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A SYMMETRIC NODAL CONSERVATIVE FINITE ELEMENT METHOD
FOR THE DARCY EQUATION

GABRIEL R. BARRENECHEA, LEOPOLDO P. FRANCA 1, AND FRÉDÉRIC VALENTIN 2

Abstract. This work introduces and analyzes novel stable Petrov-Galerkin Enriched Meth-

ods (PGEM) for the Darcy problem based on the simplest but unstable continuous P1/P0

pair. Stability is recovered inside a Petrov-Galerkin framework where element-wise depen-

dent residual functions, named multi-scale functions, enrich both velocity and pressure trial

spaces. Unlike the velocity test space that is augmented with bubble-like functions, multi-

scale functions correct edge residuals as well. The multi-scale functions turn out to be the

well-known lowest order Raviart-Thomas basis functions for the velocity and discontinuous

quadratics polynomial functions for the pressure. The enrichment strategy suggests the way

to recover the local mass conservation property for nodal-based interpolation spaces. We

prove that the method and its symmetric version are well-posed and achieve optimal error

estimates in natural norms. Numerical validations confirm claimed theoretical results.

1. Introduction

The Darcy equation arising in a porous media field belongs to the family of mixed problems

[13] for which numerical methods are limited by the choice of pair of approximation spaces.

From classical stable elements as the Raviart-Thomas family (RTk) [27], Brezzi-Douglas-

Marini elements (BDMk) [12], high order stable elements given in [25, 5, 6] to more recent

stabilized or least square finite element methods [26, 23, 14, 10, 11] the range of possibilities

to tackle the Darcy equation has increased over the past years. Methods for this problem

should combine stability and accuracy while preserving physical properties inherited from

the continuous problem. Properties that are only fulfilled by few of them.

To the best of our knowledge, symmetric stable nodal based finite element methods for

the Darcy equation preserving mass locally remain an open problem (see [11] for a recent

discussion). For example, least-squares finite element methods (cf. [10]) lead to a symmet-

ric positive-definite system, but, in their original nodal version they are not locally mass

conservative, and in [11] nodal unknowns for the velocity are forbidden. Furthermore, in
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both cases, the lowest order piecewise constant space for the pressure is not allowed. This

possibility is considered in [25], but the degrees of freedom for the velocity are not nodal.

Some of the previous requirements are satisfied by the so-called Petrov-Galerkin Enriched

Methods (PGEM). PGEM have been developed in [19, 20, 21] and further analyzed in

[18, 4]. The method is constructed by enriching polynomial functions with two types of

enhancement: we add bubble functions to the test function and we add a special function

to the trial function. The latter depends on the residual of the polynomial part over edges,

and thus, it is no longer a bubble-like function. This gives us a Petrov-Galerkin framework.

To get stabilized method forms of PGEM we use static condensation, thanks to the use of

bubbles as test functions [3, 8]. Number and type of degrees of freedom stay unchanged

whereas basis functions incorporate unsolved sub-scales modifying their form yet preserving

the polynomial basis function support. Interested readers can find a review on the subject

in [2].

When applied to the Darcy equation, the Petrov-Galerkin approach leads to different

finite element methods [7]. One of them is obtained by searching the velocity solution

into a subspace of the Raviart-Thomas space built with the Raviart-Thomas interpolation

over the linear continuous trial functions. The space for the pressure stays untouched.

The underlying PGEM appears to be stable for the simplest pair of interpolation spaces

P1/P0 while preserving the mass-conservative feature, a desirable property for porous media

practitioners. Performance of PGEM over several numerical tests given in [7] attests its

stability and accuracy while keeping loss of local mass negligible.

Based on the previous considerations, the current work introduces a variant of the strategy

proposed in [7] and leads to a final method which is symmetric, locally mass conservative

and whose degrees of freedom are piecewise constants for the pressure and nodal values for

the velocity. Indeed, we keep the trial space for the velocity and pressure as in [7], but

the test space is built differently: it is first mapped using the Raviart-Thomas interpolation

operator and then enhanced with bubble functions, an approach which allows the static

condensation procedure. This new perspective opens the door to two new finite element

methods, one of them fulfilling all the requirements of symmetry, nodal degrees of freedom

for the velocity and locally mass conservative. Both methods prove to be well-posed and

achieve optimal error estimates in natural norms. Since the starting point of our approach

is a Petrov-Galerkin method, the terminology PGEM is still used in this work, even if the

final methods differ from the ones presented in [7]. Finally, the approach suggests a general

way of rendering some finite element methods locally mass conservative.

We end this introduction by summarizing the plan and main results of this paper:
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• In Section 2 we introduce the new finite element methods, namely, the non-symmetric

(13) and its symmetric counterpart (16). We then derive the methods in a PGEM

framework in Section 2.1, and in Section 2.2 we explicit the local problems solved by

our enrichment basis functions (cf. (35) and (37)). In particular, we recover the local

basis of the RT0 space as the solution of (35)-(36). Finally, in Section 2.3 we prove

that the discrete enhanced solution is locally mass conservative;

• Section 3 is devoted to the error analysis. We analyze in detail method (16) (the

analysis of (13) is treated in Theorem 9, Section 3.3). Well posedeness and consis-

tency error are proved first (cf. Lemmas 3 and 4) followed by convergence results

(see Theorems 7 and 8 in Section 3.2). Furthermore, we use the characterization of

the RT0 interpolation operator as the solution of (35)-(36) to obtain an alternative

proof for the classical RT0 error estimate (see Corollary 6);

• The numerical tests are in Section 4 where two analytical solutions confirm theoretical

results;

• Conclusions and future perspectives are drawn in Section 5;

• Finally, we relax the assumption on the source term g (initially assumed piecewise

constant) to propose in Appendix A an error estimate for a smooth datum g (cf.

Theorem 10).

1.1. Some notations. This section introduces definitions and notations used throughout.

In what follows, Ω denotes an open bounded domain in R
2 with polygonal boundary ∂Ω,

and x = (x1, x2) is a typical point in Ω. As usual, L2(Ω) is the space of square integrable

functions over Ω, L2
0(Ω) represents functions belonging to L2(Ω) with zero average in Ω,

and Hdiv(Ω) is composed by functions that belong to L2(Ω)2 with divergence in L2(Ω). The

space Hdiv
0 (Ω) stands for the space of functions belonging to Hdiv(Ω) which have normal

component vanishing on ∂Ω.

From now on we denote by {Th} a family of regular triangulations of Ω built up using

triangles K with boundary ∂K composed by edges F . The set of internal edges of the

triangulation Th is denoted by Eh. The characteristic length of K and F are denoted by hK

and hF , respectively, and h := max{hK : K ∈ Th} > 0, and due to the mesh regularity there

exists a positive constant C such that hF ≤ hK ≤ C hF , for all F ⊆ ∂K. Also, for each

F = K ∩K
′ ∈ Eh we choose, once and for all, an unit normal vector n which coincides with

the unit outward normal vector when F ⊆ ∂Ω. The standard outward normal vector at the

edge F with respect to the element K is denoted by nK
F . Moreover, for a function q, one
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denotes JqK its jump, defined by (see Figure 1):

JqK(x) := lim
δ→0+

q(x + δn) − lim
δ→0−

q(x + δn) ,(1)

and JqK = 0 if F ⊆ ∂Ω.

Next, we denote by Hdiv
0 (K) the space whose functions belong to Hdiv

0 (Ω) with support in

K and vanishing normal component on ∂K, and L2
0(K) the space of functions which belong

to L2
0(Ω) with support and zero mean in K. Then, we can define the corresponding global

spaces

Hdiv
0 (Th) := ⊕

∑

K∈Th

Hdiv
0 (K) and L2

0(Th) := ⊕
∑

K∈Th

L2
0(K).

