
on complex functionality that is known to be bug-prone, or by
excluding combinations that should never occur according the
specification.

A test is described as a vector of feature values, an example
being (input interface: MEM, data size: 4, output active:
1, data bin: 298). Each test belongs to one of two mutually
exclusive classes known apriori, which we will denote 1 and
0 for positve and negative classes, respectively. The table in
3a shows an encoded training set comprising of 10 training
examples. A training set is constructed for each target coverage
group.

The target coverage group associated with the training
set in Figure 3a contains coverage points that are exercised
when data inputs have been received from the radar receiver
(input interface = 1). In addition, the coverage points tend to
be exercised when output is required (output active = 1), as
is typically the case when the value of data bin is relatively
high.

Figure 3b shows the decision tree induced from the example
training set. The root and internal nodes display the splitting
condition alongside the Gini impurity of the node (gini), the
proportion of training examples remaining in the node relative
to the complete training set (samples), the class frequencies
of the node’s training examples - one for each class (value),
and the node’s predicted class (class). Class frequencies are
important because they can be interpreted as an empirical
estimation of the model’s ability to generalise to unseen data.
The leaf nodes display the Gini impurity of the node, the
proportion of examples used to train the node, and the node’s
predicted class.

Following the decision tree, we find that the example test
(input interface: 0, data size: 4, output active: 1, data bin:
298) is predicted to belong to the negative class with 100%
probability. This tells us that it is unlikely to exercise the cov-
erage points within the target coverage group. The implication
of a negative class prediction for a newly generated test is that
it is not selected for simulation.

IV. EXPERIMENTAL SETUP

A. Design Under Test

We evaluated CDS on Infineon Technologies’ Radar Signal
Processing Unit (RSPU) AURIX TC3XX design. The RSPU
is a large, complex and highly configurable block crucial to



input interface data size output active data bin class
1 1 0 309 1
1 4 1 402,483,636 1
1 2 1 1,334,291 1
1 4 1 8,124,587 1
1 4 1 1,839,380 1
0 3 1 32 0
0 1 0 1,009 0
1 3 1 2,983 0
1 1 0 115,768 0
0 2 1 19,289,876 0

(a) Training set
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(b) Decision tree

Fig. 3: Decision tree induced from training set

the function of Advanced Driver Assistance Systems (ADAS)
in Infineon’s AURIX family of microcontrollers. The design
functions as a semi-autonomous accelerator for performing
Fast Fourier Transforms (FFT) on input data. The RSPU has
also been used as the DUT in research that focused on novelty-
directed verification [8], [9] as a mechanism for test selection
and ordering.

The behaviour of the RSPU is configured by inputs received
as a set of configuration instructions and data via two input
interfaces. The largest effort to uncover logical errors in the
RSPU design occurs via simulation-based functional verifica-
tion.

B. Test Stimuli and Coverage

Each RSPU test is a feature vector of 300 configuration
fields. Test stimuli for the DUT are generated in an industry-
standard constrained random environment. The DUT is treated
as a black box over which we can control the input stimuli,
and observe outputs in the form of functional coverage data.

The DUT functionality we aim to verify is detailed in the
verification plan as coverage groups. There are almost 200
coverage groups of varying size that collectively form the
RSPU’s functional coverage model. We assume that coverage
points are grouped together because they are judged to be
semantically similar by the verification team.

C. Metric

The metric we use to assess the success of these experiments
is functional coverage. The functional coverage model contains
about 6,000 whitebox cross-product coverage points.

D. Experimentation Database

Relying on DUT simulation was impractical because it takes
a long time to obtain results. In a real-world setting, achieving
100% functional coverage closure for the RSPU requires
approximately 2 million constrained random test stimuli. It
takes an average of 2 hours to simulate an RSPU test within
the constrained random testbench. Achieving coverage closure
would require continuous consumption of 1,000 EDA licences
for 6 months, alongside several months of effort spent by
verification engineers writing constraints.

Instead of direct DUT simulation, the experiments were
expedited through the creation of an experimentation database.
The experimentation database stored test stimuli and coverage
data that could emulate DUT simulation. A golden regression
of approximately 3,000 tests were found to enable optimal
coverage closure on the RSPU’s coverage model. These golden
regression tests were stored in the experimentation database to
ensure coverage closure was possible.

To resemble real-life RSPU verification, where there are
relatively more tests that do not contribute to coverage closure,
a further 83,000 constrained random test stimuli were added to
the database. Because they are constrained random tests, they
are also able to exercise coverage on the DUT. However, the
coverage they exercise will generally be easy to reach, hence
we cannot reasonably expect them to exercise new coverage,
particularly during the advanced stages of verification when
mostly hard-to-reach coverage points remain. These extra
83,000 stimuli were estimated to be large enough in number
to make the selection problem more realistic by introducing
diversity and redundancy among the tests, but small enough
to enable most experiments to be completed within a day.

