
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering 
https://doi.org/10.1007/s11831-020-09502-5

ORIGINAL PAPER

HDGlab: An Open‑Source Implementation of the Hybridisable 
Discontinuous Galerkin Method in MATLAB

Matteo Giacomini1,2 · Ruben Sevilla3  · Antonio Huerta1,2

Received: 10 September 2020 / Accepted: 24 September 2020 
© The Author(s) 2020

Abstract
This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) 
method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implemen-
tation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more 
accessible to the computational engineering community. HDGlab presents some features not available in other implementa-
tions of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up 
to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial 
elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a 
flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator 
Gmsh is provided to facilitate its application to practical engineering problems.

Keywords Hybridizable discontinuous Galerkin · High-order · Elliptic problems · MATLAB · Open-source

Mathematics Subject Classification 35-04 · 35M32 · 65N30 · 68-04 · 97N80

1 Introduction

In recent years, hybrid discretisation methods have received 
increasing attention by the applied mathematics and com-
putational engineering community. The main interest in 
these methodologies is due to their reduced computational 
cost with respect to classical discontinuous Galerkin (DG) 
methods, see [135, 163, 170, 267], from which they inherit 
appealing stability and convergence properties as well as 
the flexibility to devise high-order, non-uniform degree 
and adaptive discretisations and the capability to efficiently 

exploit parallel computing architectures [42, 91, 108, 158, 
226].

The purpose of the present contribution is two-fold: to 
present a review on the state-of-the-art of hybrid discre-
tisation methods including both fundamental and applied 
contributions; to provide an educational implementation 
of the hybridisable discontinuous Galerkin (HDG) method 
in MATLAB, the so-called HDGlab library, and describe 
its structure, capabilities and functioning. HDGlab is an 
open-source library released under GNU GPL licence and 
designed for rapid prototyping and testing. It supports sim-
plicial meshes and it provides a seamless 2D and 3D imple-
mentation with vectorised loops on the integration points. In 
addition, HDGlab presents four specific features, currently 
not available in existing open-source HDG implementations 
in MATLAB: 

1. Availability of high-order polynomial shape functions up 
to degree 9, with both equally-spaced and Fekete nodal 
distributions.

2. Support of curved isoparametric simplicial elements in 
2D and 3D.

 * Ruben Sevilla 
 r.sevilla@swansea.ac.uk

1 Laboratori de Calcul Numeric (LaCàN), ETS de Ingenieros 
de Caminos, Canales y Puertos, Universitat Politècnica de 
Catalunya, Barcelona, Spain

2 International Centre for Numerical Methods in Engineering 
(CIMNE), Barcelona, Spain

3 Zienkiewicz Centre for Computational Engineering, 
College of Engineering, Swansea University, Bay Campus, 
Swansea SA1 8EN, Wales, UK

http://orcid.org/0000-0002-0061-6214
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-020-09502-5&domain=pdf


 M. Giacomini et al.

1 3

3. Support of non-uniform degree polynomial approxima-
tions and flexibility to devise degree adaptivity strategy.

4. Interface with the open-source high-order mesh genera-
tor Gmsh.

The remainder of this paper is organised as follows. First, a 
review of the state-of-the-art on hybrid discretisation meth-
ods is presented in Sect. 2. The formulation of the HDG 
method for the Poisson and Stokes problems is briefly 
recalled in Sects. 3 and 4, respectively. Section 5 provides 
a description of the structure of the HDGlab library and 
the url of the repository available under GNU GPL licence. 
The data structures for the storage of the mesh information, 
the reference element and the reference face are presented 
in Sect. 6. Section 7 is devoted to the preprocessing opera-
tions, whereas the core of the HDGlab solver for the scalar 
Poisson equation is described in Sect. 8. Its extension to 
vectorial problems involving incompressible Stokes flows is 
discussed in Sect. 9. The visualisation library is introduced 
in Sect. 10. Section 11 is devoted to numerical examples, in 
2D and 3D, validating the optimal convergence properties of 
the HDG method and showing the potentialities of the HDG-
lab implementation. Finally, Sect. 12 summarises the capa-
bilities of the presented library and three appendices provide 
implementation details for the Poisson (Appendix A) and 
Stokes (Appendix B) solvers and for the interface with the 
mesh generator Gmsh (Appendix C).

2  Literature Review

The common idea of all hybrid discretisation methods stems 
from the seminal works of Guyan on static condensation 
of primal formulations [157] and of Fraeijs de Veubeke on 
hybridisation of mixed formulations [138] of the finite ele-
ment method. In the context of element-by-element discon-
tinuous approximations, these techniques allow to remedy 
the drawback of node duplication in DG methods by con-
sidering only the unknowns on the mesh faces (edges in 2D) 
as globally-coupled degrees of freedom. More precisely, the 
unknowns in each element are expressed as a function of 
the degrees of freedom on the element faces by solving a 
local boundary value problem with purely Dirichlet data, 
whereas appropriate transmission conditions are imposed 
to guarantee the interelement continuity of the solution and 
the fluxes, see [75].

Three families of hybrid numerical schemes lay within 
this description, namely, (1) hybrid/hybridised DG, (2) 
hybridisable DG, henceforth referred to as HDG, and (3) 
hybrid high order (HHO) methods. Stemming from classi-
cal DG primal formulations, the hybrid or hybridised DG 
method reduces the number of globally coupled degrees of 
freedom by performing static condensation [124–126]. In 

addition, improved efficiency can be achieved using polyno-
mial spaces of degree � + 1 and � for the primal and hybrid 
variables, respectively and resorting to the reduced stabili-
sation approach [206, 207]. The hybridisable DG method, 
henceforth named HDG, is derived from the mixed formu-
lation of the local DG method [77, 87, 99] with hybridi-
sation. The main advantage of HDG with respect to other 
hybridised DG methods relies in the introduction of a mixed 
variable approximating the gradient of the primal unknown 
[88, 89]. This approach is of special interest in the context 
of engineering problems where quantities of interest often 
depend on the flux of the solution or on the stress. Finally, 
HHO bridges the two approaches above by utilising a primal 
formulation and introducing a local reconstruction operator 
for the gradient of the solution and an appropriate stabilisa-
tion term in the static condensation problem [109, 110]. It 
is worth noting that many hybrid discretisation schemes can 
be interpreted in a unique framework as HDG-type methods 
via appropriate definitions of the stabilisation term, see e.g. 
[68, 69] for the staggered DG method and [106] for HHO.

Unified presentations of hybrid discretisation techniques 
and their relationship with other known numerical methods 
are available in [37, 89, 114]. Interested readers are also 
referred to the review papers [75, 149] and to the recent 
monograph [112]. In the following subsections, an over-
view of the contributions on hybrid discretisation methods 
according to the authors’ vision is presented.

2.1  From Linear to Nonlinear Scalar Equations

Second-order scalar elliptic problems have been extensively 
studied using HDG [89], HHO [110, 115] and the hybridised 
DG method [206], whereas their extension to linear convec-
tion–diffusion problems is discussed in [79, 113, 124, 200]. 
Cases of higher-order partial differential equations (PDEs) 
are presented in [78] and [62] for HDG discretisations of 
biharmonic and third-order equations, respectively, whereas 
an HHO approximation of the Cahn-Hilliard equation is pro-
posed in [53]. In addition, time-fractional diffusion problems 
are discussed in [76, 197].

More recently, there has been growing interest towards 
the analysis and simulation of quasilinear and semilinear 
problems, including the quasilinear p-Laplace operator [95, 
216] and the semilinear Grad–Shafranov equation [233, 
234]. To reduce the computational cost of semilinear prob-
lems, the interpolatory HDG method was recently devised 
introducing an interpolation procedure for the efficient and 
accurate approximation of nonlinear terms [54, 100].

Concerning nonlinear problems, HDG discretisations 
were proposed for nonlinear convection–diffusion [201] and 
nonlinear Schrödinger [46] equations, whereas an HHO for-
mulation of the nonlinear Leray–Lions equation is presented 
in [111]. Recent applications involving HDG approximations 



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

of nonlinear scalar equations focus on the optoelectronic 
simulation of photovoltaic solar cells. This problem couples 
a high-order HDG method for the drift-diffusion electronic 
model in the semiconductor layer of the solar cells with an 
efficient approximation of the time-harmonic Maxwell’s 
equations [21, 56].

2.2  Incompressible Flows

In the context of incompressible flows, HDG formulations of 
the Stokes equations were devised and analysed in [90, 92, 
98, 199]. The corresponding analysis of the HDG method for 
Oseen flow is presented in [49]. In [92], it was observed that 
the HDG method based on Cauchy stress tensor formulation 
experiences suboptimal convergence of the mixed variable 
and loss of superconvergence of the postprocessed velocity, 
when low-order polynomial approximations are considered. 
The M-decomposition approach [84] remedies this issue by 
appropriately enriching the discrete local spaces of approxi-
mation. An alternative strategy imposing the symmetry of 
the mixed variable pointwise via Voigt notation is discussed 
in [148] along with a postprocessing procedure to handle 
translational and rotational rigid body modes. Divergence-
conforming HDG [94], hybridised DG [125] and embed-
ded-hybridised DG (EHDG) [225] discretisations were also 
studied for the incompressible Stokes equations, whereas a 
pressure-robust HHO method for viscosity-dependent Stokes 
flows is proposed in [116].

HDG formulations for the nonlinear incompressible 
Navier–Stokes equations using equal order and different 
order of polynomial approximations for the primal, mixed 
and hybrid variables are described in [50, 204] and [215], 
respectively. The former approach is also employed in 
[152] to devise a degree adaptive strategy relying on the 
local superconvergence of the postprocessed velocity. Stem-
ming from the work in [117], different HHO formulations 
of the incompressible Navier–Stokes equations were pro-
posed, incorporating a skew-symmetric form of the con-
vection term [31] and a globally divergence-free velocity 
approximation to achieve robustness in presence of large 
irrotational body forces [45]. Moreover, special attention 
was devoted in recent years to the development of hybridised 
DG schemes [126] with pointwise divergence-free velocity 
[171, 181, 223] and with relaxed H(div)-conformity [177, 
178], as well as divergence-conforming hybrid DG discre-
tisations for incompressible flows on surfaces [179]. It is 
worth noting that all the above mentioned references focus 
on viscous laminar flows and preliminary promising results 
on the incompressible Reynolds averaged Navier–Stokes 
(RANS) equations coupled with the Spalart-Allmaras tur-
bulence model were recently presented in [210].

Besides classical approaches to steady and unsteady 
Navier–Stokes equations, HDG-based space-time 

formulations were studied for their ability to effectively 
handle moving and deforming domains. More precisely, 
stemming from the HDG formulation introduced in [222], 
H(div)-conforming hybridised DG [160] and EHDG [161] 
methods were proposed. Hybridised DG and HDG meth-
ods with arbitrary Lagrangian Eulerian (ALE) formula-
tions were thus presented in [134, 140] and the resulting 
HDG-ALE framework was applied to fluid–structure inter-
action (FSI) problems involving incompressible [248] and 
weakly-compressible flows [176].

Among the applications of hybrid discretisation meth-
ods to incompressible flows, it is also worth mentioning 
the recent attempts to simulate quasi-Newtonian fluids 
[145] and viscoplastic materials [44].

2.3  Two‑Phase Flows and Heterogeneous Porous 
Media

HDG simulations of immiscible incompressible two-phase 
flows in heterogeneous porous media were first proposed 
in [130] and coupled with high-order diagonally implicit 
Runge–Kutta (DIRK) time integrators in [107]. Moreover, 
in [168] a linear degenerate elliptic problem modelling 
two-phase mixture is approximated using a hybridised DG 
approach. Darcy flow and two-phase flow simulations in 
highly heterogeneous media are performed in [270] via the 
so-called generalised multiscale HDG (GMsHDG) method 
which is connected to the mortar mixed finite element 
method described in [24]. GMsHDG was also employed 
for multiscale simulations of elliptic PDEs in heterogene-
ous media [70, 123] and perforated domains [65] and of 
parabolic PDEs in heterogeneous media [192].

An alternative to GMsHDG is the HHO framework for 
highly oscillatory elliptic problems introduced in [73]. 
Moreover, in the context of coupled problems involv-
ing porous media, HHO simulations of passive transport 
of a solute in a fractured medium are presented in [52], 
whereas nonlinear poroelastic phenomena in a saturated 
porous medium with a slightly compressible fluid are 
described in [33, 35].

Extensive research has been also devoted to coupled 
Stokes/Darcy and Brinkman models. In [51], an EHDG 
formulation of the Stokes/Darcy system is described. 
Concerning the Brinkman model, an analysis of its HDG 
approximation is presented in [22], its simulation in the 
context of heterogeneous media with high-contrast is dis-
cussed in [183] and an H(div)-conforming discretisation 
is proposed in [142]. In [30], an HHO formulation with 
divergence-conforming Darcy velocity and higher-order 
Stokes velocity is devised.



 M. Giacomini et al.

1 3

2.4  Compressible Flows and Gas Kinetics Equations

Hybrid formulations for inviscid Euler and laminar com-
pressible Navier–Stokes equations are proposed in [209] 
in the context of HDG and in [205] for the embedded DG 
(EDG) method. Extension to viscous turbulent compress-
ible flows using RANS equations with Spalart–Allmaras tur-
bulence model is presented in [193], whereas a large-eddy 
simulation framework is introduced in [133]. In addition, an 
entropy-stable space-time discretisation was proposed for 
the compressible Navier–Stokes equations using an HDG 
approach in space and a discontinuous approximation in 
time [266]. More recently, special attention was dedicated 
to the development of positivity-preserving Riemann solv-
ers in the context of hybridised DG methods [263]. For a 
complete review on HDG methods for compressible flows, 
interested readers are referred to [263], whereas the appli-
cation to gas kinetics modelled by means of the linearised 
Bhatnagar–Gross–Krook equation is discussed in [254].

2.5  Plasma Physics and Magnetohydrodynamics

Computational physics community is showing increasing 
interest towards the application of hybrid discretisation 
methods to the simulation of magnetic plasma physics. 
Promising preliminary results concerning the HDG approx-
imation of the Grad–Shafranov equation in axisymmetric 
confinement devices modelling fusion reactors are described 
in [233, 234]. In the context of magnetohydrodynamics 
(MHD), an HDG method for steady-state linearised incom-
pressible MHD equations is proposed in [180]. Approxima-
tion strategies for the unsteady compressible MHD equations 
using HDG, EDG and the interior embedded DG (IEDG) 
methods with DIRK time integrators are explored in [74].

2.6  Shallow Water Equations

The shallow water equations have been extensively stud-
ied in the context of hybrid DG methods, starting from the 
linearised shallow water system in [38] to the nonlinear 
Korteweg-de Vries equation in [63, 231]. In both the above 
mentioned works, time integration is performed implicitly 
using a backward Euler method. Extension to high-order 
backward differentiation formulas is discussed in [128] in 
the context of the Benjamin–Bona–Mahony equation. To 
reduce the computational cost of fully-implicit procedures, 
in [228] an operator splitting is applied to the Green–Naghdi 
equation and the nonlinear hyperbolic subproblem is 
solved using an explicit approach, whereas the implicit 
time integrator is only applied to the linear dispersive sub-
problem. A similar idea is presented in [169] to devise an 
implicit–explicit (IMEX) HDG-DG scheme in which the 
linear part of the problem is solved using a hybridised 

DG method and a singly diagonally implicit Runge–Kutta 
(SDIRK) scheme and the nonlinear one is approximated by 
means of an explicit Runge–Kutta (RK) DG discretisation. 
A detailed comparison of explicit and implicit approaches to 
the nonlinear shallow water equations is provided in [229].

2.7  Wave Propagation Phenomena

The benefits of high-order methods in the simulation of wave 
propagation prompted extensive research on hybrid discre-
tisation methods in the fields of electromagnetics, elastody-
namics and acoustics. A detailed review on HDG and EDG 
approaches for these problems is available in [132].

Starting from the work in [203], research on time-
harmonic Maxwell’s equations tackled the analysis and 
development of HDG formulations [186], including meth-
ods suitable for simulations at large wave numbers [189] 
and Schwarz-type domain decomposition (DD) strategies 
designed for HDG [18, 185]. Recent applications of HDG to 
time-harmonic Maxwell’s equations focus on wave propaga-
tion in heterogeneous media modelling photovoltaic cells 
[41], coupling with nonlocal hydrodynamic Drude and 
generalised nonlocal optical response models [184] and 
with hydrodynamic models for metals [257–259, 271] to 
simulate plasmonic nanostructures. In the context of time-
domain Maxwell’s equations, HDG methods are presented 
and analysed in [55, 59, 122], whereas implicit hybridised 
DG discretisations are proposed in [67].

In the framework of elastodynamics, HDG with DIRK 
time integrators were introduced in [202], whereas in [256] 
an HDG spectral element method (HDG-SEM) is utilised 
to simulate wave propagation in coupled elastic-acoustic 
media. In the frequency-domain, HDG methods for elasto-
dynamics are analysed and presented in [28, 164].

The first HDG solver for acoustics, introduced in [202], 
relied on a fully-implicit approach based on DIRK time 
integrators. Since then, explicit HDG formulations utilis-
ing strong stability-preserving RK (SSPRK) and explicit 
RK integrators were proposed in [252], wheras an explicit 
arbitrary derivative (ADER) approach is discussed in 
[236]. In addition, a comparison of implicit and explicit 
HDG schemes for acoustic wave propagation is performed 
in [173]. More recently, an HDG-based cut finite element 
startegy with local time stepping was presented in [237]. 
It is worth recalling that devising a conservative numerical 
scheme is a critical aspect for the accurate simulation of 
acoustic wave propagation. To correct the dissipative nature 
of the method analysed in [93], an energy-conservative HDG 
formulation with a two-step Stormer-Numerov time-march-
ing is proposed in [86]. Moreover, symplectic [232] and 
multisymplectic [190] HDG schemes preserving the Ham-
iltonian structure of the PDEs under analysis were developed 
to achieve energy conservation.



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

Among the applications of HDG to wave propagation 
phenomena, it is also worth mentioning the degree adaptive 
approximation of the mild slope equation to perform harbour 
simulations [152] and the cardiac electrophysiology simula-
tions of the monodomain model [159, 227].

2.8  Linear and Nonlinear Elasticity

In linear elasticity, the imposition of the symmetry of the 
stress tensor using HDG methods based on mixed formula-
tions has been extensively studied in the literature. Indeed, 
the first formulations introduced in [141, 251] experienced 
suboptimal convergence of the mixed variable and a loss of 
superconvergence of the postprocessed displacement field. 
To remedy this issue, a formulation considering a weakly 
symmetric stress tensor was presented in [97]. The strong 
imposition of the symmetry can be achieved via several 
strategies: in [214], different degrees of polynomial approxi-
mation are considered for the primal and hybrid variables; 
the M-decomposition framework [82, 83, 85] is applied to 
the linear elastic problem [81] to enrich the discrete spaces 
of approximation utilised in the local problem; an alternative 
formulation imposing the symmetry of the mixed variable 
pointwise via Voigt notation is proposed for high-order and 
the lowest-order HDG discretisations in [245] and [244], 
respectively. In the context of the high-order discretisation, 
a novel postprocessing strategy accounting for rigid trans-
lation and rotation is also devised. It is worth noting that 
hybrid methods relying on primal formulations do not suffer 
from these issues, see e.g. HHO [109].

Timoshenko beams are discussed in [47, 48], whereas the 
case of Kirchhoff plates is considered in [162] using HDG 
and in [27] using HHO methods.

In the context of nonlinear elasticity, the first hybrid dis-
cretisation formulation was presented in [167]. In this work, 
it was observed that the method may not converge to the 
exact solution if the interelement jumps are not appropriately 
penalised and a detailed numerical study on the choice of 
the HDG stabilisation is discussed in [96]. More recently, a 
locking-free HDG formulation for nonlinear elasticity of thin 
structures subject to large deformations was proposed [255]. 
In addition, HHO discretisations of hyperelastic materials 
in small and finite deformations were presented in [34] and 
[15], respectively. HHO discretisations for problems involv-
ing plastic and elastoplatic simulations are discussed in [16, 
17], whereas contact phenomena are addressed in [66].

2.9  Interface Problems and Immersed 
Discretisations

The first attempt to solve interface problems using hybrid 
discretisation techniques was proposed in [165] using a 
body-fitted mesh. In this context, a superparametric HDG 

formulation was considered to limit the geometric error due 
to the polygonal approximation of curved interfaces.

Recently, immersed methods have received special atten-
tion, both in the context of HHO and HDG formulations. 
More precisely, unfitted HHO methods relying on a cell 
agglomeration procedure to remedy small cut instabilities 
are analysed for scalar and vectorial second-order elliptic 
problems in [39, 40]. In the framework of HDG, Poisson 
interface problems are treated in [121] by means of an unfit-
ted method introducing appropriately defined ansatz func-
tions in the vicinity of the interface. An alternative approach 
to handle curved interfaces is proposed in [217] where a 
fictitious domain strategy is developed coupling a mesh 
of planar faces and a transferring function for the imposi-
tion of the transmission conditions on the fictitious subdo-
main. Inspired by the cut finite element method, in [237], a 
high-order HDG strategy employing a level-set function to 
describe the immersed interfaces and a cell agglomeration 
procedure is described for the wave equation. Similarly, the 
extended HDG (X-HDG) method introduces a framework in 
which the HDG local problem is modified only in the ele-
ments cut by the interface. In this context, cut instabilities 
are handled by displacing the mesh nodes responsible for 
the bad cuts [154–156]. Finally, an HDG-based phase-field 
model for brittle fracture was recently proposed in [194].

2.10  High‑Order and Exact Geometry 
Representations

Geometry representation plays a crucial role in the capabil-
ity of high-order methods to achieve optimal accuracy. In 
the context of HDG, high-order isoparametric approaches in 
presence of curved meshes are utilised in many references, 
see e.g. [148, 193], whereas this technique is addressed for 
HHO in [29]. An alternative approach relying on meshes 
with planar faces and the extension to a fictitious subdomain 
is discussed in [101, 102, 250] for several linear problems 
and was recently extended to the semilinear Grad-Shafranov 
equation [233, 234]. It is worth noting that all the tech-
niques mentioned above introduce geometric errors due to 
the polynomial approximation of the boundaries. In order to 
exploit the exact CAD representation of the boundaries, the 
NURBS-enhanced finite element method (NEFEM) [241, 
242] is employed in [149, 239, 247] to devise HDG formu-
lations with exact geometry for Stokes, linear elastic and 
electrostatics problems.