Finally, (· , · )D stands for the inner product in L2(D) (or in L2(D)2, when necessary), and

‖· ‖s,D (|· |s,D) the norm (seminorm) in Hs(D) (or Hs(D)2, if necessary), and ‖· ‖div,D the

norm in Hdiv(D).

n

F

KK ’

Figure 1. The normal vector.

1.2. Preliminaries. In this work we consider the following Darcy problem: Find (u, p) such

that

σ u+ ∇p = f , ∇·u = g in Ω,(2)

u·n = 0 on ∂Ω,

where σ = µ
κ
∈ R

+ is assumed constant in Ω, with µ and κ denoting the viscosity and

permeability, respectively. Here, u is the so-called Darcy velocity, p is the pressure, f and

g are given source terms. We suppose f piecewise constant since it is usually related to the

gravity force. Moreover, we assume that the given data have enough regularity and the usual

compatibility condition
∫

Ω

g = 0,
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holds.

Remark. When we consider (2) with a prescribed flux b on ∂Ω such that
∫

Ω

g =

∫

∂Ω

b,

we can recover the homogeneous case since there exists a function wb belonging to Hdiv(Ω)

such that wb·n = b on ∂Ω (cf. [22]), and thus we replace the right hand side f by f − σwb

and g by g −∇·wb. �

Remark. In the more general case, σ can always be approximated by performing projections

onto the piecewise constant space. This possibility has been considered in [7]. On the other

hand, despite the fact that the methods are presented in the two dimensional case, their

extension to the three dimensional framework is straightforward. �

The standard symmetric mixed variational formulation associated with (2) reads: Find

(u, p) ∈ Hdiv
0 (Ω) × L2

0(Ω) such that

As((u, p), (v, q)) = Fs(v, q) ∀(v, q) ∈ Hdiv
0 (Ω) × L2

0(Ω),(3)

where

As((u, p), (v, q)) := (σ u,v)Ω − (p,∇· v)Ω − (q,∇·u)Ω, Fs(v, q) := (f ,v)Ω − (g, q)Ω.

The well-posedness of (3) follows from the classical Babuska-Brezzi theory for variational

problems with constraints (see [13] for more details).

Remark. An equivalent and still well-posed non-symmetric version of (3) arises from adding

the weak form of the second equation to the first one in (2). The bilinear form and the linear

form are now denoted by A(., .) and F(.), respectively, and are given by

A((u, p), (v, q)) := (σ u,v)Ω − (p,∇· v)Ω + (q,∇·u)Ω, F(v, q) := (f ,v)Ω + (g, q)Ω.�(4)

Next, the classical discrete mixed formulation of this problem is: Find (uh, ph) ∈ Vh ×Qh

such that

As((uh, ph), (vh, qh)) = Fs(vh, qh) ∀(vh, qh) ∈ Vh × Qh ,(5)

where Vh and Qh are finite-dimensional approximations of Hdiv
0 (Ω) and L2

0(Ω), respectively.

It is well known that the pair of interpolation spaces for pressure and velocity must satisfy

the discrete Babuska-Brezzi (or inf-sup) condition [13] in order to lead to a stable discrete

version of problem (5). For the Darcy model containing a zero order term, this restriction
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has been proved to be unnecessary. In fact, in [24] standard continuous Lagrangian finite

element spaces have been proved to be stable and convergent.

The lowest order Raviart-Thomas space is one of the simplest examples of a stable mass

conservative element, and is composed by the velocity space

VRT0
:= {v ∈ Hdiv

0 (Ω) : v |K ∈ RT0(K) ∀K ∈ Th},

where the local space RT0(K) is defined by

RT0(K) := P0(K)2 + x P0(K),(6)

and

(7) Qh := {q0 ∈ L2
0(Ω) : q0|K ∈ P0(K) ∀K ∈ Th} .

Hence, only the normal component of the velocity is continuous and the inf-sup condition is

satisfied since ∇·VRT0
= Qh. Associated with the space RT0(K) there exists a natural local

interpolation operator πK : [H1(K)]2 → RT0(K), defined by (cf. [13, 17])
∫

F

πK(v)·n =

∫

F

v·n ,(8)

for all F ∈ ∂K, or, equivalently

πK(v) :=
∑

F⊆∂K

∫

F
v·n
hF

ϕF ,(9)

where ϕF is the Raviart-Thomas’ basis function given by

ϕF (x) = ± hF

2|K|(x − xF ),(10)

and xF denotes the node opposite to the edge F . Hence, a global interpolation operator

noted π : [H1(Ω)]2 → VRT0
follows by defining π(v) |K = πK(v) in each K ∈ Th.

Remark. The sign before the Raviart-Thomas basis function ϕF depends on whether the

normal vector n on F ⊆ ∂K points inwards or outwards K. �

A lifting operator from L1(F ) to VRT0
will be needed in the sequel, it is denoted by ℓ and

is such that ℓ(q) :=
∑

F∈Eh
ℓF (q) where

ℓF (q) =
αF

∫

F
q

σ
ϕF ,(11)

where the coefficient αF is a given positive constant which is independent of hF and σ, but

can vary with F . We finally denote, for K ∈ Th, ℓK(q) := ℓ(q)|K.
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2. The finite element methods

We begin by introducing the standard finite element space Vh := [Vh]
2 ∩ Hdiv

0 (Ω) for the

velocity variable, where

Vh := {v ∈ C0(Ω) : v|K ∈ P1(K), ∀K ∈ Th},(12)

whereas the pressure is discretized using the space Qh defined in (7). We start by presenting

the methods that will be analyzed in this work. First, the Petrov-Galerkin Enriched Method

reads: Find (u1, p0) ∈ Vh × Qh such that

B((u1, p0), (v1, q0)) = Fs(π(v1), q0) ,(13)

for all (v1, q0) ∈ Vh × Qh, where

B((u1, p0), (v1, q0)) := As((π(u1), p0), (π(v1), q0)) + (ℓ(Jp0K), σ π(v1))Ω −
∑

F∈Eh

τF (Jp0K, Jq0K)F ,

(14)

and π and ℓ are the operators defined through (8) and (11), respectively, and the coefficient

τF stands for

τF :=
αF hF

σ
.(15)

In Section 3 this problem is proved to be well-posed for an appropriate choice of αF .

Alternatively, a symmetric related formulation can also be derived and reads: Find (û1, p̂0) ∈
Vh × Qh such that

Bs((û1, p̂0), (v1, q0)) = Fs(π(v1), q0) ,(16)

for all (v1, q0) ∈ Vh × Qh, where

Bs((u1, p0), (v1, q0)) := As((π(u1), p0), (π(v1), q0)) −
∑

F∈Eh

τF (Jp0K, Jq0K)F .(17)

Remark. The latter method is based on the error analysis (see §3) which points out that we

can remove from (13) the term (ℓ(Jp0K), σ π(v1))Ω without introducing a loss of accuracy.

Moreover, we recover the symmetric form of the so-called reduced PGEM method presented

in [7], by replacing the term (π(u1), π(v1))Ω by (u1,v1)Ω in (13). This reduced method

turns out to be optimally convergent [14], and in §2.3 we show how to render it locally mass

conservative. �
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2.1. Derivation of the methods. The starting point towards our final method is the

following Petrov-Galerkin method for (2): Find uh := u1 + ue ∈ Vh + Hdiv
0 (Ω) and ph :=

p0 + pe ∈ Qh ⊕ L2
0(Th) such that

As((uh, ph), (vh, qh)) = Fs(vh, qh),(18)

for all vh := π(v1) + vb ∈ π(Vh) ⊕ Hdiv
0 (Th) and for all qh := q0 + qe ∈ Qh ⊕ L2

0(Th). Here

π(Vh) stands for the subspace of VRT0
built as the image of space Vh through the operator

π.

