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Preface
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not have been possible without the financial support from the Finnish Cul-

tural Foundation, the Finnish Graduate School in Engineering Mechan-

ics, Finnish Foundation for Technology Promotion, and the Emil Aaltonen

Foundation. In addition I would like to recognize the financial support

from the Finnish Research Programme on Nuclear Waste Management

(KYT2010) project.

I am extremely grateful to my advisor professor Rolf Stenberg for his

guidance, sharing of knowledge and continuous support on this journey

into the realms of soil mechanics, not forgetting many nice moments of

conversation on topics outside of mathematics, too. I have also had the

privilege of collaborating with Dr. Dominik Schötzau from the Univer-

sity of British Columbia and with professor Christoph Schawb and Dr.

Claude Gittelson from ETH Zürich, and I would like to thank all of them

for many inspirational discussions and new aspects in the field of finite

element methods. In particular I am indebted to my colleagues Antti

Hannukainen and Mika Juntunen for their valuable comments, support,

and collaboration. Many moments of both success and failure have been

shared either facing a blackboard or a keyboard.
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It has been an honour having professor Erik Burman and Dr. Martin

Vohralik, both highly regarded experts in the field, as the pre-examiners

of the thesis.
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Mika, Harri, Jarkko, Helena and my five-year cellmate Santtu deserve

a special thank you for creating a unique atmosphere for work, very few

aspects of life were left uncovered in our discussions – either in the coffee

room, swimming pool, sauna or around a barbeque. There has not been a

single day without laughter, no matter how deep the scientific abyss.

Finally I would like to thank my parents for their continuous support

and encouragement in my studies.

Vaasa, October 14, 2011,

Juho Könnö
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1. Introduction

In recent years a growing demand for efficient, accurate and reliable sim-

ulation methods has emerged in the field of geomechanics. In particular,

the modelling of fluid flow in porous media is a central problem within the

field with various applications in hydrogeology, soil contamination mod-

elling, and petroleum engineering, to name a few. Most subsurface flows

take place in different rock and soil types with varying porosities, thus

rendering problems in geomechanics very challenging numerically due to

highly irregular physical data, uncertainty in both the geometry and the

parameter values, and last but not least the sheer size of the problems

at hand. Another problematic aspect are the extremely long time scales,

with the longest simulated intervals ranging typically from tens of years

in petroleum engineering to extreme time intervals of tens of thousands

of years in nuclear waste disposal applications.

Applications in hydrogeology encompass e.g. groundwater modelling,

soil drainage, tracking the distribution of pollutants, and recently also

nuclear waste disposal. The growing need for advanced simulations is

to a great extent due to constantly tightening environmental regulations

of industrial installations requiring careful risk assessment. For exam-

ple, in undergound nuclear waste disposal it is of great importance to

accurately model the water breakthough time to the capsules containing

the radioactive waste with a timescale of tens of years, as well as the

transport of different chemical agents in the groundwater undermining

the structural integrity of the bentonite buffer during a period of thou-

sands of years. Naturally, in such a volatile application the reliability of

the computational results is a key issue.

Another important major application of subsurface flow models is petr-

oleum engineering. Although the first signs of the use of petroleum date

back to 4000 BC, it is only recently that the high demand for oil has in-
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Introduction

duced a massive need for efficient extraction techniques, and thus for ad-

vanced simulation methods for enhanced oil recovery. The computational

models in petroleum engineering are characterized by very heteregenous

and possibly stochastic material data and the massive physical size of

the problems. Consequently, many of the numerical methods in subsur-

face flow modelling stem from the need to utilize the scarce computational

resources with utmost efficiency in massive reservoir simulations whilst

still retaining some essential properties such as local mass conservation

in the numerical methods employed.

Apart from geomechanical engineering, porous flow problems emerge in

a variety of industrial applications, ranging from e.g. filtration technology

and composite resin infusion to biomedical modelling of permeable cell

walls. For example, in resin infusion molding of composite laminates one

models the fiberglass or carbon fiber matrix as a porous medium. This

results in a two-phase flow problem with air and resin flowing both inside

the porous fibres as well as the void space left between the fibres.