Before experimentation began, the 86,000 tests in the
database were simulated, and the coverage achieved by each
test was saved to a separate table in the database. Relations
were defined between the test and coverage tables to associate
each test to the coverage points it activated. During experi-
mentation, test selection means sampling without replacement
from the 86,000 stimuli. Simulating a test means querying the



database for the coverage points exercised by the test. The
experimentation database allows for tests to be simulated in
any order, and to quickly query for the coverage points relating
to a particular test, without direct DUT simulation. This
enabled rapid experimentation and prototyping of solutions.

E. CDS Classifiers

To understand the trade-offs associated with the different
classifiers, we distinguish between tree-based and non-tree-
based classification. Tree-based classifiers depend on decision
trees as the mechanism for making predictions, while non-tree-
based classifiers depend on other mechanisms for their pre-
dictions. CDS experiments were implemented using Python3.
All classifier implementations used in the experiments are
available from Scikit-learn [10].

The following decision tree-based classifiers were com-
pared:

• Baseline - a ‘dummy’ classifier that makes predictions
in a uniform random manner regardless of the input fea-
tures. A dummy classifier is useful for gauging baseline
performance when comparing multiple classifiers.

• DT - decision tree classifier with standard hyperparame-
ters.

• DCDT - depth-constrained decision tree whose maximum
depth was chosen based on the observation that many
cross-product coverage points in the coverage model
tend to encompass 3 configuration fields. Therefore, the
maximum depth was set to 3. This is an experiment to
determine the effect of integrating domain knowledge into
the model. One way of integrating domain knowledge
into a machine learning model is through hyperparameter
tuning.

• DCRDT - depth-constrained decision tree with ran-
domised splits. Similar to DCDT, the maximum depth for
the induced trees is restricted to 3. But instead of using
an information gain measure to determine which feature
to split on, the algorithm randomly selects a feature to
split on from the set of available features.

• RF - random forest algorithm consisting of several deci-
sion trees.

• GB - gradient boosting algorithm based on decision tree
estimators.

The following non-tree classifiers were also compared:
• LR - logistic regression classifier.
• NN - five-layer neural network.
• NB - Naive Bayes classifier.

F. CDS Procedure

CDS is performed as part of an iterative simulation-based
verification process. In the early stages of verification, 1,000
tests are randomly selected and simulated per iteration. When
90% functional coverage is reached, which typically takes
roughly 5,000 tests, CDS is activated.

During each CDS iteration, a classification model is trained
for each target coverage group. The trained model is used to
select the most optimal test to simulate in the next iteration,

such that the total number of tests simulated in each iteration
is equal to the number of target coverage groups. Since it
typically takes less than 5 minutes to train the models, we
fully re-train the models during every iteration.

No feature selection is performed for the CDS experiments,
and only basic feature engineering is performed. To avoid
increasing the number of features, an ordinal encoding scheme
is applied to the categorical features. Features that can take on
a large range of values are categorised according to powers
of 2, thereby reducing the cardinality of the features and
facilitating better model generalisation.

V. RESULTS

We evaluate the performance of the underlying CDS classi-
fier based on the reduction in the number of tests required to
reach certain functional coverage levels. The more effective
the underlying CDS classifier is at learning from coverage
feedback, the more effective it is at selecting test stimuli that
target coverage holes, thereby resulting in fewer tests being
simulated.

The number of tests required to reach 95%, 98% and 99%
functional coverage were recorded. Performing CDS after
achieving 99% functional coverage was not significantly better
than constrained random testing for this particular coverage
model. Because roughly 60 coverage points remain unexer-
cised at that point, we reasonably expect that a verification
engineer can intervene and manually bias testing towards
exercising them.

A. CDS using Tree-Based Classifiers

We begin by studying the performance of CDS when deci-
sion tree-based classifiers are utilised for constraint extraction.
We are interested in these because the resulting constraints can
be interpreted by human beings when required. Their ability
to reduce simulation resource consumption is compared to
random selection, which is analogous to traditional constrained
random testing.

The results from decision tree-based CDS experiments are
summarised in Table I. The most important measures of CDS
classifier performance in the table are the simulations saved
at 99% functional coverage.

The dummy classifier had the worst performance by actually
adding to the average number of simulations performed by
random selection. This is to be expected because the dummy
classifier is conceptually equivalent to random selection.

The standard decision tree algorithm’s performance was
inconsistent, as it can be seen to add more simulation at 98%
coverage, yet at the same time saving simulation at 95% and
99% coverage. This could be due to a well-known issue with
untuned decision trees: they tend to overfit to the training data,
making predictions that generalise poorly to unseen data. This
issue is clearly mitigated when the depth of the decision tree
is constrained (DCDT and DCRDT classifiers), which is a
known method of combatting overfitting.