This scheme is equivalent to the following system: for all (v1, q0) ∈ Vh × Qh and for all

(vb, qe) ∈ Hdiv
0 (Th) × L2

0(Th)

As((uh, ph), (π(v1), q0)) = Fs(π(v1), q0),(19)

As((uh, ph), (vb, qe)) = Fs(vb, qe).(20)

From now on, and just in order to derive the method, we will assume that g is a piecewise

constant function (even if the method is analyzed and implemented for more general functions

g). With this assumption in mind, starting from (20) and proceeding as in [7], the following

strong problem is obtained for (ue, pe):

σ ue + ∇pe = f − σu1, ∇·ue = Jp0K + (ΠK(∇ · u1) −∇ · u1) in K,(21)

σ ue ·n = αF

∫

F

Jp0K +
(

(f − σu1) · n− ΠF ((f − σu1) · n)
)

,(22)

on each F ⊆ ∂K ∩ Eh, and ue · n = 0 on F ⊆ ∂Ω. Here, ΠF and ΠK stand for the L2-

projection operators over the constant space, i.e, ΠF (v) = 1
hF

∫

F
v and ΠK(v) = 1

|K|

∫

K
v.

Finally, the constant Jp0K is chosen in order to make (21)-(22) compatible, and is given by

Jp0K :=
1

|K|

3
∑

i=1

αFi
hFi

σ

∫

Fi

Jp0Kn·nK
Fi

.

Remark. For higher order velocity interpolation the vanishing right hand side term ΠK(∇ ·
u1)−∇·u1 left in the local problem (21) needs to be taken into account. Moreover, written

in this form, it will help us to bound the consistency errors (see equation (62) below). On

the other hand, since we have assumed that f is a constant (or piecewise constant) function,

the divergence equation in (21) may be rewritten as follows

∇·ue = Jp0K +
1

σ
(∇ · (f − σu1) − ΠK(∇ · (f − σu1))) ,(23)

which is the form that we will consider from now on. �
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Remark. The boundary condition (22) assures the continuity of the normal component of

the velocity on each edge, thus keeping our approach conforming. This fact may be kept

even for discontinuous coefficients, as it has been done in [7], where the mean value of σ has

been included in the boundary condition. �

Now, let MK := (Mu
K ,Mp

K) : H1(K)2 → Hdiv
0 (K) × L2

0(K) and DK := (Du
K ,Dp

K) :

L2(∂K) → Hdiv(K)×L2
0(K), defined as follows: (ve, ηe) := (Mu

K(v),Mp
K(v)) is the solution

of

σve + ∇ηe = v , σ∇ · ve = ∇ · v − ΠK(∇ · v) in K,(24)

σ ve · n = v · n− ΠF (v ·n) on each F ⊆ ∂K,

and (we, ξe) := (Du
K(q),Dp

K(q)) solves

σwe + ∇ξe = 0 , ∇ ·we =
1

|K|

3
∑

i=1

αFi
hFi

σ

∫

Fi

qn·nK
Fi

in K,(25)

σwe · n = αF

∫

F

q on each F ⊆ ∂K ∩ Ω.

Then, using these operators and (23), we can characterize the solution (ue, pe) = (uM
e +

uD
e , pM

e + pD
e ) of (21)-(22) as follows

(uM
e , pM

e ) = MK (f − σu1) ∀K ∈ Th ,(26)

(uD
e , pD

e ) = DK (Jp0K) ∀K ∈ Th.(27)

Next, we turn back to equation (19). First, since pe ∈ L2
0(K) and ∇· π(v1) |K ∈ R we

obtain

(pe,∇· π(v1))K = 0 for all K ∈ Th.(28)

Therefore, the problem (19) becomes: Find (u1, p0) ∈ Vh × Qh such that

As((u1 + ue, p0), (π(v1), q0)) = Fs(π(v1), q0) ∀(v1, q0) ∈ Vh × Qh,(29)

where ue is characterized with respect to u1 and p0 by (26)-(27). It is also convenient to

rewrite the problem above in an equivalent form integrating it by parts in each K ∈ Th

∑

K∈Th

(q0,∇·ue)K =
∑

F∈Eh

τF (Jp0K, Jq0K)F .(30)



10 G.R. BARRENECHEA, L.P. FRANCA, AND F. VALENTIN

Remark. The term related to f in (26) vanishes. Indeed, since f is constant in K then

f · n − ΠF (f · n) = 0 on each edge F , and there also exists a polynomial function qe

belonging to L2
0(K) such that

∇qe = f in each K ∈ Th,

which leads to Mu
Kf = 0. Therefore, no enriching contribution comes from (26) but for the

one related to u1. �

Finally, based on the previous remark, and replacing (30) and (26)-(27) in (29), we arrive

at the following final form of PGEM: Find (u1, p0) ∈ Vh × Qh such that

As((u1 − σMu
K(u1), p0), (π(v1), q0)) +

∑

K∈Th

(Du
K(Jp0K), σ π(v1))K

−
∑

F∈Eh

τF (Jp0K, Jq0K)F = Fs(π(v1), q0),

for all (v1, q0) ∈ Vh × Qh, which is precisely the method (13) since, as it will be shown in

terms of the basis function in the next section, the following holds

πK(u1) ≡ (I − σMu
K)(u1) and ℓK(Jp0K) ≡ Du

K(Jp0K).(31)

Next, the symmetric method (16) follows by neglecting the non diagonal term (ℓ(Jp̂0K), σ π(v1))Ω

as this term does not undermine convergence estimates (see Section 3).

Remark. Following analogous steps and just replacing the forms As(., .) and Fs(.) by A(., .)

and F(.), and switching the velocity test space π(Vh) to Vh in (18) we arrive at the following

method: Find (û1, p̂0) ∈ Vh × Qh such that

A((π(û1), p̂0), (v1, q0)) + (ℓ(Jp̂0K), σ v1)Ω +
∑

F∈Eh

τF (Jp̂0K, Jq0K)F = F(v1, q0) ,(32)

for all (v1, q0) ∈ Vh × Qh, which is exactly the PGEM proposed in [7]. �

2.2. The local problems. This section is devoted to show the relationship between the

local problems (26)-(27) and the Raviart-Thomas interpolation operator π and the lifting

operator ℓ. First, we decompose u1 =
∑2

k=1

∑3
i=1 uk

iψ
k
i , where uk

i are the nodal values of u1

and ψk
i , that denotes the (vector-valued) hat function. Then, we look for solutions of (26)

and (27) in the form

uD
e |K =

3
∑

j=1

αFj

∫

Fj
Jp0K

σ
ϕj and pD

e |K =

3
∑

j=1

αFj

∫

Fj
Jp0K

σ
ηj ,(33)
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and

uM
e |K = −σ

2
∑

k=1

3
∑

i=1

uk
i ϕ

k
i and pM

e |K = −σ
2

∑

k=1

3
∑

i=1

uk
i ηk

i .(34)

Here, indexes j and i are representing edges and local nodal numeration, respectively. Next,

by replacing (33) and (34) in the local problems (27) and (26) respectively, and factoring

out the coefficients it follows that the multi-scale basis functions (ϕj, ηj) and (ϕk
i , η

k
i ) must

satisfy the following well-posed local Darcy problems

σϕj + ∇ηj = 0 , ∇·ϕj =
hFj

|K| n·n
K
Fj

in K,(35)