2.11  Lowest‑Order Hybrid Discretisations

Hybrid discretisation methods have been traditionally devel-
oped in the context of high-order approximations. None-
theless, it is well-known that lowest-order discretisations, 
e.g. the finite volume (FV) method, are more robust than 



 M. Giacomini et al.

1 3

high-order techniques. In this framework, a new class of 
lowest-order hybrid discretisations was developed, with 
unknowns approximated by means of constant functions on 
the mesh faces. The recently proposed face-centred finite 
volume (FCFV) for Poisson, Stokes [243] and linear elastic-
ity [244] can be interpreted as an HDG method of degree 
zero. Variants of this approach achieving optimal second-
order convergence of the primal variable are discussed in 
[150, 262]. Stemming from HHO, lowest-order nonconform-
ing discretisations are proposed in [32] for linear elasticity 
and in [72] for elliptic obstacle problems. As their high-
order counterparts, the above mentioned methodologies 
allow the use of generic polygonal and polyhedral elements 
and provide a workaround to the sensitivity issues of FV 
methods to mesh distortion and stretching [118, 119].

2.12  Iterative Solvers and Preconditioning

Although hybrid discretisation methods are responsible for 
a substantial reduction of degrees of freedom with respect 
to classical DG methods, their applicability to realistic prob-
lems of engineering interest still rely on the development of 
efficient solution strategies for large-scale systems.

In [26], a DD strategy based on restricted additive 
Schwarz methods is proposed for hybridised DG approxima-
tions, whereas an optimised Schwarz DD approach suitable 
to handle the many-subdomain case is discussed in [144]. 
Starting from [80], several works also explored the capa-
bilities of multigrid solvers for HDG formulations, includ-
ing hierarchical scale separation [238], geometric multigrid 
[265], nested geometric multigrid on many-core processors 
[129], p-multigrid in the context of second-order elliptic 
problems [174] and compressible Navier–Stokes flows [139] 
and GPU-accelerated p-multigrid for linear elasticity [127]. 
Finally, iterative algorithms inspired by the Gauss-Seidel 
method were proposed in [196] and tested on massively par-
allel architectures up to 16,384 cores. A block symmetric 
Gauss-Seidel type preconditioner was also introduced in 
[224], whereas a multilevel solver coupled with a block-
Jacobi fine scale solver is proposed in [195].

2.13  A Posteriori Error Estimates and Adaptivity

The quality of hybrid discretisation methods has been 
assessed in several works by means of a posteriori estimates 
of the error in the primal, mixed and hybrid variables, as 
well as in quantities of interest.

Starting from the seminal works [104, 105] establish-
ing reliability and efficiency of error estimates for the HDG 
approximations of second-order elliptic equations, a pos-
teriori estimates were developed for steady and unsteady 
scalar convection–diffusion problems [57, 182] and for the 
vectorial case of incompressible Oseen [23] and Brinkman 

[22] flows. In addition, constant-free computable a posteriori 
error estimates are devised in [19] for second-order elliptic 
problems using an equilibrated fluxes approach, whereas 
residual-based estimates are established for Maxwell’s equa-
tions in [58].

In the context of adaptivity, on the one hand, the analysis 
of HDG approximations based on non-uniform polynomial 
degrees [60, 61] and the superconvergence property of the 
postprocessed solution [77, 89] prompted the development 
of degree adaptive procedures based on superparametric 
HDG methods [152, 153] and on isoparametric HDG-
NEFEM approaches [149, 239, 247]. Degree adaptivity is 
also applied to the simulation of cardiac electrophysiology in 
[159]. On the other hand, mesh adaptivity procedures to cap-
ture localised abrupt changes in the solution were devised 
in [234] and [194] for the Grad-Shafranov equation and the 
phase-field model for brittle fracture, respectively. Octree-
based mesh refinement is performed in [230] for anisotropic 
inhomogeneous diffusion problems. Mesh adaptivity driven 
by local error indicators is also employed in the context of 
second-order FCFV approximations [150, 262]. Concerning 
the error in quantities of interest, an adjoint-based method 
allowing to achieve superconvergent approximations of lin-
ear functionals is described in [103] and goal-oriented mesh 
adaptation strategies are proposed in [136, 268].

2.14  Coupling HDG with Other Numerical Methods

The accuracy of high-order HDG approximations has been 
recently exploited to develop efficient algorithms coupling 
different numerical methodologies in different regions of the 
computational domain.

In [172], a strategy coupling HDG and a vertex-centred 
finite volume method is proposed to simulate transient 
inviscid flows using coarse meshes designed for steady-
state problems. In addition, different couplings of HDG and 
continuous Galerkin (CG) discretisations were explored in 
the literature. A strategy inspired by a non-overlapping DD 
method is presented in [208] in the context of incompress-
ible Navier–Stokes flows coupled with conjugate heat trans-
fer phenomena. An alternative minimally-intrusive coupling 
based on a Nitsche’s formulation of the CG method was 
first introduced in [175] for linear elastic problems involving 
nearly incompressible materials and was extended to FSI 
problems with weakly compressible flows in [176].

2.15  HDG‑Based Reduced Order Models

In recent years, the accuracy of the HDG method and its flex-
ibility to devise high-order adaptive discretisation have been 
also employed to devise high-fidelity reduced and surrogate 
models. In [260, 261], a reduced order model to acceler-
ate the Monte-Carlo simulation of stochastic elliptic PDEs 



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

is constructed coupling a high-order HDG method with a 
reduced basis and empirical interpolation approach. The com-
bination of an HDG solver for time-harmonic Maxwell’s equa-
tions and a proper orthogonal decomposition (POD) strategy 
to design parametrised plasmonic nanogap structures is pro-
posed in [259]. An HGD-POD reduced order model (ROM) is 
also discussed in [249] for the fast simulation of the unsteady 
heat equation. More recently, an a priori ROM based on HDG 
and the proper generalised decomposition was proposed to 
simulate Stokes flows in geometrically parametrised domains 
[147, 240].

2.16  Availability of Open‑Source Implementations 
of Hybrid Discretisation Methods

The success of hybrid discretisation methods led to the devel-
opment of targeted open-source libraries and to their imple-
mentation in existing finite element libraries available open-
source. To the best of the authors’ knowledge, the hybridised 
DG method based on primal formulations is available in the 
following libraries:

• MFEM [14, 20]
• Netgen/NGSolve [11, 235]

whereas the libraries

• deal.II [12, 25]
• Feel++ [4, 213]
• Firedrake [6, 219]
• Nektar++ [10, 43]

provide implementations of the HDG method based on mixed 
formulations. Finally, the HHO method is available in

• code_aster [1, 211]
• Code_Saturne [2, 137]
• DiSk++ [3, 71]
• GetFEM [7, 221]
• HArDCore [8]

All above mentioned libraries rely on either Fortran or C/C++ 
implementations, whereas open-source libraries implementing 
HDG in MATLAB include:

• HDG3D [9, 143]
• FESTUNG [5, 166]

3  HDG Formulation of the Poisson Equation

In this section, the formulation of the HDG method for the 
Poisson equation is briefly recalled. Special attention is 
devoted to the identification of the building blocks of the 
numerical scheme whose implementation will be detailed in 
Sect. 8. Interested readers are referred to [89] for a complete 
theoretical introduction to the HDG method for Poisson equa-
tion and to [246] for a tutorial on its derivation.

Let 𝛺 ⊂ ℝ
��� be an open bounded domain in ��� spatial 

dimensions such that its boundary is �� = �
D
∪ �

N
 and 

�
D
∩ �

N
= � . The strong form of the Poisson equation is

where the unknown u represents the solution field, � denotes 
the material parameter (e.g. conductivity in a thermal prob-
lem) and s is a volumetric source term. On the boundary, 
Dirichlet, u

D
 , and Neumann, g, data prescribe the values of 

the unknown and its flux on �
D
 and �

N
 , respectively. The vec-

tor n denotes the outward unit normal vector to the boundary.

3.1  HDG Local and Global Problems: Strong Form

Consider a partition of � in ��� disjoint subdomains such that

and define the mesh skeleton as

Following the HDG rationale [89, 92, 200, 201, 204, 246], a 
mixed variable q = −

√
��u is introduced and problem (1) 

is rewritten as a system of first-order equations element-by-
element, that is,

where the jump operator [[⋅]] is defined as

(1)

⎧
⎪⎨⎪⎩

−�⋅(��u) = s in �,

u = u
D

on �
D
,

n⋅��u = g on �
N
,

� =

���⋃
e=1

�e, �i ∩�j = � for i ≠ j

� ∶=

[
���⋃
e=1

��e

]
⧵��.

(2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q +
√
��u = 0 in �e, e = 1,… , ���,

�⋅(
√
�q) = s in �e, e = 1,… , ���,

u = u
D

on �
D
,

n⋅
√
�q = −g on �

N
,

[[un]] = 0 on � ,

[[n⋅
√
�q]] = 0 on � ,

[[⊙]] ∶= ⊙i +⊙j,



 M. Giacomini et al.

1 3

being ⊙i and ⊙j the evaluations of the quantity ⊙ in two 
neighbouring elements �i and �j sharing a given interface 
[191]. The last two conditions in (2), known as transmission 
conditions, enforce the continuity of the solution and of its 
normal flux across the internal mesh skeleton � .

The HDG algorithm solves Eq. (2) in two stages. First, an 
independent hybrid variable û is introduced to represent the 
trace of the solution on ��e⧵�D

 and the primal and mixed 
variables (ue, qe) in each element �e, e = 1,… , ��� are 
expressed as functions of the unknown û , namely

Remark 1 Equation (3) represents the ��� HDG local prob-
lems. This stage corresponds to the hybridisation of the 
mixed problem, see [138], and is equivalent to the static 
condensation procedure in classical continuous Galerkin 
methods [157].

Second, the hybrid variable is computed by solving the 
HDG global problem, which accounts for the transmission 
conditions on the mesh skeleton �  and the Neumann bound-
ary condition on �

N
 , that is,

Remark 2 The first condition is automatically fulfilled 
owing to the Dirichlet boundary condition ue = û on ��e⧵�D

 
imposed in the local problem and to the uniqueness of the 
hybrid variable on each mesh face (respectively, edge in 2D).

The solution (ue, qe) in each element �e, e = 1,… , ��� is 
thus efficiently retrieved by solving ��� independent prob-
lems, see Eq. (3), element-by-element.

3.2  HDG Local and Global Problems: Weak Form

Following the rationale introduced in [246], the discrete 
functional spaces 

(3)

⎧
⎪⎪⎨⎪⎪⎩

qe +
√
𝜅�ue = 0 in 𝛺e, e = 1,… , ���,

�⋅(
√
𝜅qe) = s in 𝛺e, e = 1,… , ���,

ue = u
D

on 𝜕𝛺e ∩ 𝛤
D
,

ue = û on 𝜕𝛺e⧵𝛤D
.

(4)

⎧⎪⎨⎪⎩

[[un]] = 0 on � ,

[[n⋅
√
�q]] = 0 on � ,

n⋅
√
�q = −g on �

N
.

(5a)
V
h(�) ∶= {v ∈ L2(�) ∶ v|�e

∈ P
�(�e)

∀�e, e = 1,… , ���},

 are defined for the approximation of the element-based and 
face-based variables, respectively. In (5), P�(�e) and P�(�i) 
stand for the spaces of polynomial functions of complete 
degree at most � in �e and on �i , respectively.

For e = 1,… , ��� , the weak form of the HDG local 
problem is: given u

D
 on �

D
 and ûh on � ∪ �

N
 , find 

(uh
e
, qh

e
) ∈ V

h(�e)×
[
V
h(�e)

]��� that satisfy 

 for all (v,w) ∈ V
h(�e)×

[
V
h(�e)

]��� , where (⋅, ⋅)D and ⟨⋅, ⋅⟩S 
denote the L2 inner products on a generic subdomain D ⊂ 𝛺 
and S ⊂ 𝛤 ∪ 𝜕𝛺 , respectively.

Remark 3 In Eq. (6), � represents a stabilisation parameter 
influencing accuracy, stability and convergence of the HDG 
method [89, 92, 200, 201, 204].

Similarly, the weak form of the HDG global problem is: 
find ûh ∈ �V

h
(𝛤 ∪ 𝛤

N
) that satisfies

for all v̂ ∈ �V
h
(𝛤 ∪ 𝛤

N
).

3.3  HDG Local and Global Problems: Discrete Form

An isoparametric formulation is considered for the primal, 
mixed and hybrid variables in the discrete spaces (5), that is,

where ui , �i and ûi are the nodal values of the unknowns, 
Ni and N̂i are the polynomial shape functions of degree 
� defined in a reference element and on a reference face, 
respectively and ��� and ��� denote the number of nodes per 
element and per face, respectively.

Hence, for each element �e, e = 1,… , ��� , the local 
problem (6) leads to the linear system of equations

(5b)
�V
h
(S) ∶= {v̂ ∈ L2(S) ∶ v̂|𝛤i

∈ P
�(𝛤i)

∀𝛤i ⊂ S ⊆ 𝛤 ∪ 𝜕𝛺},

(6a)
−(w, qh

e
)𝛺e

+ (�⋅(
√
𝜅w), uh

e
)𝛺e

= ⟨n⋅√𝜅w, u
D
⟩𝜕𝛺e∩𝛤D

+ ⟨n⋅√𝜅w, ûh⟩𝜕𝛺e⧵𝛤D

,

(6b)
(v,�⋅(

√
𝜅qh

e
))𝛺e

+ ⟨v, 𝜏uh
e
⟩𝜕𝛺e

= (v, s)𝛺e
+ ⟨v, 𝜏u

D
⟩𝜕𝛺e∩𝛤D

+ ⟨v, 𝜏ûh⟩𝜕𝛺e⧵𝛤D

,

(7)

����
e=1

�
⟨v̂,n⋅√𝜅qh

e
⟩𝜕𝛺e⧵𝛤D

+ ⟨v̂, 𝜏uh
e
⟩𝜕𝛺e⧵𝛤D

−⟨v̂, 𝜏ûh⟩𝜕𝛺e⧵𝛤D

�
= −

����
e=1

⟨v̂, g⟩𝜕𝛺e∩𝛤N

,

(8)uh =

���∑
i=1

Niui, qh =

���∑
i=1

Ni�i, ûh =

���∑
i=1

N̂iûi,



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

from which the following solution is computed 

with the matrices

and the vectors

The corresponding discretisation of the global prob-
lem (7) leads to

By plugging the local elemental solution (10a) into (11), the 
HDG problem

involving only the globally-coupled degrees of freedom is 
obtained, where the matrix and the right-hand side vector are 
obtained by assembling the elemental contributions 

The expressions of the matrices and vectors introduced 
in this section are detailed in Appendix A.

3.4  HDG Local Postprocess

Introduce the discrete functional space

where P�+1(�e) denotes the space of polynomial functions 
of complete degree at most � + 1 in each element �e.

The HDG postprocess procedure allows to compute a 
superconvergent approximation u⋆ of the primal variable 

(9)
[
�uu �uq

�T
uq

�qq

]

e

{
�

�

}

e

=

{
�u
�q

}

e

+

[
�uû

�qû

]

e

��e,

(10a)
{

�

�

}

e

=

{
�
f
u

�
f
q

}

e

+

[
�uû

�qû

]

e

��e,

(10b)
[
�uû

�qû

]

e

∶=

[
�uu �uq

�T
uq

�qq

]−1

e

[
�uû

�qû

]

e

(10c)
{

�
f
u

�
f
q

}

e

∶=

[
�uu �uq

�T
uq

�qq

]−1

e

{
�u
�q

}

e

.

(11)
���∑
e=1

{[
�T

uû
�T

qû

]
e

{
�

�

}

e

+ [�ûû]e ��e

}
=

���∑
e=1

[�û]e.

��̂ = �̂

(12a)��e ∶=
[
�T

uû
�T

qû

]
e

[
�uû

�qû

]

e

+ [�ûû]e,

(12b)�� e ∶= [�û]e −
[
�T

uû
�T

qû

]
e

{
�
f
u

�
f
q

}

e

.

(13)
V
h
⋆
(𝛺) ∶= {v ∈ L2(𝛺) ∶ v|𝛺e

∈ P
�+1(𝛺e)

∀𝛺e, e = 1,… , ���},

by solving an independent local problem in each element, 
namely

with the constraint

on the mean value of the solution in the element.
For each element �e, e = 1,… , ��� , the weak form 

of the postprocess procedure is: find uh
⋆
∈ V

h
⋆
(𝛺e) that 

satisfies 

 for all v⋆ ∈ V
h
⋆
(𝛺e).

Using an isoparametric approximation for the functions 
in the space Vh

⋆
(𝛺) , the HDG local postprocess gives rise to 

the linear system

where the saddle-point structure of the problem follows from 
the imposition of the constraint (16b) via the Lagrange mul-
tiplier � and I⋆ ∶ V

h
→ V

h
⋆

 and I⋆
���

∶ [Vh]��� → [Vh
⋆
]��� 

denote the interpolation operators from the spaces of poly-
nomial functions of degree � to the ones of degree � + 1 for 
scalar and vector-valued functions.

The expressions of the matrices and vectors introduced 
in this section are detailed in Appendix A.

4  HDG Formulation of the Stokes Equations

This section presents the formulation of the HDG method for 
the Stokes equations, extending the framework previously 
introduced for the Poisson equation. For the sake of simplic-
ity, the present work focuses on the velocity-pressure formu-
lation of the Stokes equations. For the Cauchy stress tensor 
formulation, a tutorial to devise an HDG method based on 
equal order approximation for all the variables and pointwise 
symmetric mixed variable is presented in [151].

The open bounded domain 𝛺 ⊂ ℝ
��� is characterised now 

by a boundary partitioned in three portions disjoint by pairs 
such that �� = �

D
∪ �

N
∪ �

S
 , where Dirichlet, Neumann and 

slip conditions are imposed. The strong form of the Stokes 
equations is

(14)
�

−�⋅(𝜅�u⋆) = �⋅(
√
𝜅qe) in 𝛺e,

n⋅𝜅�u⋆ = −n⋅
√
𝜅qe on 𝜕𝛺e,

(15)(u⋆, 1)𝛺e
= (ue, 1)𝛺e

(16a)
�
�v⋆, 𝜅�u

h
⋆

�
𝛺e

= −
�
�v⋆,

√
𝜅qh

e

�
𝛺e

,

(16b)(uh
⋆
, 1)𝛺e

= (uh
e
, 1)𝛺e

,

(17)
[
�⋆⋆ �⋆𝜆
�T
⋆𝜆

0

]

e

{
�⋆
𝜆

}

e

=

[
� �⋆q

�T
⋆𝜆

�

]

e

{
I
⋆�

I
⋆
���
�

}

e

,



 M. Giacomini et al.

1 3

where the pair (u, p) denotes the unknown velocity and pres-
sure fields, 𝜈 > 0 is the kinematic viscosity, n is the outward 
unit normal to the boundary, s is the vector of the body forces 
and u

D
 and g represent the imposed velocity and pseudo-

traction on the Dirichlet and Neumann boundaries, respec-
tively. On the slip boundary, matrices D and E are defined 
as D ∶= [n, �t1,… , �t���−1] and E ∶= [�n, t1,… , t���−1] , 
the tangential vectors tj , j = 1,… , ��� − 1 being such that 
{n, t1,… , t���−1} form an orthonormal system of vectors. 
Two scalars, � and � , represent the penetration and friction 
coefficient, respectively. For �, � → 0 , the case of a perfectly 
slip condition is retrieved [151].

Remark 4 The divergence-free condition in Eq. (18) induces 
the following compatibility condition on the velocity field

Remark 5 In case of a purely Dirichlet boundary value prob-
lem, that is �� = �

D
 , an additional constraint needs to be 

introduced to retrieve uniqueness of the pressure field. A 
common approach relies on imposing the mean value of the 
pressure in the domain [120, 218]

or on the boundary of the domain [88, 98, 148, 199], namely

4.1  HDG Local and Global Problems: Strong Form

Following the rationale presented in Sect. 3, Eq. (18) is 
rewritten element-by-element as a system of first-order equa-
tions by introducing a mixed variable L = −

√
��u , namely

(18)

⎧
⎪⎪⎨⎪⎪⎩

−�⋅(��u − p���� ) = s in �,

�⋅u = 0 in �,

u = u
D

on �
D
,

n⋅(��u − p���� ) = g on �
N
,

u⋅D + n⋅
�
��u − p����

�
E = 0 on �

S
,

(19)⟨u
D
⋅n, 1⟩�

D

+ ⟨u⋅n, 1⟩��⧵�
D

= 0.

(20)
1

|�| (p, 1)� = 0,

(21)
1

���� ⟨p, 1⟩�� = 0.

for e = 1,… , ���.
First, the HDG algorithm performes the hybridisation step 

by expressing (ue, pe,Le) in each element �e as functions of 
the unknown trace of the velocity û on the element faces via 
the HDG local problem 

for e = 1,… , ��� . Note that Eq. (23a) is a purely Dirichlet 
boundary value problem. Hence, following Remark 5, the 
constraint

 is introduced, where �e is an independent variable represent-
ing the mean value of the pressure on the boundary ��e . It is 
worth noting that the variable � was not present in the HDG 
approximation of the Poisson equation and its treatment in 
the HDGlab code will be detailed in Sect. 9.

The HDG global problem thus accounts for the transmis-
sion and non-Dirichlet boundary conditions, that is 

where, following Remark 2, the first condition is automati-
cally fulfilled. In addition, the constraint in Remark 4 is 
rewritten element-by-element in terms of the hybrid vari-
able û leading to

 for e = 1,… , ���.

(22)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L +
√
𝜈�u = 0 in 𝛺e,

�⋅
�√

𝜈L + p����

�
= s in 𝛺e,

�⋅u = 0 in 𝛺e,

u = u
D

on 𝛤
D
,

n⋅
�√

𝜈L + p����

�
= −g on 𝛤

N
,

u⋅D − n⋅
�√

𝜈L + p����

�
E = 0 on 𝛤

S
,

[[u⊗ n]] = 0 on 𝛤 ,

[[n⋅
�√

𝜈L + p����

�
]] = 0 on 𝛤 ,

(23a)

⎧⎪⎪⎨⎪⎪⎩

Le +
√
��ue = 0 in �e,

�⋅
�√

�Le + pe����

�
= s in �e,

�⋅ue = 0 in �e,

ue = u
D

on ��e ∩ �
D
,

ue = û on ��e⧵�D
,

(23b)
1

���e� ⟨pe, 1⟩�� = �e, for e = 1,… , ���,

(24a)

⎧⎪⎪⎨⎪⎪⎩

[[u⊗ n]] = 0 on 𝛤 ,

[[n⋅
�√

𝜈L + p����

�
]] = 0 on 𝛤 ,

n⋅
�√

𝜈L + p����

�
= −g on 𝛤

N
,

u⋅D − n⋅
�√

𝜈L + p����

�
E = 0 on 𝛤

S
,

(24b)⟨u
D
⋅n, 1⟩��e∩�D

+ ⟨û⋅n, 1⟩��e⧵�D

= 0,



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

4.2  HDG Local and Global Problems: Weak Form

The corresponding weak form of the HDG local prob-
lem (23) is: given u

D
 on �

D
 and ûh on � ∪ �

N
∪ �

S
 , find 

(Lh
e
, uh

e
, ph

e
) ∈ [Vh(�e)]

���×���×[Vh(�e)]
���×Vh(�e)  t h a t 

satisfy

for all (W, v, q) ∈ [Vh(�e)]
���×���×[Vh(�e)]

���×Vh(�e) . It is 
worth noting that, differently from the Poisson case, Eq. (25) 
provides (Lh

e
, uh

e
, ph

e
) in terms of two global unknowns, ̂uh and 

�h ∶= {�h
1
,… , �h

���
}T.