This thesis addresses two porous flow models – namely the Darcy model

and the more complicated Brinkman model [19, 1, 2, 3]. In the following

we shall first introduce both of the models, and discuss the applicability of

the two to different physical problems. The thesis focuses on three distinct

problems related to the aforementioned flow models.

First, a parameter dependent boundary condition for the Darcy flow

model is analyzed. This Robin type boundary condition allows one to move

continuously between a pressure and a normal velocity boundary condi-

tion. A similar boundary condition was analyzed in [20], but the robust-

ness with respect to the parameter ε was not studied. Both a priori and

residual based a posteriori estimates are presented for the problem. It is

also shown, that by using hybridization for the velocity field, the result-

ing system matrix is not ill-conditioned in the normal velocity boundary

condition limit.

Next, a locally mass conserving finite element discretization of the Brink-

man flow model is analyzed. The approach taken in the thesis employs

H(div)-conforming finite elements to acertain the local conservation of

mass discussed later in detail in Chapters 2 and 3. The tangential conti-

nuity of the velocity field required by the Brinkman model is then weakly

enforced using a symmetric interior penalty Galerkin method. Similar

techniques have been analyzed for the Stokes flow in [11, 15, 23, 22],

whereas an approach based on H1-conforming finite elements for the Brink-
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Introduction

man problem has been widely analyzed e.g. in references [14, 4, 12]. A

complete a priori and a residual based a posteriori analysis is presented,

and all of the results are verified by extensive numerical testing.

The third and final focal point of the thesis is the simulation of stochas-

tic material parameters for the Brinkman flow. In the rapidly growing

field of stochastic finite element methods, problems in soil mechanics play

an important role, since oftentimes the data for the permeability field

is naturally of stochastic nature. Here, the multi level Monte Carlo tech-

nique [5, 13] is applied to the Brikman problem with a log normal stochas-

tic permeability field. A stabilized conforming Stokes-based finite element

approach presented in [14] is adapted to meet the demands of the multi

level Monte Carlo method, and extensive numerical tests verify the re-

sults.
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2. Mathematical models for porous flow

The quantities of interest in porous flow models are the pore pressure p

and the velocity u of the fluid. In the following we present phenomenolog-

ically the Darcy and Brinkman models, for a detailed and rigorous deriva-

tion, cf. [19, 1, 2] and the references therein.

Let μ denote the dynamic viscosity of the fluid. Roughly speaking, vis-

cosity describes the thickness of the fluid. For example, water is often

described as a thin and honey as a thick fluid. In engineering applica-

tions the viscosities of the co-flowing fluids ofter vary by several orders of

magnitude. In resin infusion the epoxy resin is very thick with a viscosity

of several hundreds of centipoise (cP) compared to the air present in the

matrix. Similarly, water is often used as the driving fluid in enhanced

oil recovery, which is very thin with a viscosity of approximately one cen-

tipoise when compared to heavy crude oils having viscosities of hundreds

or even thousands of centipoise.

The permeability is denoted by K. In general, permeability is a sym-

metric tensor quantity. In numerous practical situations in geomechanics

the permeability tensor is of the diagonal form. However, when using e.g.

upscaling methods [18] for the permeability field, the resulting effective

permeability tensor is often highly anisotropic. The unit for permeability

is Darcy, 1 D = 9.869233× 10−13 m2, commonly permeabilities are given in

mD. Typically the permeability is a highly heterogeneous quantity, and

the magnitude of variations might be extremely large. In Table 2.1 some

typical permeabilities for different types of soil and rock are presented [7].

To clarify the heterogeneity of the permeability field, the logarithm of

the permeability field for one layer of the the SPE10 benchmark dataset [10]

describing a typical highly heterogenous oil reservoir is plotted in Fig-

ure 2.1. Evidently, the jumps in the material parameters in realistic

reservoir applications are often of several orders of magnitude. Further-
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Mathematical models for porous flow

Permeability mD Property Examples

108 – 106 Pervious Clean gravel

106 – 104 Pervious Clean sand, gravel and sand

104 – 101 Semipervious Oil rocks, peat, fine sand

101 – 10−1 Semipervious Sandstone, stratified clay

10−1 – 10−3 Impervious Limestone, dolomite, clay

10−3 – 10−5 Impervious Granite, breccia

Table 2.1. Permeabilities for different soil and rock types.

more, Figure 2.1 also shows how the permeability fields in certain types

of reservoirs are very chanellized localizing the flow to certain regions

of the computational domain and thus underlining the need for adaptive

methods in the numerical simulation of subsurface flows. Similarly, in

nuclear waste disposal one is interested in the flow of groundwater in the

extremely narrow void channels between the bentonite blocks.