ϕj ·n =

{

1 if j = i,

0 otherwise
on each Fi ⊆ ∂K,(36)

and

σϕk
i + ∇ηk

i = ψk
i , ∇·ϕk

i = 0 in K,(37)

σϕk
i ·n = ψk

i ·n− ΠF (ψk
i ·n) on each F ⊆ ∂K.(38)

The enrichment functions emanating from the problem (35)-(36) are nothing but the well

known basis functions of the space RT0(K), i.e, the lowest order Raviart-Thomas approxi-

mation of Hdiv(K) defined by (6), and they are given by (cf. (10))

ϕj(x) = ± hFj

2|K|(x − xFj
) for j = 1, 2, 3 .(39)

Consequently,

ηj(x) = ∓σ hFj

2 |K|
( |x|2

2
− x·xFj

+ Cj

)

for j = 1, 2, 3,(40)

where the constant Cj is set up so
∫

K
ηj = 0. The solution of (37)-(38) can also be analyti-

cally computed, providing

σϕk
i = ψk

i −
3

∑

j=1

ΠF (ψk
i ·n)ϕj = ψk

i − πK(ψk
i ) ,(41)

where πK has been defined in (9). A similar local problem has been used in [15] to obtain

multiscale basis functions for the Darcy problem with oscillating coefficients (see also [1] for

the extension to porous media with stochastic coefficients).
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2.3. The local mass conservation feature: a general strategy. Computing numerical

solutions through PGEM (13) and the symmetric method (16) does not assure local mass

conservative velocity field if only linear part of solution u1 (or û1) is considered. Regarding

the first method, the required feature is achieved by locally updating u1 with uD
e given by

(27). In fact, since discontinuous pressure interpolations are used it emerges from (13) that

(see [7] for a related idea)
∫

K

∇· (u1 + uD
e ) =

∫

K

g , for all K ∈ Th.

Remark. Summing up, we see that in order to obtain a stable pair of interpolation spaces with

discrete velocity field locally mass-conservative, it is fundamental to enrich the linear part

of the discrete velocity u1 with an element of the Raviart-Thomas’ space VRT0
, namely, the

multi-scale function uD
e computed from (33). We stress the fact that the computation of (33)

follows directly from the discrete solution, without the need of any extra local computation.

Moreover, the exact velocity u is approximated in each K ∈ Th by

uh = u1 + uM
e + uD

e

=

2
∑

k=1

3
∑

i=1

uk
i ψ

k
i − σ

2
∑

k=1

3
∑

i=1

uk
i ϕ

k
i +

3
∑

l=1

αFl

σ

∫

Fl

Jp0K ϕl

=

3
∑

l=1

(

ΠFl
(u1·n) + τFl

ΠFl
(Jp0K)

)

ϕl

= πK(u1) + ℓK(Jp0K),

so, as expected, the continuity of the normal velocity component through the internal edges

is assured, but not the tangential one. �

Now, it turns out that such local mass recovering is not only restricted to methods arising

exactly from the enhancing approach. For example, stabilized methods based on pressure

jumps as the one presented in [14], or the symmetric method (16) are elegible to recover the

local mass conservation feature adding ℓK(Jp0K) to the computed velocity field, where p0 is

the constant pressure solution. We illustrate this fact for the symmetric formulation (16).

Choosing v1 = 0 in (16) and q0 = 1 in K and −|K|/|K ′| in K ′ (where K ∩ K ′ = F ∈ Eh),

we obtain after integration by parts and the definition of ℓK that
∫

K

∇· (û1 + ℓK(Jp̂0K)) −
|K|
|K ′|

∫

K ′

∇· (û1 + ℓK(Jp̂0K)) =

∫

K

∇ · û1 −
|K|
|K ′|

∫

K ′

∇ · û1 +
∑

F⊆∂K∪∂K′

τF (Jp̂0K, Jq0K)F =

∫

K

g − |K|
|K ′|

∫

K ′

g ,
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and then, following closely the arguments given in [7], we obtain that the value
∫

K
∇ · (û1 −

ℓK(Jp̂0K))− g vanishes in each K, and hence it must vanish on each element. It is important

to emphasize once more that ℓ(Jp̂0K) does not perturb too much the solution in the sense

that the order of error estimates is still preserved (see Theorems 8 and 9 for details).

3. Error analysis

In the sequel C denotes a generic positive constant, independent of h or σ, with values

that may vary in each occurrence. Before performing an error analysis of (13) and (16), we

need to consider interpolation inequalities to approximate variables.

3.1. Interpolation, stability and consistency results. We start by presenting the Clément

interpolation operator (cf. [16, 22, 17]) Ch : H1(Ω) → Vh (with the obvious extension to

vector-valued functions), satisfying, for all K ∈ Th and all F ∈ Eh,

‖v − Ch(v)‖m,K ≤ C ht−m
K |v|t,ωK

∀v ∈ H t(ωK) ,(42)

‖v − Ch(v)‖0,F ≤ C h
t− 1

2

F |v|t,ωF
∀v ∈ H t(ωF ) ,(43)

for t = 1, 2, m = 0, 1, where ωK = {K ′ ∈ Th : K ∩K ′ 6= ∅} and ωF = {K ∈ Th : K ∩F 6= ∅}.
Now, in order to take into account the approximation of the pressure and the consistency

error, we consider the L2(Ω) projection onto Qh which is denoted by Πh : L2(Ω) → Qh.

This projection satisfies (cf. [17])

‖q − Πh(q)‖m,Ω ≤ C h1−m |q|1,Ω ∀ q ∈ H1(Ω) ,(44)

for m = 0, 1. Moreover, using the result above and the following local trace inequality: given

K ∈ Th, F ⊆ ∂K, there exists C such that for all v ∈ H1(K)

‖v‖2
0,F ≤ C

( 1

hK
‖v‖2

0,K + hK |v|21,K

)

,(45)

we obtain

(46)
[

∑

F∈Eh

hF ‖Jq − Πh(q)K‖2
0,F

]1/2

≤ C h |q|1,Ω.

Moreover, we will systematically use the Raviart-Thomas interpolation operator π defined

through (9) as

π(v) =
∑

F∈Eh

ΠF (v ·n|F )ϕF ,

satisfying (see [17] or Corollary 6 for an alternative proof)

‖v − π(v)‖0,Ω ≤ C h |v|1,Ω ,(47)
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for all v ∈ H1(Ω)2 and

‖∇ · v −∇ · π(v)‖0,Ω ≤ C h |∇ · v|1,Ω ,(48)

for all v ∈ H1(Ω)2 such that ∇ · v ∈ H1(Ω).

Now, we define the following mesh dependent norm

‖(v, q)‖h :=
(

∑

K∈Th

σ ‖v‖2
0,K +

∑

F∈Eh

τF‖JqK‖2
0,F

)1/2

,(49)

and we present an interpolation result in this norm.

Lemma 1. Let us suppose that (v, q) ∈ H1(Ω)2 × H1(Ω). Then, there exists C such that

‖(v − π(Ch(v)), q − Πh(q))‖h ≤ C h
(√

σ |v|1,Ω +
1√
σ
|q|1,Ω

)

.(50)

Proof. From the definition of the norm, (42) and (46) there follows that

‖(v − π(Ch(v)), q − Πh(q))‖2
h = σ ‖v − π(Ch(v))‖2

0,Ω +
∑

F∈Eh

τF ‖Jq − Πh(q)K‖2
0,F

≤ 2 σ
(

‖v − π(v)‖2
0,Ω + ‖π(v − Ch(v))‖2

0,Ω) +
∑

F∈Eh

τF ‖Jq − Πh(q)K‖2
0,F

≤ C

(

σ h2|v|21,Ω +
h2

σ
|q|21,Ω

)

+ 2σ ‖π(v − Ch(v))‖2
0,Ω .(51)

Next, from its definition it is easy to prove that the Raviart-Thomas operator π satisfies (see

[9] for a related result and Lemma 5 for an alternative proof)

(52) ‖π(v)‖0,Ω ≤ C (‖v‖0,Ω + h |v|1,Ω) ,

for all v ∈ H1(Ω)2, and then the result follows applying (52) and (42) in (51). �

Before heading to stability, an auxiliary result is stated next.