Similarly, the weak form of the HDG global prob-
lem (24) is: find ûh ∈ [V̂

h
]��� and �h ∈ ℝ

��� such that

for all v̂ ∈ [V̂
h
]���.

4.3  HDG Local and Global Problems: Discrete Form

The discretisation of the local problem (25) leads to the 
following linear system of equations

(25)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− (W,Lh
e
)�e

+ (�⋅(
√
�W), uh

e
)�e

= ⟨ne⋅
√
�W, u

D
⟩��e∩�D

+ ⟨ne⋅
√
�W, û

h⟩��e⧵�D

,

(w,�⋅(
√
�Lh

e
))�e

+ (w,�ph
e
)�e

+ ⟨w, �uh
e
⟩��e

= (w, s)�e
+ ⟨w, �u

D
⟩��e∩�D

+ ⟨w, �ûh⟩��e⧵�D

,

(�q, uh
e
)�e

= ⟨q, u
D
⋅ne⟩��e∩�D

+ ⟨q, ûh⋅ne⟩��e⧵�D

,

⟨ph
e
, 1⟩��e

= ���e��he ,

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

����
e=1

�
⟨v̂,ne⋅

√
�Lh

e
⟩��e⧵(�D

∪�
S
)

− ⟨v̂,ne⋅
√
�Lh

e
E⟩��e∩�S

+ ⟨v̂, ph
e
ne⟩��e⧵(�D

∪�
S
)

− ⟨v̂, ph
e
ne⋅E⟩��e∩�S

+ ⟨v̂, �uh
e
⟩��e⧵(�D

∪�
S
)

− ⟨v̂, �uh
e
⋅E⟩��e∩�S

− ⟨v̂, �ûh⟩��e⧵(�D
∪�

S
)

+ ⟨v̂, ûh⋅(D + �E)⟩��e∩�S

�

= −

����
e=1

⟨v̂, g⟩��e∩�N

,

⟨ûh⋅ne, 1⟩��e⧵�D

= −⟨u
D
⋅ne, 1⟩��e∩�D

,

for e = 1,… , ���

where the constraint (23b) is imposed using the Lagrange 
multiplier � . It is worth noting that the Lagrange multiplier 
is required to guarantee that Eq. (27) is well-posed and the 
computed pressure field is unique but is not utilised in the 
solution of the global HDG problem. The resulting local 
elemental solution is given by 

with the matrix and vectors defined as

The discrete form of the global problem (26) reads as

(27)

⎡
⎢⎢⎢⎢⎣

�LL �Lu � �

�T
Lu

�uu �T
pu

�

� �pu � �𝜌p
� � �T

𝜌p
0

⎤
⎥⎥⎥⎥⎦e

⎧
⎪⎨⎪⎩

�

�

�

𝜁

⎫
⎪⎬⎪⎭
e

=

⎧
⎪⎨⎪⎩

�L
�u
�p
0

⎫
⎪⎬⎪⎭
e

+

⎡
⎢⎢⎢⎣

�Lû

�uû

�pû

�

⎤
⎥⎥⎥⎦
e

��e +

⎧
⎪⎨⎪⎩

�

�

�

1

⎫
⎪⎬⎪⎭
e

𝜌e,

(28a)

⎧⎪⎨⎪⎩

�

�

�

𝜁

⎫⎪⎬⎪⎭
e

=

⎧
⎪⎪⎨⎪⎪⎩

�
f

L

�
f
u

�
f
p

�
f

𝜁

⎫
⎪⎪⎬⎪⎪⎭e

+

⎡⎢⎢⎢⎣

�Lû

�uû

�pû

�𝜁 û

⎤⎥⎥⎥⎦
e

��e +

⎧
⎪⎪⎨⎪⎪⎩

�
𝜌

L

�𝜌
u

�𝜌
p

�
𝜌

𝜁

⎫
⎪⎪⎬⎪⎪⎭e

𝜌e,

(28b)

⎡⎢⎢⎢⎣

�Lû

�uû

�pû

�𝜁 û

⎤⎥⎥⎥⎦
e

∶=

⎡⎢⎢⎢⎢⎣

�LL �Lu � �

�T
Lu

�uu �T
pu

�

� �pu � �𝜌p
� � �T

𝜌p
0

⎤⎥⎥⎥⎥⎦

−1

e

⎡⎢⎢⎢⎣

�Lû

�uû

�pû

�

⎤⎥⎥⎥⎦
e

,

(28c)

⎧⎪⎪⎨⎪⎪⎩

�
f

L

�
f
u

�
f
p

�
f

�

⎫
⎪⎪⎬⎪⎪⎭e

∶=

⎡⎢⎢⎢⎢⎣

�LL �Lu � �

�T
Lu

�uu �T
pu

�

� �pu � ��p
� � �T

�p
0

⎤⎥⎥⎥⎥⎦

−1

e

⎧⎪⎨⎪⎩

�L
�u
�p
0

⎫⎪⎬⎪⎭
e

,

(28d)

⎧⎪⎪⎨⎪⎪⎩

�
�

L

��
u

��
p

�
�

�

⎫
⎪⎪⎬⎪⎪⎭e

∶=

⎡⎢⎢⎢⎢⎣

�LL �Lu � �

�T
Lu

�uu �T
pu

�

� �pu � ��p
� � �T

�p
0

⎤⎥⎥⎥⎥⎦

−1

e

⎧⎪⎨⎪⎩

�

�

�

1

⎫⎪⎬⎪⎭
e

.



 M. Giacomini et al.

1 3

By inserting the solution (28a) into (29), the following sys-
tem involving the globally-coupled unknowns �̂ and � is 
obtained

where the matrices and vectors are obtained by assembling 
the elemental contributions 

The expressions of the matrices and vectors introduced 
above are detailed in Appendix B.

Remark 6 Differently from the Poisson case, the global prob-
lem (30) features a saddle-point structure, as classical in 
the context of incompressible flows [120]. The proof of the 
symmetry of the HDG matrix in Eq. (30) can be devised 
following the rationale described in [151].

(29)

����
e=1

��
�ûL �ûu �ûp

�
e

⎧
⎪⎨⎪⎩

�

�

�

⎫
⎪⎬⎪⎭e

+ [�ûû]e ��e

�
=

����
e=1

[�û]e,

�T [�pû]e��e = −�T [�p]e.

(30)
[
�� �

�T �

]{
��

�

}
=

{
��û
��𝜌

}
,

(31a)��e ∶=
�
�ûL �ûu �ûp �

�
e

⎡⎢⎢⎢⎣

�Lû

�uû

�pû

�𝜁 û

⎤⎥⎥⎥⎦
e

+ [�ûû]e,

(31b)�T ∶=

⎡
⎢⎢⎢⎣

�T [�pû]1
�T [�pû]2
⋯

�T [�pû]���

⎤
⎥⎥⎥⎦
,

(31c)�� e
û
∶= [�û]e −

�
�ûL �ûu �ûp �

�
e

⎧
⎪⎪⎨⎪⎪⎩

�
f

L

�
f
u

�
f
p

�
f

𝜁

⎫
⎪⎪⎬⎪⎪⎭e

,

(31d)�̂� ∶= −

⎡
⎢⎢⎢⎣

�T [�p]1
�T [�p]2
⋯

�T [�p]���

⎤
⎥⎥⎥⎦
.

4.4  HDG Local Postprocess

The HDG postprocess procedure presented in Sect. 3.4 for the 
Poisson equation can be extended straightforwardly to the case 
of the vectorial variable u.

Remark 7 The postprocessing procedure utilised here is 
inspired by the work of Stenberg [253] and was exploited in 
the framework of HDG to obtain an improved approximation 
of the velocity field via the solution of an additional inexpen-
sive element-by-element problem [199, 247]. Nonetheless, 
in the context of incompressible flows, it is often of interest 
retrieving an H(div)-conforming and exactly divergence-
free approximation of the velocity field. For this purpose, 
alternative postprocessing strategies inspired by the Brezzi–
Douglas–Marini (BDM) projection operator [36] were pro-
posed [90, 92]. It is worth noting that the above mentioned 
procedures are suitable only for the velocity-pressure for-
mulation of the incompressible flow equations. In case a 
formulation based on the Cauchy stress tensor is considered, 
an additional constraint is required to handle the rigid rota-
tional modes as discussed in [148, 151, 245].

A superconvergent velocity field u⋆ is thus obtained 
by solving an independent local problem in each element, 
namely

with the constraint

on the mean value of the velocity in the element.
Hence, for each element �e, e = 1,… , ��� , the weak 

form of the postprocess procedure is: find uh
⋆
∈ [Vh

⋆
(𝛺e)]

��� 
such that 

 for all v⋆ ∈ [Vh
⋆
(𝛺e)]

���.
Using an isoparametric approximation for the functions 

in the space [Vh
⋆
(𝛺)]��� , the HDG local postprocess for the 

Stokes equations leads to

where � is the vector of Lagrange multipliers imposing the 
constraint (34b) and I⋆

���×���
∶[Vh]���×���→[Vh

⋆
]���×��� denotes 

(32)
�

−�⋅(𝜈�u⋆) = �⋅(
√
𝜈Le) in 𝛺e,

n⋅𝜈�u⋆ = −n⋅
√
𝜈Le on 𝜕𝛺e,

(33)(u⋆, 1)𝛺e
= (ue, 1)𝛺e

(34a)(�v⋆, 𝜈�u
h
⋆
)𝛺e

= −(�v⋆,
√
𝜈Lh

e
)𝛺e

,

(34b)(uh
⋆
, 1)𝛺e

= (uh
e
, 1)𝛺e

,

(35)

[
�⋆⋆ �⋆𝜆

�T
⋆𝜆

�

]

e

{
�⋆
�

}

e

=

[
� �⋆L

�T
⋆𝜆

�

]

e

{
I
⋆
���
�

I
⋆
���×���

�

}

e

,



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

the interpolation operator for tensor-valued functions from 
the space of polynomials of degree � to the one of degree 
� + 1.

The expressions of the matrices and vectors introduced 
above are detailed in Appendix B.

5  The HDGlab Repository

The implementation of the HDG solver for the Poisson and 
Stokes equations has been made available as an open-source 
software, released under the terms of the GNU General Pub-
lic License version 3.0 or any later version (https ://www.
gnu.org/licen ses) and is freely available from the repository: 
https ://git.lacan .upc.edu/hybri dLab/HDGla b.

The structure of the repository, illustrated in Fig. 1, is 
described in this section.

The directory dat contains the data files. This includes 
two and three dimensional meshes in the directories mesh-
es2D and meshes3D respectively, the pre-computed refer-
ence elements in two and three dimensions in the directory 
refElem and the data structure required to postprocess 
high-order HDG solutions in the directory postprocess.

The directory Poisson contains the HDG solver for the 
Poisson problem as described in Sect. 3. The directory hdg-
Poisson contains the core HDG library for the Poisson 
equation. The directory testsPoisson is used to organ-
ise the functions that describe the setup of the problems to be 
solved, including the definition of the boundary conditions, 
source term and, if known, the analytical solution. The direc-
tory resPoisson is where the results are saved after an 
execution of the Poisson solver.

The directory Stokes contains the HDG solver for the 
Stokes problem as described in Sect. 4. The structure of this 
directory follows the same rationale as the one correspond-
ing to the Poisson solver.

The directory common contains a set of functions that are 
common to both the Poisson and the Stokes solvers.

Finally, the directory importMesh contains a library 
that is provided to import a mesh generated with the open 
source software Gmsh [146] in HDGlab. The core routines 
to convert a mesh from .msh to .mat format are located in the 
directory GMSH. The directory examples contains some 
test cases including .geo and .msh files, whereas the out-
put of the imported mesh is stored in the directory mesh-
Files. This library is described in detail in Appendix C.

6  Data Structures

Three data structures are used to manage the mesh, the refer-
ence element and the face information required to compute 
the elemental contributions of the global HDG problem. 

These three variables are assumed to be an input of the HDG 
library and a detailed description is provided in this section. 
To make the developed software more accessible variables 
of type struct are used in this work rather than class types.

6.1  Mesh

The variable mesh contains the following information:

• nsd: Number of spatial dimensions.
• optionNodes: Type of high-order nodal distribution, 

being an equally-spaced (0) or a Fekete (1) nodal set.
• nOfNodes: Number of nodes.

Fig. 1  Structure of the HDGlab 
repository

https://www.gnu.org/licenses
https://www.gnu.org/licenses
https://git.lacan.upc.edu/hybridLab/HDGlab


 M. Giacomini et al.

1 3

• X: Array of dimension nOfNodes×nsd containing the 
nodal coordinates of the mesh.

• nOfElements: Number of elements.
• indexT: Array of dimension nOfElements×2 con-

taining the connectivity indices of the mesh. The first 
column contains the first node of the element and the 
second column contains the last node of the element.

• pElem: Array of dimension 1×nOfElements contain-
ing the degree of approximation of each element.

• matElem: Array of dimension 1×nOfElements con-
taining the material flag for each element.

• nOfIntFaces: Number of interior faces (i.e. faces not 
on the boundary).

• intFaces: Array of dimension nOfIntFaces×5 . 
The first two columns contain the first element sharing 
this face and its local face number. The next two columns 
contain the second element sharing this face and its local 
face number. The last column contains the local node 
number of the second face that matches with the first 
local node of the first face.

• nOfExtFaces: Number of exterior faces (i.e. faces on 
the boundary).

• extFaces: Array of dimension nOfIntFaces×4 . 
The first two columns contains the element sharing this 
face and its local face number. The third column contains 
the boundary condition flag and the last column contains 
the flag of the boundary curve or surface.

The information stored in the field intFaces is charac-
teristic of a DG formulation, where integrals on interior 
faces need to be computed. This is in contrast with a stand-
ard CG formulation, where only the field extFaces is 
needed to impose the boundary conditions. The last col-
umn of intFaces is needed to account for the different 
orientation of an interior face as seen from the element on 
the left and on the right of a face. It is worth noting that in 
two dimensions the information could be omitted because 
the local node number of the second face that matches with 
the first local node of the first face is always equal to two, 

as illustrated in Fig. 2. However, in three dimensions this 
information is required as there are three possible rotations 
of the local face nodes that do not alter the orientation of the 
element/face, as depicted in Fig. 3.

To illustrate the mesh data structure, a coarse mesh of 
the domain � = [0, 1]2 , with four triangular elements is 
considered. Figure 4 represents the mesh with the global 
numbering of the mesh elements, the element nodes, the 
mesh faces and the face nodes. 

An overview of the data contained in the mesh data 
structure for the example of Fig. 4 is shown in Fig. 5, with 
the details of some of the arrays depicted in Fig. 6.

It is worth noting that the connectivity of an element is 
obtained by using the function shown in Fig. 7. This means 
that the mesh nodes in the array X are duplicated. This func-
tionality is meant to help the handling of meshes with a non-
uniform degree of approximation and to provide a seamless 

Fig. 2  Interface between two triangular elements, showing the orien-
tation of each element and the local node number of each node on 
the face as seen from the element on the left and on the right of the 
interface

Fig. 3  Interface between two tetrahedral elements, showing the orien-
tation of each face and the local node number of each node on the 
face as seen from the element on the left and on the right of the inter-
face

Fig. 4  Mesh of � = [0, 1]2 with four triangular elements with the 
global numbering of the mesh elements (in green), the element nodes 
(in black), the mesh faces (in blue) and the face nodes (in red). (Color 
figure online)



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

way to partition the mesh in case future users would like 
to parallelise the code. If desired, a different array can be 
introduced for the connectivity information and the user only 
needs to redefine the function getElemConnectivity.

6.2  Reference Element

As usual in an isoparametric finite element context, the 
information related to the approximation and numerical 
integration in an element is stored by means of a reference 
element, with local coordinates, � = (�1,… , ���� ) . To easily 

handle meshes with a non-uniform degree of approximation, 
the variable refElem is considered an array of dimension 
1 × ���� , where ���� is the maximum degree of approxima-
tion used in all the elements. For each component of the 
refElem array, the following information is stored:

• nsd: Number of spatial dimensions.
• optionNodes: Type of high-order nodal distribution, 

being an equally-spaced (0) or a Fekete (1) nodal set.
• p: Degree of approximation.
• nOfVertices: Number of element vertices.
• nOfNodes: Number of element nodes.
• coordinates: Array of dimension �������� × ��� 

containing the local nodal coordinates.
• nOfFaces: Number of element faces.
• face: Array of dimension 1 × �������� . Each position 

is a structure containing the following information about 
an element face:

• nodes: Array containing the element local number 
of the nodes in the current face.

• nodesPerm: Array containing ��� + 1 permuta-
tions of the face nodes in the field nodes, using the 
element local number. Each row provides the per-
mutation as required by the field intFaces in the 
mesh data structure.

• nodesPermHDG: Array containing ��� + 1 permu-
tations of the face nodes in the field nodes, using 
the face local number. Each row provides the per-
mutation as required by the field intFaces in the 
mesh data structure.

• nOfGauss: Number of integration points.
• gaussWeights: Array of dimension nOfGauss × 1, 

containing the integration weights.
• s h a p e F u n c t i o n s :  Ar ray of dimension 

�������� × �������� × (��� + 1) . When the third 
index is equal to 1, the array contains the value of the 
shape functions, for all the nodes at all integration points. 
When the third index is equal to r > 1 , the array contains 
the value of the derivative of the shape functions in the 
�r−1 direction, for all the nodes at all integration points.

• shapeFunctionsNodesPPp1: Array of dimension
  ��������⋆ × �������� , where ��������⋆ denotes 

the number of nodes of an element with degree of 
approximation � + 1 . It contains the value of the shape 
functions of the current element at the nodes of an ele-
ment with one extra degree of approximation. This array 
is only used to perform the HDG postprocess described 
in Sects. 3.4 and 4.4.

• shapeFunctionsGaussPPp1: Array of dimension
  ��������⋆ × �������� , where ��������⋆ denotes 

the number of integration points of an element with 

Fig. 5  Overview of the data contained in the mesh data structure for 
the example of Fig. 4

Fig. 6  Detail of the fields X, indexT, intFaces and extFaces, 
corresponding to the data structure mesh of Fig. 5

Fig. 7  Function to retrieve the connectivity of an element



 M. Giacomini et al.

1 3

degree of approximation � + 1 . It contains the value of 
the shape functions of the current element and its deriva-
tives at the integration points of an element with one 
extra degree of approximation. This array is only used 
to perform the HDG postprocess described in Sects. 3.4 
and 4.4.

To illustrate the refElem data structure, Fig. 8 depicts the 
reference quadratic triangular element. An overview of the 
data contained in the refElem data structure for the exam-
ple of Fig. 8 is shown in Fig. 9.

Similarly, Fig. 10 shows the reference quadratic tetrahe-
dral element and Fig. 11 depicts and overview of the data 
contained in the refElem data structure.

It is worth noting that the code provided utilises nodal 
basis functions for the polynomial approximation. However, 
it is straightforward for future users to change the basis used 
for the approximation by simply changing the reference ele-
ment information. With minimum effort it is also possible 
to incorporate other element types.

6.3  Reference Face

The information related to the approximation and numeri-
cal integration on a face is stored by means of a reference 

face, with local coordinates, � = (�1,… , ����−1) . To easily 
handle meshes with a non-uniform degree of approximation, 
the variable refFace is considered an array of dimension 
���� × ���� , where ���� is the maximum degree of approxi-
mation used in all the elements. For each diagonal com-
ponent of the refFace array, the information stored is a 
subset of the information stored in the refElem data struc-
ture. As an example, Fig. 12 offers an overview of the data 
contained in the diagonal term of refFace corresponding 
to a quadratic face of a triangular element.

The upper triangular portion of the refFace data 
structure contains the information associated with the field 
shapeFunctions. This is only required when a mesh 
with a non-uniform degree of approximation is employed. 
The position (r, s) of the array refFace contains the 

Fig. 8  Reference triangular ele-
ment for � = 2

Fig. 9  Overview of the data contained in the refElem data structure 
for the reference triangular quadratic element of Fig. 8

Fig. 10  Reference tetrahedral 
element for � = 2

Fig. 11  Overview of the data contained in the refElem data struc-
ture for the reference tetrahedral quadratic element of Fig. 10

Fig. 12  Overview of the data contained in the refFace data struc-
ture for the reference face of a quadratic element in two dimensions



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

shape functions of degree r evaluated at the integration 
points of a face with degree of approximation s. This is 
required when computing the integrals in an interior face 
where the degree of approximation of the elements shar-
ing this face is different. It is worth noting that only the 
entries in the upper triangle of the array refFace contain 
relevant information because the degree of approximation 
used for the hybrid variable in a given face is defined as 
the maximum between the degree of approximation of the 
two elements sharing the face.

7  Preprocess

This section describes the preprocessing stage of the HDG 
solver. The implementation can be found in the function 
hdgPreprocess , which produces as an output an 
updated version of the data structures mesh and hdg.

The data structure mesh is taken as an input, contain-
ing the fields described in Sect. 6.1, and a new field, called 
indexTf is added. This field contains an array of dimen-
sion �������� × 2 featuring the connectivity indices of 
the mesh skeleton, where �������� is the total number of 
mesh faces (i.e. interior faces plus exterior faces). The first 
column contains the first degree of freedom of a face and 
the second column contains the last degree of freedom of 
the face. Figure 13 shows the data contained in indexTf, 
after the preprocessing is performed, for the mesh of Fig. 4 
and for a Poisson problem (i.e. scalar unknown). The same 
information for a Stokes problem is shown in Fig. 14.

