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Chapter 1

Introduction

Scheduling and production planning is a field which has a wide area of application, and a history
which dates back to the beginning of the industrial revolution. Still, researchers and commercial
software vendors are working on problems within this area, driven by the fact that cost savings of
a few percent, or improved customer satisfaction may be an important competitive factor. Addi-
tionally in a time of austerity getting the best performance from existing resources is important.

From the literature it is not always clear what, if any, the distinction is between scheduling
and production planning. We take the following view (a similar view of scheduling is taken by
Demeulemeester and Herroelen (2002), and a similar view of production planning is taken by
Pochet and Wolsey (2006)):

Scheduling For scheduling problems the emphasis is on the duration aspect, and the entities
under consideration are activities (depending on the context they may also be known as
operations or jobs) having a certain duration. As an example, in the context of car production
an activity could be “Left door should be mounted on car” which take, say, 60 seconds, and
in the context of software engineering it could be “Implement interface to database”, which
is estimated to take, say, 2 days. For the activities to be executed they require a certain
amount of resources known in advance. In the context of the car production example this
could be a worker and, say, a screwdriver, while in the context of the software engineering
example this could be a programmer. The goal is to decide when activities start and stop
such as to minimize some cost, which is a function of the completion times of the activities.

Production planning For production planning the emphasis is on satisfying demand for items
at different points in time at minimum cost. For such problems one typically needs to decide
how many items to produce and when to do it, and there are typically costs associated with
keeping items on stock. In the context of car production an item could be “Red Peugeot
306” while another could be “White Peugeot 405”, and by some knowledge we know we must
deliver, say, 200 of the first item at some specific date, and 140 of the second item at some
other specific date.

Production planning decisions are typically at a higher strategic level than scheduling decisions.
Since scheduling and production planning covers a wide range of problems, there are also a large
number of different models found in the literature. We will describe some of these in the next
section. The models differ with respect to assumptions, and perspective: some models focus on
decisions at the strategic level, while other models focus on decisions at the tactical level, and
other models again focus on decisions at the operational level. The primary focus of this thesis
will be the Resource-Constrained Project Scheduling Problem (RCPSP), which is a very general
scheduling model, containing many scheduling problems as special cases. It is primarily used to
model decisions at the tactical and operational levels. The RCPSP itself exists in a number of
variants, many of which lie close to models found in commercial software packages, and is thus
not only interesting from a theoretical point of view (it is NP-hard), but also form a practical
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Chapter 1. Introduction 2

perspective. Two variants will be the main focus of this thesis, the so-called single-mode and multi-
mode variants, both of which will be described in detail in Section 1.1. In addition to the RCPSP
we will also be considering a so-called lot-sizing problem, which is an example of a production
planning problem. A description of such a lot-sizing problem will also be given in Section 1.1.
Some of the problems considered will be of a stochastic nature, and we will in Section 1.2 discuss
stochasticity both in general, and in context of the RCPSP. As the main focus of the thesis is
the RCPSP we, in Section 1.3, discuss some background knowledge, which will be assumed in
the following chapters. Finally in Section 1.4 we give an outline of the remaining chapters of this
thesis.

1.1 Scheduling and production planning problems

In this section we give an overview of some scheduling and production planning problems found in
the literature, in order to better place the RCPSP within a context. When considering scheduling
problems, a distinction can be made between so-called disjunctive scheduling problems and so-
called cumulative scheduling problems. In disjunctive scheduling problems a resource (depending
on context a resource may also be known as a machine) may only execute one activity at a time,
while for cumulative scheduling problems many activities may be in progress simultaneously. Thus
cumulative scheduling problems are more general than disjunctive scheduling problems. In the
following we treat these two kinds of scheduling problems separately.

1.1.1 Disjunctive scheduling problems

In the following we describe some disjunctive scheduling problems. Some of the symbols used for
the definitions will be the same but have slightly different meaning. Only the notation used for
defining the RCPSP will be used generally, for the remaining problems, it is only valid within the
appropriate section.

The Job Shop Scheduling Problem

One well-known disjunctive scheduling problem is the Job Shop Scheduling Problem (JSSP) which
can be described as follows: The problem consists of a set of jobs J = {1, . . . , n} and a set of
machines M = {1, . . . ,m}. Each job j ∈ J must be processed exactly once on each machine.
Each job defines an order in which it should be processed on the machines. For a job j ∈ J let
πj(k), 1 ≤ k ≤ m, denote the kth machine for j. The processing of job j ∈ J on machine πj(k)
is called an operation, and denoted ojk. An operation ojk has an duration of pjk and can not be
preempted, i.e., the processing of an operation can not be interrupted and then resumed at a later
point in time. For a machine k ∈M let ρk(j), 1 ≤ j ≤ J , be the index of the operation of j which
must be processed on k. Each operation of a job must occur one after the other, i.e., operation ojk
may not be started before operation oj,k−1 has completed. Only one operation may be in progress
at a time on each machine. Let σjk denote the starting time of operation ojk. The objective is to
minimize the project makespan, i.e., the total time needed to complete all operations. The JSSP
is NP-hard for |M | ≥ 2 and |J | ≥ 3 (see Garey et al. (1976)). The problem may be stated as the
following mathematical program:

min max
j∈J

σjm + pjm

s.t. σjk ≥ σj,k−1 + pj,k−1 ∀j ∈ J, k = 2, . . . ,m (1.1)

σjρk(j) ≥ σiρk(i) + piρk(i) ∨ σiρk(i) ≥ σjρk(j) + pjρk(j) ∀k ∈M, ∀i, j ∈ J (1.2)

σjk ≥ 0 ∀j ∈ J, ∀k ∈M (1.3)

Constraints (1.1) enforce the sequencing of the activities of a job, and Constraints (1.2) ensure
that operations running on the same machine are sequenced. Note that the constraints (1.2) are
not linear because of the disjunction.



3 1.1. Scheduling and production planning problems

Two popular variants are the Open Shop Scheduling Problem, and the Flow Shop Scheduling
problem. For the former problem, there are no sequencing constraints for the operations of a job,
while for the latter problem the sequencing of machines is the same for each job.

The JSSP is from a modeling point of view very simple, yet general enough to model many
real-life situations, such as a factory floor, where there is no choice of which machine to be used
for a given operation, and each machine can only perform a single operation at a time. The main
difference between the JSSP and the other models considered here, is the lack of choice, and the
disjunctiveness.

The Multi-Skill Project Scheduling Problem

Another disjunctive scheduling problem is the Multi-Skill Project Scheduling Problem (MSPSP)
(see Néron and Baptista (2002)). Here resources model staff members each having a set of skills,
and activities requiring a certain set of skills in order to be executed. This problem is NP-hard
and may be described as follows: A project consists of a set A = {1, . . . , n} of activities, a set of
resources, i.e., persons, R = {1, . . . , |R|}, and a set of skills L = {1, . . . , |L|}. Activity 1 and n
are so-called dummy activities, which represent the start and the end of the project. Each person
k ∈ R possesses some subset of skills, and each activity j ∈ A requires bjh persons with skill
h ∈ L while in progress, has a processing time of pj , and can not be preempted. Let Qkh = 1 if
and only if person k has skill h and zero otherwise. There may exist precedence relations between
activities, such that one activity may not be started before some others have completed. Let
E = {(i, j) ∈ A2 : i must precede j} be the set of all precedence relations. Each person may
only perform one activity at a time. There may be points in time where certain persons are not
available. Let Wt ⊆ R be the persons not available for work at time t. The aim is to find a
schedule which satisfies all the constraints and which minimizes the project makespan across some
time horizon T of time steps. For a given solution, let σj be the starting time of activity j ∈ A,
let R(j) ⊆ R the set of persons assigned to activity j, and let A(k) ⊆ A be the activities assigned
to person k ∈ R. The problem may be stated as the following mathematical program:

min σn

s.t. σj ≥ σi + pi ∀(i, j) ∈ E , (1.4)

σj ≥ σi + pi ∨ σi ≥ σj + pj ∀k ∈ R, ∀i, j ∈ A(k) (1.5)
∑

k∈R(j)

Qkh ≥ bjh ∀j ∈ A, ∀h ∈ L (1.6)

Wt ∩R(j) = ∅ ∀j ∈ A, t = σj , . . . , σj + pj (1.7)

σj ≥ 0 ∀j ∈ A, (1.8)

Constraints (1.4) enforce the precedence constraints, Constraints (1.5) ensure activities performed
by a person are sequenced, Constraints (1.6) enforce that the skill requirements of activities are
met, and Constraints (1.7) enforce that persons do not work when they are not available.

The MSPSP is more general than the JSSP described earlier, as an activity may occupy more
than one resource at a time and there is a choice of which resources to occupy. The MSPSP
would typically be used in a setting, which is heavy on human labor, and where one has many
alternatives for performing an activity, such as the software engineering example given earlier.

1.1.2 Cumulative scheduling problems

We in the following describe some cumulative scheduling problems.

The Cumulative Scheduling Problem

A scheduling problem encountered in the literature is the Cumulative Scheduling Problem (CuSP)
which is NP-hard (see Baptiste et al. (1999) and Carlier and Néron (2000)). The CuSP can be
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described as follows: A set of activities A = {1, . . . , n} must be performed on a single resource
which has a constant capacity R. Each activity j ∈ A has a processing time pj (non-preemptive),
and requires rj units of the resource while it is in progress. Each activity j ∈ A, is associated with
a release time trj and due date tdj , and the activity must be performed in the interval [trj ; t

d
j ]. Let

T be a set of time steps. The aim is to find a feasible schedule, which minimizes the makespan.
Given a solution, let σj be the starting time of activity j ∈ A. The problem may be stated as the
following mathematical program:

min max
j∈A

σj + pj

s.t.
∑

j∈A(t)

rj ≤ R ∀t ∈ T (1.9)

trj ≤ σj ≤ tdj − pj ∀j ∈ A (1.10)

σj ≥ 0 ∀j ∈ A, (1.11)

where A(t) = {j ∈ A|σj ≤ t ≤ σj + pj}, i.e., the activities in progress at time t ∈ T . Constraints
(1.9) ensure that at no point in time is the capacity of the resource exceeded, and Constraints (1.10)
ensure that an activity is processed with the interval defined by its release time and due date.

An interesting relaxation of the CuSP is the so-called fully elastic CuSP, which is solvable
in polynomial time (see Baptiste et al. (1999)). Here rather than having a processing time and
resource usage, each activity j ∈ A requires some amount of work, Wj , and the activity completes
when this amount of work has been performed. That is one has the requirements

tdj
∑

t=tr
j

wjt = Wj ∀j ∈ A,
∑

j∈A

wjt ≤ R ∀t ∈ T

where wjt is the amount of work done for activity j in time step t. This relaxation is interesting
because it allows for modeling trade-offs between the amount of resources consumed per time step,
and the number of time steps an activity must be processed, which would be useful in in cases
where the value Wj represents some flexible resource such as man-hours, which could be spread
in a number different ways across a time period.

The Resource-Constrained Project Scheduling Problem

A very widely studied cumulative scheduling problem found in the literature is the RCPSP. This
problem was first described by Pritsker et al. (1969) and as a generalization of the JSSP it is
NP-hard (cf. Blażewicz et al. (1983)). There exists a number of variants of the RCPSP, see
for instance Blażewicz et al. (1983), Brucker et al. (1999), or Hartmann and Briskorn (2010).
We now give a description of two of the most commonly encountered variants, that are also the
basis of variants considered in this thesis, namely the Single-mode Resource-Constrained Project
Scheduling Problem (SRCPSP) and the Multi-mode Resource-Constrained Project Scheduling
Problem (MRCPSP). As the MRCPSP is a generalization of the SRCPSP, we define the multi-
mode variant formally, and then describe the single-mode variant within the context of the multi-
mode.