Lemma 2. Let π be the Raviart-Thomas interpolator, then there exists a positive constant

C1 such that, for all v1 ∈ Vh and q0 ∈ Qh, it holds

(ℓ(Jq0K), σ π(v1))Ω ≤ C1

{

∑

F∈Eh

τF ‖Jq0K‖2
0,F

}
1

2 √
σα h ‖π(v1)‖0,Ω ,(53)

where α := max{αF : F ∈ Eh}.
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Proof. In order to prove (53) we first note that ℓ(Jq0K) ∈ VRT0
. Hence, using successively

the Cauchy-Schwarz inequality, (11) and ‖ϕF‖0,K ≤ C1 hF we get

(ℓ(Jq0K), σ π(v1))Ω ≤
∑

K∈Th

‖ℓK(Jq0K)‖0,K σ ‖π(v1)‖0,K

≤
∑

K∈Th

∑

F⊆∂K

αF

σ

∫

F

|Jq0K| ‖ϕF‖0,K σ ‖π(v1)‖0,K

≤ C1

∑

K∈Th

∑

F⊆∂K

τF h
1

2

F ‖Jq0K‖0,F σ ‖π(v1)‖0,K

≤ C1

{

∑

F∈Eh

τF ‖Jq0K‖2
0,F

}
1

2

h
√

σ α ‖π(v1)‖0,Ω ,

and the result follows. �

We are ready to prove PGEM are well-posed.

Lemma 3. The bilinear forms Bs(., .) defined in (17) satisfies

Bs((v1, q0), (v1,−q0)) = ‖(π(v1), q0)‖2
h ∀(v1, q0) ∈ Vh × Qh .

Moreover, assuming α ≤ 1
C2

1
h2 where C1 is the positive constant from Lemma 2, the bilinear

form B(., .) defined in (14) satisfies,

B((v1, q0), (v1,−q0)) ≥ 1

2
‖(π(v1), q0)‖2

h ∀(v1, q0) ∈ Vh × Qh .

Hence, the problems (13) and (16) are well-posed.

Proof. The first equality follows directly from the definition of the bilinear form Bs(., .). For

the second one, we recall that

B((v1, q0), (v1,−q0)) = σ ‖π(v1)‖2
Ω + (ℓ(Jq0K), σ π(v1))Ω +

∑

F∈Eh

τF ‖Jq0K‖2
0,F .(54)

As for the second term, we use Lemma 2 to obtain

(ℓ(Jq0K), σ π(v1))Ω ≤ C1

{

∑

F∈Eh

τF ‖Jq0K‖2
0,F

}
1

2

h
√

σα ‖π(v1)‖0,Ω

≤
∑

F∈Eh

1

2
C2

1 α h2 τF‖Jq0K‖2
0,F +

1

2
σ ‖π(v1)‖2

0,Ω ,
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Hence by successively applying inequality above into (54) and assuming α ≤ 1
C2

1
h2 it holds

B((v1, q0), (v1,−q0)) ≥
σ

2
‖π(v1)‖2

0,Ω +
∑

F∈Eh

(1 − C2
1 α h2

2
) τF‖Jq0K‖2

0,F

≥ 1

2
‖(π(v1), q0)‖2

h .

The continuity of bilinear forms is straightforward and thus the well-posedness of (13) and

(16) stems from the Necas Theorem [17]. �

Remark. We remark that the metric ‖(π(v1), q0)‖h defines a norm in the space Vh×Qh since

the Raviart-Thomas interpolation operator is injective when restricted to Vh. On the other

hand, we remark that the hypothesis on α is not really restrictive, since it only applies for

coarse meshes. For a sufficiently refined mesh the choice for α is essentially unlimited. �

Neither of the methods proposed in the previous section are formally consistent as points

out the next result.

Lemma 4. Let (u, p) ∈ Hdiv
0 (Ω)× [H1(Ω)∩L2

0(Ω)] be the weak solution of (3), (u1, p0) the

solution of (13) and (û1, p̂0) the solution of (16), respectively. Then,

B
(

(u− u1, p − p0), (v1, q0)
)

= −
∑

K∈Th

(σMu
K(u), σ πK(v1))K ,

Bs

(

(u− û1, p − p̂0), (v1, q0)
)

= −
∑

K∈Th

(σMu
K(u), σ πK(v1))K ,

for all (v1, q0) ∈ Vh × Qh.

Proof. The result follows from the definition of B(., .) and Bs(., .), and noting that JpK = 0

a.e. across all the internal edges �

3.2. Error estimates for the symmetric formulation. We begin this section by proving

the following technical result concerning the operator Mu
K .

Lemma 5. Let v ∈ H1(K)2. Then, there exists a constant C such that

‖Mu
K(v)‖0,K ≤ C σ−1 hK |v|1,K .

Proof. Let v ∈ H1(K)2, and w := Mu
K(v). Then, from the definition of Mu

K (cf. (24)), w

satisfies

σw + ∇ξ = v , σ∇ ·w = ∇· v − ΠK(∇· v) in K ,(55)

σw · n = v · n− ΠF (v · n) on each F ⊆ ∂K ,
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where ξ ∈ L2
0(K). Multiplying the first equation by w and integrating it by parts we arrive

at

σ ‖w‖2
0,K = (v,w)K +

1

σ
(ξ,∇· v − ΠK(∇· v))K − 1

σ

∑

F⊆∂K

(ξ,v · n− ΠF (v · n))F

= (v,w)K +
1

σ
(ξ − ΠK(ξ),∇· v − ΠK(∇· v))K

− 1

σ

∑

F⊆∂K

(ξ − ΠF (ξ),v · n− ΠF (v · n))F

≤ ‖v‖0,K‖w‖0,K +
1

σ
‖ξ − ΠK(ξ)‖0,K‖∇· v − ΠK(∇· v)‖0,K

+
1

σ

∑

F⊆∂K

‖ξ − ΠF (ξ)‖0,F‖v · n− ΠF (v · n)‖0,F .(56)

Next, from (55) it holds ‖∇ξ‖0,K ≤ ‖v‖0,K +σ ‖w‖0,K and hence, using the local trace result

(45), the approximation property of the projection operators ΠF and ΠK , and the inequality

above to obtain

σ ‖w‖2
0,K ≤ ‖v‖0,K‖w‖0,K +

C

σ
hK |ξ|1,K|v|1,K

≤ ‖v‖0,K‖w‖0,K +
C hK

σ
(‖v‖0,K + σ ‖w‖0,K) |v|1,K

≤ C σ−1 (‖v‖2
0,K + h2

K |v|21,K) +
σ

2
‖w‖2

0,K ,(57)

and then we have proved that

‖Mu
K(v)‖0,K ≤ C σ−1 (‖v‖0,K + hK |v|1,K) .(58)

Finally, let us denote v0 = ΠK(v). Since v0 is a constant in each element, there holds that

Mu
K(v0) = 0 and then, from (58) it follows that

‖Mu
K(v)‖0,K = ‖Mu

K(v − v0)‖0,K ≤ C σ−1 (‖v − v0‖0,K + hK |v|1,K) ,

and the result follows using the approximation properties of the projection. �

The previous lemma results in an alternative proof of the following classical interpolation

error estimate:

Corollary 6. There exists C such that

‖v − πK(v)‖0,K ≤ C hK |v|1,K ,

for all v ∈ H1(K)2.
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Proof. The result follows from the previous lemma and the fact that v− πK(v) = σMu
K(v).