In addition, it should be kept in mind that the derived quantities of in-

terest, such as the well pressures and the production rates in petroleum

engineering, as well as the saturation distribution depend both on the

pore pressure p and the fluid velocity u. Similarly, in industrial appli-

cations one wishes to keep the hydraulic pressures on a safe level while

simulatenously e.g. maximizing the flow through an oil filter. Thus it is

essential to design finite elements methods that perform equally well for

both of the aforementioned variables.

Figure 2.1. Logarithm of the permeability field in layer 68 of the SPE10 dataset in mD.
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Mathematical models for porous flow

2.1 The Darcy model

The Darcy flow model is the simplest and by far the most widely used

porous flow model. In the Darcy model the flow is directly proportional to

the pressure gradient via the relation [19, 7]

u = − 1

μ
K∇p. (2.1)

Assuming the fluid to be incompressible, the Darcy equations read

μK−1u+∇p = f , (2.2)

div u = g. (2.3)

Here, the loading f comprises of body loadings to the fluid, most com-

monly gravity effects. The function g is a source term, describing e.g.

injection and production wells in a groundwater or oil reservoir.

Normally one enforces either the pressure or the normal velocity on the

boundary. In a nuclear waste management application, for example, one

might prescribe the groundwater pressure on the boundary between the

bentonite buffer and the borehole wall in the bedrock, and a no-flow con-

dition on the boundary between the bentonite and the waste capsule. In

article I we analyse the following Robin type boundary condition for the

Darcy problem,

εu·n+ p = εun,0 + p0. (2.4)

Here, ε ≥ 0 is a parameter which allows one to move between the limiting

pressure boundary condition p = p0 as ε = 0 and the normal flow boundary

condition u·n = un,0 as ε → ∞.

2.2 The Brinkman model

In the Brinkman model, one adds an effective viscosity term to the Darcy

model. Thus the model constitutes a parameter dependent combination of

the porous Darcy flow and the viscous Stokes flow. The Brinkman model is

best suited for modelling very porous materials and domains with cracks

or flow channels. The main advantage of the Brinkman model is the abil-

ity to move from the Darcy regime to the Stokes regime and back by alter-

ing the material parameters only. With μ̃ denoting the effective viscosity of

the fluid, the Brinkman equations for an incompressible fluid read [19, 18]
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Mathematical models for porous flow

−μ̃Δu+ μK−1u+∇p = f , (2.5)

div u = g. (2.6)

A common choice for μ̃ is to take the effective viscosity equal to the dy-

namic viscosity, i.e. μ̃ = μ, however more refined models depending on

e.g. the porosity φ of the porous medium exist, see e.g. [18].

Mathematically the nature of the problem changes radically depending

on the ratio of the coefficients of the two velocity terms in equation (2.5).

For very large permeabilities the flow takes place in almost void space,

and the viscous part dominates. In this situation the flow is essentially

of the Stokes type, whereas for more impermeable materials the Darcy

part is the dominant term. Therefore the numerical method for solving

the Brinkman equation must be chosen carefully to assure stability and

accuracy of the method for all possible parameter values. For example

in reservoir simulation a large portion of the domain is typically in the

Darcy regime, but on the other hand in e.g. filter applications the void

space governed by the Stokes limit constitutes a major part of the domain.

This motivates the design of numerical methods that perform well in both

regimes and simultaneously allow for a seamless transition between the

two limiting models.

An approach based on finite elements originally designed for the Darcy

problem is covered in this thesis in articles II and III. Advantages of

the chosen approach include the intrisic local mass conservation property

of the finite element space and the ability to enhance the pressure ap-

proximation afterwards by a postprocessing scheme presented in paper

II. However, these elements are more complex to implement and com-

putationally more demanding than discretizations based on Stokes-type

elements analyzed in e.g. [14, 4].