The MRCPSP can be described as follows (see for instance Talbot (1982) or Brucker et al.
(1999)): A project consists of a set A = {1, . . . , n} of activities, to be scheduled. Activity 1 and n
are so-called dummy activities, that represent the start and the end of the project. Each activity
j can be performed in a number of different modes Mj = {1, . . . , |Mj |}, each representing an
alternative way of performing the activity. There are two sets of resources, (1) renewable resources
R = {1, . . . , |R|}, and (2) nonrenewable resources R̃ = {1, . . . , |R̃|}. A renewable resource k ∈ R,
has capacity Rk in each time period, while a nonrenewable resource k ∈ R̃ has capacity R̃k. When
an activity j is scheduled in mode m ∈ Mj, it has a processing time of pjm (non-preemptive)
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and requires rjkm ≥ 0 units of renewable resource k ∈ R in each time period, and r̃jkm ≥ 0 of

nonrenewable resource k ∈ R̃ across all time periods. There exists precedence relations between
the activities, such that one activity j ∈ A can not be started before all its predecessors, Pj , have
completed. Symmetrically, Sj denotes the set of successors. Let E = {(i, j) ∈ A2 : i ∈ Pj} be
the set of all precedence relations. Given a solution, let σj be the starting time of activity j and
let m(j) ∈ Mj be the mode chosen for activity j. The problem may be stated as the following
mathematical program:

min σn

s.t. σj ≥ σi + pi,m(i) ∀(i, j) ∈ E (1.12)
∑

j∈A(t)

rj,k,m(j) ≤ Rk ∀k ∈ R, ∀t ∈ T (1.13)

∑

j∈A

r̃j,k,m(j) ≤ R̃k ∀k ∈ R̃ (1.14)

σj ≥ 0 ∀j ∈ A, (1.15)

where A(t) = {j ∈ A|σj ≤ t ≤ σj + pj,m(j)}, i.e., the set of activities in progress at time t ∈ T .
Constraints (1.12) enforce the precedence constraints, Constraints (1.13) ensure that at no point
in time do the activities in progress exceed the capacity of a resource, and Constraints (1.14)
ensure that the capacity of the nonrenewable resources are not exceeded.

For the SRCPSP, there is only a single mode for each activity, and all resources are renewable,
i.e.,Mj = {1} ∀j ∈ A, and R̃ = ∅. When considering the SRCPSP we omit the subscript m.

The RCPSP is very flexible, and it can be used to model the JSSP, the CuSP, and the MSPSP,
although the number of modes may be exponential in the case of the MSPSP.

1.1.3 Production planning problems

In this section we describe a general production planning problem. Such a problem is often referred
to as a lot-sizing problem in the literature. There exists a large number of lot-sizing problems
(see for instance Pochet and Wolsey (2006)). A generic lot-sizing problem could be the following:
A number of items must be produced on a number of machines, such that varying demands for
these items are met across a time horizon at minimum cost. Each item has a unit production cost,
and a unit holding cost per time step the item is kept on stock. Each machine has a limited item
capacity and may produce more than an single item. Variants of the problem are numerous and
may include whether the machines have constant capacity or time-varying, whether lot-sizes are
fixed or dynamic, whether a price is paid when switching from production of one item to another,
the granularity of the time-steps, whether backlogging is allowed at a cost, whether items are
interdependent, and whether a machine can produce more than a single item in a time step.

One axis about which lot-sizing problems may be divided is that of big-bucket versus small-
bucket models. In very general terms, the main difference between the two kinds of models, is the
time granularity of the problem. Typically for big-bucket models time steps represent long time
spans, while they represent much shorter time spans for small-bucket models, and the small-bucket
models are thus closer to the concept of scheduling.

In the following we give an example of one such lot-sizing problem.

Multi-item Capacitated Lot Sizing Problem with Setup Times

The Multi-item Capacitated Lot Sizing Problem with Setup Times (CLSP) is a big-bucket model.
In a big-bucket model more than a single item may be produced per time step, and an item is
completed in the same time step as the one where production is initiated (whereas in small-bucket
models only a single item may be produced per time period, and items are completed after a
certain number of time steps passes). The problem may be described as follows: Schedule the
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production of a set of items, I = {1, . . . , n}, over a given number of time periods, T , such that
all demand dit of each items i ∈ I at time t ∈ T is met. The items must all be produced on the
same resource, such that its time-dependant capacity, Ct ≥ 0 for t ∈ T , is not exceeded. The
production of each unit of item i ∈ I at time t ∈ T uses αi

t ≥ 0 capacity on the resource, and has a
fixed capacity setup cost on the resource of βi

t ≥ 0 and a fixed setup cost of f i
t ≥ 0. Producing one

unit of item i ∈ I has a cost of pit ≥ 0 at time t ∈ T , and the holding cost for a unit of item i ∈ I
from time step t to the next is hi

t ≥ 0. The problem may be stated as the following mathematical
model:

min
∑

i∈I

(

hi
0s

i
0 +

∑

t∈T

(hi
ts

i
t + pitx

i
t + f i

ty
i
t)

)

s.t. sit−1 + xi
t = dit + sit t ∈ T , i ∈ I (1.16)

xi
t ≤Myit t ∈ T , i ∈ I (1.17)
∑

i∈I

(

αi
tx

i
t + βi

ty
i
t

)

≤ Ct t ∈ T (1.18)

sit, s
0
t , x

i
t ≥ 0, yit ∈ {0, 1} t ∈ T , i ∈ I, (1.19)

where si0 is the number of units of item i in the initial inventory, sit is the number of units of
item i in stock after time t, item xi

t is the number of units of production of item i at time t, yit
indicates if a setup for production of item i at time t has been done. All variables except the
y-variables are positive continuous variables. The y-variables are binary and implicitly force the
other variables to obtain integer values (if all constants are also integer). The objective minimizes
holding, production, and setup cost. Constraints (1.16) ensure flow conservation for each item.
That is, items in stock plus the items produced in a time period must equal the number of items
demanded in this time period plus the number of items in stock after this time period. Constraints
(1.17) ensure that production of an item can only occur if the resource is set up to produce that
item. Constraints (1.18) ensure that the combined production and setup at any given time cannot
exceed the capacity of the resource. The variable domains are specified by constraints (1.19).

1.2 Stochasticity

Some of the work in this thesis relates to stochastic problems, and we will in the following treat
the subject of stochasticity both in general and within the context of the RCPSP.

When applying optimization techniques to real-life problems, one typically creates a (mathe-
matical) model of the problem, which is then the object considered. The solutions produced from
applying optimization techniques to such models can only be as good as the models themselves,
and it is thus important that these are as accurate as possible. In many cases the parameters of
a model will represent an estimation, a forecast, or a measurement of some real-life value, such as
the time taken to complete a process, the amount of resources required, or the demand for certain
items. For non-stochastic models such parameters are often represented by an average value and
the uncertainty is disregarded. Depending on the application disregarding uncertainty may be of
no consequence, or may result in solutions which “fall apart” in contact with the real world and
its inherent uncertainty.

One commonly stated example is that of airline crew scheduling. Here a number of flight crews
must be assigned a number of flights, the flight crews move from one flight to the next at airports
where flights intersect. The outbound flight can thus not depart before the flight crew from an
inbound flight has arrived. If uncertainty in transit or flight times are not taken into account, the
resulting schedules may be too tight, in the sense that if a single transit or flight takes a little
longer than expected, the delays cascade to all subsequent flights. It is thus of interest to create
crew schedules that take uncertainty into account, and are therefore able to absorb delays on the
day of operation.
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In context of the RCPSP uncertainty could lie in the processing times of the activities, the
resource usages (both renewable and nonrenewable) and the total capacities of the resources (again
both renewable and nonrenewable).

1.2.1 Solution to a stochastic problem

When considering stochastic problems one question poses itself: What is a solution? For instance
a schedule which specifies starting times of activities is an adequate solution to a deterministic
scheduling problem, but may in the case of a stochastic problem no longer be useful, since as soon
as some activity is delayed, the starting times assigned to subsequent activities may no longer
make sense.

Policy-based solutions

One solution strategy would be to define an action to take for each possible event which can occur
during the day of operation. In the context of scheduling, an event could be the completion of
some activity and the action could be which activities to start next. Such a solution strategy is also
known as a policy in the literature. Typically one defines a set of policies, and the optimization
problem is then to select the policy which results in the best expected cost. This cost could be
calculated across a number of predefined scenarios, or through simulation.

One example of such a set of policies within the context of the RCPSP are the so-called earliest
start policies (see Radermacher (1981)). An earliest start policy, is some extension of the set of
precedence relations, such that no set of activities the combined resource consumption of which
exceeds some resource capacity, can be run in parallel. The set of all earliest start policies contains
an element for each feasible extension of the precedence constraints. Given such a policy an event
is the completion of some activity, and the action is to start all the precedence feasible activities
not yet processed.

For results relating to the earliest start policies and others, see Radermacher (1981), Igelmund
and Radermacher (1983b), Möhring et al. (1984), Möhring et al. (1985), Möhring and Radermacher
(1985), Radermacher (1986), Fernandez and Armacost (1996), and Fernandez et al. (1998a,b), and
for computational results see Igelmund and Radermacher (1983a), Golenko-Ginzburg and Gonik
(1997), Tsai and Gemmill (1998), and Valls et al. (1998). For an overview of these results see
Stork (2001).

Proactive and reactive based solutions

Another solution strategy would attempt to find a solution, which has a good probability of being
feasible, while minimizing the cost. Such a solution strategy does not describe what should happen
if the solution falls apart, instead the focus is on creating solutions which are less likely to fall
apart. This kind of strategy is also known as a proactive strategy. Again, the quality of a solution
is typically evaluated on a predefined set of scenarios or through simulation. Within the context of
the RCPSP with stochastic activity durations, this solution strategy typically consists of inserting
time buffers in the schedule, which can prevent delays from propagating down the schedule.

A final solution strategy would consider the problem of handling unforeseen events on the day
of operation, given some initial solution. This is also known as disruption-management or as a
reactive strategy (as opposed to a proactive strategy). Typically, given a disruption, one wants to
modify the current solution to regain feasibility subject to some cost. This cost could for instance
be the fewest changes compared to the original solution, or the least accumulated delay.

As such, proactive and reactive strategies as a hole can be seen to be similar to the policy based
strategy described earlier. Within the context of the RCPSP and with stochastic activity dura-
tions, Van de Vonder et al. (2007b) and Van de Vonder et al. (2008) propose and compare a large
number of heuristics for allocating buffers throughout a schedule in order to make it more robust.
Van de Vonder et al. (2007a) and Deblaere et al. (2011) presents heuristic procedures focusing on
the reactive approach, while Van de Vonder et al. (2005, 2006) and Chtourou and Haouari (2008)
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present heuristic procedures focusing on the proactive approach. Zhu et al. (2007) take a different
approach and formulate the problem as a two-stage stochastic optimization problem, and present
an exact and a heuristic solution approach. Van de Vonder (2006) gives a good overview. For
results where the nonrenewable resource requirements are stochastic see for instance Lambrechts
et al. (2008a,b). For surveys on the subject see for instance Herroelen and Leus (2004, 2005).

1.2.2 Modelling a stochastic problem

The previous section treated the subject of a solution to a stochastic problem. In this section
we briefly treat the subject of modelling a stochastic problem. We will describe two modelling
approaches: chance-constraints, and two-stage optimization.

Chance constraints

Chance constraints are constraints of the form

P(ax ≤ b) ≥ ǫ, (1.20)

where b is either some constant b ∈ R or some random variable, a is either a vector of constants or
a vector of random variables of size n, and 0 ≤ ǫ ≤ 1 is some constant. The constraint states that
the constraint ax ≤ b must hold with probability at least ǫ. Chance constraints may be useful in
a proactive setting, such that one can assure a solution to be feasible within a certain probability.
Depending on whether the right-hand side b and the vector a are random variables, and depending
on the knowledge of the distribution of these variables, Constraint (1.20) may be formulated using
either linear constraints, second-order cone constraints, or more complicated constraints.

In Chapter 5 we use chance constraints to model stochastic nonrenewable resource consumption
in context of the MRCPSP, and we here give a brief description of how Constraint (1.20) may, for
that case, be modelled as a second-order cone constraint (see e.g. Boyd and Vandenberghe (2004),
page 157).

A second-order cone constraint is a constraint of the form

αx + ω‖Dx+ δ‖2 ≤ β,

where α ∈ R
n, δ ∈ R

n, β ∈ R, ω ≥ 0 and D ∈ R
n×n are constants, x ∈ R

n is a decision-variable,
and ‖ · ‖2 is the Euclidean norm.