�

Theorem 7. Let (u, p) ∈ Hdiv
0 (Ω) ∩ H2(Ω)2 × H1(Ω) ∩ L2

0(Ω) be the solution of (2), and

(û1, p̂0) ∈ Vh × Qh the solution of method (16). Then, defining ûh := π(û1), the following

error estimate holds

‖(u− ûh, p − p̂0)‖h ≤ C h (
√

σ ‖u‖2,Ω +
1√
σ
|p|1,Ω

)

.(59)

Proof. Let (v1, q0) = (Ch(u), Πh(p)). From the triangle inequality we have

‖(u− π(û1), p − p̂0)‖h ≤ ‖(u− π(v1), p − q0)‖h + ‖(π(v1 − û1), q0 − p̂0)‖h .(60)

The first term is easily estimated using Lemma 1. Next, let us estimate the second term

on the right hand side. For that, we use the coercivity of Bs(., .) (cf. Lemma 3) and the

consistency result (cf. Lemma 4) to obtain

‖(π(v1 − û1), q0 − p̂0)‖2
h = Bs((v1 − û1, q0 − p̂0), (v1 − û1, p̂0 − q0))

= −Bs((u− v1, p − q0), (v1 − û1, p̂0 − q0)) − σ2
∑

K∈Th

(Mu
K(u), πK(v1 − û1))K

= −σ (π(u− v1), π(v1 − û1))Ω + (p − q0,∇ · (π(v1 − û1)))Ω + (p̂0 − q0,∇ · (π(u− v1)))Ω

+
∑

F∈Eh

τF (Jp − q0K, Jp̂0 − q0K)F −
∑

K∈Th

σ2 (Mu
K(u), πK(v1 − û1))K .

Next, from the properties of the projection operator Πh it holds

(61) (p − q0,∇ · (π(v1 − û1)))Ω = 0 ,
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and then, integrating by parts and using the Cauchy-Schwarz’s inequality we arrive at

‖(π(v1 − û1), q0 − p̂0)‖2
h ≤ σ ‖π(u− v1)‖0,Ω‖π(v1 − û1)‖0,Ω +

∑

F∈Eh

(Jp̂0 − q0K, (u− v1) · n)F

+
∑

F∈Eh

τF‖Jp − q0K‖0,F‖Jp̂0 − q0K‖0,F + σ2
∑

K∈Th

(Mu
K(u), πK(v1 − û1))K

≤ σ ‖π(u− v1)‖0,Ω‖π(v1 − û1)‖0,Ω + C
∑

F∈Eh

‖Jp̂0 − q0K‖0,F h
3

2

F |u|2,ωF

+
∑

F∈Eh

τF‖Jp − q0K‖0,F‖Jp̂0 − q0K‖0,F + σ2
∑

K∈Th

(Mu
K(u), πK(v1 − û1))K

≤ σ ‖π(u− v1)‖0,Ω‖π(v1 − û1)‖0,Ω + C
∑

F∈Eh

σ
1

2 τ
1

2

F ‖Jp̂0 − q0K‖0,FhF |u|2,ωF

+
∑

F∈Eh

τF‖Jp − q0K‖0,F‖Jp̂0 − q0K‖0,F + σ2
∑

K∈Th

(Mu
K(u), πK(v1 − û1))K

≤ C

{

σ ‖π(u− v1)‖2
0,Ω + σ h2|u|22,Ω +

∑

F∈Eh

τF‖Jp − q0K‖2
0,F

}
1

2

‖(π(v1 − û1), q0 − p̂0)‖h

+ σ2
∑

K∈Th

(Mu
K(u), πK(v1 − û1))K .

The last term on the right hand side is estimated next. Using Lemma 5 we may bound the

consistency term as follows

∑

K∈Th

(Mu
K(u), πK(v1 − û1))K ≤

∑

K∈Th

‖Mu
K(u)‖0,K‖πK(v1 − û1)‖0,K

≤ C σ−1 h |u|1,Ω ‖π(v1 − û1)‖0,Ω .(62)

Collecting all the above results it follows from Lemma 1 that

1

2
‖(π(v1 − û1), q0 − p̂0)‖2

h ≤ C
(√

σh‖u‖2,Ω +
h√
σ
|p|1,Ω

)

‖(π(v1 − û1), p̂0 − q0)‖h ,

and hence (59) follows. �

Next, we analyze the error in the Hdiv(Ω) norm for the velocity and the L2(Ω) norm for

the pressure.
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Theorem 8. Let (u, p) and (û1, p̂0) be the solutions of (3) and (16), respectively, and

ûh := π(û1). Under the hypothesis of Theorem 7, there exists C such that

‖u− ûh‖div,Ω ≤ C h
(

‖u‖2,Ω +
1

σ
|p|1,Ω

)

,(63)

‖u− ûh − ℓ(Jp̂0K)‖div,Ω ≤ C h ( ‖u‖2,Ω +
1

σ
|p|1,Ω

)

,(64)

‖p − p̂0‖0,Ω ≤ C h
(

σ ‖u‖2,Ω + |p|1,Ω

)

.(65)

Proof. First, let v1 := Ch(u); then

‖∇ · (u− û1)‖2
0,Ω = (∇ · (u− û1),∇ · (u− û1))Ω

= (∇ · (u− û1),∇ · (u− v1))Ω + (∇ · (u− û1),∇ · (û1 − v1))Ω .(66)

Next, from Lemma 4 (considering q0 := ∇ · (û1 − v1) ∈ Qh and v1 = 0) we get

(∇ · (u− û1),∇ · (û1 − v1))Ω = −
∑

F∈Eh

τF (Jp − p̂0K, J∇· (û1 − v1)K)F

≤
∑

F∈Eh

τF ‖Jp − p̂0K‖0,F ‖J∇· (û1 − v1)K‖0,F

≤
∑

F∈Eh

τF

γ
‖Jp − p̂0K‖2

0,F + γ
∑

F∈Eh

τF ‖J∇· (û1 − v1)K‖2
0,F .(67)

Next, using the local trace result (45), (42) and the mesh regularity to obtain

γ
∑

F∈Eh

τF ‖J∇ · (û1 − v1)K‖2
0,F ≤ C γ

∑

K∈Th

α hK

σ

[

h−1
K ‖∇ · (û1 − v1)‖2

0,K

]

≤ C γ

σ

∑

K∈Th

[

‖∇ · (u− û1)‖2
0,K + ‖∇ · (u− v1)‖2

0,K

]

≤ C γ

σ

∑

K∈Th

[

‖∇ · (u− û1)‖2
0,K + Ch2

K |u|22,ωK

]

.(68)

Hence, choosing γ = σ
4C

in (68) and using ab ≤ (a2/4) + b2, the mesh regularity and (42)

again, (66) and (67) become

‖∇ · (u− û1)‖2
0,Ω ≤ 1

4
‖∇ · (u− û1)‖2

0,Ω + ‖∇ · (u− v1)‖2
0,Ω

+
∑

F∈Eh

τF

γ
‖Jp − p̂0K‖2

0,F +
C γ

σ

∑

K∈Th

[

‖∇ · (u− û1)‖2
0,K + Ch2

K |u|22,ωK

]

≤ C σ−1
∑

F∈Eh

τF ‖Jp − p̂0K‖2
0,F + C h2 |u|22,Ω +

1

2
‖∇ · (u− û1)‖2

0,Ω

≤ C σ−1 ‖(u− ûh, p − p̂0)‖2
h + C h2 |u|22,Ω +

1

2
‖∇ · (u− û1)‖2

0,Ω ,(69)
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and the result follows by applying Theorem 7 and extracting the square root.

