1,269 research outputs found

    A Constraint-Based Model for Fast Post-Disaster Emergency Vehicle Routing

    Get PDF
    Disasters like terrorist attacks, earthquakes, hurricanes, and volcano eruptions are usually unpredictable events that affect a high number of people. We propose an approach that could be used as a decision support tool for a post-disaster response that allows the assignment of victims to hospitals and organizes their transportation via emergency vehicles. By exploiting the synergy between Mixed Integer Programming and Constraint Programming techniques, we are able to compute the routing of the vehicles so as to rescue much more victims than both heuristic based and complete approaches in a very reasonable time

    Dynamic allocation of operators in a hybrid human-machine 4.0 context

    Get PDF
    La transformation numérique et le mouvement « industrie 4.0 » reposent sur des concepts tels que l'intégration et l'interconnexion des systèmes utilisant des données en temps réel. Dans le secteur manufacturier, un nouveau paradigme d'allocation dynamique des ressources humaines devient alors possible. Plutôt qu'une allocation statique des opérateurs aux machines, nous proposons d'affecter directement les opérateurs aux différentes tâches qui nécessitent encore une intervention humaine dans une usine majoritairement automatisée. Nous montrons les avantages de ce nouveau paradigme avec des expériences réalisées à l'aide d'un modèle de simulation à événements discrets. Un modèle d'optimisation qui utilise des données industrielles en temps réel et produit une allocation optimale des tâches est également développé. Nous montrons que l'allocation dynamique des ressources humaines est plus performante qu'une allocation statique. L'allocation dynamique permet une augmentation de 30% de la quantité de pièces produites durant une semaine de production. De plus, le modèle d'optimisation utilisé dans le cadre de l'approche d'allocation dynamique mène à des plans de production horaire qui réduisent les retards de production causés par les opérateurs de 76 % par rapport à l'approche d'allocation statique. Le design d'un système pour l'implantation de ce projet de nature 4.0 utilisant des données en temps réel dans le secteur manufacturier est proposé.The Industry 4.0 movement is based on concepts such as the integration and interconnexion of systems using real-time data. In the manufacturing sector, a new dynamic allocation paradigm of human resources then becomes possible. Instead of a static allocation of operators to machines, we propose to allocate the operators directly to the different tasks that still require human intervention in a mostly automated factory. We show the benefits of this new paradigm with experiments performed on a discrete-event simulation model based on an industrial partner's system. An optimization model that uses real-time industrial data and produces an optimal task allocation plan that can be used in real time is also developed. We show that the dynamic allocation of human resources outperforms a static allocation, even with standard operator training levels. With discrete-event simulation, we show that dynamic allocation leads to a 30% increase in the quantity of parts produced. Additionally, the optimization model used under the dynamic allocation approach produces hourly production plans that decrease production delays caused by human operators by up to 76% compared to the static allocation approach. An implementation system for this 4.0 project using real-time data in the manufacturing sector is furthermore proposed

    Optimising airline maintenance scheduling decisions

    Get PDF
    Airline maintenance scheduling (AMS) studies how plans or schedules are constructed to ensure that a fleet is efficiently maintained and that airline operational demands are met. Additionally, such schedules must take into consideration the different regulations airlines are subject to, while minimising maintenance costs. In this thesis, we study different formulations, solution methods, and modelling considerations, for the AMS and related problems to propose two main contributions. First, we present a new type of multi-objective mixed integer linear programming formulation which challenges traditional time discretisation. Employing the concept of time intervals, we efficiently model the airline maintenance scheduling problem with tail assignment considerations. With a focus on workshop resource allocation and individual aircraft flight operations, and the use of a custom iterative algorithm, we solve large and long-term real-world instances (16000 flights, 529 aircraft, 8 maintenance workshops) in reasonable computational time. Moreover, we provide evidence to suggest, that our framework provides near-optimal solutions, and that inter-airline cooperation is beneficial for workshops. Second, we propose a new hybrid solution procedure to solve the aircraft recovery problem. Here, we study how to re-schedule flights and re-assign aircraft to these, to resume airline operations after an unforeseen disruption. We do so while taking operational restrictions into account. Specifically, restrictions on aircraft, maintenance, crew duty, and passenger delay are accounted for. The flexibility of the approach allows for further operational restrictions to be easily introduced. The hybrid solution procedure involves the combination of column generation with learning-based hyperheuristics. The latter, adaptively selects exact or metaheuristic algorithms to generate columns. The five different algorithms implemented, two of which we developed, were collected and released as a Python package (Torres Sanchez, 2020). Findings suggest that the framework produces fast and insightful recovery solutions