Assume a is vector of Gaussian random independent variables, with mean vector µ and variance
vector σ2. Define a new random variable u = ax, then u is a random variable with mean µ̃ = µx
and variance σ̃2 = σ2x2. Constraint (1.20) may be rewritten as

P

(

u− µ̃

σ̃
≤ b− µ̃

σ̃

)

≥ ǫ, (1.21)

Since (u − µ̃)/σ̃ is a Gaussian random variable with mean value 0 and unit variance, the
probability above is Φ(b−µ̃/σ̃), where Φ is the cumulative distribution function. Constraint (1.20)
may thus be written as Φ(b − µ̃/σ̃) ≥ ǫ, which is equivalent to µ̃ + Φ−1(ǫ)σ̃ ≤ b. Substituting µ̃
and σ̃ one gets

n
∑

i=0

µixi +Φ−1(ǫ)

√

√

√

√

n
∑

i=1

σ2
i x

2
i ≤ b, (1.22)

which, if ǫ ≥ 0.5, and thus Φ−1(ǫ) ≥ 0, is equivalent to a second-order cone constraint with α = µ,
δ = 0, ω = Φ−1(ǫ), β = b, and Dii = σi, Dij = 0 for i 6= j.
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Two-stage optimization

Solving stochastic problems may also be viewed as a two-stage optimization problem, where stage
1 represents the initial decision, or solution, and stage 2 represents an evaluation of the stage 1
solution, typically based on a number of scenarios. Usually information from the evaluation of
stage 2 is fed back to stage 1, which may then accordingly alter the solution and so forth.

Within the context of Mixed Integer Programming (MIP) a two-state optimization problem
typically has the form:

P : µ = min cTx+ fT y

s.t. Ax = b (1.23)

Bx+Dy = d (1.24)

x ∈ X ⊆ R
p, y ∈ Y ⊆ R

q, (1.25)

where x and y are vectors of stage 1 and stage 2 decision variables respectively with dimension p
and q, X and Y are polyhedrons, A, B, and D are matrices, and c, f , b, and d are vectors (all
with appropriate dimensions). Typically D has a block-angular structure corresponding to a set
of scenarios across which the stage 1 decision variables are evaluated. In order to get a correct
estimate of the cost of the stage 1 decision, the number of scenarios considered may have to be
quite large, and as a consequence the MIP problem may become huge.

One common technique for solving such problems is exploiting the block-angular structure of
D through use of Benders Decomposition (see Benders (1962)). Benders Decomposition will be
used in Chapter 6 to solve a stochastic large scale energy-management problem and we here give
a brief overview of Benders Decomposition.

With Benders Decomposition the problem above is decomposed into the following two smaller
problems, P1 and P2.

P1 : min cTx+ z(x)

s.t. Ax = b (1.26)

x ∈ X (1.27)

P2 : z(x) = min fT y

s.t. Dy = d−Bx (1.28)

y ∈ Y (1.29)

Observe that P1 is an optimization problem in terms of the x variables only, where z(x) is the
objective function value of P2 given the solution to P1. If one assumes that P2 is not unbounded,
then one can also calculate z(x) by solving its dual formulation. If u denotes the vector of dual
variables associated with constraints (1.28), then the dual formulation of P2 can be stated as:

D2: max uT (d−Bx)

s.t. DTu ≤ f (1.30)

The feasible region of this optimization problem is completely independent of the values of x,
which only affect the objective function. Assuming that the feasible region of D2 is not empty,
then exactly one of two cases will occur when solving D2 for a given solution x̂ ∈ X . Either D2 is
unbounded from above, or D2 has a finite optimal solution. In the first case there must exist an
extreme ray rj such that rTj (d − Bx̂) > 0, while in the second case there must exist an extreme

point uj of the feasible region such that z(x̂) = uT
j (d − Bx̂). If we denote the set of all extreme

rays of D2 as R and the set of all extreme points of D2 as U, then D2 can be restated as follows.

D2∗: min z

s.t. (ri)
T (d−Bx) ≤ 0 ∀ri ∈ R (1.31)

(ui)
T (d−Bx) ≤ z ∀ui ∈ U (1.32)
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P2 now contains the single variable z. The first set of constraints, (1.31), restricts the set of
solutions to P1 to those which are also feasible for P2 (termed feasibility cuts), while the second
set, (1.32), restrict the set of solutions to P1 to those that minimize the objective function value
of P2 (termed optimality cuts). Hence, the original problem can be restated as:

RMP: min cTx+ z

s.t. Ax = b (1.33)

(ri)
T (d−Bx) ≤ 0 ∀ri ∈ R (1.34)

(ui)
T (d−Bx) ≤ z ∀ui ∈ U (1.35)

x ∈ X

Since there can be an exponential number of constraints of the form (1.31) and (1.32), it is
impractical to generate them all and include them explicitely. The so-called Restricted Master
Problem (RMP) starts with a subset of these and dynamically identifies violated ones as needed.
Thus, one usually adopts an iterative process where at any iteration a candidate solution (x∗, z∗) is
found. The subproblem is then solved to calculate z(x∗). If z(x∗) = z∗, the algorithm terminates,
otherwise a violated feasibility or optimality cut exists. In a cutting plane approach, one adds the
respective cut to the RMP and resolves the problem. This process iterates until z(x∗) = z∗, or
some other stopping criteria is met.

1.3 The Resource-Constrained Project Scheduling Problem

After having discussed stochasticity we now return to the the RCPSP. As this problem is the main
topic of the thesis, we in the following go through some background knowledge which is touched
upon only briefly in the papers.

Section 1.3.1 describes common MIP formulations of the RCPSP. One of these formulations
(the time-indexed) forms the basis of the formulation employed in Chapter 5. Section 1.3.2 de-
scribes a number of lower bounds, these lower bounds are employed in the algorithms presented in
Chapter 3 and Chapter 5. Section 1.3.3 describes the characteristics of the benchmark instances
employed for evaluating the algorithms presented in Chapter 2, Chapter 3, and Chapter 5. Sec-
tion 1.3.4 gives a brief overview of exact and heuristic methods known from the literature. Finally
in Section 1.3.5 we describe one of these algorithms in more detail, as it will be the basis of the
branch-and-cut algorithm presented in Chapter 5.

From a notational perspective, we remind the reader that A is the set of activities, that E is
the set of precedence relations, that T is the set of time steps, that R is the set of renewable
resources and that each renewable resource k ∈ R has capacity Rk in each time step, that R̃ is the
set of nonrenewable resources and that each nonrenewable resource k ∈ R̃ has capacity R̃k spread
across all time steps, that each activity j ∈ A, when scheduled in mode m ∈ MJ , has processing
time pjm and takes up rjkm units of renewable resource k ∈ R and r̃jk′m units of nonrenewable

resource k′ ∈ R̃. The objective is to minimize the makespan. When considering the SRCPSP we
omit the subscript m.

1.3.1 Formulations

A number of different formulations of the RCPSP exists in the literature. Kon et al. (2009)
make a comparison of a number of these formulations, with respect to the quality of the Linear
Programming (LP) relaxation and the scalability with respect to the time horizon. In the following
a description of some of the most common formulations found in the literature is given. Additional
formulations may be found in Artigues et al. (2003), Zapata et al. (2008), and Kon et al. (2009).

For the sake of simplicity we state the models for the SRCPSP, except for the time-indexed
formulation which is stated for the MRCPSP because this is the variant considered in Chapter 5.
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Time-indexed formulation (multi-mode)

The most common MIP model found in the literature is based on a time-indexed formulation,
which for the SRCPSP is due to Pritsker et al. (1969), and for the MRCPSP is due to Talbot
(1982).

Let Tim denote the set of possible starting times for activity i ∈ A when scheduled in mode
m ∈ Mj. Given a point in time t, define Tim(t) = {t′ ∈ Tim : t − pim + 1 ≤ t′ ≤ t}, i.e., the
points in time t′, where if activity i was started at t′ using mode m, then the activity would still
be in progress at time t. The sets, Tim, may be found by calculating lower bounds on the time
which must pass before and after an activity has been processed. The MRCPSP may be stated as
follows:

(F1) min
∑

m∈Mn

∑

t∈Tnm

t · xntm

s.t.
∑

m∈Mj

∑

t∈Tjm

t · xjtm ≥
∑

m∈Mi

∑

t∈Tim

(t+ pim)xitm ∀(i, j) ∈ E (1.36)

∑

m∈Mj

∑

t′∈Tjm(t)

rjkm · xjt′m ≤ Rk ∀k ∈ R, ∀t ∈ T (1.37)

∑

m∈Mj

∑

t∈Tjm

r̃jkm · xjtm ≤ R̃k ∀k ∈ R (1.38)

∑

m∈Mj

∑

t∈Tjm

xjtm = 1 ∀j ∈ A (1.39)

xjtm ∈ {0, 1} ∀j ∈ A, ∀m ∈Mj , ∀t ∈ Tjm, (1.40)

where xjtm = 1 if and only if activity j ∈ A starts at time t ∈ Tjm using mode m ∈ Mj .
Constraints (1.36) model the precedence constraints, Constraints (1.37) model the renewable re-
source constraints, Constraints (1.38) model the nonrenewable resource constraints, and Con-
straints (1.39) models that each activity is started exactly once. The objective is to minimize the
starting time of the dummy-activity representing the end of the project.

Column based formulation (single-mode)

Another formulation of the SRCPSP encountered in the literature is a column-based formulation
due to Mingozzi et al. (1998), which can be stated as follows:
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(F2) min
∑

t∈T

t · xnt

s.t.
∑

t∈T

t · xjt ≥
∑

t∈T

t · xit + pi ∀(i, j) ∈ E (1.41)

∑

t∈T

xjt = 1 ∀j ∈ A (1.42)

|K|
∑

p=1

∑

t∈T

ypj · λpt = pj ∀j ∈ A (1.43)

|K|
∑

p=1

ypj · (λpt − λp,t−1) ≤ xjt ∀t ∈ T, ∀j ∈ A (1.44)

|K|
∑

p=1

λpt ≤ 1 ∀t ∈ T , ∀k ∈ R (1.45)

xjt ∈ {0, 1} ∀j ∈ A, t ∈ T (1.46)

λpt ∈ {0, 1} p = 1, . . . , |K|, ∀t ∈ T , (1.47)

where xjt = 1 if and only if activity j starts at time t, and

K =







y ∈ {0, 1}|A| :
∑

j∈A

rjk · yj ≤ Rk ∀k ∈ R ∧ yi + yj ≤ 1 ∀(i, j) ∈ E







,

i.e., each element of K represents a set of activities which may be processed in parallel. Let the
p-th element of K be denoted by yp. For each p = 1, . . . , |K| and t ∈ T , λpt = 1 if and only
if the activities corresponding to yp ∈ K are in progress at time t. Constraints (1.41) model
the precedence constraints, Constraints (1.42) ensure that each activity is started exactly once,
and Constraints (1.43) ensure that every activity j is active for exactly pj time steps on each
resource. Constraints (1.44) are logical constraints which forces xjt = 1, at the point in time
when an activity j goes from inactive to active. Constraints (1.44) along with constraints (1.42)
ensure that each activity is processed without preemption, and that for each resource the activity
is completed at the same point in time. Constraints (1.45) ensure that at most one set of activities
are in progress on a resource at any given time. Again the objective is to minimize the starting
time of the dummy-activity representing the end of the project. There may be an exponential
number of elements in K and thus an exponential number of columns.

Forbidden set based formulation (single-mode)

Another formulation of the SRCPSP encountered in the literature is based on continuous-time
variables and so-called minimal forbidden sets (see Radermacher (1985)). A minimal forbidden set,
is a subset F ⊆ A of activities, between which no precedence constraints exists, and

∑

j∈F rjk >
Rk, for some k ∈ R, while ∑j∈F\{i} rjk ≤ Rk, ∀i ∈ F . Let F be the set of all forbidden sets. The

following formulation is due to Alvarez-Valdés and Tamarit (1993):
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(F3) min σn

s.t. xij = 1 ∀(i, j) ∈ E (1.48)

xij + xji ≤ 1 ∀(i, j) ∈ A2 (1.49)

xik ≥ xij + xjk − 1 ∀(i, j, k) ∈ A3 (1.50)

σj − σi ≥ −M + (pi +M) · xij ∀(i, j) ∈ A2 (1.51)
∑

i,j∈F

xij ≥ 1 ∀F ∈ F (1.52)

xij ∈ {0, 1} ∀(i, j) ∈ A2 (1.53)

σj ≥ 0 ∀j ∈ A, (1.54)

where xij = 1 if and only if job i must complete before job j can start, and the continuous variable
σi is the starting time of job i. Constraints (1.48) model the precedence constraints (these can
be substituted out), Constraints (1.49) and (1.50) are so-called linear ordering constraints ensures
there are no cycle dependicies between the activities, Constraints (1.51) link the linear ordering
variables with the starting time variables, and Constraints (1.52) ensure that at least one pair of
activities must be sequenced within each forbidden set. Constraints (1.52) implicitly model the
resource constraints. M is a sufficiently large constant. Again the objective is to minimize the
starting time of the dummy-activity representing the end of the project. One usually assumes
that the forbidden sets F is given as part of the problem, otherwise they may be deduced from
the resource and precedence constraints. There may be an exponential number of forbidden sets.