2.3 Local mass conservation - why?

A central part of the thesis deals with finding a locally mass conserving

finite element method for the Brikman problem. But what makes this

property so important and desirable? To shed light on the issue, let us

recall that in practice almost all applications of porous flow models are

multiphase problems. That is, two or more fluids such as oil and water
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Mathematical models for porous flow

or air and epoxy resin co-exist in the porous matrix. For simplicity, let us

demonstrate the importance of the local mass conservation property in the

simplest possible framework by considering a two phase incompressible

Darcy flow of oil and water with no capillary or gravity effects.

Let u = uo + uw be the total flow, in which uo and uw are the velocities

for the oil and water components, respectively. Since the flow is assumed

incompressible, we have

div u = 0 (2.7)

in the absence of sources or sinks. The water saturation S describes the

fraction of water of the total pore volume inside the porous matrix. The

saturation evolves in time as [9]

∂S

∂t
+ div(fw(S)u) = gw, (2.8)

in which fw(S) is the saturation dependent flow fraction of water and gw

the source loading for the water component. Using the product rule for

divergence yields

∂S

∂t
+ f ′

w(S)∇S·u+ fw(S)div u = gw. (2.9)

Clearly, the last term on the left hand side should vanish for an incom-

pressible flow. However, it is insufficient for the divergence to vanish

globally in the weak sense, since this could lead to spurious modes that

create artificial sources or sinks in individual elements. Thus we try to

find a method that satisfies the equilibrium property

div Vh ⊂ Qh, (2.10)

and the commutative diagram property

div Rh = Phdiv. (2.11)

Here the finite dimensional spaces Vh and Qh are the approximation spaces

for the velocity and pressure, respectively. Rh is a special interpolation

operator for H(div,Ω) functions to Vh, and Ph is the L2-projection to Qh.

For details on the properties of the interpolation operator Rh, cf. arti-

cle II and the references therein. These properties quarantee that the

aforementioned spurious modes cannot occur. Since the time intervals

simulated in geomechanics are typically very long, from days to years, it

is of utmost importance that accumulation of unphysical saturation does

not occur during the computations.
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Mathematical models for porous flow

2.4 Stochastic permeability fields

As mentioned, in soil mechanics one often encounters permeabily fields for

which only some statistical quantities are known. The aim is to simulate

such flow fields based on data such as the covariance and mean value of

the permeability field numerically. One of the most common models for

the permeability field is the log normal model. That is, the logarithm of

the permeability field is normally distributed. Thus the permeability field

is of the form

K = K0 exp (G), (2.12)

in which G is an R
d-valued, symmetric Gaussian field and K0 is a sym-

metric, positive definite d×d matrix. The random field G has the Karhunen-

Loève expansion

G =
∞∑
n=1

Yn
√

λnΦn, (2.13)

in which (λn,Φn) are the eigenpairs of the covariance operator corre-

sponding to the random field G, and Yn are standard normal random

variables. For details, see e.g. [5] and article IV. In simple cases, the

eigenpairs for the covariance operator can be computed explicitly in some

simple domains, such as in a square or a circle. However, in a more gen-

eral setting one has to solve the eigenpairs numerically using e.g. finite

elements.

For computations, the infinite Karhunen-Loève series (2.13) must be

truncated. Thus the permeability field K is approximated with a trun-

cated field KN as

KN := K0 exp

(
N∑

n=1

Yn
√

λnΦn

)
. (2.14)

In article IV a multi level Monte Carlo method is considered for such a

permeability field. In a multi level Monte Carlo method the key ingredient

is to compute the samples on multiple nested meshes balancing the error

between the discretization error and the stochastic truncation error. The

analysis can be easily adapted to other models with log normal random

fields, too.
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3. Numerical methods

In this section the main numerical methods deployed in the articles are

covered. The details of applying these techniques to each of the individual

problems in the thesis are presented in the articles, thus the main focus

here is to shed light on the ideas behind each of the different numerical

techniques and the underlying reasons for using a specific method.

3.1 Discretizations of the H(div) space

The space H(div,Ω) is composed of those functions u for which it holds

u ∈ L2(Ω) and div u ∈ L2(Ω). For the discretized space Vh the condition

Vh ⊂ H(div,Ω) translates into a continuity condition over the interele-

ment boundaries E ∈ Eh of the mesh Kh. More exactly, one requires that

the normal component u·n is continuous across the interelement bound-

aries.