    Secure and cost-effective operation of low carbon power systems under multiple uncertainties

    Get PDF
    Power system decarbonisation is driving the rapid deployment of renewable energy sources (RES) like wind and solar at the transmission and distribution level. Their differences from the synchronous thermal plants they are displacing make secure and efficient grid operation challenging. Frequency stability is of particular concern due to the current lack of provision of frequency ancillary services like inertia or response from RES generators. Furthermore, the weather dependency of RES generation coupled with the proliferation of distributed energy resources (DER) like small-scale solar or electric vehicles permeates future low-carbon systems with uncertainty under which legacy scheduling methods are inadequate. Overly cautious approaches to this uncertainty can lead to inefficient and expensive systems, whilst naive methods jeopardise system security. This thesis significantly advances the frequency-constrained scheduling literature by developing frameworks that explicitly account for multiple new uncertainties. This is in addition to RES forecast uncertainty which is the exclusive focus of most previous works. The frameworks take the form of convex constraints that are useful in many market and scheduling problems. The constraints equip system operators with tools to explicitly guarantee their preferred level of system security whilst unlocking substantial value from emerging and abundant DERs. A major contribution is to address the exclusion of DERs from the provision of ancillary services due to their intrinsic uncertainty from aggregation. This is done by incorporating the uncertainty into the system frequency dynamics, from which deterministic convex constraints are derived. In addition to managing uncertainty to facilitate emerging DERs to provide legacy frequency services, a novel frequency containment service is designed. The framework allows a small amount of load shedding to assist with frequency containment during high RES low inertia periods. The expected cost of this service is probabilistic as it is proportional to the probability of a contingency occurring. The framework optimally balances the potentially higher expected costs of an outage against the operational cost benefits of lower ancillary service requirements day-to-day. The developed frameworks are applied extensively to several case studies. These validate their security and demonstrate their significant economic and emission-saving benefits.Open Acces

    Dynamic Resource Allocation For Coordination Of Inpatient Operations In Hospitals

    Get PDF
    Healthcare systems face difficult challenges such as increasing complexity of processes, inefficient utilization of resources, high pressure to enhance the quality of care and services, and the need to balance and coordinate the staff workload. Therefore, the need for effective and efficient processes of delivering healthcare services increases. Data-driven approaches, including operations research and predictive modeling, can help overcome these challenges and improve the performance of health systems in terms of quality, cost, patient health outcomes and satisfaction. Hospitals are a key component of healthcare systems with many scarce resources such as caregivers (nurses, physicians) and expensive facilities/equipment. Most hospital systems in the developed world have employed some form of an Electronic Health Record (EHR) system in recent years to improve information flow, health outcomes, and reduce costs. While EHR systems form a critical data backbone, there is a need for platforms that can allow coordinated orchestration of the relatively complex healthcare operations. Information available in EHR systems can play a significant role in providing better operational coordination between different departments/services in the hospital through optimized task/resource allocation. In this research, we propose a dynamic real-time coordination framework for resource and task assignment to improve patient flow and resource utilization across the emergency department (ED) and inpatient unit (IU) network within hospitals. The scope of patient flow coordination includes ED, IUs, environmental services responsible for room/bed cleaning/turnaround, and patient transport services. EDs across the U.S. routinely suffer from extended patient waiting times during admission from the ED to the hospital\u27s inpatient units, also known as ED patient `boarding\u27. This ED patient boarding not only compromises patient health outcomes but also blocks access to ED care for new patients from increased bed occupancy. There are also significant cost implications as well as increased stress and hazards to staff. We carry out this research with the goal of enabling two different modes of coordination implementation across the ED-to-IU network to reduce ED patient boarding: Reactive and Proactive. The proposed `reactive\u27 coordination approach is relatively easy to implement in the presence of modern EHR and hospital IT management systems for it relies only on real-time information readily available in most hospitals. This approach focuses on managing the flow of patients at the end of their ED care and being admitted to specific inpatient units. We developed a deterministic dynamic real-time coordination model for resource and task assignment across the ED-to-IU network using mixed-integer programming. The proposed \u27proactive\u27 coordination approach relies on the power of predictive analytics that anticipate ED patient admissions into the hospital as they are still undergoing ED care. The proactive approach potentially allows additional lead-time for coordinating downstream resources, however, it requires the ability to accurately predict ED patient admissions, target IU for admission, as well as the remaining length-of-stay (care) within the ED. Numerous other studies have demonstrated that modern EHR systems combined with advances in data mining and machine learning methods can indeed facilitate such predictions, with reasonable accuracy. The proposed proactive coordination optimization model extends the reactive deterministic MIP model to account for uncertainties associated with ED patient admission predictions, leading to an effective and efficient proactive stochastic MIP model. Both the reactive and proactive coordination methods have been developed to account for numerous real-world operational requirements (e.g., rolling planning horizon, event-based optimization and task assignments, schedule stability management, patient overflow management, gender matching requirements for IU rooms with double occupancy, patient isolation requirements, equity in staff utilization and equity in reducing ED patient waiting times) and computational efficiency (e.g., through model decomposition and efficient construction of scenarios for proactive coordination). We demonstrate the effectiveness of the proposed models using data from a leading healthcare facility in SE-Michigan, U.S. Results suggest that even the highly practical optimization enabled reactive coordination can lead to dramatic reduction in ED patient boarding times. Results also suggest that signification additional reductions in patient boarding are possible through the proposed proactive approach in the presence of reliable analytics models for prediction ED patient admissions and remaining ED length-of-stay. Future research can focus on further extending the scope of coordination to include admissions management (including any necessary approvals from insurance), coordination needs for admissions that stem from outside the ED (e.g., elective surgeries), as well as ambulance diversions to manage patient flows across the region and hospital networks