For the Poisson problem, each node has one degree 
of freedom associated as the hybrid variable contains an 
approximation of the trace of the solution, which is a sca-
lar quantity. In contrast, for the Stokes problem the global 
vector of unknowns contains an approximation of the trace 
of the velocity and an approximation of the mean pressure. 
Therefore, in two dimensions each face contains 2(� + 1) 
degrees of freedom for the velocity and one extra degree of 
freedom per element is introduced for the mean pressure.

The hdg data structure is also an input of the function 
hdgPreprocess, containing two user defined param-
eters, namely:

• tau: Value of the constant stabilisation parameter.
• problem: String containing the name of the problem 

to be solved. The code provided contains two model 
problems, namely ’Poisson’ and ’Stokes’.

The structure is updated in the preprocess stage with the 
following information:

• faceInfo: Structure of dimension 1 × ����������� . 
For each element of the array, the following informa-
tion provides a link between the element and face infor-
mation of the mesh:

• local2global: Array of dimension
  1 × ��������������� , containing the global 

face number of the faces of the current element.
• localNumFlux: Array of dimension
  1 × ��������������� , containing a flag for the 

numerical flux function associated with the faces 
of the current element. For an interior face, a value 
of zero is set. For a boundary face, the number cor-
responds to the boundary condition to be imposed 
and it is linked to the third column of the array 
extFaces of the mesh data structure described 
in Sect. 6.1.

• permutations: Array of dimension
  1 × ��������������� , containing a flag for the 

permutation required to ensure that the ordering of 
the nodes in the global face matches the ordering 
of the face nodes in the current element.

• pHat: Array of dimension 1 × ��������������� , 
containing the degree of approximation used for 
the hybrid variable in the corresponding faces of 
the current element.

• nDOFglobal: Number of global degrees of freedom.Fig. 13  Data contained in mesh.indexTf data structure for the 
solution of the Poisson equation in the mesh of Fig. 4

Fig. 14  Data contained in mesh.indexTf data structure for the 
solution of the Stokes equation in the mesh of Fig. 4



 M. Giacomini et al.

1 3

• vDOFtoSolve: Vector of global degrees of freedom 
associated with nodes not on a Dirichlet boundary.

In the case of the Stokes equations, three additional fields 
are introduced in the hdg data structure during the preproc-
ess routine:

• pureDirichlet : Boolean variable identifying 
whether the problem has purely Dirichlet boundary con-
ditions.

• columnsGlobalSystem: Number of columns in the 
global system, corresponding to the number of unknowns 
given by the hybrid velocity and the mean pressure.

• rowsGlobalSystem: Number of rows in the global 
system, including the constraint for the uniqueness of 
pressure. The value of this variable will differ from col-
umnsGlobalSystem only in the case of purely Dir-
ichlet boundary value problems.

The data contained in the hdg data structure, after the 
preprocess stage, is shown in Fig. 15 for the Poisson prob-
lem on the mesh of Fig. 4. The data contained in the field 
faceInfo for the first two elements is also depicted in 
Fig. 16.

Two more simple data structures are defined at the pre-
process stage, namely problemParams and ctt. The 
structure problemParams contains problem-specific 
information. The current implementation uses this data 
structure to carry the following information:

• nOfMat: Number of materials in the domain.
• charLength: A characteristic length, used to define 

the value of the stabilisation parameter of the HDG for-
mulation.

• example: An integer that points to the number of a 
user-defined example.

In addition, problemParams stores the information on 
the material parameters. For the Poisson problem:

• conductivity: Array of dimension 1 × ������ that 
contains the conductivity of each material present in the 
domain.

For the Stokes problem:

• viscosity: A scalar value representing the viscosity 
coefficient of the fluid.

• alphaSlip: A scalar value describing the penetration 
coefficient for the slip boundary condition.

• betaSlip: A scalar value describing the friction coef-
ficient for the slip boundary condition.

Finally, the structure ctt  contains the following 
information:

• iBC_Interior: A flag for the numerical flux function 
to be used on an interior face.

• iBC_Dirichlet: A flag for the numerical flux func-
tion to be used on an exterior face where a Dirichlet 
boundary condition is imposed.

• iBC_Neumann: A flag for the numerical flux function 
to be used on an exterior face where a Neumann bound-
ary condition is imposed.

• iBC_Slip: A flag for the numerical flux function to be 
used on an exterior face where a slip boundary condition 
is imposed (only supported for the Stokes problem).

• nOfComponents: Number of components of the pri-
mal variable.

The flags used to distinguish the type of face and numerical 
flux to be considered can be specified by the user and they 
are linked to the third column of the array extFaces of 
the mesh data structure described in Sect. 6.1.

8  The HDGlab Poisson Solver

A code workflow diagram of the HDGlab Poisson code is 
shown in Fig. 17. This section focuses on the core part of the 
code that involves the assembly and solution of the global 
system of equations, the element-by-element solution of the 

Fig. 15  Data contained in the hdg data structure for the mesh of 
Fig. 4

Fig. 16  Data contained in the hdg.faceInfo for the first two ele-
ments of the mesh of Fig. 4



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

local problems and the local postprocess to obtain a super-
convergent solution.

8.1  Global Problem

The HDG global system of equations is assembled and 
solved in the function hdg_Poisson_GlobalSystem. 
For each element, hdg_Poisson_ElementalMatri-
ces contains two parts corresponding to the computation 
of the element integrals and the face integrals respectively. 
An extract of this function, showing the computation of the 
elemental matrices �qq and �uq and the elemental vector �u , 
is displayed in Fig. 18. It is worth noting that the loop on 
integration points is vectorised by using the binary singleton 
expansion function bsxfun.

In a similar fashion, the second part of the function 
hdg_Poisson_ElementalMatrices performs a 
loop on the faces of the current element and computes the 
face integrals that lead to the matrices �uu , �uû , �qû and 
�ûû . This computation distinguishes between interior and 
exterior faces and, for the exterior faces, utilises the flag in 
hdg.faceInfo.localNumFlux to enforce the correct 
boundary condition. For a Dirichlet face, the vector �u is 
updated and the vector �q is computed. For a Neumann face, 
the vector �û is computed.

One of the distinctive parts of the HDG formulation is 
found in the loop on faces, where a vector called index-
Flip is used to ensure that the ordering of the degrees of 
freedom corresponding to the hybrid variable, as seen from 
the current element, matches the global ordering of the 

Fig. 17  Code workflow diagram



 M. Giacomini et al.

1 3

degrees of freedom of the vector of unknowns of the global 
HDG system.

After all the elemental matrices and vectors are com-
puted, the elemental contributions to the global system are 
prepared to be assembled, namely �̂e and �̂ e , as shown in 
the extract of Fig. 19. It is worth noting that at this stage the 
matrices �uû and �qû and the vectors �fu and �fq , defined in 
Eq. (10), are stored in the data structure local in order to 
be used during the solution of the element-by-element local 
problems. For large problems, the user might choose to save 
these matrices to disk before solving the global system of 
equations.

8.2  Local Problem

After the global system of equations is solved, the function 
hdg_Poisson_LocalProblem, shown in Fig. 20, is 

called to solve the local problems. This function is just the 
implementation of Eq. (10a). The only aspect that requires 
attention is the indexing of the global vectors for the pri-
mal and mixed variables. This is managed by the function 
hdgElemToFaceIndex, which is designed to work for 
variables with any number of components. It is also worth 
noting that this function accounts for the possibility to have 
a non-uniform degree of approximation.

8.3  Local Postprocess

As discussed in Sect. 3.4, once the primal and mixed varia-
bles are computed, it is possible to perform a local, element-
by-element, postprocess procedure to obtain a more accu-
rate, superconvergent, approximation of the solution. This 
is implemented in the function hdg_Poisson_Local-
Postprocess, shown in Fig. 21.

A key aspect in hdg_Poisson_LocalPost-
process is the computation of the elemental matrices and 
vectors in Eq. (17), which is implemented in the function 
hdg_Poisson_LocalPostprocessElemMat.

It is worth emphasising that the implementation assumes 
that no extra geometric information is known at this stage. 
Therefore, to compute the high-order nodal distribution of 
degree � + 1 , the nodal distribution in the reference element 
is mapped to the physical space by using the isoparametric 
mapping of degree � . This implies that, for curved elements, 
a subparametric formulation is considered. This formulation 
can lead to a suboptimal rate of convergence for the post-
processed solution as demonstrated in [239, 247], where a 
NURBS-enhanced implementation was proposed.

9  The HDGlab Stokes Solver

In this section, the HDGlab solver for the Stokes equations 
is presented. It is worth noting that the code features the 
same structure introduced in the previous section for the 

Fig. 18  Extract of the function hdg_Poisson_ElementalMatrices that computes the element integrals of the HDG formulation for the 
Poisson problem

Fig. 19  Extract of the hdg_Poisson_ElementalMatrices 
function that computes the elemental matrix �̂e and vector �̂ e



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

Poisson case. Hence, only the differences with respect to the 
Poisson solver will be detailed.

9.1  A Vector‑Valued Problem

The HDG global system of equations is assembled and 
solved in the function hdg_Stokes_GlobalSystem. 
More precisely, the element and face integrals are computed 
by the function hdg_Stokes_ElementalMatrices 
for each element.

The first difference with respect to the Poisson code is 
represented by the vectorial nature of the primal and hybrid 
variables and by the tensor-valued mixed variable. For the 
sake of computational efficiency, the representation of the 
second-order tensor � is written as a vector by rows, namely

Figure 22 reports the computation of the elemental matrices 
�LL , �Lu and �pu and the elemental vector �u . It is worth 
noting that the assembly of these matrices and this vector 
accounts for the appropriate numbering of the vector-valued 
and tensor-valued unknowns. Similarly to the Poisson case, 
the loop on integration points is vectorised via the command 
bsxfun.

9.2  Slip Boundary Conditions

In the second part of hdg_Stokes_ElementalMatri-
ces, the face integrals are computed within a loop on the 
element faces. More precisely, the matrices �Lû , �uu , �uû 
and �pû are computed for the local problem, whereas the 
matrix �ûû is computed for the global problem. In addition, 
on the Neumann faces the vector �û is computed, whereas on 
the Dirichlet faces the vectors �L and �p are computed and the 
vector �u is updated.

Remark 8 In case of Dirichlet and Neumann boundary con-
ditions, the remaining matrices involved in the global prob-
lem are such that 

In case slip boundary conditions are also considered, 
the properties in Eq. (36) no longer hold and the matri-
ces �ûL , �ûu and �ûp are computed in the function hdg_
Stokes_ElementalMatrices. Figure 23 displays 
the initialisation of the above elemental matrices which are 
then computed in the loop on faces when the flag in hdg.
faceInfo.localNumFlux matches ctt.iBC_Slip.

A specific treatment of the case in which slip boundary 
conditions are considered is also required for the definition 
of the elemental matrices of the global problem with appro-
priate ordering of the degrees of freedom of the hybrid vari-
able using the indexFlip vector, see Fig. 24.

9.3  Additional Constraint in the Local Problem

A major difference between the Poisson and Stokes case is 
the structure of the local problems (9) and (27). Despite both 
matrices are symmetric, the one arising from the discretisa-
tion of the Poisson equation is positive definite, whereas it 
is indefinite in the Stokes case. More precisely, the matrix 

� =

{
[L11 L12 L21 L22]

T , in 2D,

[L11 L12 L13 L21 L22 L23 L31 L32 L33]
T , in 3D.

(36a)�ûL = �T
Lû
,

(36b)�ûu = �T
uû
,

(36c)�ûp = �T
pû
.

Fig. 20  Function hdg_Poisson_LocalProblem to solve the 
element-by-element local problems



 M. Giacomini et al.

1 3

in (27) features a saddle-point structure, as classical in the 
context of finite element approximations of incompress-
ible flow problems [120]. In addition, since the HDG local 
problem is a purely Dirichlet boundary value problem, the 
constraint (23b) is introduced using a Lagrange multiplier �.

The structure of the symmetric indefinite matrix involved 
in the local problem is displayed on the left-hand side of 
Fig. 25. On the right-hand side, the blocks of the first and 
last columns are associated with the contribution of �̂ and 
� , respectively, whereas the second column is related to the 
independent term of the equation. The figure reports the 
hybridisation stage in which the elemental matrices and 
vectors defined in (28) are computed for each element. The 
output of this computation is stored in the data structure 
local to be successively utilised in the solution of the 
element-by-element local problems.

Finally, hdg_Stokes_ElementalMatrices com-
putes the elemental contribution to the matrix in the global 
problem (30) as reported in Fig. 26. It is worth noting that the 
variable hdg.pureDirichlet is utilised here to discrimi-
nate the construction of the global matrix of a purely Dirichlet 
boundary value problem. More precisely, besides the blocks �̂ , 
� and �T , also the vector ��� (i.e. ArlExtra) arising from the 
imposition of the global constraint (20) is taken into account. 
An extract of the hdg_Stokes_ElementalMatrices 
function computing such a vector is displayed in Fig. 27.

Remark 9 The assembly of the block matrix reported 
in Fig. 26 does not exploit the symmetry of the terms in 
Eq. (30) to its full potential. Indeed, the rationale of HDG-
lab being educational, the matrix � is constructed by 
inserting the solution (28a) of the local problem into the 

Fig. 21  Function hdg_Poisson_LocalPostprocess to perform a local, element-by-element, postprocess of the solution



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

global problem (29), leading to the assembly of the elemen-
tal contributions

The interested reader can thus employ the provided code to 
numerically verify that the matrix � obtained from the asse-
bly in Eq. (37) is the transpose of the one introduced in (31). 
The formal proof can be devised following the rationale 
described in [151].

9.4  Assembly of the Global System

As described in Sect. 4, the global problem for the Stokes equa-
tions features a saddle-point structure. Hence, the assembly of 
the global system presents major differences with respect to the 
Poisson case previously discussed. First, Fig. 28 reports the ini-
tialisation of the structures required to perform the assembly. It 
is worth recalling that the value of hdg.rowsGlobalSys-
tem differs from the one of hdg.columnsGlobalSys-
tem only if Dirichlet conditions are imposed on all bounda-
ries. In this case, the additional constraint (20) is considered 
to guarantee the well-posedness of the problem.

The construction of the structures to perform the assem-
bly of the global system is displayed in Fig. 29. According to 
the variable hdg.pureDirichlet, the above mentioned 
constraint is introduced as an extra line in the system.

Of course, the matrix arising from the operations dis-
played in Fig. 29 is rectangular. In order to retrieve a square 
matrix, an extra column is added to the matrix and the con-
straint is imposed via a Lagrange multiplier (Fig. 30).

9.5  Three Unknowns in the Local Problem

The structure of the code for the local problem in the Stokes 
case replicates the one presented in Fig. 20 for the Poisson 
equation and is thus omitted. The only difference lies in the 
computation of three variables in each element, namely the 
pressure � , the velocity � and the gradient of velocity � . An 
extract of the function hdg_Stokes_LocalProblem is 
displayed in Fig. 31, focusing on the operations in Eq. (28).

10  Visualisation

The use of a high-order functional approximation means 
that non-standard techniques are required to produce a reli-
able representation of the solution in each element. With the 

(37)�e ∶=
�
�ûL �ûu �ûp �

�
e

⎧
⎪⎪⎨⎪⎪⎩

�
𝜌

L

�𝜌
u

�𝜌
p

�
𝜌

𝜁

⎫
⎪⎪⎬⎪⎪⎭e

.

Fig. 22  Extract of the hdg_Stokes_ElementalMatrices 
function that computes the element integrals of the HDG formulation 
for the Stokes problem

Fig. 23  Extract of the hdg_Stokes_ElementalMatrices 
function that initialises the elemental matrices associated with the 
slip boundaries in the global problem for the Stokes problem

Fig. 24  Extract of the hdg_Stokes_ElementalMatrices 
function that defines the elemental matrices of the global problem for 
the Stokes case, depending on the boundary conditions imposed



 M. Giacomini et al.

1 3

Fig. 25  Extract of the hdg_Stokes_ElementalMatrices function that computes the matrices and vectors in Eq. (27)

Fig. 26  Extract of the hdg_Stokes_ElementalMatrices function that computes the block matrix and vector in Eq. (30)

Fig. 27  Extract of the hdg_Stokes_ElementalMatrices 
function that computes the vector ��� for the pressure constraint

Fig. 28  Extract of the hdg_Stokes_Globalystem function that 
initialises the structures required for the assembly of the global sys-
tem

Fig. 29  Extract of the hdg_Stokes_Globalystem function that 
constructs the structures required for the assembly of the global sys-
tem



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

increased popularity of high-order methods in recent years, 
different strategies to efficiently display high-order solutions 
have been proposed [188, 198, 220]. The HDGlab provides 
the capability to accurately display high-order solutions, 
including curved isoparametric elements.

Three data structures are employed in the visualisation. 
The data structure plotOpts is used to collect all the user 
defined options available for the visualisation. It contains the 
following information:

• resolution: Takes value 1 for a faster but less accu-
rate representation of high-order solutions and value 2 for 
a slower but more accurate representation of high-order 
solutions.

• fieldsWithMesh: Plots the solution whilst displaying 
the mesh.

• fieldsWithNodes: Plots the solution whilst displaying 
the nodes.

• componentsToPlot: A user-defined vector contain-
ing the components of the solution to be represented.

• alphaFace: Sets the transparency between 0 and 1.

In addition, for the Stokes equation, two problem-specific 
options are available in the data structure plotOpts:

• componentsU: A boolean variable allowing the prede-
fined visualisation of all the components of the velocity 
vector. This functionality relies on the definition of the 
vector componentsToPlot.

• moduleU: A boolean variable allowing the visualisation 
of the module of the velocity.

The data structure postproc is provided for triangular and 
tetrahedral elements with equally-spaced and Fekete nodal 

sets in the directory dat/postprocess. In two dimen-
sions, the data structure postproc contains the following 
information:

• nOfNodesPlot: Number of nodes used to display the 
high-order solution in each element.

• n o d e s P l o t :  A r r a y  o f  d i m e n s i o n 
������������ × 2  containing the coordinates of the 
nodes, in the reference element, used to display the high-
order solution.

• nSubElemsOnePlot: Number of subelements used 
to display the high-order solution in each element.

• connecNodesPlot: Array of dimension
  ���������������� × 3 accounting for the connectiv-

ity of the submesh used to display the high-order solution 
in each element.

• nOfEdges: Number of edges of the element.
• e d g e N o d e s S p l i t :  Ar ray of dimension 

�� × �������� , where r is the resolution selected by the 
user in the data structure plotOpts. The i-th column 
contains the local number of the list of nodesPlot that 
belong to the i-th edge.

• elem: Array of dimension 1 × ���� , where ���� is the 
maximum degree of approximation used in all the ele-
ments. The component � of elem contains a field called 
� , of dimension ������������ × �(� + 1)∕2 , that stores 
the value of the shape functions of order � at the positions 
given by nodesPlot. This information is used to inter-
polate the solution at the nodes of the submesh, providing 
a more accurate representation of the high-order solution.

• face: Array of dimension 1 × ���� . The component 
� of elem contains a field called � , of dimension 
������������ × (� + 1) , that stores the value of the 
shape functions of order � at the positions of an edge. 
This information is used to interpolate the solution at the 
edges of the submesh.

The submeshes used for a triangular element with resolu-
tion=1 and resolution=2 are displayed in Fig. 32. To 
illustrate the effect of the user-defined parameter resolu-
tion on the visualisation, Fig. 33 depicts the shape func-
tion associated to the fourth node of the reference quadratic 
triangular element, shown in Fig. 8, using resolution=1 
and resolution=2.

Fig. 30  Extract of the hdg_Stokes_Globalystem function to 
impose the constraint in the global system for purely Dirichlet bound-
ary value problems

Fig. 31  Extract of the hdg_Stokes_LocalProblem function where the elemental values of the primal and mixed unknowns are computed



 M. Giacomini et al.

1 3

In three dimensions the data structure postproc con-
tains the following information:

• Face: Structure that contains:

• nElemPlot: Number of subelements used to dis-
play the high-order solution in each element face.

• connecPlot: Array of dimension ��������� × 3 
accounting for the connectivity of the submesh 
used to display the high-order solution in each ele-
ment face.

• nNodesPlot: Number of nodes used to display 
the high-order solution on each element face. It is 
given by (5� + 1)(5� + 2)∕2 , where r is the resolu-
tion selected by the user in the data structure plo-
tOpts.

• edgeNodesPlot :  Array of dimension 
1 × (15� + 1) , where r is the resolution selected 
by the user in the data structure plotOpts. It 
contains the local number of the face nodes that 
belong to the edges of the face.

• Elem: Array of dimension 1 × ���� , where ���� is the 
maximum degree of approximation used in all the ele-
ments. The component � of Elem contains:

• face: Array of dimension 1 × 4 where the i-th 
component contains the local number of the ver-
tices on the i-th face and the value of the element 
shape functions of order � at the nodal distribution 
used for plotting the solution on the i-th face.

• coord: Array of dimension �(� + 1)(� + 2)∕6 that 
contains the nodal distribution on the reference tet-
rahedral for an approximation of degree �.

• faceVertices: Array of dimension 4 × 3 . The i-th 
row contains the local number of the vertices on the 
i-th face.

The third data structure utilised during the postprocess 
stage is called visual and it is built by the function 
buildSubmeshPostprocess2D in two dimensions 
and by buildSubmeshPostprocess3D in three 
dimensions. This data structure contains the following 
information:

• X: Physical coordinates of all the nodes of the submesh 
used to display the high-order solution.

• T: Connectivities of all the subelements used to display 
the high-order solution.

• Xnodes: Physical coordinates of all the vertices of the 
mesh. This field is only used if the user sets fields-
WithNodes=1 in the data structure plotOpts.

• edges: Structure containing the list of nodes of the 
submesh that form the high-order representation of the 
physical edges of the mesh.

In a separate function, the data structure is updated by 
adding the field U that contains the interpolated values 
of the solution on the submesh used to display the high-
order solution. This action is performed by the function 
called interpolateSolutionPostprocess2D 
and interpolateSolutionPostprocess3D in 
two and three dimensions respectively.

It is worth noting that the function that creates the data 
structure visual is independent on the field to be rep-
resented and, therefore, it is only called once. Instead, the 
second function that updates the data structure visual 
with the field U depends upon the field to be represented. 
Therefore, several calls can be made to the function updat-
ing visual without the need to build the submesh again. 
It is also important to note that the function that updates 
the data structure visual with the field U accepts ele-
mental and nodal fields.

Fig. 32  Submesh of the reference element used to provide an accurate 
representation of high-order solutions in each element. The left pic-
ture corresponds to resolution=1 and the right picture to reso-
lution=2

Fig. 33  Shape function of the fourth node of a quadratic triangular 
element using resolution=1 (left) and resolution=2 (right)



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

Once all the information is available in the data structure 
visual, the function postprocessField2D is used to 
plot the high-order solution.