Typically H(div)-conforming finite element spaces appear in the context

of mixed methods, for example we seek for the velocity of the fluid in Vh

and the pressure in Qh. In what follows, the spaces Vh and Qh are chosen

such that the method is stable, and that the equilibrium property

divVh ⊂ Qh (3.1)

and the commutative diagram property (2.11) hold. Consequently, the

weak divergence condition

(div u, q) = (g, q), ∀q ∈ Qh (3.2)

yields div u = Phg, in which Ph : L2(Ω) → Qh is the L2-projection to the

pressure space. Thus one immediately recognizes that for example the

incompressibility condition

div u = 0 (3.3)
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is satisfied exactly for H(div,Ω)-conforming elements satisfying (3.1). This

is the main motivation for such an approach to the Brinkman problem in

papers II and III. Oftentimes this property is referred to as local mass

conservation. As an example we consider in the following the simple first

order Brezzi-Douglas-Marini (BDM) element [8] for which

Vh = {v ∈ H(div,Ω) | v|K ∈ [P1(K)]2}, (3.4)

and the corresponding pressure space is

Qh = {q ∈ L2(Ω) | q|K ∈ P0(K)}. (3.5)

The degrees of freedom for this element are the average and the first mo-

ment over the element edges, cf. Figure 3.1. The pressure space is discon-

tinuous over the interelement edges.

Figure 3.1. Degrees of freedom for the lowest-order BDM element

3.2 Enforcing continuity via penalization

It is often beneficial to relax the continuity requirements to some extent,

however in return some extra work has to be done in order to stabilize the

method. As mentioned earlier, only the normal component of the velocity

is required to be continuous in the case of H(div)-conforming elements. In

order to approximate the second order term describing the viscous effects

in the Brinkman model, the continuity of the tangential component is

weakly enforced akin to traditional discontinuous Galerkin (DG) methods.

This matter is discussed in detail in article II.

To fix ideas, consider the scalar Poisson problem

−Δu = f, in Ω, (3.6)

u = 0, on ∂Ω

discretized with elementwise discontinuous finite elements from the space

Vh = {v ∈ L2(Ω) | v|K ∈ Pk(K)}. Due to the discontinuity multiplication

22



Numerical methods

by an arbitrary test function v ∈ Vh and partial integration of the first

equation yields ∑
K∈Kh

(∇u,∇v)K − 〈 ∂u
∂n

, v〉∂K = (f, v). (3.7)

To stabilize the method, we modify the weak formulation as follows:

(∇u,∇v) +
∑
E∈Eh

(
α

hE
〈[[u]], [[v]]〉E − 〈{ ∂u

∂n
}, [[v]]〉E − 〈[[u]], { ∂v

∂n
}〉E

)
= (f, v).

(3.8)

Here [[· ]] and {· } denote the jump and average on the edge E, respectively.

The above symmetric interior penalty Galerkin (SIPG) formulation (see

e.g. [21]) guarantees that for a suitably chosen stabilization parameter α

the formulation is stable and an optimal convergence rate with respect to

the polynomial degree of the space Vh is attained. In the context of setting

Dirichlet boundary conditions the above formulation is often referred to

as Nitsche’s method [17].

In articles II and III the SIPG formulation is employed to stabilize cer-

tain families of H(div)-conforming elements for the Brinkman problem,

as well as to enforce the boundary conditions weakly. The resulting fi-

nite element approximation is thus intrinsically locally mass conserving

and stable for all parameter values of the Brinkman model. In addition,

weakly enforcing the boundary conditions alleviates the numerical prob-

lems related to handling boundary layers stemming from no-flow bound-

ary conditions when approaching the Darcy limit.

3.3 Postprocessing for the pressure

As a model problem, the Darcy problem with the material parameters set

to unity is considered. In the discretized form we seek a velocity-pressure

pair (uh, ph) ∈ Vh ×Qh ⊂ H(div,Ω)× L2(Ω) such that

(u,v)− (div v, p) = (f ,v), ∀v ∈ Vh, (3.9)

−(div u, q) = −(g, q), ∀q ∈ Qh,

in which f and g are given sufficiently smooth loading functions.

