171 research outputs found

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    Finite element methods for flow in porous media

    Get PDF
    This thesis studies the application of finite element methods to porous flow problems. Particular attention is paid to locally mass conserving methods, which are very well suited for typical multiphase flow applications in porous media. The focus is on the Brinkman model, which is a parameter dependent extension of the classical Darcy model for porous flow taking the viscous phenomena into account. The thesis introduces a mass conserving finite element method for the Brinkman flow, with complete mathematical analysis of the method. In addition, stochastic material parameters are considered for the Brinkman flow, and parameter dependent Robin boundary conditions for the underlying Darcy flow. All of the theoretical results in the thesis are also verified with extensive numerical testing. Furthermore, many implementational aspects are discussed in the thesis, and computational viability of the methods introduced, both in terms of usefulness and computational complexity, is taken into account

    Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses

    Get PDF
    We propose a new augmented dual-mixed method for the Oseen problem based on the pseudostress–velocity formulation. The stabilized formulation is obtained by adding to the dual-mixed approach suitable least squares terms that arise from the constitutive and equilibrium equations. We prove that for appropriate values of the stabilization parameters, the new variational formulation and the corresponding Galerkin scheme are well-posed, and a Céa estimate holds for any finite element subspaces. We also provide the rate of convergence when each row of the pseudostress is approximated by Raviart–Thomas or Brezzi–Douglas–Marini elements and the velocity is approximated by continuous piecewise polynomials. Moreover, we derive a simple a posteriori error estimator of residual type that consists of two residual terms and prove that it is reliable and locally efficient. Finally, we include several numerical experiments that support the theoretical results.Dirección de Investigación of the Universidad Católica de la Santísima Concepción (Chile) y CONICYT-Chile FONDECYT; Ministerio de Ciencia e Innovación del Gobierno de España

    A review of recent advances in discretization methods, a posteriori error analysis, and adaptive algorithms for numerical modeling in geosciences

    Get PDF
    International audienceTwo research subjects in geosciences which lately underwent significant progress are treated in this review. In the first part we focus on one key ingredient for the numerical approximation of the Darcy flow problem, namely the discretization of diffusion terms on general polygonal/polyhedral meshes. We present different schemes and discuss in detail their fundamental numerical properties such as stability, consistency, and robustness. The second part of the paper is devoted to error control and adaptivity for model geosciences problems. We present the available a posteriori estimates guaranteeing the maximal overall error and show how the different error components can be identified. These estimates are used to formulate adaptive stopping criteria for linear and nonlinear solvers, time step choice adjustment, and adaptive mesh refinement. Numerical experiments illustrate such entirely adaptive algorithms

    A symmetric nodal conservative finite element method for the Darcy equation

    Get PDF
    This work introduces and analyzes novel stable Petrov-Galerkin EnrichedMethods (PGEM) for the Darcy problem based on the simplest but unstable continuous P1/P0 pair. Stability is recovered inside a Petrov-Galerkin framework where element-wise dependent residual functions, named multi-scale functions, enrich both velocity and pressure trial spaces. Unlike the velocity test space that is augmented with bubble-like functions, multi-scale functions correct edge residuals as well. The multi-scale functions turn out to be the well-known lowest order Raviart-Thomas basis functions for the velocity and discontinuous quadratics polynomial functions for the pressure. The enrichment strategy suggests the way to recover the local mass conservation property for nodal-based interpolation spaces. We prove that the method and its symmetric version are well-posed and achieve optimal error estimates in natural norms. Numerical validations confirm claimed theoretical results

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems
    corecore