In three dimensions there is an extra option available 
that consists of representing the solution only in a region of 
the computational domain. The user can set the value of a 
string, called conditionPlot, that specifies a region in 
the physical space. Before visual is computed, the func-
tion selectFacesToPlot3D computes the list of faces 
in the computational mesh that satisfy the condition given by 
conditionPlot. Then, the submesh and interpolation of 
the solution is only performed over the faces that satisfy the 
condition specified by the user.

Finally, the visualisation function also accounts for the need 
to represent the superconvergent solution obtained after the 
local postprocess described in Sects. 3.4 and 4.4. To simplify 
the implementation, the visualisation builds a mesh data 
structure where the degree of approximation in each element 
is the degree used for the computation plus one. With this 
information, the same functions used to display the high-order 
primal solution can be used to postprocess the higher order 
superconvergent solution.

11  Numerical Examples

In this section, several numerical examples showing the capa-
bilities of the HDGlab solvers for the Poisson and Stokes 
equations are presented. As mentioned in Sects. 3 and 4, the 
choice of the stabilisation parameter � is critical for the accu-
racy of the HDG approximation. For the examples involving 
the Poisson equation, the definition � = c

P
�∕� is considered, 

where � is a characteristic length of the domain and c
P
 a scal-

ing factor selected equal to 1 [175]. Following [151], the sta-
bilisation for the Stokes cases is defined as � = c

S
�∕� , � the 

scaling factor being c
S
= 3.

11.1  Optimal Convergence Properties

The optimal convergence properties of the proposed HDG 
implementation are presented for the Stokes flow, using test 
cases with analytical solution, in two and three dimensions. 
Uniform meshes of triangular and tetrahedral elements with 
Fekete nodal sets are utilised.

First, the two-dimensional Wang flow [264] in the unit 
square domain � = [0, 1]2 is considered. The analytical veloc-
ity field is

whereas the pressure field is uniformly zero in � . The coef-
ficients a, b and � in (38) are selected such that a = b = 1 

(38)u(x) =

{
2ax2 − b� cos(�x1) exp{−�x2}

b� sin(�x1) exp{−�x2}

}
,

and � = 10 and the kinematic viscosity � is set to 1. The 
source term s and the boundary conditions are computed 
starting from the analytical solution above. More pre-
cisely, a pseudo-traction g is applied on the bottom sur-
face �

N
∶= {(x1, x2) ∈ � | x2 = 0} and Dirichlet data u

D
 are 

imposed on the remaining boundaries �
D
= ��⧵�

N
.

Figure 34 displays the convergence history of the rela-
tive error, measured in the L2(�) norm, of the primal, 
mixed and postprocessed variables as a function of the 
characteristic mesh size. Optimal convergence of order 
� + 1 is observed for velocity, u , pressure, p, and gradient 
of velocity, L , whereas superconvergence of order � + 2 is 
achieved by the postprocessed velocity u⋆.

The following example involves a three-dimensional 
Stokes flow in the unit cube � = [0, 1]3 , with the follow-
ing manufactured solution

Fig. 34  Two-dimensional Wang flow. Convergence of the L2(�) error 
of pressure, p, mixed variable, L (top), primal, u , and postprocessed, 
u⋆ , velocities (bottom) as a function of the characteristic mesh size h 
for polynomial degree of approxiomation � = 1,… , 5



 M. Giacomini et al.

1 3

where m = 1 and n =
1

2
 . The kinematic viscosity is set to 

� = 1 , a Neumann datum is imposed on the boundary 
�

N
∶= {(x1, x2, x3) ∈ � | x3 = 0} , whereas Dirichlet condi-

tions are prescribed on �
D
= ��⧵�

N
.

The optimal convergence of order � + 1 of the relative 
L2(�) error for velocity, pressure and gradient of velocity 
and the superconvergence of the postprocessed velocity are 
confirmed in the 3D case by the results in Fig. 35.

11.2  High‑Order Curved Meshes

The coaxial Couette flow [64] is considered to show the 
optimal convergence properties of the HDGlab solver using 
a high-order isoparametric approximation in a domain fea-
turing curved boundaries.

This test consists of an incompressible viscous flow 
within two coaxial circular cylinders of infinite length and 
radius Rint = 1 and Rext = 5 , respectively. The computational 
domain is defined as a section of the 3D cylinders, that is, 
� = {(x1, x2) ∈ ℝ

2 | Rint ≤ r ≤ Rext} , where r ∶=
√

x2
1
+ x2

2
 

is the distance to the axis of the cylinders. Dirichlet bound-
ary conditions enforcing the value of the angular velocities 
�int = 0 and �ext = 1∕Rext are imposed on the internal and 
external boundary, respectively. The analytical expression 
of the azimuthal component of the velocity is

Of course, being a purely Dirichlet boundary value problem, 
the constraint on the mean value of pressure is introduced to 
enforce the field to be uniformly equal to 1 in the domain.

A set of high-order uniformly refined meshes with Fekete 
nodal distribution is constructed using the strategy described 
in [212]. Figure 36 displays the first level of mesh refinement 
featuring 128 triangular elements of polynomial degree 3 
and the module of the computed velocity.

The convergence of the relative error, measured in the 
L2(�) norm, of the primal, mixed and postprocessed vari-
ables is reported in Fig. 37 as a function of the characteristic 

(39)u(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

n+(x3 − x2) sin(x1 − n)

m−x2

��
x3 −

1

2
x2

�
cos(x1 − n)

+
�
x1 −

1

2
x2

�
cos(x3 − n)

�

n+(x1 − x2) sin(x3 − n)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(40)p(x) = x1(1 − x1) + x2(1 − x2) + x3(1 − x3),

(41)

u� =
�extR

2
ext

− �intR
2
int

R2
ext

− R2
int

r

−
(�ext − �int)R

2
ext
R2
int

R2
ext

− R2
int

1

r
.

mesh size. Optimal convergence of the primal and mixed 
variables and superconvergence of the postprocessed varia-
ble is achieved also in presence of high-order curved meshes.

11.3  Non‑uniform Degree of Approximation

In this section, the flexibility of HDGlab to devise a non-
uniform polynomial degree approximation in the domain is 
presented. This case, inspired by the study on micromixers in 
[131], consists of the flow in a microchannel with five obsta-
cles. The problem setup features a parabolic inlet velocity 
profile and homogeneous Dirichlet and Neumann conditions 
on the top/bottom walls and on the outlet, respectively.

The channel has dimensions [0, 6.6] × [−0.5, 0.5] and 
the obstacles, attached to the top and bottom walls have 
thickness 0.2 and height 0.5. A mesh with local element 
size ranging between 0.08 and 0.19 is generated without 
any specific a priori refinement. It is worth noting that 

Fig. 35  Three-dimensional manufactured Stokes flow. Convergence 
of the L2(�) error of pressure, p, mixed variable, L (top), primal, 
u , and postprocessed, u⋆ , velocities (bottom) as a function of the 
characteristic mesh size h for polynomial degree of approxiomation 
� = 1,… , 5



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

only two mesh elements are defined along the thickness 
of the obstacles.

To capture the complex flow features among the obsta-
cles, a high-order non-uniform polynomial degree dis-
tribution is generated following the adaptivity strategy 
described in [247]. The resulting degree of approximation 
in each element is displayed in Fig. 38. High-order poly-
nomials are employed in correspondance of the tip of the 
obstacles where localised flow features appear, whereas 
low-order approximations are utilised in region further 
away.

The module of the velocity on the described mesh is 
also reported in Fig. 38. It is worth noting that the mesh 
structure featuring the non-uniform polynomial approxi-
mation is provided as a datum for this test case. The cor-
responding simulation is performed seamlessly in HDG-
lab and no specific intervention is required to the user.

11.4  Stokes Flow Past a Sphere

Finally, the Stokes flow past a sphere is considered. The 
domain � = [−H, L] × [−H,H] × [−H,H]⧵B

0,1 is defined, 
with H = 5 , L = 10 and B

0,1 being the sphere of radius 1 
centred in the point (0, 0, 0). Exploiting the symmetry of 
the problem, only a quarter of the domain is meshed and 
slip conditions are imposed on the corresponding symme-
try planes. Homogeneous Neumann and no-slip conditions 
are applied on the outlet and on the surface of the sphere, 
respectively. On the inlet and on the remaining lateral and 
top planes, a Dirichlet boundary conditions with the ana-
lytical velocity is enforced.

A high-order mesh featuring 1,036 tetrahedral elements 
is generated via the solid mechanics analogy described in 
[212, 269]. Figure 39 displays the module of the velocity 
and the pressure field computed using an isoparametric 
approximation of degree 6.

Fig. 36  First level of refinement of the third-order mesh used for the 
convergence study of the two-dimensional Couette flow (top) and 
module of the computed velocity (bottom)

Fig. 37  Two-dimensional Couette flow. Convergence of the L2(�) 
error of pressure, p, mixed variable, L (top), primal, u , and post-
processed, u⋆ , velocities (bottom) as a function of the characteristic 
mesh size h for polynomial degree of approxiomation � = 1,… , 5



 M. Giacomini et al.

1 3

It is worth noting that the computations in 
Sects.  11.1,  11.2,  11.3 and 11.4 are performed using a 
unique HDGlab solver for the Stokes equations, indepen-
dently on the number of spatial dimensions of the problem 
under analysis. Indeed, HDGlab provides a seamless imple-
mentation of the HDG method, in which all relevant infor-
mation is extracted from the mesh structure and the user 
is required to specify only the physical parameters and the 
boundary conditions to setup a test case.

11.5  Applications of the Poisson Solver

The next example, taken from [187], shows the solution 
of an electrostatic problem governed by the Poisson equa-
tion in three dimensions. The domain of interest corre-
sponds to the exterior of 11 conducting spheres and it is 
discretised with a mesh of 35,895 quadratic tetrahedral 
elements, as shown in Fig. 40. This figure shows one of 

the implemented capabilities of the postprocessing library 
to display the faces corresponding to the exterior and inte-
rior faces of the mesh separately, with different colour and 
transparencies in each case. The first plot in Fig. 40 is pro-
duced by selecting the faces corresponding to the far field 
boundary and using a transparency. In a second phase, the 
exterior faces corresponding to the conducting spheres are 
displayed with no transparency. It is worth noting that the 
far field boundary and the boundary corresponding to the 
conducting spheres could be distinguished using either the 
boundary condition flag or simply imposing a condition 
on the faces to be displayed. The second plot of Fig. 40 is 
also obtained in two stages. First, the interior faces satisfy-
ing a condition corresponding to a positive x2 coordinate 
are displayed with a transparency. Second, the exterior 
faces corresponding to the conducting spheres is displayed 
with no transparency. When representing the interior and 

Fig. 38  a Mesh and degree of approximation and b module of the velocity for the flow in a microchannel with obstacles using non-uniform poly-
nomial degree � between 1 and 7

Fig. 39  a Module of the velocity and b pressure field of the external flow past a quarter of a sphere using polynomial degree � = 6



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

exterior faces, a constant element field is used to assign 
different colours and aid the visualisation.

Dirichlet boundary conditions are considered in the whole 
boundary of the computational domain. A positive electro-
static potential of magnitude 5 is imposed on the central 
sphere and five of the surrounding spheres, whereas a nega-
tive potential of magnitude −5 is imposed on the remaining 
spheres. On the outer boundary a zero potential is imposed. 
Figure 41 shows the 11 conducting spheres coloured accord-
ing to the boundary condition imposed. This figure is pro-
duced by using the boundary condition flag to select the first 
set and the second set of spheres separately. After solving 

the problem with HDGlab, not only the primal variable cor-
responding to the electrostatic potential is obtained but also 
its gradient, which corresponds to the electric field in this 
example. Figure 42 shows the magnitude of the electric field 
on the surface of the 11 spheres.

The following example involves the solution of a heat 
transfer problem in a three dimensional mechanical com-
ponent. The domain is discretised with a mesh of 6465 ele-
ments with � = 4 , as illustrated in Fig. 43.

The first plot in Fig. 43 includes the high-order nodal 
distribution and the second plot in Fig. 43 shows the possi-
bilities offered by the postprocessing library provided within 
HDGlab. In fact, it shows an extra functionality that can be 
added to display the intersection curves of the underlying 
CAD geometry when the user have access to this data.

Dirichlet and Neumann boundary conditions are imposed 
on the blue and red portions of the boundary, respectively, 
as shown in Fig. 44. In the Dirichlet part of the boundary a 
temperature equal to 10 is imposed, whereas the Neumann 
boundary condition is homogeneous, imposing that part of 
the boundary is perfectly insulated. The temperature field 

Fig. 40  Two views of the quadratic tetrahedral mesh used to solve the 
electrostatic problem

Fig. 41  The 11 conducting spheres coloured according to the bound-
ary condition imposed. Red colour is used for the spheres where a 
positive potential is imposed, whereas blue is used for the spheres 
where a negative potential is imposed

Fig. 42  Magnitude of the electric field on the surface of the 11 con-
ducting spheres



 M. Giacomini et al.

1 3

obtained after solving the problem with HDGlab is shown 
in Fig. 45.

The last example considers the computation of the poten-
tial flow past a generic unmanned aerial vehicle (UAV). The 
domain is discretised using 101,923 tetrahedra of degree 

� = 2 , as represented in Fig. 46. A Neumann boundary con-
dition, corresponding to a unit velocity, is imposed on the 
inflow part of the boundary and a Dirichlet boundary condi-
tion corresponding to zero potential on the outflow. On the 
rest of the boundary a homogeneous Neumann boundary 
condition is enforced to represent a physical wall. After solv-
ing the problem with HDGlab, the flow potential and the 
velocity field are obtained. Figure 47 shows the magnitude 
of the velocity field on the surface of the UAV and the pres-
sure field, computed using the Bernoulli equation.

This last example shows the applicability of the devel-
oped HDGlab to problems involving complex geometries, 
where the resulting global system has more than one mil-
lion of equations. Despite the code was not developed with 
computational efficiency in mind, it still enables the inter-
ested users to solve relatively large problems and, with some 
additional improvements in terms of performance, it can be 
used for larger three dimensional problems.

Fig. 43  Two views of the fourth order tetrahedral mesh used to solve 
the heat transfer problem

Fig. 44  The mechanical component coloured according to the bound-
ary condition imposed. Red colour denotes a homogeneous Neumann 
boundary condition and the blue colour a Dirichlet boundary condi-
tion

Fig. 45  Temperature distribution on the surface of the mechanical 
component

Fig. 46  Surface mesh of a generic UAV



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

12  Concluding Remarks

An open-source Matlab implementation of the HDG method 
for elliptic problems has been presented, the so-called HDG-
lab. The code is capable of solving problems governed by 
the Poisson and Stokes equations using high-order simpli-
cial elements, including curved elements, by means of an 
isoparametric formulation.
HDGlab provides a suitable environment to those inter-

ested in the programming of hybrid methods in general 
and the HDG method in particular. The paper describes 
the HDG formulation employed for the Poisson and Stokes 
solvers and provides a very detailed description of the 
code, with particular emphasis in the data structures uti-
lised. The presentation of the code involves the preprocess, 
computation and postprocess stages, and includes detailed 
explanations of the most relevant functions. A set of exam-
ples is presented to illustrate the use and the potential of 
HDGlab. The examples go from simple test cases with a 
known analytical solution, used to demonstrate the numer-
ical properties of the HDG method, to more complex ones 
such as the computation of the potential flow around a 
UAV using high-order curved meshes.
HDGlab  is available as an open-source software, 

released under the terms of the GNU General Public 
License version 3.0 or any later version (https ://www.gnu.
org/licen ses) and is freely available from the repository: 
https ://git.lacan .upc.edu/hybri dLab/HDGla b.

Acknowledgements This work was partially supported by the Span-
ish Ministry of Economy and Competitiveness (Grant Number: 

DPI2017-85139-C2-2-R). M.G. and A.H. are also grateful for the sup-
port provided by the Spanish Ministry of Economy and Competitive-
ness through the Severo Ochoa programme for centres of excellence 
in RTD (Grant Number: CEX2018-000797-S) and the Generalitat de 
Catalunya (Grant Number: 2017-SGR-1278). R.S. also acknowledges 
the support of the Engineering and Physical Sciences Research Council 
(Grant Number: EP/T009071/1).

Compliance with Ethical Standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Appendix 1: Matrices and Vectors 
for the Poisson Solver

In this appendix, the expressions of the matrices and vec-
tors appearing in the discrete form of the HDG local and 
global problems for the Poisson equation are presented.

An isoparametric formulation is considered and the 
coordinates � = {�1,… , ����}

T of a reference element �̃(�) 
are mapped to the coordinates x = {x1,… , x���}

T  of the 
local element �(x) by the transformation

where {xi}i=1,…,���
 denotes the vector of the nodal coordi-

nates of the element. Hence, the isoparametric approxi-
mations introduced in (8) are defined in a reference ele-
ment �̃(�) for u and q and on a reference face �̃ (�) , 
� = {�1,… , ����−1}

T for û , the corresponding shape func-
tions being N(�) and N̂(�) , respectively.

For the sake of readability, introduce the compact forms 
of the shape functions and their derivatives, namely 

x(�) =

���∑
i=1

Ni(�)xi,

(42a)N ∶=
[
N1 N2 … N���

]T
,

(42b)N̂ ∶=
[
N̂1 N̂2 … N̂���

]T
,

(42c)Nn ∶=
[
N1n N2n … N���

n
]T
,

Fig. 47  Magnitude of the velocity field and pressure field on the sur-
face of a generic UAV

https://www.gnu.org/licenses
https://www.gnu.org/licenses
https://git.lacan.upc.edu/hybridLab/HDGlab
http://creativecommons.org/licenses/by/4.0/


 M. Giacomini et al.

1 3

 where n denotes the outward unit normal vector to a face 
and � is the Jacobian of the isoparametric mapping.

The solution of the HDG local problem (9) involves the 
matrices and vectors

where ��
��

 denotes the number of faces of the element �e , �
�
�
 

are the ��
��

 integration points defined on the reference ele-
ment and ��

�
 are the ��

��
 integration points of the reference 

face. The corresponding weights for the integration points 
are denoted by w�

�
 and w�

�
 , respectively. In addition, the indi-

cator function �𝚏

◻
 is defined as

Similarly, for the HDG global problem (11) the following 
matrix and vector

(42d)N���
∶=

[
N1���� N2���� … N���

����

]T
,

(42e)Q ∶=
[
(�−1�N1)

T (�−1�N2)
T … (�−1�N���

)T
]T
,

�
�uu

�
e
∶=

��
���

�=1

𝜏�

��
���

�=1

N(��
�
)NT (��

�
)��(��

�
)�w�

�
,

[�uq]e ∶=
√
𝜅

��
���

�=1

N(��
�
)QT (��

�
)��(��

�
)�w�

�
,

[�qq]e ∶= −

��
���

�=1

N���
(��

�
)NT

���
(��

�
)��(��

�
)�w�

�
,

[�uû]e ∶=

��
���

�=1

𝜏�

� ��
���

�=1

N(��
�
)N̂

T
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

�
,

[�qû]e ∶=
√
𝜅

��
���

�=1

� ��
���

�=1

Nn(�
�
�
)N̂

T
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

�
,

[�u]e ∶=

��
���

�=1

N(��
�
)s
�
x(��

�
)
���(��

�
)�w�

�

+

��
���

�=1

𝜏�

� ��
���

�=1

N(��
�
)u

D

�
x(��

�
)
���(��

�
)�w�

�

�
𝜒�

D
,

[�q]e ∶=
√
𝜅

��
���

�=1

� ��
���

�=1

Nn(�
�
�
)u

D

�
x(��

�
)
���(��

�
)�w�

�

�
𝜒�

D
,

(43)�𝚏

◻
∶=

{
1 if face 𝚏 belongs to �

◻
,

0 otherwise.

are defined.
To describe the terms appearing in the HDG post-

process (17), the compact forms 

 are introduced, where {N⋆
i
}i=1,…,�⋆

��
 denote the shape func-

tions for the discretisation of u⋆ , �⋆ is the Jacobian of the 
corresponding isoparametric transformation and �⋆

��
 is the 

number of elemental nodes of the approximation.
The following matrices and vector are thus defined as

where �⋆
�
 and w⋆

�
 are the �⋆

��
 integration points and the 

weights associated with the higher order approximation in 
the space Vh

⋆
.

Appendix 2: Matrices and Vectors 
for the Stokes Solver

In this appendix, the expressions of the matrices and vectors 
appearing in the discrete form of the HDG local and global 
problems for the Stokes equations are presented. It is worth 
recalling that in this problem, the primal, � , and hybrid, �̂ , 
variables are ���-dimensional vector-valued unknowns and 
the mixed variable � is a tensor-valued unknown of dimen-
sion ���×���.

[
�ûû

]
e
∶= −

��
��∑

�=1

𝜏�

( ��
��∑

�=1

N̂(��
�
)N̂

T
(��

�
)|�(��

�
)|w�

�

)(
1 − 𝜒�

D

)
,

[�û]e ∶= −

��
��∑

�=1

( ��
��∑

�=1

N̂(��
�
)g
(
x(��

�
)
)|�(��

�
)|w�

�

)
𝜒�

N
,

(44a)N⋆ ∶=
[
N⋆
1
N⋆
2
… N⋆

�⋆
��

]T
,

(44b)N⋆
���

∶=
[
N⋆
1
���� N⋆

2
���� … N⋆

�⋆
��

����

]T
,

(44c)
Q⋆ ∶=

[
(�−1

⋆
�N⋆

1
)T (�−1

⋆
�N⋆

2
)T … (�−1

⋆
�N⋆

�⋆
��

)T
]T
,

�
�⋆⋆

�
e
∶=𝜅

�⋆
���

�=1

Q⋆(𝝃⋆
�
)Q⋆T

(𝝃⋆
�
)��⋆(𝝃⋆� )�w⋆

�
,

[�⋆𝜆]e ∶=

�⋆
���

�=1

N⋆(𝝃⋆
�
)��⋆(𝝃⋆� )�w⋆

�
,

[�⋆q]e ∶= −
√
𝜅

�⋆
���

�=1

Q⋆(𝝃⋆
�
)N⋆T

���
(𝝃⋆

�
)��⋆(𝝃⋆� )�w⋆

�
,



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

In addition to the compact forms of the shape functions 
presented in equations (42) and (44), the following defini-
tions are introduced for the vectorial problem 

where ��� ∶= �2
��

 . Moreover, for each component 
j = 1,… , ��� , the compact forms

 are defined, nj being the j-th component of the outward unit 
normal vector n to the face.