To analyze the convergence of the finite element discretization, the fol-

lowing mesh dependent norm is used for the pressure

‖p‖2h =
∑

K∈Kh

‖∇p‖20,K +
∑
E∈Eh

1

hE
‖[[p]]‖20,E , (3.10)
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whilst for the velocity the L2-norm is employed. Note, that due to the

equilibrium property (3.1) we need not separetely estimate the error in

the divergence, since div uh = Phg. This yields the following suboptimal

convergence result for the pressure

‖Php− ph‖h ≤ Ch (3.11)

when the lowest order Brezzi-Douglas-Marini elements are employed. The

fact that the pressure solution ph only converges to the L2-projection Php

of the exact solution onto the finite element space Qh is simply due to the

lack of approximation properties of the pressure space, which in this case

is that of elementwise constant functions. However, a simple postprocess-

ing procedure can be shown to remedy this by seeking the postprocessed

pressure p∗h in an augmented space [16]. For example, for the first order

BDM element we choose

Q∗
h = {q ∈ L2(Ω) | q|K ∈ P2(K)} (3.12)

and compute the postprocessed pressure p∗h ∈ Q∗
h through

Php
∗
h = ph, (3.13)

(∇p∗h,∇q)K = (uh,∇q)K ∀q ∈ (I − Ph)Q
∗
h|K . (3.14)

It can then be shown [16], that full convergence rate is recovered for the

pressure, that is

‖p− ph‖h ≤ Ch. (3.15)

Note, that the postprocessed pressure is still discontinuous across the in-

terelement boundaries.

The postprocessing method can be applied to a wide variety of differ-

ent families of H(div)-conforming elements. In articles I, II and III this

technique is applied to more complicated problems to recover the optimal

convergence rate for the pressure variable. It is noteworthy that the pro-

cedure is performed elementwise thus being computationally inexpensive

compared to solving the original linear system, and also allowing for effi-

cient parallelization due to the localized nature.

3.4 A posteriori estimators

In the analysis of finite element methods the error estimates are divided

into two categories - namely a priori and a posteriori estimates. The for-
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mer are asymptotic error estimates of the form

‖u− uh‖1 ≤ Ch, (3.16)

which for example for the Poisson problem (3.6) tells that the error in

the H1(Ω)-norm is directly dependent on the mesh size h. However, the

constant C depends on some higher Sobolev norm of the exact solution u,

and thus cannot be computed in practice since the exact solution u is not

known.

On the other hand, in a posteriori estimates one seeks for an estimator η

which is a function of the discrete solution uh and the loading and bound-

ary condition functions. The aim is to find an estimator satisfying e.g. for

the model Poisson problem

cη ≤ ‖u− uh‖1 ≤ Cη. (3.17)

For this simple problem, such an estimator is

η2 =
∑

K∈Kh

h2K‖Δuh + f‖20,K +
∑
E∈Eh

hE‖[[
∂uh
∂n

]]‖20,E , (3.18)

in which [[· ]] denotes the jump of a function and n is the normal vector on

a face E ∈ Eh.

The constants c and C should not depend on the solution or the com-

putational mesh. However, sometimes these constants are unknown and

might depend e.g. on the shape of the domain, but they are nevertheless

known to be bounded. For parameter dependent problems, such as the

Robin-type boundary conditions in I and the Brinkman problem in II and

III, it is crucial that the constants are also independent of the parame-

ters. Deriving such parameter independent a posteriori bounds is one of

the key ingredients in this thesis.

3.5 Numerical challenges in the transition regime

In the Brinkman model, the nature of the problem changes dramatically

as one passes numerically from the Darcy to the Stokes regime. This

manifests itself in numerical anomalies in the transition zone, which are

clearly seen in the numerical results.

More exactly, the balancing of the error components changes from a

velocity dominated error to a pressure dominated error as the interior

penalty term becomes more dominant. As shown in the numerical re-

sults in III, the postprocessing technique is only efficient in removing the
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pressure jumps in the Darcy regime to give the optimal convergence rate

proven in II, and the error levels are of different magnitude for the two

limiting cases. Thus, it is natural for the convergence to exhibit a drop

in the transition regime since the relative error is considerably higher for

equivalent mesh densities in the non-conforming Stokes regime.