Now, we use the local mass conservation feature to prove (64). In fact, we get
∫

K

∇ · (u− û1 − ℓK(Jp̂0K)) = 0 ,

and then, since ∇ · (û1 + ℓK(Jp̂0K))|K ∈ R, we end up with

‖∇ · (u− û1 − ℓK(Jp̂0K))‖2
0,K = (∇ · (u− û1 − ℓK(Jp̂0K)),∇ · (u− û1 − ℓK(Jp̂0K)))K

= (∇ · (u− û1 − ℓK(Jp̂0K)),∇ · (u− π(u)))K

≤ Ch |∇ · u|1,K ‖∇ · (u− û1 − ℓK(Jp̂0K)‖0,K .(70)

As seen in Lemma 2 we can prove that

‖ℓ(Jp̂0K)‖0,Ω ≤
∑

F∈Eh

τF ‖ϕF‖0,Ω |Jp̂0K| ≤ C h σ− 1

2

{

∑

F∈Eh

τF ‖Jp − p̂0K‖2
0,F

}
1

2

,(71)

and then using (59) we obtain

‖u− ûh − ℓ(Jp̂0K)‖0,Ω ≤ C h ( ‖u‖2,Ω +
1

σ
|p|1,Ω

)

,(72)

and (64) follows from (70) and (72).

Finally, we consider the estimate for the pressure. From the continuous inf-sup condition

(see [13]), there exists a w ∈ H1
0 (Ω) such that ∇·w = p − p̂0 in Ω and

‖w‖1,Ω ≤ C ‖p − p̂0‖0,Ω.(73)

Let w1 = Ch(w). Since ∇ · w1 = ∇ · (π(w1)), using Lemma 4 and recalling that πK =

I − σMu
K , we obtain

‖p − p̂0‖2
0,Ω =(∇ ·w, p − p̂0)Ω

=(∇ · (w −w1), p − p̂0)Ω + (∇ ·w1, p − p̂0)Ω

=
∑

K∈Th

[(w −w1,∇p)K + (w −w1, (p − p̂0) I·n)∂K ]

+
∑

K∈Th

σ ((I − σMu
K)(u) − πK(u1), πK(w1))K + σ2 (Mu

K(u), πK(w1))K

≤C
[

∑

K∈Th

h2
K |p|21,K + σ ‖(u− π(u1), p − p̂0)‖2

h

]
1

2 ·

[

∑

K∈Th

h−2
K ‖w −w1‖2

0,K +
∑

F∈Eh

h−1
F ‖w −w1‖2

0,F + ‖π(w1)‖2
0,Ω

]
1

2

.
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Now, using (42)-(43), the regularity of the mesh, (52) and (73) we obtain
[

∑

K∈Th

h−2
K ‖w −w1‖2

0,K +
∑

F∈Eh

τ−1
F ‖w −w1‖2

0,F + ‖π(w1)‖2
0,Ω

]1/2

≤ C |w|1,Ω ≤ C ‖p − p̂0‖0,Ω ,

hence, dividing by ‖p − p̂0‖0,Ω and using Theorem 7, we arrive at

‖p − p̂0‖0,Ω ≤ C
[

σ ‖(u− π(û1), p − p̂0)‖2
h + σ2 h2 |p|21,Ω

]
1

2 ≤ C h
[

σ ‖u‖2,Ω + |p|1,Ω

]

,

and the result follows. �

Remark. Having assumed the coefficient σ to be constant in Ω (and then independent of any

small scale), the H2(Ω)-norm of the exact solution u does not blow up as is usual in Darcy

problems with highly oscillating coefficients (see [15] for further details). �

3.3. An error estimate for the method (13). We end the error analysis by proving the

following error result concerning the method (13).

Theorem 9. Let (u, p) ∈ Hdiv
0 (Ω) ∩ H2(Ω)2 × H1(Ω) ∩ L2

0(Ω) be the solution of (2), and

(u1, p0), (û1, p̂0) the solution of methods (13) and (16), respectively. Then, defining uh :=

π(u1) and ûh := π(û1), the following error estimate holds

‖(u− uh, p − p0)‖h ≤ 3 ‖(u− ûh, p − p̂0)‖h .

Proof. First, from Lemmas 3 and 4 and Lemma 2 it follows

1

2
‖(π(u1 − û1),p0 − p̂0)‖2

h ≤ B((u1 − û1, p0 − p̂0), (u1 − û1, p0 − p̂0))

=B((u− û1, p − p̂0), (u1 − û1, p0 − p̂0)) +
∑

K∈Th

(σMu
K(u), σ πK(u1 − û1))K

=Bs((u− û1, p − p̂0), (u1 − û1, p̂0 − p0)) +
∑

K∈Th

(ℓK(Jp − p̂0K), σ πK(u1 − û1))K

+
∑

K∈Th

σ (Mu
K(u), σ πK(u1 − û1))K

=
∑

K∈Th

(ℓK(Jp − p̂0K), σ πK((u1 − û1))K

≤C1

{

∑

F∈Eh

τF ‖Jp − p̂0K‖2
0,F

}
1

2 √
σα h ‖π(u1 − û1)‖0,Ω

≤C2
1 α h2

∑

F∈Eh

τF‖Jp − p̂0K‖2
0,F +

1

4
σ‖π(u1 − û1)‖2

0,Ω

≤‖(u− ûh, p − p̂0)‖2
h +

1

4
‖(π(u1 − û1), p0 − p̂0)‖2

0,Ω(74)
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where we used α ≤ 1
C2

1
h2 and C1 is the positive constant from Lemma 2. The result follows

applying the triangular inequality. �

Remark. We end this section by remarking that the same analysis from Theorem 8 may be

carried out to prove error estimates on ‖u− ûh‖div,Ω and ‖p − p̂0‖0,Ω as well. �

4. Numerical experiments

Now, we are interested in the numerical validation of the PGEM in its symmetric version

(16). The method (13) behaves similarly as shown in Section 3.3. Two numerical tests

with available analytical solutions are performed and the theoretical results validated. The

assumed vanishing boundary condition to generate the methods is adopted by the first nu-

merical test, a property which is no longer shared by the second case. In all the computations

the value for αF has been set to one.

4.1. An analytical problem. The domain is Ω = (0, 1) × (0, 1) and we set σ = 1 and

the exact pressure is given by p(x, y) = cos(2πx) cos(2πy). Next, the exact velocity is

determined from the Darcy law and the boundary condition is taken to be its normal com-

ponent on the boundary, thus b = 0. Consequently, the divergence velocity field is set as

g = 8 π2 cos(2πx) cos(2πy).

MESH

Figure 2. Mesh for the analytical problem.

In Figures 4-6 we report the errors on velocity and pressure in a sequence of structured

meshes. One observes optimal convergence of all quantities as h → 0 in their respective
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natural norms, which are in accordance with the theoretical results. Moreover, in Figure 4

we also plot the error ‖π(u)− π(u1)‖0,Ω which is smaller than ‖u−u1‖0,Ω. Here we denote

|Jp − p0K|h :=
[

∑

F∈Eh
τF ‖Jp − p0K‖2

0,F

]1/2

.