1.3.2 Bounds

As the RCPSP is a generalization of a number of scheduling problems, among which the JSSP
is probably the most well-known, lower bounding techniques from these special cases are also
applicable to the RCPSP. In the following we restrict our attention to some common lower
bounding methods which are also employed for the heuristic presented in Chapter 3 and for the
branch-and-cut algorithm described in Chapter 5.

Employing the naming convention of Klein and Scholl (1999), these bounds are LB1, LB2,
LB4, LB6, LB8, LB10, and LB11. For further details and additional bounds, see Christofides
et al. (1987), Demeulemeester and Herroelen (1992), Mingozzi et al. (1998), Baptiste et al. (1999),
Klein and Scholl (1999), Brucker and Knust (2000), Carlier and Néron (2000, 2003), Möhring et al.
(2003), Baptiste and Demassey (2004), Demassey et al. (2005), and Carlier and Néron (2007). See
Klein and Scholl (1999) for a comparison of 11 lower bounds for the RCPSP (including the ones
described below). For bounds relating to common generalizations of the RCPSP, see for instance
Brucker and Knust (2003), Heilmann and Schwindt (1997), or Möhring et al. (1999).

Critical path bound (LB1) This bound is computed by finding the longest path (also called
the critical path) in the precedence graph. For the multi-mode case this critical path is calculated
based on the minimum processing time of each activity.

Capacity bound (LB2) For an activity i ∈ A, define aikm := pimrikm/Rk and let aik =
minm∈Mi

{aikm}. This bound is calculated as

LB2 = max
k∈R

{⌈

∑

i∈A

aik

⌉}

,

i.e., it is a lower bound based on the amount of renewable resource available versus the amount
of renewable resource required by a set of activities.
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Node packing bound (LB4) This bound is due to Mingozzi et al. (1998) and is based on
solving a weighted node packing problem. The aim is to find a subset of the activities, S, such
that each pair of activities from S are incompatible. This implies that the activities of S must be
performed in sequence, thus providing a lower bound equal to the sum of their processing times.

In the context of the weighted node packing problem, activities correspond to nodes, and
there is an edge between two nodes if the corresponding activities are incompatible, i.e., they can
not be performed in parallel, and the weight of each node is equal to the processing time of the
corresponding activity. To find the best lower bound one wants to find a maximal weighted node
packing. The weighted node packing problem is NP-hard.

Any heuristic solution to the problem will provide a lower bound. A heuristic solution can be
found as follows: Order the activities and store them in an ordered list. Remove the first activity
i from the list and add it to S, now remove all activities from S, which are compatible with i.
Iterate until the list is empty. In order to produce more solutions, rotate the list cyclically and
restart the algorithm. Different orderings will produce different solutions. One possibility is to
set the jobs of the critical path as the initial activities, and then order the remaining activities
increasingly by the number of activities, with which they can run in parallel. For the multi-mode
case the bound is based on the minimum processing time of each activity.

Extended node packing bound (LB6) This bound, due to Klein and Scholl (1999), is an
extension of LB4. As described in the previous paragraph the lower bound LB4 results from
applying a heuristic to a weighted node packing problem. In each iteration, h, of the heuristc, a
set Sh, and a list Lh of activities are maintained. The heuristic is such that no activity from Lh

can be processed in parallel with an activity from Sh. Let LB(Lh) be a lower bound on the time
needed to complete the subproject induced by the activities of Lh, and let D(Sh) be the sum of
processing times of the activities of Sh. Then the value maxh{D(Sh)+LB(Lh)} is a lower bound
on the time needed to complete the entire project. To keep the computational overhead small,
only LB1 and LB2 is applied to calculate LB(Lh). As LB1 is applied anyway, it is no longer
appropriate to add the activities of the critical path at the front of the list, instead all activities
are ordered with respect to the number of activities, with which they can run in parallel.

One machine bound (LB8) This bound is again an adaption of LB4, and is due to Klein
and Scholl (1999). Let again Sh be the set of activities constructed in iteration h of the heuristic
described in connection with LB4. As no activities from Sh can run in parallel it induces a so-
called one-machine problem, that is a problem where there is a single machine, and only a single
activity can be scheduled at a time.

Each activity i ∈ Sh is associated with a release time αi and a post-processing time βi. The
release time and post-processing time may be found by calculating the length of the critical path
from the start of the project to the activity, and from the activity to the end of the project. For
a given iteration, the following is a lower bound on the time needed to complete the one-machine
problem and therefore also on the time needed to to complete the entire project:

lbh = min
i∈Sh
{αi}+D(Sh) + min

i∈Sh
{βi},

and taking the best value across all iterations of the heuristics, maxh{lbh}, provides a lower bound
on the completion time for the entire project.

Precedence bound 1 (LB10) This bound is due to Klein and Scholl (1999). It is based on
pairs of activities, for which no precedence relation exits, and which can not run in parallel because
of resource constraints, and thus must be sequenced. Let (i, j) be such a pair of activities. Either i
completes before j starts or the opposite. A lower bound on the complete project may be found by
taking the minimum of the two lower bounds calculated by adding a precedence relation between
i and j, and j and i respectively. To calculate the lower bound, LB1 is employed.
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Precedence bound 2 (LB11) This bound is again due to Klein and Scholl (1999), and is very
similar to LB10. For LB11 triples of activities, which can not all run in parallel, are examined
instead of the pairs of activities examined for LB10, and all possible ways of resolving the conflict
is investigated in the same way as for LB10.

1.3.3 Instances

We here describe the characteristics of the benchmark instances employed for the heuristic pre-
sented in Chapter 2, Chapter 3, and the branch-and-cut algorithm described in Chapter 5. These
instances are part of the PSPLIB available for download at http://129.187.106.231/psplib/.
Virtually all exact and heuristic methods for the RCPSP are evaluated on the benchmark in-
stances part of this library. The library is generated using the standard project generator ProGen
as described by Kolisch and Sprecher (1996). The library has later been extended with additional
instances as described by Kolisch et al. (1999).

The instances are generated on the basis of a number of parameters, of which we will describe
the three most important:

Network complexity The network complexity (NC) determines the average number of nonre-
dundant precedence relations per activity included in the problem. The higher the NC, the
more precedence relations are present.

Resource factor The resource factor (RF) determines the average number of resources, for which
each activity has non-zero resource consumption. The RF is set separately for renewable and
nonrenewable resources. The higher the RF, the higher the number of resources occupied
by each activity.

Resource strength The resource strength (RS) determines the strength of the resource con-
straints. The higher the RS, the higher the number of activities which can potentially run
in parallel.

There are 4 benchmark classes for the SRCPSP: J30, J60, J90, and J120, containing respec-
tively 480, 480, 480, and 600 instances. Each instance is made up of respectively 30, 60, 90,
and 120 activities, and 4 resources. The activity durations and resource requirements are cho-
sen randomly between 1 and 10. For each benchmark class ten instances are generated for each
combination of NC × RF × RS, where NC = {1.5, 1.8, 2.1}, RF = {0.25, 0.50, 0.75, 1.0}, and
RS = {0.2, 0.5, 0.7, 1.0}. For the J120 benchmark class the values used for the resource strength
are RS = {0.1, 0.2, 0.3, 0.4, 0.5}. Optimal solutions are only known for the J30 benchmark class.

There are 6 benchmark classes for the MRCPSP: J10, J12, J14, J16, J18, J20, and J30
containing respectively 536, 547, 551, 550, 552, 554, and 552 feasible instances. Each instance is
made up of respectively, 10, 12, 14, 16, 18, 20, and 30 activities, 2 renewable resources, and 2
nonrenewable resources. Again the activity durations and resource requirements (both renewable
and nonrenewable) are chosen randomly between 1 and 10. The NC is kept constant at 1.8, and for
each benchmark class ten instances are generated for each combination of RSN ×RFN ×RSR ×
RFR, where superscript N and R respectively indicates nonrenewable and renewable resources.
The values used for J10 are RSN = RSR = {0.2, 0.5, 0.7, 1.0}, and RFN = RFR = {0.5, 1.0},
and for J12–J20 and J30 the values used are RSN = RSR = {0.25, 0.50, 0.75, 1.0}, and RFN =
RFR = {0.5, 1.0}. For the benchmark classes J12–J20 all optimal solutions are known. This is
not the case for J30.

1.3.4 A brief overview of exact and heuristic solution methods

We here give a condensed overview of work on both exact and heuristic solution methods for the
RCPSP (single-mode and multi-mode).
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Single-mode

A number of exact solution procedures have been proposed for solving the SRCPSP, dating back
to the initial work by Pritsker et al. (1969) and onwards: Bell and Park (1990), Carlier and
Néron (1996), Davis and Heidorn (1971), Fisher (1973), Gorenstein (1972), Patterson and Huber
(1974), Patterson and Roth (1976), Schrage (1970), Stinson et al. (1978), Talbot and Patterson
(1978), Radermacher (1985), Christofides et al. (1987), Demeulemeester and Herroelen (1992,
1997), Brucker et al. (1998), Mingozzi et al. (1998), Sprecher (2000), and Möhring et al. (2003)
all present procedures based on either implicit enumeration or MIP models, while Baptiste and
Pape (2000), Dorndorf et al. (2000a), Laborie (2005), Schutt et al. (2009), and Berthold et al.
(2010) present methods based on Constraint Programming (CP). For surveys on exact solution
methods, we refer the reader to Hartmann and Drexl (1998), Herroelen et al. (1998), Kolisch and
Padman (2001) or Patterson (1984). For work relating to common generalizations of the SRCPSP
see for instance Bartusch et al. (1988), De Reyck and Herroelen (1998), Dorndorf et al. (2000b),
Fest et al. (1998), or Neumann et al. (2006).

There also exists a large number of heuristic methods for the SRCPSP. The most successful
seem to be population-based heuristics. Among recent heuristics are the (hybrid) genetic algo-
rithms devised by Alcaraz and Maroto (2001, 2006), Debels et al. (2007), Hartmann (1998, 2002),
Mendes et al. (2009) and Valls et al. (2004, 2005, 2008), the local search algorithms devised by
Fleszar and Hindi (2004), Kochetov and Stolyar (2003) and Palpant et al. (2004), the simulated
annealing algorithm devised by Bouleimen and Lecocq (2003), the tabu search algorithms devised
by Nonobe and Ibaraki (2002) and Valls et al. (2003), the sampling based algorithms devised by
Tormas and Lova (2003a,b) and the scatter search based algorithms devised by Debels et al. (2006)
and Ranjbar et al. (2009). For reviews and comparisons of a large number of heuristics we refer
the reader to Kolisch and Hartmann (2000, 2006). The currently best performing heuristics seem
to be the genetic algorithms of Debels et al. (2007) and Mendes et al. (2009).

Multi-mode

Less work seems to have been done on exact solution methods for the MRCPSP. Sprecher (1994),
Sprecher et al. (1997), Sprecher and Drexl (1998), Hartmann and Drexl (1998), and Sprecher
and Drexl (1998) present implicit enumeration based methods, while Zhu et al. (2006) present
a branch-and-cut method. A comparison of three of these methods can be found in Hartmann
and Drexl (1998). For work relating to common generalizations of the MRCPSP see for instance
Heilmann (2003), Patterson et al. (1989, 1990), Sprecher (1994), or Talbot (1982).

As for the SRCPSP a large number of heuristics methods exists for the MRCPSP. Among these
are the immune-system based algorithm of Van Peteghem and Vanhoucke (2009), the (hybrid) ge-
netic algorithms of Alcaraz et al. (2003), Hartmann (2001), Lova et al. (2009), Mori and Tseng
(1997), Okada et al. (2010), Ozdamar (1999), Tseng (2008) and Tseng and Chen (2009), the tabu-
search based algorithm of Tchao and Martins (2008), the simulated annealing-based algorithms
of Bouleimen and Lecocq (2003) and Józefowska et al. (2001), the ant-colony optimization based
algorithm of Chiang et al. (2008), the particle swarm optimization algorithm of Jarboui et al.
(2008) and Zhang et al. (2006), the differential evolution based algorithm of Damak et al. (2009),
the hybrid scatter search based algorithm of Ranjbar et al. (2009), and the local-search based al-
gorithms of Boctor (1996), Drexl and Gruenewald (1993) and Kolisch and Drexl (1997). Currently
the best performing algorithms seem to be the immune-system based algorithm of Van Peteghem
and Vanhoucke (2009) and the genetic algorithm of Lova et al. (2009).