The solution of the HDG local problem (27) involves the 
matrices and vectors

(45a)N���
∶=

[
N1���� N2���� … N���

����

]T
,

(45b)N⋆
���

∶=
[
N⋆
1
���� N⋆

2
���� … N⋆

�⋆
��

����

]T
,

(45c)N̂���
∶=

[
N̂1���� N̂2���� … N̂���

����

]T
,

(45d)N̂E ∶=
[
N̂1E N̂2E … N̂���

E
]T
,

(45e)N̂D ∶=
[
N̂1D N̂2D … N̂���

D
]T
,

(45f)Nnj
∶=

[
N1nj N2nj … N���

nj
]T
,

(45g)Qj ∶=
[
[�−1�N1]j [�

−1�N2]j … [�−1�N���
]j
]T
,

(45h)Q⋆
j ∶=

[
[�−1

⋆
�N⋆

1
]j [�

−1
⋆
�N⋆

2
]j … [�−1

⋆
�N⋆

�⋆
��

]j

]T
,

�
�LL

�
e
∶= −

��
���

�=1

N���
(��

�
)NT

���
(��

�
)��(��

�
)�w�

�
,

[�Lu]e ∶=
√
�

����
j=1

��
���

�=1

Qj(�
�
�
)NT

���
(��

�
)��(��

�
)�w�

�
,

[�uu]e ∶=

��
���

�=1

��

��
���

�=1

N���
(��

�
)NT

���
(��

�
)��(��

�
)�w�

�
,

Similarly, the matrices and vectors for the global prob-
lem (29) are

�
�

pu

�
e

∶=

��
���

�=1

Q(��
�
)NT

���
(��

�
)��(��

�
)�w�

�
,

[�𝜌p]e ∶=

��
���

�=1

��
���

�=1

N(��
�
)��(��

�
)�w�

�
,

[�
Lû
]
e
∶=

√
𝜈

��
���

�=1

� ����
j=1

��
���

�=1

N
n
j

(��
�
)N̂

T

���
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

�
,

[�
uû
]
e
∶=

��
���

�=1

𝜏�

� ��
���

�=1

N���
(��

�
)N̂

T

���
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

�
,

[�
pû
]
e
∶=

��
���

�=1

� ��
���

�=1

N
n
(��

�
)N̂

T

���
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

�
,

[�
L
]
e
∶=

√
𝜈

��
���

�=1

� ����
j=1

��
���

�=1

N
n
j

(��
�
)u

D

�
x(��

�
)
���(��

�
)�w�

�

�
𝜒�

D

,

[�
u
]
e
∶=

��
���

�=1

N���
(��

�
)s
�
x(��

�
)
���(��

�
)�w�

�

+

��
���

�=1

𝜏�

� ��
���

�=1

N���
(��

�
)u

D

�
x(��

�
)
���(��

�
)�w�

�

�
𝜒�

D

,

[�
p
]
e
∶=

��
���

�=1

� ��
���

�=1

N
n
(��

�
)u

D

�
x(��

�
)
���(��

�
)�w�

�

�
𝜒�

D

.

e
∶=

√
𝜈

��
���

�=1

�
−

� ����
j=1

��
���

�=1

N̂
E
(��

�
)NT

n
j

(��
�
)��(��

�
)�w�

�

�
𝜒�

S

+

� ����
j=1

��
���

�=1

N̂���
(��

�
)NT

n
j

(��
�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

��
1 − 𝜒�

S

��
,

[�
ûu
]
e
∶=

��
���

�=1

𝜏�

�
−

� ��
���

�=1

N̂
E
(��

�
)NT

���
(��

�
)��(��

�
)�w�

�

�
𝜒�

S

+

� ��
���

�=1

N̂���
(��

�
)NT

���
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

��
1 − 𝜒�

S

��
,

[�
ûp
]
e
∶=

��
���

�=1

�
−

� ��
���

�=1

N̂
E
(��

�
)NT

n
(��

�
)��(��

�
)�w�

�

�
𝜒�

S

+

� ��
���

�=1

N̂���
(��

�
)NT

n
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

��
1 − 𝜒�

S

��
,

[�
ûû
]
e
∶=

��
���

�=1

�� ��
���

�=1

N̂
D
(��

�
)N̂

T

���
(��

�
)��(��

�
)�w�

�

�
𝜒�

S

+ 𝜏�

� ��
���

�=1

N̂
E
(��

�
)N̂

T

���
(��

�
)��(��

�
)�w�

�

�
𝜒�

S

− 𝜏�

� ��
���

�=1

N̂���
(��

�
)N̂

T

���
(��

�
)��(��

�
)�w�

�

��
1 − 𝜒�

D

��
1 − 𝜒�

S

��
,

[�
û
]
e
∶= −

��
���

�=1

� ��
���

�=1

N̂���
(��

�
)g
�
x(��

�
)
���(��

�
)�w�

�

�
𝜒�

N

.



 M. Giacomini et al.

1 3

In addition, if a problem with purely Dirichlet boundary con-
ditions is solved, the constraint (20) gives rise to the vector

which is used to enforce the constraint using an appropri-
ately defined Lagrange multiplier.

Finally, for the postprocess (32), the following matrices are 
required

(46)
[
���

]
e
∶=

��
��∑

�=1

N(��
�
)|�(��

�
)|w�

�
,

�
�⋆⋆

�
e
∶=𝜈

����
j=1

�⋆
���

�=1

Q⋆
j(𝝃

⋆
�
)Q⋆T

j
(𝝃⋆

�
)��⋆(𝝃⋆� )�w⋆

�
,

[�⋆𝜆]e ∶=

�⋆
���

�=1

N⋆
���
(𝝃⋆

�
)��⋆(𝝃⋆� )�w⋆

�
,

[�⋆L]e ∶= −
√
𝜈

����
j=1

�⋆
���

�=1

Q⋆
j(𝝃

⋆
�
)N⋆T

���
(𝝃⋆

�
)��⋆(𝝃⋆� )�w⋆

�
.

Appendix 3: An Interface with the Mesh 
Generator Gmsh

In this appendix, the interface between the high-order 
open-source mesh generator Gmsh [146] and HDGlab is 
described. Starting from the structure of the variable mesh 
introduced in Sect. 6.1, the algorithm to convert a mesh file 
from the .msh to the .mat format of HDGlab is presented 
(Fig. 48).

Remark 10 The routines described in this appendix are 
designed starting from the .msh ASCII file format version 
2.2.

First, it is worth recalling that HDGlab offers the feature 
of utilising either equally-spaced or Fekete points for the 
approximation. Gmsh provides mesh discretisation based on 
equally-spaced nodal sets, whence the variable option-
Nodes is set to 0, see Sect. 6.1.

The function convertMSHtoMAT requires the defi-
nition of the following data concerning the mesh to be 
imported:

Fig. 48  Function convertMSHtoMAT to convert the mesh file from .msh to .mat format



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

• fileName: String that specifies the name of the .msh 
mesh file without extension. The mesh files are archived 
in the directory example.

• nsd: Scalar variable defining the number of spatial 
dimensions (either 2 or 3).

• pDegree: Scalar variable defining the degree of the 
polynomial order of the mesh.

• isPlotMesh: Boolean variable to activate the option 
for visualising the imported mesh with the nodal distribu-
tion.

• outputPath: String that specifies the location where 
the imported mesh will be stored. The default location is 
the directory meshFiles.

Given the number of spatial dimensions and the polyno-
mial degree defined above, the refElem and refFace 
data structures are constructed.

Fig. 49  Extract of the scanMeshFileMSH function that constructs 
the permutation vector for the appropriate renumbering of the mesh 
nodes

Fig. 50  Function findNeighbourElement that identifies the element sharing a face of a given element

Fig. 51  Extract of the getInternalFaces function that con-
structs the list of elements containing each node

Fig. 52  Extract of the buildMeshStruct function that constructs 
the connectivity matrix



 M. Giacomini et al.

1 3

Fig. 53  Comparison of high-order meshes generated by Gmsh using 
the elastic approach (left) and the optimisation algorithm (right) for 
the Stokes equation in a ring domain. a, b Nodal distributions for 
meshes of degree 3. Convergence of the L2(�) error of c, d pressure, 

p, and mixed variable, L , and e, f primal, u , and postprocessed, u⋆ , 
velocities as a function of the characteristic mesh size h for polyno-
mial degree of approxiomation � = 1,… , 5



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

Reading the .msh File

The .msh file is read by the function scanMeshFileMSH 
and the following information is extracted:

• X: Array containing the coordinates of the mesh nodes.
• T: Connectivity matrix featuring the identifiers of the 

nodes associated with each element.
• faces: Array containing the information on the bound-

ary faces, namely the identifier of the element the face 
belongs to, the list of vertices, the flags of the boundary 
and of the type of boundary condition imposed.

• matElem: Array containing the flag of the region each 
element belongs to.

A detailed description of the structure of the .msh file as 
well as the notation utilised by the mesh generator to iden-
tify element and face types is available in the official Gmsh 
documentation [13]. It is worth noting that the numbering 
of the nodes in HDGlab differs from the one provided by 
Gmsh. Hence, an appropriate permutation is performed as 
reported in Fig. 49.

Retrieving the Information on the Faces

As described in Sect. 6.1, the interior and exterior faces of 
the mesh are stored in the data structures intFaces and 
extFaces, respectively.

To construct the structure intFaces, the getInter-
nalFaces function explores the mesh and, for each face of 
each element, it identifies the neighbouring element by com-
paring the list of face nodes, see Fig. 50. In order to optimise 
this operation, a list of potential neighbours is preliminarily 
stored by identifying the list of elements containing each 
node, as detailed by the extract in Fig. 51.

The function getBoundaryFaces, not reported here 
for brevity, is responsible for constructing the data structure 
of the exterior faces. More precisely, the structure ext-
Faces is obtained by rearranging the information previ-
ously stored in the data structure faces, according to the 
rationale described in Sect. 6.1.

Assemblying the Mesh Structure

The structure mesh is finally assembled by the build-
MeshStruct function using the information obtained by 
the mesh generator, namely X, T and matElem, and the 
structures of the interior and exterior faces, intFaces 
and extFaces, previously generated. More precisely, the 
connectivity matrix is constructed via a loop on the mesh 
elements as reported in Fig. 52.

It is worth noting that the framework provided in HDG-
lab to import meshes generated using Gmsh can be easily 
extended to any mesh generator by introducing appropriate 
functions to construct the intFaces and extFaces data 
structures, as described above.

Some Examples of High‑Order Meshes Using Gmsh

In this section, several meshes of the ring domain introduced 
in Sect. 11.2 are generated using Gmsh and tested to verify 
the optimal convergence rate of the code when high-order 
meshes with equally-spaced nodal sets are considered. 
More precisely, Fig. 53 displays the comparison of the third 
order meshes provided by Gmsh using the Mesh.High-
OrderOptimize option either with an elastic approach 
or an optimisation algorithm [13]. It is worth noting that 
the elastic approach mainly induces the curvature of the 
boundary of the domain, whereas the optimisation strategy 
is responsible for curved edges to appear in the interior of 
the domain as well (Fig. 53a, b). In both cases, the nodes 
are equally-spaced.

In addition, the L2(�) error of the pressure and the gradi-
ent of velocity (Fig 53c, d) and the primal and postprocessed 
velocities (Fig 53e, f) is reported as a function of the char-
acteristic mesh size. The results diplay the expected opti-
mal convergence of order � + 1 for pressure, velocity and 
gradient of velocity and the superconvergence of the post-
processed variable u⋆ , showing the capability of HDGlab to 
work using both equally-spaced and Fekete nodal distribu-
tions. It is worth noting that the results obtained using Fekete 
nodal sets (Fig. 37) provide up to one order of magnitude 
of extra accuracy for a given mesh size compared to the 
equally-spaced nodes in Fig. 53.

References

 1. code\_aster: structures and thermomechanics analysis for 
studies and research. https ://code-aster .org/

 2. Code\_Saturne: EDF open-source software to solve com-
putational fluid dynamics applications. https ://www.code-satur 
ne.org/cms/

 3. DiSk++: a C++ template library for discontinuous skeletal 
methods. https ://githu b.com/wareH HOuse /diskp p

 4. Feel++: a powerful, scalable and expressive finite element 
embedded library in C++. http://www.feelp p.org

 5. FESTUNG: a MATLAB/GNU Octave toolbox for the discontinu-
ous Galerkin method. https ://githu b.com/FESTU NG/FESTU NG

 6. Firedrake: an automated system for the solution of partial 
differential equations using the finite element method. https ://
www.fired rakep rojec t.org

 7. GetFEM: an open-source finite element library. http://getfe m.org
 8. HArDCore: Hybrid Arbitrary Degree::Core. https ://githu b.com/

jdron iou/HArDC ore

https://code-aster.org/
https://www.code-saturne.org/cms/
https://www.code-saturne.org/cms/
https://github.com/wareHHOuse/diskpp
http://www.feelpp.org
https://github.com/FESTUNG/FESTUNG
https://www.firedrakeproject.org
https://www.firedrakeproject.org
http://getfem.org
https://github.com/jdroniou/HArDCore
https://github.com/jdroniou/HArDCore


 M. Giacomini et al.

1 3

 9. HDG3D: Matlab implementation of the hybridizable discontinu-
ous Galerkin method on general tetrahedrizations of polyhedra 
in three dimensional space. https ://githu b.com/team-panch o/
HDG3D 

 10. Nektar++: spectral/hp element framework. https ://www.nekta 
r.info

 11. Netgen/NGSolve: a high performance multiphysics finite 
element software. https ://ngsol ve.org

 12. deal.II: an open source finite element library. https ://www.
deali i.org

 13. Gmsh: a three-dimensional finite element mesh generator with 
built-in pre- and post-processing facilities. https ://gmsh.info

 14. MFEM: modular finite element methods library. https ://mfem.org
 15. Abbas M, Ern A, Pignet N (2018) Hybrid high-order methods 

for finite deformations of hyperelastic materials. Comput Mech 
62(4):909–928

 16. Abbas M, Ern A, Pignet N (2019) A hybrid high-order method 
for finite elastoplastic deformations within a logarithmic strain 
framework. Int J Numer Methods Eng 120(3):303–327

 17. Abbas M, Ern A, Pignet N (2019) A hybrid high-order method 
for incremental associative plasticity with small deformations. 
Comput Methods Appl Mech Eng 346:891–912

 18. Agullo E, Giraud L, Gobé A, Kuhn M, Lanteri S, Moya L (2020) 
High order HDG method and domain decomposition solvers for 
frequency-domain electromagnetics. Int J Numer Model Electron 
Netw Dev Fields 33(2):e2678

 19. Ainsworth M, Fu G (2018) Fully computable a posteriori error 
bounds for hybridizable discontinuous Galerkin finite element 
approximations. J Sci Comput 77(1):443–466

 20. Anderson R, Andrej J, Barker A, Bramwell J, Camier JS, Cerveny 
J, Dobrev V, Dudouit Y, Fisher A, Kolev T, Pazner W, Stowell 
M, Tomov V, Dahm J, Medina D, Zampini S (2020) MFEM: a 
modular finite element methods library. Technical report, arXiv 
arXiv :1911.09220 

 21. Anderson TH, Civiletti BJ, Monk PB, Lakhtakia A (2020) Cou-
pled optoelectronic simulation and optimization of thin-film 
photovoltaic solar cells. J Comput Phys 407:109,242

 22. Araya R, Solano M, Vega P (2019) Analysis of an adaptive 
HDG method for the Brinkman problem. IMA J Numer Anal 
39(3):1502–1528

 23. Araya R, Solano M, Vega P (2019) A posteriori error analysis 
of an HDG method for the Oseen problem. Appl Numer Math 
146:291–308

 24. Arbogast T, Pencheva G, Wheeler MF, Yotov I (2007) A mul-
tiscale mortar mixed finite element method. Multiscale Model 
Simul 6(1):319–346

 25. Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general 
purpose object oriented finite element library. ACM Trans Math 
Softw 33(4):24/1–24/27

 26. Barrenechea GR, Bosy M, Dolean V, Nataf F, Tournier PH 
(2018) Hybrid discontinuous Galerkin discretisation and domain 
decomposition preconditioners for the Stokes problem. Comput 
Methods Appl Math. https ://doi.org/10.1515/cmam-2018-0005

 27. Bonaldi F, Di Pietro DA, Geymonat G, Krasucki F (2018) A 
hybrid high-order method for Kirchhoff–Love plate bending 
problems. ESAIM Math Model Numer Anal 52(2):393–421

 28. Bonnasse-Gahot M, Calandra H, Diaz J, Lanteri S (2017) Hybrid-
izable discontinuous Galerkin method for the 2-D frequency-
domain elastic wave equations. Geophys J Int 213(1):637–659

 29. Botti L, Di Pietro DA (2018) Assessment of hybrid high-order 
methods on curved meshes and comparison with discontinuous 
Galerkin methods. J Comput Phys 370:58–84

 30. Botti L, Di Pietro DA, Droniou J (2018) A hybrid high-order 
discretisation of the Brinkman problem robust in the Darcy and 
Stokes limits. Comput Methods Appl Mech Eng 341:278–310

 31. Botti L, Di Pietro DA, Droniou J (2019) A hybrid high-order 
method for the incompressible Navier–Stokes equations based 
on Temam’s device. J Comput Phys 376:786–816

 32. Botti M, Di Pietro DA, Guglielmana A (2019) A low-order non-
conforming method for linear elasticity on general meshes. Com-
put Methods Appl Mech Eng 354:96–118

 33. Botti M, Di Pietro DA, Le Maître O, Sochala P (2020) Numerical 
approximation of poroelasticity with random coefficients using 
polynomial chaos and hybrid high-order methods. Comput Meth-
ods Appl Mech Eng 361:112,736

 34. Botti M, Di Pietro DA, Sochala P (2017) A hybrid high-
order method for nonlinear elasticity. SIAM J Numer Anal 
55(6):2687–2717

 35. Botti M, Di Pietro DA, Sochala P (2020) A hybrid high-order dis-
cretization method for nonlinear poroelasticity. Comput Methods 
Appl Math 20(2):227–249

 36. Brezzi F, Fortin M (1991) Mixed and hybrid finite elements 
methods. Springer series in computational mathematics. 
Springer, Berlin

 37. Bui-Thanh T (2015) From Godunov to a unified hybridized dis-
continuous Galerkin framework for partial differential equations. 
J Comput Phys 295:114–146

 38. Bui-Thanh T (2016) Construction and analysis of HDG meth-
ods for linearized shallow water equations. SIAM J Sci Comput 
38(6):A3696–A3719

 39. Burman E, Delay G, Ern A (2020) An unfitted hybrid high-order 
method for the Stokes interface problem. IMA J Numer Anal. 
https ://doi.org/10.1093/imanu m/draa0 59

 40. Burman E, Ern A (2018) An unfitted hybrid high-order 
method for elliptic interface problems. SIAM J Numer Anal 
56(3):1525–1546

 41. Camargo L, López-Rodríguez B, Osorio M, Solano M (2020) An 
HDG method for Maxwell’s equations in heterogeneous media. 
Comput Methods Appl Mech Eng 368:113178

 42. Cangiani A, Dong Z, Georgoulis E, Houston P (2017) hp-version 
discontinuous Galerkin methods on polygonal and polyhedral 
meshes. Springer, Berlin

 43. Cantwell CD, Moxey D, Comerford A, Bolis A, Rocco G, Men-
galdo G, De Grazia D, Yakovlev S, Lombard JE, Ekelschot D, 
Jordi B, Xu H, Mohamied Y, Eskilsson C, Nelson B, Vos P, 
Biotto C, Kirby RM, Sherwin SJ (2015) Nektar++: an open-
source spectral/hp element framework. Comput Phys Commun 
192:205–219

 44. Cascavita KL, Bleyer J, Chateau X, Ern A (2018) Hybrid dis-
cretization methods with adaptive yield surface detection for 
Bingham pipe flows. J Sci Comput 77(3):1424–1443

 45. Castanon Quiroz D, Di Pietro DA (2020) a hybrid high-
order method for the incompressible Navier–Stokes problem 
robust for large irrotational body forces. Comput Math Appl 
79(9):2655–2677

 46. Castillo P, Gómez S (2020) Conservative super-convergent and 
hybrid discontinuous Galerkin methods applied to nonlinear 
Schrödinger equations. Appl Math Comput 371:124,950

 47. Celiker F, Cockburn B, Shi K (2010) Hybridizable discontinu-
ous Galerkin methods for Timoshenko beams. J Sci Comput 
44(1):1–37

 48. Celiker F, Cockburn B, Shi K (2011) A projection-based error 
analysis of HDG methods for Timoshenko beams. Math Comput 
81(277):131–151

 49. Cesmelioglu A, Cockburn B, Nguyen NC, Peraire J (2013) 
Analysis of HDG methods for Oseen equations. J Sci Comput 
55(2):392–431

 50. Cesmelioglu A, Cockburn B, Qiu W (2017) Analysis of a 
hybridizable discontinuous Galerkin method for the steady-
state incompressible Navier–Stokes equations. Math Comput 
86(306):1643–1670

https://github.com/team-pancho/HDG3D
https://github.com/team-pancho/HDG3D
https://www.nektar.info
https://www.nektar.info
https://ngsolve.org
https://www.dealii.org
https://www.dealii.org
https://gmsh.info
https://mfem.org
http://arxiv.org/abs/1911.09220
https://doi.org/10.1515/cmam-2018-0005
https://doi.org/10.1093/imanum/draa059


HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

 51. Cesmelioglu A, Rhebergen S, Wells GN (2020) An embedded-
hybridized discontinuous Galerkin method for the coupled 
Stokes–Darcy system. J Comput Appl Math 367:112,476

 52. Chave F, Di Pietro DA, Formaggia L (2019) A hybrid high-order 
method for passive transport in fractured porous media. GEM Int 
J Geomath 10(1):12

 53. Chave F, Di Pietro DA, Marche F, Pigeonneaux F (2016) A 
hybrid high-order method for the Cahn–Hilliard problem in 
mixed form. SIAM J Numer Anal 54(3):1873–1898

 54. Chen G, Cockburn B, Singler J, Zhang Y (2019) Superconvergent 
interpolatory HDG methods for reaction diffusion equations I: an 
HDGk  method. J Sci Comput 81(3):2188–2212

 55. Chen G, Cui J, Xu L (2019) Analysis of a hybridizable discon-
tinuous Galerkin method for the Maxwell operator. ESAIM Math 
Model Numer Anal 53(1):301–324

 56. Chen G, Monk P, Zhang Y (2019) An HDG method for the time-
dependent drift-diffusion model of semiconductor devices. J Sci 
Comput 80:420–443

 57. Chen H, Li J, Qiu W (2014) Robust a posteriori error estimates 
for HDG method for convection–diffusion equations. IMA J 
Numer Anal 36(1):437–462