First, we adopt the structured mesh described in Figure 2 which contains 4096 triangular

elements (h = 3.125 × 10−2). We depict in Figure 3 the isolines (free of oscillations) of the

pressure and |u1| obtained from (16).

Furthermore, in Table 4.1 we study the local mass conservation feature of (16) whether

we look at either u1 or u1 + ue. We define the quantities

Me := max
K∈Th

∣

∣

∫

K

(

∇· (u1 + ue) − g
)

dx
∣

∣

|K| and M1 := max
K∈Th

∣

∣

∫

K

(

∇·u1 − g
)

dx
∣

∣

|K| ,(75)

and we find a loss of mass, as expected, when just the linear part of the solution is used.

Nevertheless, we recover the local mass conservation property updating the linear velocity

field by the multi-scale velocity ue. Similar results were obtained in [7] using the non-

symmetric PGEM (32).

h 0.25 0.125 6.25 × 10−2 3.125 × 10−2 1.5625 × 10−2 7.8125 × 10−3

Me 2.3 × 10−14 2.3 × 10−13 10−12 10−11 1.2 × 10−10 10−9

M1 0.81 0.35 0.09 0.03 6.4 × 10−3 1.6 × 10−3

Table 4.1: Relative local mass conservation errors with the symmetric method (16).
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PRESSURE VELOCITY

Figure 3. Isolines of the pressure (left) and |u1| (right) using the symmetric

method (16).
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Figure 4. Convergence history of ‖u−u1‖0,Ω and ‖π(u)−π(u1)‖0,Ω for the

symmetric method (16).
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Figure 5. Convergence history of ‖∇· (u− u1)‖0,Ω and ‖(u− u1, p − p0)‖h,

and ‖(u− π(u1), p − p0)‖h for the symmetric method (16).
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Figure 6. Convergence history of ‖p−p0‖0,Ω and |Jp − p0K|h for the symmetric

method (16).
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4.2. A second analytical problem. The problem is set up as in the first test, differing

by replacing the previous exact pressure by p(x, y) =
x3y

3
− y3x

3
. Once again, the velocity

is computed from the Darcy law and the boundary condition b is taken to be its no van-

ishing normal component on the boundary. On the other hand, clearly the velocity field is

divergence free (g = 0).

We validate the symmetric method (16) using a sequence of structured meshes. Optimality

is reached whatever the norm is considered as shown in Figures 8-10. Similar quadratic

convergence is observed for ‖u − u1‖0,Ω and ‖π(u) − π(u1)‖0,Ω. Table 4.2 highlights that

the local mass conservation property is recovered as soon as u1 is updated by u1 + ue.

h 0.25 0.125 6.25 × 10−2 3.125 × 10−2 1.5625 × 10−2 7.8125 × 10−3

Me 3.1 × 10−15 1.5 × 10−14 1.9 × 10−13 7.1 × 10−13 5.6 × 10−12 7.6 × 10−11

M1 0.14 0.08 0.04 0.02 0.01 5.3 × 10−3

Table 4.2: Relative local mass conservation errors with the symmetric method (16).

Next, the structured mesh of Figure 2 is once more adopted, and the solution is oscillation-

free as it can be seen through the isolines of p0 and u1 in Figure 7.

PRESSURE VELOCITY

Figure 7. Isolines of the pressure (left) and |u1| (right) using the symmetric

method (16).
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Figure 8. Convergence history of ‖u−u1‖0,Ω and ‖π(u)−π(u1)‖0,Ω for the

symmetric method (16).
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Figure 9. Convergence history of ‖∇· (u− u1)‖0,Ω and ‖(u− u1, p − p0)‖h,

and ‖(u− π(u1), p − p0)‖h for the symmetric method (16).
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Figure 10. Convergence history of ‖p − p0‖0,Ω and |Jp − p0K|h for the sym-

metric method (16).

5. Conclusion

New enriched finite element methods make the simplest pair of nodal based interpolation

spaces stable for the Darcy model. It has been proved that such methods lead to optimal error

estimates in natural norms in addition to be locally mass conservative. Such fundamental

property is recovered inside a general framework which relies on updating the linear part

of velocity with a particular Raviart-Thomas function. Such strategy can prevent other

jump-based stabilized finite element methods from local loss of mass while keeping them

stable and accurate. Alternatives to deal with higher order interpolations should include

additional control on the jumps of gradient of the pressure, in the form of a new enrichment

function leading to a term like (ℓ(J∇p1·nK),∇q1)Ω, a feature that may be incorporated into

the current Petrov-Galerkin framework.

Appendix A. The error for general g

If we do not suppose that g is a piecewise constant function, instead we admit that

g ∈ H1(Ω), then a third enrichment function (ug
e, p

g
e) appears as the solution of

σug
e + ∇pg

e = 0 in K, ∇·ug
e = g − ΠK(g) in K,(76)

ug
e·n = 0 in ∂K .
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Now, denoting (ug
e, p

g
e) = GK(g − ΠK(g)), then, the original method (13) becomes: Find

(ũ1, p̃0) ∈ Vh × Qh such that for all (v1, q0) ∈ Vh × Qh it holds

(77) B((ũ1, p̃0), (v1, q0)) = Fs(π(v1), q0) −
∑

K∈Th

(GK(g − ΠK(g)), σ πK(v1))K ,

where we recall that ΠK(g) = 1
|K|

∫

K
g.

Remark. Regarding the symmetric method its right hand side must be enhanced with the

same contribution as well, and then the following results also apply to such version. �

Remark. Next, we see that there exists C > 0 such that

(78) ‖ug
e‖0,K ≤ C hK ‖g − ΠK(g)‖0,K ∀K ∈ Th .

Indeed, we remark that multiplying (77) by ug
e and integrating it by parts we obtain that

‖ug
e‖2

0,K = −1

σ
(∇pg

e,u
g
e)K

=
1

σ
(pg

e,∇·ug
e)K

=
1

σ
(pg

e, g − ΠK(g))K

≤ 1

σ
‖pg

e‖0,K ‖g − ΠK(g)‖0,K

≤ C
hK

σ
|pg

e|1,K ‖g − ΠK(g)‖0,K

= C hK ‖ug
e‖0,K ‖g − ΠK(g)‖0,K,

and the result follows. �

Now, applying the Strang Lemma (cf. [17]) and (78) we arrive at

‖(π(ũ1 − u1), p̃0 − p0)‖h ≤ sup
(v1,q0)∈Vh×Q0

h
−{0}

−∑

K∈Th
(GK(g − ΠK(g)), σ πK(v1))K

‖(π(v1), q0)‖h

≤ C

[

∑

K∈Th

‖GK(g − ΠK(g))‖2
0,K

]
1

2

≤ C h ‖g − ΠK(g)‖0,Ω

≤ C h2 |g|1,Ω ,

and then, as claimed, we see that the error is not affected by the fact that we projected

g onto the piecewise constant space. Therefore, following the same strategy in §3 we can
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estimate pressure and divergence of velocity in their respective natural norms, and so they

are summarized in the following theorem:

Theorem 10. Let us suppose that g ∈ H1(Ω) and denote ũh := π(ũ1). Then, under the

hypothesis of Theorem 9, the following error estimates hold

‖u− ũh‖div,Ω ≤ C h
(

|u|2,Ω +
1

σ
|p|1,Ω + h |g|1,Ω

)

,

‖u− ũh − ℓ(p̃0)‖div,Ω ≤ C h
(

|u|2,Ω +
1

σ
|p|1,Ω + h |g|1,Ω

)

,

‖p − p̃0‖0,Ω ≤ C h
(

σ |u|2,Ω + |p|1,Ω + σ h |g|1,Ω

)

.
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