1.3.5 Overview of a branch-and-cut method for the Multi-mode Re-

source-Constrained Project Scheduling Problem

The branch-and-cut algorithm presented in Chapter 5 for a stochastic version of the MRCPSP
uses elements of the branch-and-cut method of Zhu et al. (2006) and in the following we therefore
give an overview of their method.
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The branch-and-cut procedure of Zhu et al. (2006) is based on a time-indexed formulation
of the MRCPSP (see formulation (F1) in Section 1.3.1). In each node of the branch-and-bound
tree nodes a prunned on the basis of an LP relaxation of the problem. In addition to separating
cuts in each node, a special branching scheme is employed, which makes it possible to improve
the LP relaxation by fixing variables to zero. Additionally, in order to reduce the number of
variables in the formulation, an initial variable reduction procedure is applied. During branching
the local branching technique of Fischetti and Lodi (2003) is used. Experiments are performed on
benchmark instances available in the PSPLIB.

Variable reduction

A so-called Finish-to-Start-Distance (FSD) matrix, D, is defined. Each entry dij is a lower bound
on the length of time between the finish of activity i and the start of activity j. As such this
matrix has similarities with the start-start distance matrix used by, among others, Brucker and
Knust (2000) and Demassey et al. (2005). The critical path lower bound is used to initialize the
entries of D, and a Floyd-Warshall-like algorithm is applied to update D, such that its entries
satisfies transitivity, i.e., the condition:

dij ≥ dik + dkj + p
k
, ∀(i, k), (k, j) ∈ E ,

where p
k
= min{pkm|m ∈ Mk} . Given an upper bound on the makespan, these entries can be

used to derive earliest and latest possible completion times of the activities, and consequently can
be used to reduce the number of variables needed for the time-index formulation.

Given two activities i, j, the induced subproject is defined as {k : k ∈ Si ∧ k ∈ Pj}, i.e, all
activities which are both successors of i and predecessors of j. Given a subproblem, the lower
bound dij can be found by calculating a lower bound on the makespan of the induced subproject.
Thus any lower bounding technique for the RCPSP may be applied to the subproject in order to
improve an entry dij . Two lower bounding procedures are used by Zhu et al. (2006): the first
is based on the usage of renewable resources, and the other is based on applying the commercial
MIP solver CPLEX to a time-indexed formulation of the subproject.

Branching scheme

As a result of Constraints (1.39), each set of variables Wj = {xjtm : m ∈ Mj, t ∈ Tjm}, ∀j ∈ A,
can be identified as a so-called special ordered set (SOS) of type 1. Special ordered sets of type
1 are sets of binary variables, for which at most one variable must be equal to 1 for any feasible
solution. Let W be such a special ordered set. Commonly each variable in W is associated with a
unique weight and branching is performed by dividing the variables into two disjoint subsets W1,
and W2, where each variable in W1 (W2) has a weight below (above) the weighted average, given
the current fractional solution. That is, let x∗ be the current fractional solution, and set S =
∑

(jtm)∈W x∗
itmwitm/|W |. Then ∀(jtm) ∈ W1 : wjtmx∗

jtm ≤ S, and ∀(jtm) ∈ W2 : wjtmx∗
jtm > S.

In one branch the constraint
∑

(jtm)∈W1
xjtm ≤ 0 is enforced, while in the other branch the

constraint
∑

(jtm)∈W2
xjtm ≤ 0 is enforced.

For the branching scheme used each variable xjtm is given weight t, and the branching thus
corresponds to branching on the completion time of an activity. This means that when branching
occurs on a special ordered set, Wj , for some activity j ∈ A, the entries of the FSD matrix may
be updated. As a consequence it is sometimes possible to fix additional variables to zero. The
entries of the FSD matrix are updates as follows: Let again S be the weighted average given the
current fractional solution, then set din = UB−⌈S⌉ in one branch and d0i = ⌊S⌋−p

i
in the other

branch.

1.4 Thesis outline

The remaining thesis is made up of six papers, each organized into their own chapters. The first
four chapters relate to scheduling problems:
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Chapter 2 presents an Adaptive Large Neighborhood Search (ALNS) algorithm for the SRCPSP.
The ALNS framework was first proposed by Pisinger and Røpke (2007) for the Vehicle Rout-
ing Problem, where promising results have been reported by Pisinger and Røpke (2007) and
Røpke and Pisinger (2006a,b). The ALNS framework is a general framework, which can be
applied to a large class of optimization problems. It can be described as a large neighbor-
hood search algorithm, where a set of so-called destroy and repair neighborhoods compete
to modify the current solution in each iteration of the algorithm. The main idea behind
the algorithm presented is to exploit the flexibility of the ALNS framework to incorporate
neighborhoods from different state-of-the-art heuristics for the RCPSP and let the adaptive
layer of the framework choose among the best performing neighborhoods during execution,
thus creating a good “mix” of these heuristics. Experiments performed on the J30, J60 and
J120 benchmark instances from the PSPLIB, show that the proposed algorithm is among
the best five heuristics. A 10-page extended abstract of this paper appears in the conference
proceedings of the VIII Metaheuristic International Conference (peer reviewed).

Chapter 3 presents an extension of the ALNS algorithm presented in the previous chapter to
the MRCPSP. We incorporate techniques for deriving additional precedence relations and
propose a new method, so-called mode-diminution, for removing modes during execution.
These techniques make use of lower bound arguments, and we propose and experiment
with three new lower bounds for the MRCPSP, in addition to lower bounds found in the
literature. We propose a simple technique, so-called opportunistic mode-flipping, which can
be applied whenever a schedule is generated, and which significantly improves the results of
the algorithm. Computational experiments are performed on a set of standard benchmark
instances from the PSPLIB, and a comparison is made with other algorithms found in the
literature. The experiments show that the algorithm is among the best three heuristics.
Some of the elements of the algorithm perform well. That is the bound arguments, the
mode-removal procedure, and in particular opportunistic mode-flipping, and these elements
may perhaps be used to improve the results of other algorithms for this problem. We improve
three upper bounds for instances from the PSPLIB. An adaption of this algorithm is used
to find initial upper bounds for the branch-and-cut algorithm presented in Chapter 5. This
paper is submitted to Computers & Operations Research.

Chapter 4 treats the separation and extension of cover inequalities for second-order conic knap-
sack constraints with generalized upper bounds. The relation between this paper and
scheduling problems is that certain chance constraints, used in Chapter 5 in connection
with a stochastic version of the MRCPSP, are modelled as second-order cone constraints
and cutting on these is of interest for such models. We describe and compare a number of
separation and extension algorithms which make use of the extra structure implied by the
generalized upper bound constraints in order to strengthen the second-order conic equivalent
of the classic cover cuts. We show that determining whether a cover can be extended with
a variable is NP-hard. Computational experiments are performed comparing the proposed
separation and extension algorithms. These experiments show that applying these extended
cover cuts can greatly improve solution time of second-order cone programs. This paper has
been published as a technical report at the Technical University of Denmark.

Chapter 5 presents a new variant of the MRCPSP, where the nonrenewable resource consump-
tion of each mode is given by a Gaussian distribution. The goal is to find a minimal makespan
schedule which satisfies the nonrenewable resources with a certain probability ǫ. We present
a Conic Quadratic Integer Program model of the problem, and describe and experiment with
a branch-and-cut algorithm for solving the problem. In order to find initial upper bounds,
an adaptation of the heuristic presented in Chapter 3 is employed. In each node of the
branch-and-bound tree, the branching decisions are propagated in order to remove variables
from the problem, and thus improve lower bounds. In addition, we experiment with cutting
on the conic quadratic resource constraints using the cuts presented in Chapter 4. Com-
putational experiments show that the branch-and-cut algorithm outperforms CPLEX 12.1.
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We finally examine the “cost of uncertainty” by investigating the relation between values of
ǫ, the makespan, and the solution time. These experiments show that taking stochasticity
into account only increases the makespan by about 7% on average, while not increasing
the computation time dramatically. This paper is submitted to Computers & Operations
Research.

In Chapter 6 and Chapter 7 we leave the world of scheduling problems and enter the world of
production planning problems.

Chapter 6 presents a Benders decomposition based algorithm for solving a stochastic large scale
energy management problem, which was posed for the ROADEF/EURO 2010 challenge,
an international operations research contest in which participants solve an industrial opti-
mization problem. We show that the problem structure naturally lends itself to Benders
decomposition; however, due to several non-linear constraints, it cannot be applied conven-
tionally. The two phase solution procedure we present first uses Benders decomposition to
solve the linear programming relaxation of a relaxed version of the problem. In the second
phase, integer solutions are enumerated and a procedure is applied to make them satisfy
constraints not included in the relaxed problem. To cope with the size of the formulations
arising in our approach we describe efficient preprocessing techniques to reduce the problem
size and show how aggregation can be applied to each of the subproblems. Computational
results on the test instances show that the procedure performs well on small instances of
the problem, but runs into difficulty on larger ones. It was one of the few exact approaches
proposed, and we placed 14th out of the 19 teams in the final. Unlike the competing heuris-
tic approaches, this methodology provides lower bounds on solution quality. This paper is
submitted to (a special issue of) Journal of Scheduling.

Chapter 7 presents the hybridization of an ALNS algorithm with a MIP solver. The MIP solver
and its built-in feasibility heuristics is used as a repair neighborhood. This approach for
repairing solutions is specifically suited for combinatorial problems where it may be hard to
otherwise design suitable repair neighborhoods. The hybrid heuristic framework is applied
to the multi-item capacitated lot sizing problem with setup times, where experiments are
conducted on a series of instances from the literature and a newly generated extension of
these. On average the presented heuristic outperforms the commercial MIP solver CPLEX
12.1 and the best heuristics from the literature. Furthermore, we improve the best known
upper bounds on 60 out of 100 and improve the lower bound on all 100 instances from the
literature. This paper is submitted to European Journal of Operational Research.

We conclude in Chapter 8, with a summary of the results, and some thoughts on directions for
further research.
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Carlier, J., Néron, E. Computing redundant resources for the resource constrained project schedul-
ing problem. European Journal of Operational Research, 176(3):1452–1463, 2007.

Chiang, C., Huang, Y., Wang, W. Ant colony optimization with parameter adaptation for multi-
mode resource-constrained project scheduling. Journal of Intelligent and Fuzzy Systems, 19(4):
345–358, 2008.

Christofides, N., Alvarez-Valdes, R., Tamarit, J. M. Project scheduling with resource constraints:
A branch and bound approach. European Journal of Operational Research, 29(3):262–273, June
1987.

Chtourou, H., Haouari, M. A two-stage-priority-rule-based algorithm for robust resource-
constrained project scheduling. Computers & Industrial Engineering, 55(1):183 – 194, 2008.

Damak, N., Jarboui, B., Siarry, P., Loukil, T. Differential evolution for solving multi-mode
resource-constrained project scheduling problems. Computers & Operations Research, 36(9):
2653 – 2659, 2009.

Davis, E., Heidorn, G. An algorithm for optimal project scheduling under multiple resource
constraints. Management Science, 17:803–816, 1971.

De Reyck, B., Herroelen, W. A branch-and-bound procedure for the resource-constrained project
scheduling problem with generalized precedence relations. European Journal of Operational
Research, 111(1):152–174, 1998.

Debels, D., Leus, R., Vanhoucke, M. A hybrid scatter search/electromagnetism meta-heuristic for
project scheduling. European Journal of Operational Research, 169(2):638–653, 2006.

Debels, D., Reyck, B. D., Leus, R., Vanhoucke, M. A decomposition-based genetic algorithm for
the resource-constrained project-scheduling problem. Operations Research, 55(4):457–469, 2007.

Deblaere, F., Demeulemeester, E., Herroelen, W. Reactive scheduling in the multi-mode rcpsp.
Computers & Operations Research, 38(1):63–74, 2011.

Demassey, S., Artigues, C., Michelon, P. Constraint-propagation-based cutting planes: An appli-
cation to the resource-constrained project scheduling problem. Informs Journal on Computing,
17:52–65, 2005.

Demeulemeester, E., Herroelen, W. A branch-and-bound procedure for the multiple resource-
constrained project scheduling problem. Management Science, 33(12):1803–1818, 1992.