 58. Chen H, Qiu W, Shi K (2018) A priori and computable a posteri-
ori error estimates for an HDG method for the coercive Maxwell 
equations. Comput Methods Appl Mech Eng 333:287–310

 59. Chen H, Qiu W, Shi K, Solano M (2017) A superconver-
gent HDG Method for the Maxwell equations. J Sci Comput 
70(3):1010–1029

 60. Chen Y, Cockburn B (2012) Analysis of variable-degree HDG 
methods for convection–diffusion equations. Part I: general non-
conforming meshes. IMA J Numer Anal 32(4):1267–1293

 61. Chen Y, Cockburn B (2014) Analysis of variable-degree HDG 
methods for convection–diffusion equations. Part II: semimatch-
ing nonconforming meshes. Math Comput 83(285):87–111

 62. Chen Y, Cockburn B, Dong B (2016) Superconvergent HDG 
methods for linear, stationary, third-order equations in one-space 
dimension. Math Comput 85(302):2715–2742

 63. Chen Y, Dong B, Jiang J (2018) Optimally convergent hybridiz-
able discontinuous Galerkin method for fifth-order Korteweg–
de Vries type equations. ESAIM Math Model Numer Anal 
52(6):2283–2306

 64. Childs PR (2010) Rotating flow. Elsevier, Amsterdam
 65. Cho K, Moon M (2020) Multiscale hybridizable discontinuous 

Galerkin method for elliptic problems in perforated domains. J 
Comput Appl Math 365:112,346

 66. Chouly F, Ern A, Pignet N (2020) A hybrid high-order dis-
cretization combined with Nitsche’s method for contact and 
Tresca friction in small strain elasticity. SIAM J Sci Comput 
42(4):A2300–A2324

 67. Christophe A, Descombes S, Lanteri S (2018) An implicit 
hybridized discontinuous Galerkin method for the 3D time-
domain Maxwell equations. Appl Math Comput 319:395–408

 68. Chung E, Cockburn B, Fu G (2014) The staggered DG method 
is the limit of a hybridizable DG method. SIAM J Numer Anal 
52(2):915–932

 69. Chung E, Cockburn B, Fu G (2016) The staggered DG method is 
the limit of a hybridizable DG method. Part II: the Stokes flow. 
J Sci Comput 66(2):870–887

 70. Chung E, Efendiev Y, Leung WT (2019) Generalized multiscale 
finite element methods with energy minimizing oversampling. 
Int J Numer Methods Eng 117(3):316–343

 71. Cicuttin M, Di Pietro D, Ern A (2018) Implementation of dis-
continuous skeletal methods on arbitrary-dimensional, polyto-
pal meshes using generic programming. J Comput Appl Math 
344:852–874

 72. Cicuttin M, Ern A, Gudi T (2020) Hybrid high-order methods 
for the elliptic obstacle problem. J Sci Comput 83(1):8

 73. Cicuttin M, Ern A, Lemaire S (2018) A hybrid high-order method 
for highly oscillatory elliptic problems. Comput Methods Appl 
Math 19(4):723–748

 74. Ciucǎ C, Fernandez P, Christophe A, Nguyen NC, Peraire J 
(2020) Implicit hybridized discontinuous Galerkin methods 
for compressible magnetohydrodynamics. J Comput Phys X 
5:100,042

 75. Cockburn B (2016) Static condensation, hybridization, and the 
devising of the HDG methods. In: Barrenechea GR, Brezzi F, 
Cangiani A, Georgoulis E (eds) Building bridges: connections 
and challenges in modern approaches to numerical partial dif-
ferential equations. Springer, Cham, pp 129–177

 76. Cockburn B, Mustapha K (2015) A hybridizable discontinuous 
Galerkin method for fractional diffusion problems. Numer Math 
130(2):293–314

 77. Cockburn B, Dong B, Guzmán J (2008) A superconvergent LDG-
hybridizable Galerkin method for second-order elliptic problems. 
Math Comput 77(264):1887–1916

 78. Cockburn B, Dong B, Guzmán J (2009) A hybridizable and 
superconvergent discontinuous Galerkin method for biharmonic 
problems. J Sci Comput 40(1–3):141–187

 79. Cockburn B, Dong B, Guzmán J, Restelli M, Sacco R (2009) 
A hybridizable discontinuous Galerkin method for steady-state 
convection–diffusion–reaction problems. SIAM J Sci Comput 
31(5):3827–3846

 80. Cockburn B, Dubois O, Gopalakrishnan J, Tan S (2014) Multi-
grid for an HDG method. IMA J Numer Anal 34(4):1386–1425

 81. Cockburn B, Fu G (2017) Devising superconvergent HDG meth-
ods with symmetric approximate stresses for linear elasticity by 
M-decompositions. IMA J Numer Anal 38(2):566–604

 82. Cockburn B, Fu G (2017) Superconvergence by M-decomposi-
tions. Part II: construction of two-dimensional finite elements. 
ESAIM Math Model Numer Anal 51(1):165–186

 83. Cockburn B, Fu G (2017) Superconvergence by M-decomposi-
tions. Part III: construction of three-dimensional finite elements. 
ESAIM Math Model Numer Anal 51(1):365–398

 84. Cockburn B, Fu G, Qiu W (2017) A note on the devising of 
superconvergent HDG methods for Stokes flow by M-decomposi-
tions. IMA J Numer Anal 37(2):730–749

 85. Cockburn B, Fu G, Sayas FJ (2017) Superconvergence by M
-decompositions. Part I: general theory for HDG methods for 
diffusion. Math Comput 86(306):1609–1641

 86. Cockburn B, Fu Z, Hungria A, Ji L, Sánchez MA, Sayas FJ 
(2018) Stormer–Numerov HDG methods for acoustic waves. J 
Sci Comput 75(2):597–624

 87. Cockburn B, Gopalakrishnan J (2004) A characterization of 
hybridized mixed methods for second order elliptic problems. 
SIAM J Numer Anal 42(1):283–301

 88. Cockburn B, Gopalakrishnan J (2009) The derivation of hybrid-
izable discontinuous Galerkin methods for Stokes flow. SIAM J 
Numer Anal 47(2):1092–1125

 89. Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybrid-
ization of discontinuous Galerkin, mixed, and continuous Galer-
kin methods for second order elliptic problems. SIAM J Numer 
Anal 47(2):1319–1365

 90. Cockburn B, Gopalakrishnan J, Nguyen NC, Peraire J, Sayas FJ 
(2011) Analysis of HDG methods for Stokes flow. Math Comput 
80(274):723–760

 91. Cockburn B, Karniadakis GE, Shu CW (2000) The development 
of discontinuous Galerkin methods. In: Discontinuous Galerkin 
methods (Newport, RI, 1999), lecture notes computer science 
engineering, vol 11. Springer, Berlin, pp 3–50

 92. Cockburn B, Nguyen NC, Peraire J (2010) A comparison of HDG 
methods for Stokes flow. J Sci Comput 45(1–3):215–237



 M. Giacomini et al.

1 3

 93. Cockburn B, Quenneville-Bélair V (2014) Uniform-in-time 
superconvergence of the HDG methods for the acoustic wave 
equation. Math Comput 83(285):65–85

 94. Cockburn B, Sayas FJ (2014) Divergence-conforming HDG 
methods for Stokes flows. Math Comput 83(288):1571–1598

 95. Cockburn B, Shen J (2016) A hybridizable discontinuous 
Galerkin method for the p-Laplacian. SIAM J Sci Comput 
38(1):A545–A566

 96. Cockburn B, Shen J (2019) An algorithm for stabilizing hybridiz-
able discontinuous Galerkin methods for nonlinear elasticity. Res 
Appl Math 1:100001

 97. Cockburn B, Shi K (2013) Superconvergent HDG methods for 
linear elasticity with weakly symmetric stresses. IMA J Numer 
Anal 33(3):747–770

 98. Cockburn B, Shi K (2014) Devising HDG methods for Stokes 
flow: an overview. Comput Fluids 98:221–229

 99. Cockburn B, Shu CW (1998) The local discontinuous Galerkin 
method for time-dependent convection–diffusion systems. SIAM 
J Numer Anal 35(6):2440–2463

 100. Cockburn B, Singler JR, Zhang Y (2019) Interpolatory 
HDG method for parabolic semilinear PDEs. J Sci Comput 
79(3):1777–1800

 101. Cockburn B, Solano M (2012) Solving Dirichlet boundary-value 
problems on curved domains by extensions from subdomains. 
SIAM J Sci Comput 34(1):A497–A519

 102. Cockburn B, Solano M (2014) Solving convection–diffusion 
problems on curved domains by extensions from subdomains. J 
Sci Comput 59(2):512–543

 103. Cockburn B, Wang Z (2017) Adjoint-based, superconvergent 
Galerkin approximations of linear functionals. J Sci Comput 
73(2–3):644–666

 104. Cockburn B, Zhang W (2012) A posteriori error estimates for 
HDG methods. J Sci Comput 51(3):582–607

 105. Cockburn B, Zhang W (2013) A posteriori error analysis for 
hybridizable discontinuous Galerkin methods for second order 
elliptic problems. SIAM J Numer Anal 51(1):676–693

 106. Cockburn B, Di Pietro DA, Ern A (2016) Bridging the hybrid 
high-order and hybridizable discontinuous Galerkin methods. 
ESAIM Math Model Numer Anal 50(3):635–650

 107. Costa-Solé A, Ruiz-Gironés E, Sarrate J (2019) An HDG for-
mulation for incompressible and immiscible two-phase porous 
media flow problems. Int J Comput Fluid Dyn 33(4):137–148

 108. Di Pietro D, Ern A (2012) Mathematical aspects of discontinuous 
Galerkin methods, vol 69. Springer, Heidelberg

 109. Di Pietro D, Ern A (2015) A hybrid high-order locking-free 
method for linear elasticity on general meshes. Comput Methods 
Appl Mech Eng 283:1–21

 110. Di Pietro D, Ern A, Lemaire S (2014) An arbitrary-order and 
compact-stencil discretization of diffusion on general meshes 
based on local reconstruction operators. Comput Methods Appl 
Math 14(4):461–472

 111. Di Pietro DA, Droniou J (2017) A hybrid high-order method for 
Leray–Lions elliptic equations on general meshes. Math Comput 
86(307):2159–2191

 112. Di Pietro DA, Droniou J (2020) The hybrid high-order method 
for polytopal meshes. Modeling, simulation and applications 
series. Springer, Berlin

 113. Di Pietro DA, Droniou J, Ern A (2015) A discontinuous-skeletal 
method for advection–diffusion–reaction on general meshes. 
SIAM J Numer Anal 53(5):2135–2157

 114. Di Pietro DA, Droniou J, Manzini G (2018) Discontinuous skel-
etal gradient discretisation methods on polytopal meshes. J Com-
put Phys 355:397–425

 115. Di Pietro DA, Ern A (2015) Hybrid high-order methods for 
variable-diffusion problems on general meshes. C R Math 
353(1):31–34

 116. Di Pietro DA, Ern A, Linke A, Schieweck F (2016) A discontinu-
ous skeletal method for the viscosity-dependent Stokes problem. 
Comput Methods Appl Mech Eng 306:175–195

 117. Di Pietro DA, Krell S (2018) A hybrid high-order method for 
the steady incompressible Navier–Stokes problem. J Sci Comput 
74(3):1677–1705

 118. Diskin B, Thomas JL (2011) Comparison of node-centered and 
cell-centered unstructured finite-volume discretizations: inviscid 
fluxes. AIAA J 49(4):836–854

 119. Diskin B, Thomas JL, Nielsen EJ, Nishikawa H, White JA (2010) 
Comparison of node-centered and cell-centered unstructured 
finite-volume discretizations: viscous fluxes. AIAA J 48(7):1326

 120. Donea J, Huerta A (2003) Finite element methods for flow prob-
lems. Wiley, Hoboken

 121. Dong H, Wang B, Xie Z, Wang LL (2016) An unfitted hybridiz-
able discontinuous Galerkin method for the Poisson interface 
problem and its error analysis. IMA J Numer Anal 37(1):444–476

 122. Du S, Sayas FJ (2020) A unified error analysis of hybridizable 
discontinuous Galerkin methods for the static Maxwell equa-
tions. SIAM J Numer Anal 58(2):1367–1391

 123. Efendiev Y, Lazarov R, Moon M, Shi K (2015) A spectral 
multiscale hybridizable discontinuous Galerkin method for 
second order elliptic problems. Comput Methods Appl Mech 
Eng 292:243–256 Special Issue on Advances in Simulations of 
Subsurface Flow and Transport (Honoring Professor Mary F. 
Wheeler)

 124. Egger H, Schöberl J (2009) A hybrid mixed discontinuous Galer-
kin finite-element method for convection–diffusion problems. 
IMA J Numer Anal 30(4):1206–1234

 125. Egger H, Waluga C (2012) hp-analysis of a hybrid DG method 
for Stokes flow. IMA J Numer Anal 33(2):687–721

 126. Egger H, Waluga C (2012) A hybrid mortar method for incom-
pressible flow. Int J Numer Anal Model 9(4):793–812

 127. Fabien MS (2020) A GPU-accelerated hybridizable discontinu-
ous Galerkin method for linear elasticity. Commun Comput Phys 
27(2):513–545

 128. Fabien MS (2020) A high-order implicit HDG method for the 
Benjamin–Bona–Mahony equation. Int J Numer Methods Fluids. 
https ://doi.org/10.1002/fld.4896

 129. Fabien MS, Knepley MG, Mills RT, Riviere BM (2019) 
Manycore parallel computing for a hybridizable discontinu-
ous Galerkin nested multigrid method. SIAM J Sci Comput 
41(2):C73–C96

 130. Fabien MS, Knepley MG, Rivière BM (2018) A hybridizable 
discontinuous Galerkin method for two-phase flow in heterogene-
ous porous media. Int J Numer Methods Eng 116(3):161–177

 131. Farahinia A, Zhang WJ (2019) Numerical investigation into the 
mixing performance of micro T-mixers with different patterns of 
obstacles. J Braz Soc Mech Sci Eng 41(11):491

 132. Fernandez P, Christophe A, Terrana S, Nguyen NC, Peraire J 
(2018) Hybridized discontinuous Galerkin methods for wave 
propagation. J Sci Comput 77(3):1566–1604

 133. Fernandez P, Nguyen NC, Peraire J (2017) The hybridized dis-
continuous Galerkin method for implicit large-eddy simulation 
of transitional turbulent flows. J Comput Phys 336:308–329

 134. Fidkowski KJ (2016) A hybridized discontinuous Galer-
kin method on mapped deforming domains. Comput Fluids 
139:80–91

 135. Fidkowski KJ (2019) Comparison of hybrid and standard discon-
tinuous Galerkin methods in a mesh-optimisation setting. Int J 
Comput Fluid Dyn 33(1–2):34–42

 136. Fidkowski KJ, Chen G (2020) Output-based mesh optimization 
for hybridized and embedded discontinuous Galerkin methods. 
Int J Numer Methods Eng 121(5):867–887

https://doi.org/10.1002/fld.4896


HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

 137. Fournier Y, Bonelle J, Moulinec C, Shang Z, Sunderland AG, 
Uribe JC (2011) Optimizing Code\_Saturne computations on 
Petascale systems. Comput Fluids 45(1):103–108

 138. Fraeijs de Veubeke B (1965) Displacement and equilibrium 
models in the finite element method. In: Zienkiewicz OC, 
Holister GS (eds) Stress analysis. Wiley, Hoboken, pp 145–197

 139. Franciolini M, Fidkowski KJ, Crivellini A (2020) Efficient 
discontinuous Galerkin implementations and preconditioners 
for implicit unsteady compressible flow simulations. Comput 
Fluids 203:104542

 140. Fu G (2020) Arbitrary Lagrangian–Eulerian hybridizable dis-
continuous Galerkin methods for incompressible flow with 
moving boundaries and interfaces. Comput Methods Appl 
Mech Eng 367:113158

 141. Fu G, Cockburn B, Stolarski H (2015) Analysis of an HDG 
method for linear elasticity. Int J Numer Methods Eng 
102(3–4):551–575

 142. Fu G, Jin Y, Qiu W (2018) Parameter-free superconvergent 
H(div)-conforming HDG methods for the Brinkman equations. 
IMA J Numer Anal 39(2):957–982

 143. Fu Z, Gatica LF, Sayas FJ (2015) Algorithm 949: MATLAB 
tools for HDG in three dimensions. ACM Trans Math Softw 
41(3):1–21

 144. Gander MJ, Hajian S (2018) Analysis of Schwarz methods 
for a hybridizable discontinuous Galerkin discretization: the 
many-subdomain case. Math Comput 87(312):1635–1657

 145. Gatica GN, Sequeira FA (2015) Analysis of an augmented 
HDG method for a class of quasi-Newtonian Stokes flows. J 
Sci Comput 65(3):1270–1308

 146. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element 
mesh generator with built-in pre- and post-processing facilities. 
Int J Numer Methods Eng 79(11):1309–1331

 147. Giacomini M, Borchini L, Sevilla R, Huerta A (2020) Sepa-
rated response surfaces for flows in parametrised domains: 
comparison of a priori and a posteriori PGD algorithms. Tech-
nical report, arXiv arXiv :2009.02176 . Submitted

 148. Giacomini M, Karkoulias A, Sevilla R, Huerta A (2018) A 
superconvergent HDG method for Stokes flow with strongly 
enforced symmetry of the stress tensor. J Sci Comput 
77(3):1679–1702

 149. Giacomini M, Sevilla R (2019) Discontinuous Galerkin approxi-
mations in computational mechanics: hybridization, exact geom-
etry and degree adaptivity. SN Appl Sci 1:1047

 150. Giacomini M, Sevilla R (2020) A second-order face-centred 
finite volume method on general meshes with automatic mesh 
adaptation. Int J Numer Methods Eng. https ://doi.org/10.1002/
nme.6428

 151. Giacomini M, Sevilla R, Huerta A (2020) Tutorial on hybridiz-
able discontinuous Galerkin (HDG) formulation for incompress-
ible flow problems. In: Lorenzis LD, Düster A (eds) Modeling in 
engineering using innovative numerical methods for solids and 
fluids. CISM International Centre for Mechanical Sciences, vol 
599. Springer, Berlin, pp 163–201

 152. Giorgiani G, Fernández-Méndez S, Huerta A (2013) Hybridiz-
able discontinuous Galerkin p-adaptivity for wave propagation 
problems. Int J Numer Methods Fluids 72(12):1244–1262

 153. Giorgiani G, Fernández-Méndez S, Huerta A (2014) Hybridiza-
ble discontinuous Galerkin with degree adaptivity for the incom-
pressible Navier–Stokes equations. Comput Fluids 98:196–208

 154. Gürkan C, Kronbichler M, Fernández-Méndez S (2017) Extended 
hybridizable discontinuous Galerkin with Heaviside enrichment 
for heat bimaterial problems. J Sci Comput 72(2):542–567

 155. Gürkan C, Kronbichler M, Fernández-Méndez S (2019) Extended 
hybridizable discontinuous Galerkin for incompressible flow 
problems with unfitted meshes and interfaces. Int J Numer Meth-
ods Eng 117(7):756–777

 156. Gürkan C, Sala-Lardies E, Kronbichler M, Fernández-Méndez S 
(2016) eXtended Hybridizable Discontinous Galerkin (X-HDG) 
for void problems. J Sci Comput 66(3):1313–1333

 157. Guyan R (1965) Reduction of stiffness and mass matrices. AIAA 
J 3(2):380

 158. Hesthaven J, Warburton T (2002) Nodal high-order methods on 
unstructured grids: I. Time-domain solution of Maxwell’s equa-
tions. J Comput Phys 181(1):186–221

 159. Hoermann JM, Bertoglio C, Kronbichler M, Pfaller MR, Chabi-
niok R, Wall WA (2018) An adaptive hybridizable discontinuous 
Galerkin approach for cardiac electrophysiology. Int J Numer 
Methods Biomed Eng 34(5):e2959

 160. Horváth TL, Rhebergen S (2019) A locally conservative and 
energy-stable finite-element method for the Navier–Stokes prob-
lem on time-dependent domains. Int J Numer Methods Fluids 
89(12):519–532

 161. Horváth TL, Rhebergen S (2020) An exactly mass conserving 
space-time embedded-hybridized discontinuous Galerkin method 
for the Navier–Stokes equations on moving domains. J Comput 
Phys 417:109,577

 162. Huang J, Huang X (2019) A hybridizable discontinuous Galerkin 
method for Kirchhoff plates. J Sci Comput 78(1):290–320

 163. Huerta A, Angeloski A, Roca X, Peraire J (2013) Efficiency of 
high-order elements for continuous and discontinuous Galerkin 
methods. Int J Numer Methods Eng 96(9):529–560

 164. Hungria A, Prada D, Sayas FJ (2017) HDG methods for elasto-
dynamics. Comput Math Appl 74(11):2671–2690

 165. Huynh LNT, Nguyen NC, Peraire J, Khoo BC (2013) A high-
order hybridizable discontinuous Galerkin method for elliptic 
interface problems. Int J Numer Methods Eng 93(2):183–200

 166. Jaust A, Reuter B, Aizinger V, Schütz J, Knabner P (2018) FES-
TUNG: a MATLAB/GNU Octave toolbox for the discontinuous 
Galerkin method. Part III: hybridized discontinuous Galerkin 
(HDG) formulation. Comput Math Appl 75(12):4505–4533

 167. Kabaria H, Lew AJ, Cockburn B (2015) A hybridizable discon-
tinuous Galerkin formulation for non-linear elasticity. Comput 
Methods Appl Mech Eng 283:303–329

 168. Kang S, Bui-Thanh T, Arbogast T (2019) A hybridized discon-
tinuous Galerkin method for a linear degenerate elliptic equation 
arising from two-phase mixtures. Comput Methods Appl Mech 
Eng 350:315–336

 169. Kang S, Giraldo FX, Bui-Thanh T (2020) IMEX HDG-DG: a 
coupled implicit hybridized discontinuous Galerkin and explicit 
discontinuous Galerkin approach for shallow water systems. J 
Comput Phys 401:109010

 170. Kirby R, Sherwin SJ, Cockburn B (2011) To CG or to HDG: a 
comparative study. J Sci Comput 51(1):183–212

 171. Kirk KLA, Rhebergen S (2019) Analysis of a pressure-robust 
hybridized discontinuous Galerkin method for the stationary 
Navier–Stokes equations. J Sci Comput 81(2):881–897

 172. Komala-Sheshachala S, Sevilla R, Hassan O (2020) A coupled 
HDG-FV scheme for the simulation of transient inviscid com-
pressible flows. Comput Fluids 202:104495