The numerical results in III neglect the error terms from the external

loading and the constants in the a posteriori bounds. Naturally, the con-

stants in the efficiency and reliability estimates differ if we consider the

limiting cases only, and accordingly the unscaled value of estimator in the

numerical examples overshoots the estimator in the Stokes regime, and

undershoots in the Darcy regime.

The discrepancy between the estimator and the exact error in the tran-

sition zone t ≈ h is most likely due to the saturation assumption not hold-

ing in this narrow regime, as the error might grow as a result of bound-

ary layer type effects that are discovered on a finer mesh. During subse-

quent refinements the convergence is however regained, since one passes

numerically into the Stokes regime in which the saturation assumption

holds true.

3.6 Hybridization techniques

Sometimes it is desirable to break the continuity of the finite element

space on all or a certain subset of the interelement boundaries, and en-

force the continuity on these edges via Lagrange multipliers. Such tech-

niques are known as hybridized methods.

The model mixed finite element problem (3.9) can be hybridized on all

internal edges as follows [6, 8]: Find (uh, ph,mh) ∈ Ṽh×Qh×Mh such that

(uh,v)−
∑

K∈Kh

(div v, ph)K +
∑

K∈Kh

〈v·n∂K ,mh〉∂K = (f ,v), (3.19)

−
∑

K∈Kh

(div uh, q)K = (g, q), (3.20)

∑
K∈Kh

〈uh·n∂K , r〉∂K = 0 (3.21)

for all (v, q, r) ∈ Ṽh × Qh × Mh, in which Ṽh corresponds to the space Vh

with no continuity restrictions across interelement boundaries and n∂K

is the outer normal of the element K. Mh is a suitably chosen space of

Lagrange multipliers on the hybridized edges, e.g. for the lowest-order

BDM elements Mh is composed of first-order polynomials on the edges
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E ∈ Eh.

The algebraic system corresponding to the hybridized equations is of the

form

Au+Bp+Cm = f

BTu = g

CTu = 0,

in which A is a block diagonal matrix and (u, p,m) are now the coefficient

vectors associated with the finite element solution. One can now eliminate

the velocity and pressure variables ending up with a system for the La-

grange multipliers only. For example for the lowest order BDM elements

the blocksize of the matrix A is only 6×6, thus inverting A is computation-

ally very cheap. The resulting system matrix for the Lagrange multipliers

is of the form

CT (A−1B(BTA−1B)−1BTA−1 −A−1)C. (3.22)

This matrix is symmetric and positive definite [8] in contrast to the origi-

nal saddle point system, and hence well-suited for standard linear solvers.

Hybridization can also be easily adapted to domain decomposition by hy-

bridizing the finite element spaces only on the skeleton of the domain de-

composition mesh, and using subdomain solvers for inverting the matrix

A simultaneously on several computational nodes. Hybridization tech-

niques are considered in detail for both the Darcy problem and the Brink-

man problem in articles I and III, respectively.

3.7 The multi-level Monte Carlo method

As previously mentioned, the permeability K is often known only as a

statistical quantity. That is, one has a stochastic model or uncertain mea-

surement data for the expected value and covariance of the permeabil-

ity field, thus underlining the importance of finding efficient simulation

methods for stochastic porous flow models. Traditional Monte Carlo meth-

ods rely on randomizing several realizations of the stochastic field and

computing a corresponding finite element solution for the quantities of

interest, which are then averaged to get quantities such as the expected

value of the velocity and pressure fields. A major drawback of traditional

Monte Carlo methods is that they are computationally very expensive.
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As a remedy, multi level Monte Carlo methods have been proposed and

analyzed in e.g. [5, 13]. They are based on a hierarchy of finite element

discretizations and a varying level of approximation for the stochastic

parameter. The number of Monte Carlo samples per mesh level is var-

ied based on the convergence properties of the Karhunen-Loève expan-

sion (2.13) of the stochastic parameter. In paper IV the multi level Monte

Carlo method is applied to the Brinkman equations with a stochastic per-

meability field, and combined with a robust stabilized mixed finite ele-

ment method based on [14].