Demeulemeester, E., Herroelen, W. New benchmark results for the resource-constrained project
scheduling problem. Management Science, 43(11):1485–1492, 1997.

Demeulemeester, E., Herroelen, W. Project scheduling: a research handbook. Kluwer Academic
Pub, 2002. ISBN 1402070519.

Dorndorf, U., Pesch, E., Phan-Huy, T. A branch-and-bound algorithm for the resource-constrained
project scheduling problem. Mathematical Methods of Operations Research, 52(3):413–439,
2000a.

Dorndorf, U., Pesch, E., Phan-Huy, T. A time-oriented branch-and-bound algorithm for resource-
constrained project scheduling with generalised precedence constraints. Management Science,
46(10):1365–1384, 2000b.

Drexl, A., Gruenewald, J. Nonpreemptive multi-mode resource-constrained project scheduling.
IIE transactions, 25(5):74–81, 1993.



Bibliography 22

Fernandez, A., Armacost, R. The role of the nonanticipativity constraint in commercial software
for stochastic project scheduling. Computers & Industrial Engineering, 31(1-2):233–236, 1996.

Fernandez, A., Armacost, R., Pet-Edwards, J. A model for the resource constrained project
scheduling problem with stochastic task durations. In 7th Industrial Engineering Research
Conference Proceedings, 1998a.

Fernandez, A., Armacost, R., Pet-Edwards, J. Understanding simulation solutions to resource con-
strained project scheduling problems with stochastic task durations. Engineering Management
Journal, 10:5–14, 1998b.

Fest, A., Mohring, R., Stork, F., Uetz, M. Resource constrained project scheduling with time win-
dows: a branching scheme based on dynamic release dates, technical report 596-1998. Technical
report, Technische Universität Berlin, 1998.

Fischetti, M., Lodi, A. Local branching. Mathematical Programming, 98(1):23–47, 2003.

Fisher, M. Optimal solution of scheduling problems using lagrange multipliers: Part i. Operations
Research, 21(5):1114–1127, 1973.

Fleszar, K., Hindi, K. S. Solving the resource-constrained project scheduling problem by a variable
neighbourhood search. European Journal of Operational Research, 155(2):402–413, 2004.

Garey, M., Johnson, D., Sethi, R. The complexity of flowshop and jobshop scheduling. Mathematics
of Operations Research, 1(2):117–129, 1976.

Golenko-Ginzburg, D., Gonik, A. Stochastic network project scheduling with non-consumable
limited resources. International Journal of Production Economics, 48(1):29–37, 1997.

Gorenstein, S. An algorithm for project (job) sequencing with resource constraints. Operations
Research, 20(4):835–850, 1972.

Hartmann, S. A competitive genetic algorithm for resource-constrained project scheduling. Naval
Research Logistics, 45:733–750, 1998.

Hartmann, S. Project scheduling with multiple modes: A genetic algorithm. Annals of Operations
Research, 102(1):111–135, 2001.

Hartmann, S. A self-adapting genetic algorithm for project scheduling under resource constraints.
Naval Research Logistics, 49:433–448, 2002.

Hartmann, S., Drexl, A. Project scheduling with multiple modes: A comparison of exact algo-
rithms. Networks, 32(4):283–297, 1998.

Hartmann, S., Briskorn, D. A survey of variants and extensions of the resource-constrained project
scheduling problem. European Journal of Operational Research, 207(1):1–14, 2010.

Heilmann, R. A branch-and-bound procedure for the multi-mode resource-constrained project
scheduling problem with minimum and maximum time lags. European Journal of Operational
Research, 144(2):348–365, 2003.

Heilmann, R., Schwindt, C. Lower bounds for rcpsp/max, report wior-511. Technical report,
Universität Karlsruhe, 1997.

Herroelen, W., Leus, R. Robust and reactive project scheduling: a review and classification of
procedures. International Journal of Production Research, 42(8):1599–1620, 2004.

Herroelen, W., Leus, R. Project scheduling under uncertainty: Survey and research potentials.
European journal of operational research, 165(2):289–306, 2005.



23 Bibliography

Herroelen, W., Demeulemeester, E., Reyck, B. D. Resource-constrained project scheduling - a
survey of recent developments. Computers & Operations Research, 29(4):279–302, 1998.

Igelmund, G., Radermacher, F. Algorithmic approaches to preselective strategies for stochastic
scheduling problems. Networks, 13(1):29–48, 1983a.

Igelmund, G., Radermacher, F. Preselective strategies for the optimization of stochastic project
networks under resource constraints. Networks, 13(1):1–28, 1983b.

Jarboui, B., Damak, N., Siarry, P., Rebai, A. A combinatorial particle swarm optimization for
solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and
Computation, 195(1):299 – 308, 2008.
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Valls, V., Laguna, M., Lino, P., Pérez, A., Quinatanilla, S. Project scheduling with stochastic
activity interruptions. In Weglarz, J., editor, Project scheduling: recent models, algorithms, and
applications, pages 333–353. Kluwer, Amsterdam, 1998.

Valls, V., Quintanilla, S., Ballest́ın, F. Resource-constrained project scheduling: A critical activity
reordering heuristic. European Journal of Operational Research, 149(2):282–301, 2003.

Valls, V., Ballest́ın, F., Quintanilla, S. A population-based approach to the resource-constrained
project scheduling problem. Annals of Operations Research, 131:304–324, 2004.

Valls, V., Ballest́ın, F., Quintanilla, S. Justification and rcpsp: A technique that pays. European
Journal of Operational Research, 165:375–386, 2005.

Valls, V., Ballest́ın, F., Quintanilla, S. A hybrid genetic algorithm for the resource-constrained
project scheduling problem. European Journal of Operational Research, 185(2):495–508, 2008.

Van de Vonder, S. Proactive-reactive procedures for robust project scheduling. PhD thesis,
Katholieke Universiteit Leuven, 2006.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., Leus, R. The trade-off between stability
and makespan in resource-constrained project scheduling. International Journal of Production
Research, 44:215–236, 2006.



27 Bibliography

Van de Vonder, S., Demeulemeester, E., Herroelen, W., Leus, R. The use of buffers in project man-
agement: The trade-off between stability and makespan. International Journal of Production
Economics, 97(2):227 – 240, 2005.

Van de Vonder, S., Ballestn, F., Demeulemeester, E., Herroelen, W. Heuristic procedures for
reactive project scheduling. Computers & Industrial Engineering, 52(1):11 – 28, 2007a.

Van de Vonder, S., Demeulemeester, E., Herroelen, W. A classification of predictive-reactive
project scheduling procedures. Journal of Scheduling, 10(3):195–207, June 2007b.

Van de Vonder, S., Demeulemeester, E., Herroelen, W. Proactive heuristic procedures for robust
project scheduling: An experimental analysis. European Journal of Operational Research, 189
(3):723 – 733, 2008.

Van Peteghem, V., Vanhoucke, M. An artificial immune system for the multi-mode resource-
constrained project scheduling problem. In Cotta, C., Cowling, P., editors, Evolutionary Com-
putation in Combinatorial Optimization, volume 5482 of Lecture Notes in Computer Science,
pages 85–96. Springer Berlin / Heidelberg, 2009.

Zapata, J., Hodge, B., Reklaitis, G. The multimode resource constrained multiproject scheduling
problem: Alternative formulations. AIChE Journal, 54(8):2101–2119, 2008.

Zhang, H., Tam, C., Li, H. Multimode project scheduling based on particle swarm optimization.
Computer-Aided Civil and Infrastructure Engineering, 21(2):93–103, 2006.

Zhu, G., Bard, J., Yu, G. A branch-and-cut procedure for the multimode resource-constrained
project-scheduling problem. INFORMS Journal on Computing, 18(3):377, 2006.

Zhu, G., Bard, J., Yu, G. A two-stage stochastic programming approach for project planning with
uncertain activity durations. Journal of Scheduling, 10(3):167–180, June 2007.



Bibliography 28



Chapter 2

An Adaptive Large Neighborhood Search

Algorithm for the Resource-Constrained

Project Scheduling Problem

Laurent Flindt Muller

Department of Management Engineering, Technical University of Denmark
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

lafm@man.dtu.dk

Abstract We present an application of an Adaptive Large Neighborhood Search (ALNS) algorithm to
the Resource-Constrained Project Scheduling Problem (RCPSP). The ALNS framework was first proposed
by Pisinger and Røpke (2007) and can be described as a large neighborhood search algorithm with an
adaptive layer, where a set of destroy/repair neighborhoods compete to modify the current solution in each
iteration of the algorithm. Experiments are performed on the well-known J30, J60 and J120 benchmark
instances, which show that the proposed algorithm is competitive and confirms the strength of the ALNS
framework previously reported for different variants of the Vehicle Routing Problem.

Keywords: Project scheduling; Heuristics; Large neighborhood search

2.1 Introduction

In many situations, such as industrial production and software development, one needs to plan
a number of interdependent activities on a scarce number of resources, such that the time to
complete all the activities is minimized. These kind of problems can be modelled as a Resource-
Constrained Project Scheduling Problem (RCPSP), which can be described as follows (cf. Brucker
et al. (1999)): A project consists of a set A = {1, . . . , n} of activities, which must be performed
on a set R = {1, . . . ,m} of resources. An activity j ∈ A requires rjk ≥ 0 units of resource
k ∈ R throughout its non-preemptible processing time pj ≥ 0. Each resource k ∈ R has a limited
capacity Rk ≥ 0. There exists precedence relations between the activities, such that one activity
j ∈ A can not be started before all its predecessors, Pj, have completed. Symmetrically Sj denotes
the set of successors. The objective is to find a precedence and resource-capacity feasible schedule
which minimizes the makespan.

The RCPSP was first described by Pritsker et al. (1969) and as a generalization of the Job
Shop Scheduling Problem it is NP-hard (cf. Blażewicz et al. (1983)). A large number of solution
methods have been applied to the RCPSP, see for instance the surveys by Herroelen et al. (1998),
Kolisch and Hartmann (2000, 2006), Kolisch and Padman (2001), and Patterson (1984).

The RCPSP is notoriously hard and only instances with up to 30 activities can consistently be
solved to optimality. It is thus of interest to consider heuristics as an alternate approach. Among
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the most successful heuristics are the (hybrid) genetic algorithms devised by Debels et al. (2007),
Hartmann (1998, 2002) and Valls et al. (2004, 2005, 2008), the local search algorithms devised by
Fleszar and Hindi (2004), Kochetov and Stolyar (2003) and Palpant et al. (2004), the simulated
annealing algorithm devised by Bouleimen and Lecocq (2003), the tabu search algorithms devised
by Nonobe and Ibaraki (2002) and Valls et al. (2003), the sampling based algorithms devised by
Tormas and Lova (2003a,b) and the scatter search based algorithms devised by Debels et al. (2006)
and Ranjbar et al. (2009).

We propose to solve the RCPSP heuristically with an Adaptive Large Neighborhood Search
(ALNS) algorithm, where, exploiting the flexibility of the ALNS framework, we unify neighbor-
hoods structures and techniques from other algorithms from the literature, letting the adaptive
layer of the algorithm select among the “best” performing neighborhoods during execution. The
hope is that using this approach to incorporating neighborhoods from state-of-the-art algorithms
for the RCPSP into a single algorithm, will be beneficial. A large number of experiments are run
in order to investigate the effectiveness and the effect of the different components and parame-
ters of the proposed algorithm. These experiments show that the algorithm is competitive with
state-of-the-art algorithms. To the best knowledge of the author, this is the first application of
the ALNS framework to the RCPSP.

In Section 2.2, a general description of the ALNS framework is given, in Section 2.3, a descrip-
tion of the adaption of the ALNS framework to the RCPSP is given, in Section 2.4, a description
of the different destroy/repair neighborhoods is given, in Section 2.5, experiments and parameter
tuning is performed, in Section 2.6, the results of running the algorithm on benchmark instances
is presented and we conclude in Section 2.7.

2.2 Adaptive Large Neighborhood Search

The ALNS framework was first proposed by Pisinger and Røpke (2007) for different variants of the
Vehicle Routing Problem, where good results have been reported by Pisinger and Røpke (2007)
and Røpke and Pisinger (2006a,b). It is a general framework which can be applied to a large class
of optimization problems and can be described as follows: ALNS is a local search framework in
which a number of simple neighborhoods compete to modify the current solution. In each iteration
a destroy neighborhood is chosen to destroy the current solution, and an repair neighborhood is
chosen to repair the solution. The new solution is accepted if it satisfies some criteria defined by
the local search method applied at the master level. The neighborhoods used are typically large
neighborhoods, who can reach a large part of the solution space.