 173. Kronbichler M, Schoeder S, Müller C, Wall WA (2016) Compari-
son of implicit and explicit hybridizable discontinuous Galerkin 
methods for the acoustic wave equation. Int J Numer Methods 
Eng 106(9):712–739

 174. Kronbichler M, Wall WA (2018) A performance comparison of 
continuous and discontinuous Galerkin methods with fast mul-
tigrid solvers. SIAM J Sci Comput 40(5):A3423–A3448

 175. La Spina A, Giacomini M, Huerta A (2020) Hybrid coupling of 
CG and HDG discretizations based on Nitsche’s method. Comput 
Mech 65(2):311–330

 176. La Spina A, Kronbichler M, Giacomini M, Wall W, Huerta 
A (2020) A weakly compressible hybridizable discontinuous 

http://arxiv.org/abs/2009.02176
https://doi.org/10.1002/nme.6428
https://doi.org/10.1002/nme.6428


 M. Giacomini et al.

1 3

Galerkin formulation for fluid-structure interaction problems. 
Comput Methods Appl Mech Eng 372:113,392

 177. Lederer PL, Lehrenfeld C, Schöberl J (2018) Hybrid dis-
continuous Galerkin methods with relaxed H(div)-conform-
ity for incompressible flows. Part I. SIAM J Numer Anal 
56(4):2070–2094

 178. Lederer PL, Lehrenfeld C, Schöberl J (2019) Hybrid discon-
tinuous Galerkin methods with relaxed H(div)-conformity for 
incompressible flows. Part II. ESAIM Math Model Numer Anal 
53(2):503–522

 179. Lederer PL, Lehrenfeld C, Schöberl J (2020) Divergence-free 
tangential finite element methods for incompressible flows on 
surfaces. Int J Numer Methods Eng 121(11):2503–2533

 180. Lee JJ, Shannon SJ, Bui-Thanh T, Shadid JN (2019) Analy-
sis of an HDG method for linearized incompressible resistive 
MHD equations. SIAM J Numer Anal 57(4):1697–1722

 181. Lehrenfeld C, Schöberl J (2016) High order exactly divergence-
free hybrid discontinuous Galerkin methods for unsteady 
incompressible flows. Comput Methods Appl Mech Eng 
307:339–361

 182. Leng H, Chen Y (2020) Adaptive hybridizable discontinuous 
Galerkin methods for nonstationary convection–diffusion prob-
lems. Adv Comput Math 46(4):50

 183. Li G, Shi K (2018) Upscaled HDG methods for Brinkman 
equations with high-contrast heterogeneous coefficient. J Sci 
Comput 77(3):1780–1800

 184. Li L, Lanteri S, Mortensen NA, Wubs M (2017) A hybridizable 
discontinuous Galerkin method for solving nonlocal optical 
response models. Comput Phys Commun 219:99–107

 185. Li L, Lanteri S, Perrussel R (2014) A hybridizable discontinu-
ous Galerkin method combined to a Schwarz algorithm for the 
solution of 3D time-harmonic Maxwell’s equation. J Comput 
Phys 256:563–581

 186. Li L, Lanteri S, Perrussel R (2015) A class of locally well-
posed hybridizable discontinuous Galerkin methods for the 
solution of time-harmonic Maxwell’s equations. Comput Phys 
Commun 192:23–31

 187. Liu Y (2009) Fast multipole boundary element method: theory 
and applications in engineering. Cambridge University Press, 
Cambridge

 188. Loseille A, Feuillet R (2018) Vizir: high-order mesh and solu-
tion visualization using OpenGL 4.0 graphic pipeline. In: 2018 
AIAA aerospace sciences meeting, p 1174

 189. Lu P, Chen H, Qiu W (2017) An absolutely stable hp-HDG 
method for the time-harmonic Maxwell equations with high 
wave number. Math Comput 86(306):1553–1577

 190. McLachlan RI, Stern A (2020) Multisymplecticity of hybrid-
izable discontinuous Galerkin methods. Found Comput Math 
20(1):35–69

 191. Montlaur A, Fernández-Méndez S, Huerta A (2008) Dis-
continuous Galerkin methods for the Stokes equations using 
divergence-free approximations. Int J Numer Methods Fluids 
57(9):1071–1092

 192. Moon M, Lazarov R, Jun HK (2019) Multiscale HDG model 
reduction method for flows in heterogeneous porous media. 
Appl Numer Math 140:115–133

 193. Moro D, Nguyen NC, Peraire J (2011) Navier–Stokes solution 
using hybridizable discontinuous Galerkin methods. In: 20th 
AIAA computational fluid dynamics conference. AIAA

 194. Muixí A, Rodríguez-Ferran A, Fernández-Méndez S (2020) 
A hybridizable discontinuous Galerkin phase-field model for 
brittle fracture with adaptive refinement. Int J Numer Methods 
Eng 121(6):1147–1169

 195. Muralikrishnan S, Bui-Thanh T, Shadid JN (2020) A multilevel 
approach for trace system in HDG discretizations. J Comput 
Phys 407:109,240

 196. Muralikrishnan S, Tran M, Bui-Thanh T (2018) An improved 
iterative HDG approach for partial differential equations. J 
Comput Phys 367:295–321

 197. Mustapha K, Nour M, Cockburn B (2016) Convergence and 
superconvergence analyses of HDG methods for time fractional 
diffusion problems. Adv Comput Math 42(2):377–393

 198. Nelson B, Liu E, Kirby RM, Haimes R (2012) Elvis: a system for 
the accurate and interactive visualization of high-order finite ele-
ment solutions. IEEE Trans Vis Comput Gr 18(12):2325–2334

 199. Nguyen N, Peraire J, Cockburn B (2010) A hybridizable discon-
tinuous Galerkin method for Stokes flow. Comput Methods Appl 
Mech Eng 199(9–12):582–597

 200. Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order 
hybridizable discontinuous Galerkin method for linear convec-
tion–diffusion equations. J Comput Phys 228(9):3232–3254

 201. Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order 
hybridizable discontinuous Galerkin method for nonlinear con-
vection–diffusion equations. J Comput Phys 228(23):8841–8855

 202. Nguyen NC, Peraire J, Cockburn B (2011) High-order implicit 
hybridizable discontinuous Galerkin methods for acoustics and 
elastodynamics. J Comput Phys 230(10):3695–3718

 203. Nguyen NC, Peraire J, Cockburn B (2011) Hybridizable dis-
continuous Galerkin methods for the time-harmonic Maxwell’s 
equations. J Comput Phys 230(19):7151–7175

 204. Nguyen NC, Peraire J, Cockburn B (2011) An implicit high-order 
hybridizable discontinuous Galerkin method for the incompress-
ible Navier–Stokes equations. J Comput Phys 230(4):1147–1170

 205. Nguyen NC, Peraire J, Cockburn B (2015) A class of embedded 
discontinuous Galerkin methods for computational fluid dynam-
ics. J Comput Phys 302:674–692

 206. Oikawa I (2015) A hybridized discontinuous Galerkin method 
with reduced stabilization. J Sci Comput 65(1):327–340

 207. Oikawa I (2016) Analysis of a reduced-order HDG method for 
the Stokes equations. J Sci Comput 67(2):475–492

 208. Paipuri M, Tiago C, Fernández-Méndez S (2019) Coupling of 
continuous and hybridizable discontinuous Galerkin methods: 
application to conjugate heat transfer problem. J Sci Comput 
78(1):321–350

 209. Peraire J, Nguyen NC, Cockburn B (2010) A hybridizable dis-
continuous Galerkin method for the compressible Euler and 
Navier–Stokes equations. AIAA Pap 363:2010

 210. Peters E, Evans J (2019) A divergence-conforming hybridized 
discontinuous Galerkin method for the incompressible Reynolds-
averaged Navier–Stokes equations. Int J Numer Methods Fluids 
91:112–133

 211. Pignet N (2019) Hybrid high-order methods for nonlinear solid 
mechanics. PhD thesis, Université Paris-Est Marne la Vallée. 
TEL 02318157

 212. Poya R, Sevilla R, Gil AJ (2016) A unified approach for a poste-
riori high-order curved mesh generation using solid mechanics. 
Comput Mech 58(3):457–490

 213. Prud’homme C (2006) A domain specific embedded language 
in C++ for automatic differentiation, projection, integration and 
variational formulations. Sci Program 14:150,736

 214. Qiu W, Shen J, Shi K (2018) An HDG method for linear elasticity 
with strong symmetric stresses. Math Comput 87(309):69–93

 215. Qiu W, Shi K (2016) A superconvergent HDG method for the 
incompressible Navier–Stokes equations on general polyhedral 
meshes. IMA J Numer Anal 36(4):1943–1967

 216. Qiu W, Shi K (2019) Analysis on an HDG method for the p
-Laplacian equations. J Sci Comput 80(2):1019–1032

 217. Qiu W, Solano M, Vega P (2016) A high order HDG method 
for curved-interface problems via approximations from straight 
triangulations. J Sci Comput 69(3):1384–1407



HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method…

1 3

 218. Quarteroni A (2017) Numerical models for differential problems. 
MS&A modeling, simulation and applications, vol 16. Springer, 
Cham

 219. Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, 
Mcrae ATT, Bercea GT, Markall GR, Kelly PHJ (2016) Fire-
drake: automating the finite element method by composing 
abstractions. ACM Trans Math Softw 43(3):1–27

 220. Remacle JF, Chevaugeon N, Marchandise E, Geuzaine C 
(2007) Efficient visualization of high-order finite elements. 
Int J Numer Methods Eng 69(4):750–771

 221. Renard Y, Poulios K (2020) GetFEM: automated FE modeling 
of multiphysics problems based on a generic weak form lan-
guage. Technical report, HAL. https ://hal.archi ves-ouver tes.fr/
hal-02532 422

 222. Rhebergen S, Cockburn B (2012) A space-time hybridizable 
discontinuous Galerkin method for incompressible flows on 
deforming domains. J Comput Phys 231(11):4185–4204

 223. Rhebergen S, Wells G (2018) A hybridizable discontinu-
ous Galerkin method for the Navier–Stokes equations with 
pointwise divergence-free velocity field. J Sci Comput 
76(3):1484–1501

 224. Rhebergen S, Wells G (2018) Preconditioning of a hybridized 
discontinuous Galerkin finite element method for the Stokes 
equations. J Sci Comput 77(3):1936–1952

 225. Rhebergen S, Wells GN (2020) An embedded-hybridized discon-
tinuous Galerkin finite element method for the Stokes equations. 
Comput Methods Appl Mech Eng 358:112,619

 226. Rivière B (2008) Discontinuous Galerkin methods for solv-
ing elliptic and parabolic equations. Society for Industrial and 
Applied Mathematics, Philadelphia

 227. Rocha BM, dos Santos RW, Igreja I, Loula AFD (2020) Stabi-
lized hybrid discontinuous Galerkin finite element method for 
the cardiac monodomain equation. Int J Numer Methods Biomed 
Eng 36(7):e3341

 228. Samii A, Dawson C (2018) An explicit hybridized discontinuous 
Galerkin method for Serre–Green–Naghdi wave model. Comput 
Methods Appl Mech Eng 330:447–470

 229. Samii A, Kazhyken K, Michoski C, Dawson C (2019) A com-
parison of the explicit and implicit hybridizable discontinuous 
Galerkin methods for nonlinear shallow water equations. J Sci 
Comput 80(3):1936–1956

 230. Samii A, Michoski C, Dawson C (2016) A parallel and adap-
tive hybridized discontinuous Galerkin method for anisotropic 
nonhomogeneous diffusion. Comput Methods Appl Mech Eng 
304:118–139

 231. Samii A, Panda N, Michoski C, Dawson C (2016) A hybridized 
discontinuous Galerkin method for the nonlinear Korteweg–de 
Vries equation. J Sci Comput 68(1):191–212

 232. Sánchez MA, Ciuca C, Nguyen NC, Peraire J, Cockburn B (2017) 
Symplectic Hamiltonian HDG methods for wave propagation 
phenomena. J Comput Phys 350:951–973

 233. Sánchez-Vizuet T, Solano ME (2019) A hybridizable discontinu-
ous Galerkin solver for the Grad–Shafranov equation. Comput 
Phys Commun 235:120–132

 234. Sánchez-Vizuet T, Solano ME, Cerfon AJ (2020) Adaptive 
hybridizable discontinuous Galerkin discretization of the Grad–
Shafranov equation by extension from polygonal subdomains. 
Comput Phys Commun 255:107,239

 235. Schöberl J (2014) C++11 implementation of finite elements in 
NGSolve. Technical Report, ASC-30/2014, Institute for Analysis 
and Scientific Computing, TU Wien. https ://www.asc.tuwie n.ac.
at/~schoe berl/wiki/publi catio ns/ngs-cpp11 .pdf

 236. Schoeder S, Kronbichler M, Wall WA (2018) Arbitrary high-
order explicit hybridizable discontinuous Galerkin methods for 
the acoustic wave equation. J Sci Comput 76(2):969–1006

 237. Schoeder S, Sticko S, Kreiss G, Kronbichler M (2020) High-
order cut discontinuous Galerkin methods with local time step-
ping for acoustics. Int J Numer Methods Eng 121(13):2979–3003

 238. Schütz J, Aizinger V (2017) A hierarchical scale separation 
approach for the hybridized discontinuous Galerkin method. J 
Comput Appl Math 317:500–509

 239. Sevilla R (2019) HDG-NEFEM for two dimensional linear elas-
ticity. Comput Struct 220:69–80

 240. Sevilla R, Borchini L, Giacomini M, Huerta A (2020) Hybrid-
isable discontinuous Galerkin solution of geometrically para-
metrised Stokes flows. Comput Methods Appl Mech Eng 
372:113,397

 241. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-
enhanced finite element method (NEFEM). Int J Numer Methods 
Eng 76(1):56–83

 242. Sevilla R, Fernández-Méndez S, Huerta A (2011) 3D NURBS-
enhanced finite element method (NEFEM). Int J Numer Methods 
Eng 88(2):103–125

 243. Sevilla R, Giacomini M, Huerta A (2018) A face-centred finite 
volume method for second-order elliptic problems. Int J Numer 
Methods Eng 115(8):986–1014

 244. Sevilla R, Giacomini M, Huerta A (2019) A locking-free face-
centred finite volume (FCFV) method for linear elastostatics. 
Comput Struct 212:43–57

 245. Sevilla R, Giacomini M, Karkoulias A, Huerta A (2018) A super-
convergent hybridisable discontinuous Galerkin method for lin-
ear elasticity. Int J Numer Methods Eng 116(2):91–116

 246. Sevilla R, Huerta A (2016) Tutorial on hybridizable discon-
tinuous Galerkin (HDG) for second-order elliptic problems. In: 
Schröder J, Wriggers P (eds) advanced finite element technolo-
gies. CISM International Centre for Mechanical Sciences, vol 
566. Springer, Berlin, pp 105–129

 247. Sevilla R, Huerta A (2018) HDG-NEFEM with degree adaptivity 
for Stokes flows. J Sci Comput 77(3):1953–1980

 248. Sheldon JP, Miller ST, Pitt JS (2016) A hybridizable discontinu-
ous Galerkin method for modeling fluid–structure interaction. J 
Comput Phys 326:91–114

 249. Shen J, Singler JR, Zhang Y (2019) HDG-POD reduced order 
model of the heat equation. J Comput Appl Math 362:663–679

 250. Solano M, Vargas F (2019) A high order HDG method for Stokes 
flow in curved domains. J Sci Comput 79(3):1505–1533

 251. Soon SC, Cockburn B, Stolarski HK (2009) A hybridizable dis-
continuous Galerkin method for linear elasticity. Int J Numer 
Methods Eng 80(8):1058–1092

 252. Stanglmeier M, Nguyen NC, Peraire J, Cockburn B (2016) 
An explicit hybridizable discontinuous Galerkin method for 
the acoustic wave equation. Comput Methods Appl Mech Eng 
300:748–769

 253. Stenberg R (1990) Some new families of finite elements for the 
Stokes equations. Numer Math 56(8):827–838

 254. Su W, Wang P, Zhang Y, Wu L (2019) A high-order hybridiz-
able discontinuous Galerkin method with fast convergence to 
steady-state solutions of the gas kinetic equation. J Comput Phys 
376:973–991

 255. Terrana S, Nguyen NC, Bonet J, Peraire J (2019) A hybridiz-
able discontinuous Galerkin method for both thin and 3D non-
linear elastic structures. Comput Methods Appl Mech Eng 
352:561–585

 256. Terrana S, Vilotte J, Guillot L (2017) A spectral hybridizable 
discontinuous Galerkin method for elastic-acoustic wave propa-
gation. Geophys J Int 213(1):574–602

 257. Vidal-Codina F, Martín-Moreno L, Ciracì C, Yoo D, Nguyen 
NC, Oh SH, Peraire J (2020) Terahertz and infrared nonlocal-
ity and field saturation in extreme-scale nanoslits. Opt Express 
28(6):8701–8715

https://hal.archives-ouvertes.fr/hal-02532422
https://hal.archives-ouvertes.fr/hal-02532422
https://www.asc.tuwien.ac.at/%7eschoeberl/wiki/publications/ngs-cpp11.pdf
https://www.asc.tuwien.ac.at/%7eschoeberl/wiki/publications/ngs-cpp11.pdf


 M. Giacomini et al.

1 3

 258. Vidal-Codina F, Nguyen N, Oh SH, Peraire J (2018) A hybrid-
izable discontinuous Galerkin method for computing nonlocal 
electromagnetic effects in three-dimensional metallic nanostruc-
tures. J Comput Phys 355:548–565

 259. Vidal-Codina F, Nguyen N, Peraire J (2018) Computing para-
metrized solutions for plasmonic nanogap structures. J Comput 
Phys 366:89–106

 260. Vidal-Codina F, Nguyen NC, Giles MB, Peraire J (2015) A 
model and variance reduction method for computing statistical 
outputs of stochastic elliptic partial differential equations. J Com-
put Phys 297:700–720

 261. Vidal-Codina F, Nguyen NC, Giles MB, Peraire J (2016) An 
empirical interpolation and model-variance reduction method 
for computing statistical outputs of parametrized stochastic 
partial differential equations. SIAM-ASA J Uncertain Quantif 
4(1):244–265

 262. Vieira LM, Giacomini M, Sevilla R, Huerta A (2020) A second-
order face-centred finite volume method for elliptic problems. 
Comput Methods Appl Mech Eng 358:112655

 263. Vila-Pérez J, Giacomini M, Sevilla R, Huerta A (2020) Hybridis-
able discontinuous Galerkin formulation of compressible flows. 
Arch Comput Methods Eng https ://doi.org/10.1007/s1183 1-020-
09508 -z

 264. Wang CY (1991) Exact solutions of the steady-state Navier–
Stokes equations. Annu Rev Fluid Mech 23(1):159–177

 265. Wildey T, Muralikrishnan S, Bui-Thanh T (2019) Unified geo-
metric multigrid algorithm for hybridized high-order finite ele-
ment methods. SIAM J Sci Comput 41(5):S172–S195

 266. Williams DM (2018) An entropy stable, hybridizable discontinu-
ous Galerkin method for the compressible Navier–Stokes equa-
tions. Math Comput 87(309):95–121

 267. Woopen M, Balan A, May G, Schütz J (2014) A comparison of 
hybridized and standard DG methods for target-based hp-adap-
tive simulation of compressible flow. Comput Fluids 98:3–16

 268. Woopen M, May G, Schütz J (2014) Adjoint-based error estima-
tion and mesh adaptation for hybridized discontinuous Galerkin 
methods. Int J Numer Methods Fluids 76(11):811–834

 269. Xie ZQ, Sevilla R, Hassan O, Morgan K (2013) The generation 
of arbitrary order curved meshes for 3D finite element analysis. 
Comput Mech 51:361–374

 270. Yang Y, Shi K, Fu S (2019) Multiscale hybridizable discontinu-
ous Galerkin method for flow simulations in highly heterogene-
ous media. J Sci Comput 81(3):1712–1731

 271. Yoo D, Vidal-Codina F, Ciracì C, Nguyen NC, Smith DR, Per-
aire J, Oh SH (2019) Modeling and observation of mid-infrared 
nonlocality in effective epsilon-near-zero ultranarrow coaxial 
apertures. Nat Commun 10(1):4476

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11831-020-09508-z
https://doi.org/10.1007/s11831-020-09508-z

	HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB
	Abstract
	1 Introduction
	2 Literature Review
	2.1 From Linear to Nonlinear Scalar Equations
	2.2 Incompressible Flows
	2.3 Two-Phase Flows and Heterogeneous Porous Media
	2.4 Compressible Flows and Gas Kinetics Equations
	2.5 Plasma Physics and Magnetohydrodynamics
	2.6 Shallow Water Equations
	2.7 Wave Propagation Phenomena
	2.8 Linear and Nonlinear Elasticity
	2.9 Interface Problems and Immersed Discretisations
	2.10 High-Order and Exact Geometry Representations
	2.11 Lowest-Order Hybrid Discretisations
	2.12 Iterative Solvers and Preconditioning
	2.13 A Posteriori Error Estimates and Adaptivity
	2.14 Coupling HDG with Other Numerical Methods
	2.15 HDG-Based Reduced Order Models
	2.16 Availability of Open-Source Implementations of Hybrid Discretisation Methods

	3 HDG Formulation of the Poisson Equation
	3.1 HDG Local and Global Problems: Strong Form
	3.2 HDG Local and Global Problems: Weak Form
	3.3 HDG Local and Global Problems: Discrete Form
	3.4 HDG Local Postprocess

	4 HDG Formulation of the Stokes Equations
	4.1 HDG Local and Global Problems: Strong Form
	4.2 HDG Local and Global Problems: Weak Form
	4.3 HDG Local and Global Problems: Discrete Form
	4.4 HDG Local Postprocess

	5 The HDGlab Repository
	6 Data Structures
	6.1 Mesh
	6.2 Reference Element
	6.3 Reference Face

	7 Preprocess
	8 The HDGlab Poisson Solver
	8.1 Global Problem
	8.2 Local Problem
	8.3 Local Postprocess

	9 The HDGlab Stokes Solver
	9.1 A Vector-Valued Problem
	9.2 Slip Boundary Conditions
	9.3 Additional Constraint in the Local Problem
	9.4 Assembly of the Global System
	9.5 Three Unknowns in the Local Problem

	10 Visualisation
	11 Numerical Examples
	11.1 Optimal Convergence Properties
	11.2 High-Order Curved Meshes
	11.3 Non-uniform Degree of Approximation
	11.4 Stokes Flow Past a Sphere
	11.5 Applications of the Poisson Solver

	12 Concluding Remarks
	Acknowledgements 
	References