From the finite element point of view, a major challenge is to find a sta-

ble finite element method, such that the finite element spaces are nested

on a hierarchy of uniformly refined meshes to keep the workload low in

the multi level method. In addition, for stabilized methods, the depen-

dence of the stabilization parameter on the stochastic quantities must be

carefully studied. Due to the high number of samples computed and the

fact that virtually no internode communication is required, the method is

very well suited for massively parallel computations.
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4. Concluding remarks

The main findings in this thesis can be summarized as follows.

I In this article the Darcy problem with a parameter dependent bound-

ary condition is studied. We introduce a weak formulation for enforcing

the boundary condition, along with a rigorous a priori and a posteriori

analysis. The postprocessing method of [16] for the scalar variable is

shown to be applicable for this type of a problem, thus yielding optimal

convergence rates for the proposed method. It is shown that all the a

priori estimates and the reliability estimate for the a posteriori indica-

tor are independent of the parameter ε in the boundary condition. All of

the theoretical results are verified with numerical tests, which also sug-

gest that the efficiency estimate is independent of the parameter, even

though the proof is not complete.

II The article presents a complete and rigorous analysis of applying H(div)-

conforming finite elements for the Brinkman problem. A suitable mesh

dependent norm for the problem is presented, in which we prove opti-

mal convergence estimates robust in the effective viscosity parameter t.

Thus the proposed method is applicable for the whole range of problems

from the Darcy flow to a viscous Stokes flow covered by the Brinkman

model. We also extend the aforementioned postprocessing method to the

Brinkman equations to achieve optimal convergence rate for the pres-

sure. The residual based a posteriori indicator introduced is shown to

be both reliable and efficient for all values of the parameter t ≥ 0.

III This paper is a continuation of paper II. The estimates are extended to

cover a non-constant permeability field, and a hybridization technique is

presented for the SIPG formulation of the problem. We also address ap-
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plying the hybridization method to domain decomposition. A major part

of the paper deals with numerically verifying both the results in paper

II, as well as the new results presented in this paper. In addition, the

applicability of the a posteriori indicator to adaptive mesh refinement is

demonstrated employing realistic material data.

IV In this work the stochastic Brinkman problem with a log normal per-

meability field is studied. Rigorous error estimates are derived both

for the stochastic and the spatial discretization errors. A Stokes-based

stabilized finite element method proposed in [14] is modified to fulfill

the requirements of the multi level Monte Carlo method. In particular,

great attention is given to analyzing the computational complexity of

the method. Finally, all of the results are verified with extensive numer-

ical tests, verifying both the predicted convergence behaviour, as well as

the work load estimates.
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Errata

Publication I

The proof of Proposition 5.5 is incorrect, and thus the proof of Proposition

5.6 is flawed as regards the parts based on using Proposition 5.5. Accord-

ingly, the proof for the efficiency estimate of Theorem 5.8 is incomplete

for boundary edges with a non-vanishing ε. However, there is strong nu-

merical evidence that the estimator proposed is also efficient as shown in

the numerical results in Section 7. We can show the following suboptimal

estimate for the boundary edges with ε �= 0,

η2E ≤ (ε+ hE)‖(σh − σ)·n‖20,E +
1

ε+ hE
‖u∗h − u‖20,E + (ε+ hE)‖g − gh‖20,E .

The above can be shown by directly inserting the exact boundary condition

into the boundary edge estimator ηE yielding

ε(σh·n− gh) + u∗h − u0 = ε(σh·n− gh) + u∗h − ε(σ·n− g)− u

= ε(σh − σ)·n+ (u∗h − u) + ε(g − gh).

Using the triangle inequality and the relation ε/
√
ε+ hE ≤ √

ε ≤
√
ε+ hE

gives the desired result. Note, that the above estimate is suboptimal in

the sense that given an irregular boundary load g the contribution from

the boundary load error can be substantial and grows as the root of the

ε parameter. Furthermore, the flux estimate is in the ‖· ‖ε,h norm in con-

trast to the reliability and convergence estimates given in the L2 norm.

However, assuming a certain degree of regularity for the solution the es-

timator can be shown to converge with the same ratio as the error.

The authors are working towards presenting a corrected proof for the

original results.
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