An adaptive layer stochastically controls which neighborhoods to choose based on their past
performance (score). The more a neighborhood has contributed to the solution process, the larger
score it obtains, and hence it has a larger probability of being chosen. The adaptive layer uses
roulette wheel selection for choosing a destroy and repair neighborhood. If the past score of a
neighborhood i is πi and we have ω neighborhoods, then we choose neighborhood j with probability
πj/

∑ω
i=1 πi. ALNS can be based on any local search method, e.g., simulated annealing, tabu

search or guided local search. An outline of the ALNS framework is given by Algorithm 2.1, for
a more detailed description we refer to Pisinger and Røpke (2007).

2.3 Algorithm

In the following we give a presentation of the different components of the proposed algorithm.

Representation There exists a number of different solution representations for the RCPSP
(cf. Kolisch and Hartmann (1999)). The proposed algorithm employs list representation, where
a schedule is represented as an precedence-ordered list of activities, i.e., if i ∈ PREDj then i
comes before j in the list. When using list representation, one additionally needs a scheme for
converting the list into a schedule. The two most commonly used are the serial and parallel
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Algorithm 2.1 Outline of the ALNS framework

1: Construct feasible solution x.
2: x∗ ← x
3: while stop criteria not met do
4: Choose a destroy neighborhood N− and repair neighborhood N+ using roulette wheel se-

lection based on previously obtained scores {πj}.
5: Generate a new solution x′ from x using the heuristics corresponding to the chosen destroy

and repair neighborhoods, N− and N+.
6: if x′ can be accepted then
7: x← x′

8: end if
9: Update scores πj of N− and N+.

10: if f(x) < f(x∗) then
11: x∗ ← x
12: end if
13: end while
14: return x∗

schedule generation schemes (SGS) (cf. Kolisch and Hartmann (1999)). The serial SGS can be
described as follows: in the order defined by the list, schedule each activity in turn, at the earliest
precedence and resource feasible point in time. The parallel SGS can be described as follows:
Time is incremented starting at zero. At each time the unscheduled precedence and resource
feasible activities are scheduled in the order defined by the list. When no more activities can be
scheduled, the time is incremented. It has been shown by Sprecher et al. (1995) that the serial
SGS produces so-called active schedules, that parallel SGS produces so-called non-delay schedules,
that an optimal solution exists within the set of active schedules but not necessarily within the set
of non-delay schedules and that the list representation (with either parallel or serial SGS) is not
unique, i.e., two different list may represent the same schedule. We experiment with 4 different
rules for selecting which SGS to use: 1) Only use serial SGS, 2) Only use parallel, 3) Employ
both serial and parallel SGS and select the best result, 4) Use scoring in the same way as for
neighborhoods to choose which SGS to apply.

Local search method As mentioned earlier one needs to select a local search method at the
master level. After some initial experiments the choice fell on one with the following properties: In
each iteration a destroy and repair neighborhood is selected based on the current scores. Given the
parameter Q, which governs how large a part of the solution should be destroyed, a new solution
is created. Only solutions which are as good as, or better than the current solution is accepted.
A tabu list is maintained such that the same activity list is not visited twice. The value Q is
progressively reduced from its initial value toward a final value, Qend, such that if Qi is the value
of Q in the i-th iteration then Qi = max{ci · Q,Qend}, where c ∈ [0; 1]. This has the effect that
the algorithm will initially look at large neighborhoods, but these get progressively reduced as the
search progresses to good solutions. This will result in a diversified search in the beginning and
an intensified search at the end.

Scoring scheme As part of an ALNS algorithm, a scoring scheme needs to be chosen. As in
the paper by Pisinger and Røpke (2007) the scores are updated at certain intervals rather than in
each iteration. Thus scoring information is collected during a certain number of iterations before
the scores of each neighborhood is updated and the collection restarts. Using the same naming
convention as Pisinger and Røpke (2007), we call the number of iterations which must pass between
each score update the score interval. Let πj be the current score, i.e., the score on the basis of
which neighborhoods are chosen, and let π̄j the score accumulated during the score interval (it
will be explained later how π̄j is accumulated), then the score πj is updated as follows at the end
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of a score interval: πj = max{ρ · π̄j

aj
+ (1 − ρ) · πj , πmin}, where aj is the number of times the

neighborhood has been chosen during the last score interval (if aj = 0, the score is unchanged), ρ
is the score reaction and πmin is the minimum score.

Let T be the makespan of the current solution and T ′ the makespan of the current candidate
created by applying the destroy and repair neighborhoodN+ andN−. Let π̄j be the collected score

so far forN+ (the procedure is equivalent forN−), π̄j is updated as follows: π̄j = π̄j+b100·(T−T ′)/T ,
where b is some real number, experimentally chosen to 7. This scoring scheme differs from the
one used by Pisinger and Røpke (2007), where one of three fixed scores are attributed depending
on whether the current solution was improved globally, locally or a worse solution was accepted.
The reason for this difference is that the proposed algorithm only accepts equal or better solutions
(while the local search method employed in Pisinger and Røpke (2007) may accept worse solutions),
which can results in many iterations where there is no improvement at all. If a fixed scoring scheme
was used all neighborhoods would score equally bad, while for the employed scheme it is possible
to differentiate the neighborhoods who produce solutions which are (almost) as good as the current
and the ones that produce solutions which are far worse.

Precedence augmentation In the variable neighborhood search algorithm proposed by Fleszar
and Hindi (2004) the concept of precedence augmentation is introduced. It can be described as
follows: Let the head, hj, of an activity j ∈ A be the time that must pass before activity j can
be started and let the tail, tj , be the time that must pass from the completion time of activity
j until the project can be completed. The process of precedence augmentation is the process of
permanently adding new precedence relations based on heads, tails and an upper bound on the
makespan, such that (not necessarily all) solutions which are not better than the upper bound
are rendered infeasible. This has the effect of narrowing the search space. We employ two of the
precedence augmentation rules described by Fleszar and Hindi (2004): Assume that a new better
solution with makespan T has been found. From this point on, only solutions with a makespan of
at most UB = T − 1 are interesting. Consider all pairs of activities i, j ∈ A which are not in any
precedence relation (direct or indirect). A new precedence relation from i to j is added if one of
the following holds:

1. hj + ti ≥ UB

2. ∃k ∈ R : rik + rjk > Rk ∧ hj + pj + pi + ti > UB.

When new precedence rules are added, the current solution may become infeasible and needs
to be “repaired” before the search can go on. This may results in the repaired solution having a
worse makespan than the solution on the basis of which precedence relations were added, which
is inconvenient since the search will continue from this worse solution. It is thus worthwhile to
spend some time repairing the solution, such that it is at least as good as the original one. To this
end Fleszar and Hindi (2004) construct a special repair algorithm. We take a different approach
and use the repair neighborhoods: We construct a partial activity list, and a corresponding set
of activities which must be reinserted. The set and partial list is constructed as follows: Scan
through the activity list of the current solution, if an activity is encountered for which a least
one predecessor has not yet been encountered, remove that activity from the list. Each repair
neighborhood is in turn given a chance to repair the solution until either a solution which is at
least as good as the original is found or there are no neighborhoods left, in which case the repaired
solution with the best makespan is used.

Double justification Valls et al. (2004) shows that a simple technique denoted justification
can improving the quality of a solution with little extra computational effort. One speaks of
left-justification, right-justification and double-justification. Left-justification is essentially pulling
all activities of a schedule as far towards time zero (left) as possible, while right-justification is
essentially pulling all activities as far towards the time corresponding to the makespan (right)
as possible. Double-justification is consists of a right-justification followed by a left-justification.
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It may happen that a double-justified schedule is better than the original one. Since this is a
simple technique, which have been shown to produce good results, all schedules produced during
the course of the ALNS algorithm are double-justified. This means that in each iteration at least
three schedules are generated (more may be generated if the current solution must be repaired
after precedence augmentation). The number of schedules generated in each iteration is important
since the total number of generated schedules is used as a stopping criteria when comparing to
other heuristics from the literature.

Overview An overview of the algorithm can be seen in algorithm 2.2, where x indicates an ac-
tivity list, while Sx is the associated schedule after it has been generated and |Sx| is the makespan.
Lines 3–6 corresponds to the application of precedence augmentation. On Line 8 the destroy and
repair neighborhoods are chosen, and a new activity list is created, and on Line 10 a new schedule
is generated and double justification is applied.

Algorithm 2.2 Pseudo-code for the ALNS algorithm

Require: Initial values of Q and c, the initial scores {πj} and the #schedules max.
1: s← 0, LB ← critical path lower bound.
2: Create an initial solution Sx∗ .
3: Do precedence augmentation using |Sx∗ | as upper bound. If this results in a better lower

bound store it in LB.
4: if x∗ is no longer precedence feasible then
5: Repair x∗ using the repair neighborhoods and store the best found schedule in Sx. If this

results in a better makespan then store it as Sx∗ .
6: end if
7: while s < max and |Sx∗ | > LB do
8: Choose a destroy and repair neighborhood (N−, N+) based on {πj} and create a new

candidate activity list x′ from the current schedule Sx.
9: if not Tabu(x′) then

10: Create a new candidate schedule Sx′′ from x′ using one of the SGS and double justification.

11: if not Tabu(x′′) then
12: if |Sx′′ | < |Sx∗ | then
13: Sx∗ ← Sx′′

14: Repeat the procedure from line 3 – 6 with the new best solution Sx∗ .
15: else if |Sx′′ | ≤ |Sx| then
16: Sx ← Sx′′

17: end if
18: end if
19: Q← c ·Q
20: Update the number of generated schedules s.
21: end if
22: Update the scores πj for N− and N+

23: end while
24: return Sx∗

2.4 Neighborhoods

Important parts of an ALNS algorithm are the destroy and repair neighborhoods included. Even
though there is an adaptive layer, one should remain careful about adding too many neighborhoods,
especially when only a limited number of iterations is allowed. The reason is that a number of
iterations will be needed before any poorly performing neighborhoods will have been filtered out
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and these neighborhoods will end up taking time from the good ones. It is also important to have
a good mix of neighborhoods, which are good at search intensification and diversification. For
the proposed algorithm the neighborhoods have been selected by running the algorithm with all
conceived neighborhoods enabled, then in turn each neighborhood was disabled, if this resulted in
a better solution, the neighborhood was permanently removed. In the following we describe the
destroy and repair neighborhoods remaining after these initial experiments.

Destroy neighborhoods Given the parameterQ and an activity list, L, a destroy neighborhood
must remove Q activities from L. All destroy neighborhoods share the same structure: For j ∈ A
the predecessor-cluster of j is defined as Cp(j) = {i ∈ A|i ∈ Pj ∨ σi + pi = σj}, and the cluster of
j is defined as Cc(j) = {i ∈ A|i ∈ Cp(j) ∨ i ∈ Sj ∨ σj + pj = σi}, where σj denotes the starting
time of activity j in the schedule considered. Let p : A → {0, 1} be some predicate, then a core
removal candidate set, C, is constructed as C = {j ∈ A|p(j) = 1}. C is given some ordering on
the basis of which each activity j from C is removed from the list along with possibly elements
from either Cp(j) or Cc(j) (depending on the neighborhood) until either the set C is empty or Q
elements have been removed from L. The idea behind clusters is that one wants as much flexibility
as possible for the repair neighborhood, e.g., if all the predecessors and successors of an activity
are left in place there is potentially little room for inserting the activity in new positions. There
are in total 10 destroy neighborhoods, which are described below.

• random (two flavors) This neighborhood ensures diversification by randomly removing Q
activities from the current solution. It comes in two flavors, one where predecessor-clustering
is used and one where clustering is used.

• most-mobile Let j ∈ A. As Fleszar and Hindi (2004), we define the left limit LL(j) and
the right limit RL(j) as LL(j) = max{γi|i ∈ Pj} + 1 and RL(j) = min{γi|i ∈ Sj} − 1,
where γi is the position of i within the activity list. Now the mobility, m(j), of j is defined
as m(j) = RL(j)− LL(j).

This neighborhood selects the Q activities with the highest mobility from the current activity
list and also ensures diversification but in a different way than the one above. It ensures
that the neighborhood explored is large by selecting activities which have many reinsertion
possibilities.