    Robust long-term production planning

    Get PDF

    Power-Aware Job Dispatching in High Performance Computing Systems

    Get PDF
    This works deals with the power-aware job dispatching problem in supercomputers; broadly speaking the dispatching consists of assigning finite capacity resources to a set of activities, with a special concern toward power and energy efficient solutions. We introduce novel optimization approaches to address its multiple aspects. The proposed techniques have a broad application range but are aimed at applications in the field of High Performance Computing (HPC) systems. Devising a power-aware HPC job dispatcher is a complex, where contrasting goals must be satisfied. Furthermore, the online nature of the problem request that solutions must be computed in real time respecting stringent limits. This aspect historically discouraged the usage of exact methods and favouring instead the adoption of heuristic techniques. The application of optimization approaches to the dispatching task is still an unexplored area of research and can drastically improve the performance of HPC systems. In this work we tackle the job dispatching problem on a real HPC machine, the Eurora supercomputer hosted at the Cineca research center, Bologna. We propose a Constraint Programming (CP) model that outperforms the dispatching software currently in use. An essential element to take power-aware decisions during the job dispatching phase is the possibility to estimate jobs power consumptions before their execution. To this end, we applied Machine Learning techniques to create a prediction model that was trained and tested on the Euora supercomputer, showing a great prediction accuracy. Then we finally develop a power-aware solution, considering the same target machine, and we devise different approaches to solve the dispatching problem while curtailing the power consumption of the whole system under a given threshold. We proposed a heuristic technique and a CP/heuristic hybrid method, both able to solve practical size instances and outperform the current state-of-the-art techniques

    Reinforcement Learning and Mixed-Integer Programming for Power Plant Scheduling in Low Carbon Systems: Comparison and Hybridisation

    Full text link
    Decarbonisation is driving dramatic growth in renewable power generation. This increases uncertainty in the load to be served by power plants and makes their efficient scheduling, known as the unit commitment (UC) problem, more difficult. UC is solved in practice by mixed-integer programming (MIP) methods; however, there is growing interest in emerging data-driven methods including reinforcement learning (RL). In this paper, we extensively test two MIP (deterministic and stochastic) and two RL (model-free and with lookahead) scheduling methods over a large set of test days and problem sizes, for the first time comparing the state-of-the-art of these two approaches on a level playing field. We find that deterministic and stochastic MIP consistently produce lower-cost UC schedules than RL, exhibiting better reliability and scalability with problem size. Average operating costs of RL are more than 2 times larger than stochastic MIP for a 50-generator test case, while the cost is 13 times larger in the worst instance. However, the key strength of RL is the ability to produce solutions practically instantly, irrespective of problem size. We leverage this advantage to produce various initial solutions for warm starting concurrent stochastic MIP solves. By producing several near-optimal solutions simultaneously and then evaluating them using Monte Carlo methods, the differences between the true cost function and the discrete approximation required to formulate the MIP are exploited. The resulting hybrid technique outperforms both the RL and MIP methods individually, reducing total operating costs by 0.3% on average.Comment: Submitted to Applied Energy, Dec 202

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario
    • …
    corecore