The best performer among decision tree-based algorithms is
the gradient boosting classifier, reducing the number of stimuli



Functional Coverage Random Baseline DT DCDT DCRDT RF GB
95% 12866 11287 12561 11770 10659 12329 10911
98% 29300 30374 29396 27179 26553 28440 25801
99% 44200 44582 42334 41458 40628 44044 39419

Savings (vs. Random)
95% -12.27% -2.37% -8.52% -17.15% -4.17% -15.2%
98% +3.67% +0.33% -7.24% -9.38% -2.94% -11.94%
99% +0.86% -4.22% -6.2% -8.08% -0.35% -10.82%

TABLE I: Number of tests required to reach given functional coverage levels: Decision Tree CDS techniques vs Baseline and
Random

Functional Coverage Random LR NN NB
95% 12866 10420 10065 9614
98% 29300 27282 24786 22731
99% 44200 42667 37919 35960

Savings (vs. Random)
95% -19.01% -21.77% -25.28%
98% -6.89% -15.41% -22.42%
99% -3.47% -14.21% -18.64%

TABLE II: Number of tests required to reach given functional
coverage levels: non-tree-based CDS techniques vs Random

required to reach 99% functional coverage by almost 11% and
consistently performing better than random selection at every
functional coverage level.

B. CDS using Non-Tree-Based Classifiers

For completeness, we also studied the performance of CDS
using a selection of classifiers that are not based on decision
trees. The results are summarised in Table II.

The worst performing non-tree-based classifier is logistic
regression, which utilises a linear estimator that is unlikely
to capture the nonlinear complexities in the coverage data. It
is reasonable to expect that the logistic regression algorithm
would be the worst performing out of the three.

The best performing classifier is Naive Bayes, managing
to save 18.64% of tests being simulated when compared
to random selection. However, this performance comes at
the expense of constraints that are not transparent to human
beings.

Non-tree-based classifiers generally achieved higher sav-
ings than tree-based classifiers. However, non-tree-based al-
gorithms also tend to be slower to train, and demand more
computational resources. As an example, the neural network
(NN) took 5 days to complete the CDS experiment, whereas
the standard decision tree (DT) completed the experiment
in 1 day. However, in practice, the extra time required by
the neural network might be justifiable because it is more
accurate than the decision tree. We can check this with
some quick calculations. The neural network achieved 99%
functional coverage with 4,415 less tests than the decision tree.
For the RSPU, this translates to approximately 9,000 hours
of saved simulation time. Assuming a maximum simulation
capacity of 1,000 tests a day, the neural network saves 9 days’
worth of simulation resources compared to the decision tree.
Accounting for the extra 4 days of training and inference time

required by the neural network still leaves a net simulation
resource saving of 5 days. If the prime objective is to reduce
simulation, a neural network classifier would be preferable to
a decision tree in this case.

VI. CONCLUSION

In this work, we have proposed coverage-directed test selec-
tion as a method for automatic test biasing during simulation-
based verification. Coverage-directed test selection uses ma-
chine learning on coverage feedback to identify and prioritise
test stimuli that target coverage holes. Coverage-directed test
selection adds value to simulation-based verification through
gains in testing efficacy (targeted stimuli) and testing ef-
ficiency (reduced simulation). These enhancements lead to
faster functional coverage closure, higher quality test stimuli
and reduced manual effort throughout the simulation-based
verification process.

According to the experimental results, this particular RSPU
coverage model could be nearly closed by simulating 18% less
tests when using coverage-directed test selection. Scaling to
RSPU verification in production, this could mean simulating
1.7 million, instead of 2 million tests, to achieve coverage
closure. Note that the golden regression would still consist of
3,000 tests, hence there is still significant redundancy in the
coverage-directed test selection. We are working to improve
feature selection, feature engineering, and dimensionality re-
duction during the constraint extraction process to improve
these results.

Although coverage is a useful measure of verification
progress, a functional coverage model is a somewhat sub-
jective approximation of the design behaviour that must be
explored. Because of the subjectivity inherent in the coverage
model, and because bugs can hide anywhere in the design,
there is value in aiming to explore beyond the coverage model.

Future research will focus on further optimising test se-
lection by combining coverage-directed test selection method
with novelty-driven test selection [9]. In contrast to coverage-
directed test selection, novelty-driven test selection has been
found to be useful at exploring more of the design by pri-
oritising relatively novel tests for simulation. We expect that
complementing coverage-directed test selection with novelty-
driven test selection will result in improvements in the test
selection capabilities of both methods.
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