• non-peak (two flavors) In the hybrid genetic algorithm proposed by Valls et al. (2008)
the peak crossover operator employed passes on to its children the parts of the schedules
with high utilization, so-called peaks. Similarly we define a non-peak predicate. A peak is
defined in the same way as by Valls et al. (2008): Let S be the current schedules at let
A(t) = {j ∈ A|σj ≤ t ≤ σj + pj}, i.e., the activities in progress at time t. We define the
Resource Utilization Ratio as follows

RUR(t) =
1

m
·
∑

j∈A(t)

m
∑

k=1

rjk
Rk

Given some δ ∈ [0; 1] we say that an time instant t is of high utilization if RUR(t) ≥ δ.
Similarly we say that a time interval I is of high utilization if ∀t ∈ I : RUR(t) ≥ δ. Let I
be the set of disjunctive maximal intervals of high utilization for the schedule S, then a peak
activity j ∈ A is an activity which satisfies ∃I ∈ I : [σj ;σj + pj ] ∩ I 6= ∅, i.e., all activities
which are active during some interval of high utilization. A non-peak activity is an activity
which is not a peak activity. The non-peak predicate selects all activities which are non-peak
activities.

This neighborhood uses the non-peak predicate and tries to preserve the structure of the
solution where the utilization is good, and destroy the parts where it is not. The neighbor-
hood comes in two flavors one where predecessor-clustering is used and one where clustering
is used. In both cases the activities are chosen at random from the removal candidate set.
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• critical-path (four flavors) Given the current schedule S we construct a weighted directed
graph G = (A, E), where E = {(i, j) ∈ A× A|σi + pi = σj} and the weight of a vertex j is
pj. Since the schedule S does not contains “holes” where no activities are in progress, there
must exist at least one path with weight equal to the makespan of S. In order to improve
the makespan, at least one of the activities on this path must be moved elsewhere. The
critical-path predicate selects all activities which are part of a critical path.

Let j ∈ A, we define the volume, v(j), of j as v(j) = pj ·
∏

r∈{rjk|rjk>0,k∈R} r. The largest-

vol (smallest-vol) ordering is the ordering, where the removal candidate set is sorted non-
decreasingly (non-increasingly) w.r.t. volume.

This neighborhood uses the critical-path predicate to break the critical path of the current
schedule. Three orderings of the removal candidate set are used: largest-vol) this ensures
that a big part of the critical path is destroyed by removing the activities with the biggest
volume smallest-vol) this ensures a certain intensification by removing the activities with
the smallest volume, which should be easy to insert in other locations random) activities are
picked at random. For the largest-vol and smallest-vol orderings only predecessor-clustering
is used, while both predecessor-clustering and clustering is employed for the random ordering.

• segment This neighborhood ensures a certain intensification by selecting a sub-sequence of
length Q from the activity list. This sub-sequence corresponds to a sub-schedule, which can
hopefully be improved.

Repair neighborhoods Given a partial activity list and a set of activities to be reinserted a
repair neighborhood must construct a new precedence ordered activity list, which will hopefully
lead to a better solution. Again each repair neighborhood shares some structure: Given an ordering
of the set of activities to be reinserted, the activities are considered one at a time, and inserted into
the activity list such that the activity list is still precedence ordered. Each activity j is inserted
randomly within the interval defined by LL(j) and RL(j). A similar move operator was used by
Fleszar and Hindi (2004).

There are in total 11 repair neighborhoods, where each neighborhood corresponds to some
ordering of the candidates to be reinserted. We employ ordering corresponding to the following
well-known priority-rules for the RCPSP (cf. Kolisch and Hartmann (1999)): Shortest processing
time (SPT), most total successors (MTS), earliest start time (EST), minimum latest finish time
(LFT), minimum slack (MSLK), greatest rank positional weight (GRPW) and minimum latest
start time (LST). These neighborhoods ensure that the solution will be a (hopefully) good mix
of these priority rules and is similar to multi-pass methods, where the priority rule is changed
between passes. The remaining 4 neighborhoods use the following orderings: random, largest-vol,
smallest-vol and reverse, where the reverse ordering reverses the order of the activities compared
to the current activity list.

2.5 Experiments

In this section we present the results of the computational experiments. This includes the tuning of
parameters and the effects of the different components of the proposed algorithm. The algorithm
has been coded in C++, compiled with gcc 4.3.2 and the experiments have been run on a PC with
an Intel Core i7 920 @ 2.67 Ghz and 6 GBs of RAM (using a single core). The code is available at
http://diku.dk/~laurent. The experiments have been performed on the benchmark instances,
J30, J60 and J120 created by Kolisch and Sprecher (1996), which contain respectively 480, 480
and 600 instances, where each instance is made up of respectively 30, 60 and 120 activities (in
addition to two so-called dummy activities representing the start and the end of the project). In
many of the experiments we will only consider the J120 instance class because this class contains
the hardest instances, but in some cases where we feel more details are required, we will compare
the three instance classes. Each experiment has been repeated 10 times and the average taken.



Chapter 2. An Adaptive Large Neighborhood Search Algorithm for the Resource-Constrained
Project Scheduling Problem 36

2.5.1 Effect of parameters

We first examine the effect of the parameters Q and Qend, who respectively governs how large a
part of the solution is destroyed in the first iteration and last iteration. The experiments have
been performed on each of the instance classes and Q and Qend have been varied between the
values 60%, 40%, 20%, 10%, 5% and 10%, 5%, 1%, 0% respectively (if the proportion of the current
solution which needs to be destroyed is less than 1 activity, it is set to 1). The cooling is set such
that Qend is reached after the maximum number of generated schedules, which is set to 5,000 for
this experiment. The values for the score interval and score reaction will be examined later and
is set to the neutral values 100 and 0.5 respectively.

The results are shown in Table 2.1. As can be seen the values of Q and Qend have very little
effect on results for the J30 and J60 instance classes, while they have a noticeable effect on the
results for the J120 instance class. Considering only the J120 instance class, in general the results
are improved when Qend is reduced, which is as expected because as the value of Qend is decreased
the algorithm gets better at intensification towards the end, as only small changes in the overall
solution structure is allowed. Similarly results are improved when the value of Q is decreased, but
only until a certain point (Q = 10%). This makes sense, since a large value for Q means that
the algorithm will be better at diversification, but starting it with to large a Q means that fewer
iterations will be left for doing an intensive search around a good solution at the end. On the
other hand, starting with to small a Q means that the algorithm can only reach a small part of
the solution space and it thus does a poor job at diversification during the initial iterations. Based
on these experiments we select Q = 40% and Qend = 0% for the J30 and J60 instance classes and
Q = 10% and Qend = 0% for the J120 instance class.

Table 2.1: Effect of Q and Qend on the average deviation from the critical path lower bound (%). For
each instance class, boldface indicates the best average makespan.

Q(%)

Instance Qend(%) 60 40 20 10 5

J30

10 13.48 13.48 13.48 13.49 –
5 13.48 13.49 13.49 13.51 13.55
1 13.50 13.50 13.51 13.55 13.59
0 13.48 13.48 13.50 13.53 13.54

J60

10 11.30 11.25 11.18 11.17 –
5 11.19 11.16 11.13 11.14 11.17
1 11.15 11.14 11.15 11.27 11.24
0 11.14 11.11 11.11 11.15 11.21

J120

10 34.41 34.29 34.02 33.78 –
5 33.79 33.66 33.48 33.34 33.26
1 33.09 33.06 32.96 32.96 32.99
0 33.09 33.02 32.96 32.93 33.00

We finally examine the effect of the values for the score reaction and score interval. In this
case only the J120 instance class is considered. The values for Q and Qend found in the previ-
ous experiment are used and the score reaction and score interval is varied between the values
1.0, 0.8, 0.5, 0.2 and 350, 100, 25, 5 respectively. Again a maximum of 5,000 schedules is set. As can
be seen from the results in Table 2.2 the score reaction and score interval has a much smaller effect
on the quality of the solutions than Q and Qend. Based on these experiments a score reaction
value of 0.2 and a score interval value of 5 is selected.
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Table 2.2: Effect of score reaction and score interval on the average deviation from the critical path
lower bound (%) - J120, boldface indicates the best average makespan.

Score reaction

Score interval 1.0 0.8 0.5 0.2

350 32.92 32.95 32.94 32.97
100 32.96 32.93 32.93 32.96
25 32.96 32.94 32.92 32.95
5 33.09 33.00 32.94 32.91

2.5.2 Effect of SGS

In this section we examine the effect of the SGS employed. We have tested 4 different configurations
1) Only use serial SGS, 2) Only use parallel SGS, 3) Employ both serial and parallel SGS and pick
the best, 4) Use scoring to select the SGS between serial and parallel. The experiments have been
run on all instance classes with a maximum of 5,000 schedules. As can be seen from the results in
Table 2.3, using serial SGS gives the best results on all instance classes, which is thus the method
employed.

Table 2.3: Effect of SGS on the average deviation from the critical path lower bound (%). For each
instance class, boldface indicates the best average makespan.

Instance Serial Parallel Serial+Parallel Score

J30 13.47 13.66 13.49 13.50
J60 11.12 11.41 11.16 11.12
J120 32.91 34.76 33.12 32.99

2.5.3 Effect of number of restarts

In this section we examine the effect of the number of restarts of the algorithm. The experiments
have been performed on the J120 instance class, with the maximum number of schedules set to
1,000, 5,000 and 50,000. At each restart of the algorithm a random feasible solution is created as
the initial one. The results can be seen in Table 2.4. Surprisingly even in the 50,000 schedule case
better results are produced when there are no restarts, which is the opposite of what is reported
by Bouleimen and Lecocq (2003) for their simulated annealing algorithm.

Table 2.4: Effect of the number of restarts on the average deviation from the critical path lower bound (%)
- J120, boldface indicates the best average makespan.

Max #schedules 4 restarts 2 restarts No restarts

1,000 35.27 34.77 34.35
5,000 33.45 33.15 32.91
50,000 31.69 31.56 31.54

2.5.4 Effect of components

In this section we examine the effect of the different components of the algorithm, i.e., the prece-
dence augmentation and double justification described earlier. The experiments have been per-
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formed on all instance classes and with a maximum of 5,000 schedules set. The results can be
seen in Table 2.5. As can be seen double justification has a considerable effect, which conforms
with the findings of Valls et al. (2005). Surprisingly precedence augmentation has a very limited
effect on the quality of the solution and on the average running time. We believe that the reason
for this is that even though the search space is narrowed, the algorithm may continue from a
worse solution than the current best, because the addition of precedence relations has rendered
the current best solution infeasible. This means that fewer iterations will be used for searching
around the best solution. Precedence augmentation does however as expected have an effect on
the average running time, as more instances can be terminated before the maximum number of
schedules is reached because of the stronger lower bound.

Table 2.5: Effect of different components on the average deviation from the critical path lower bound (%)
(top line of each instance), the average processing time per instance, and where the number in () is the
max precessing time per instance (both in seconds). All incl. means both double justificationa and
precedence augmentation is enabled, None incl. means none of them are, No prec. aug. means precedence
augmentation is not used, and No double just. means double justification is not used. For each instance
class, boldface indicates the best average makespan.

Instance All incl. None incl. No prec. aug. No double just.

J30 13.47 13.67 13.48 13.66
0.07(0.21) 0.11(0.31) 0.08(0.31) 0.09(0.30)

J60 11.12 11.82 11.14 11.83
0.12(0.57) 0.16(0.70) 0.14(0.53) 0.15(0.67)

J120 32.91 36.12 32.95 36.11
0.71(2.07) 0.96(2.59) 0.76(2.47) 0.80(1.74)

2.5.5 Effect of adaptive layer

In this section we examine the effect of the adaptive layer. When the algorithm is run without
the addaptive layer, neighborhoods are selected at random, rather than based on scores. The
experiments are run on all instance classes and with the maximum schedules set to 1,000, 5,000
and 50,000. As can be seen in Table 2.6 the adaptive layer does have an effect on most of the
instances but regrettably a much smaller one, than one would have expected. In two cases the
algorithm actually performs slightly better without the adaptive layer. The largest improvement
from the adaptive layer is for the J120 instance class, which justifies its precence, but further
investigation of alternate scoring schemes would be of interest.

2.6 Computational results

In order to evaluate the performance of the proposed algorithm, tests have been run on the
benchmark instances, J30, J60 and J120 created by Kolisch and Sprecher (1996). To be able to
compare the proposed algorithm with other algorithms we have used the same maximum schedule
counts as the one used in the recent survey paper by Kolisch and Hartmann (2006), that is 1, 000,
5, 000 and 50, 000. Each test run has been repeated 10 times and the average taken. The average
percentage deviation from the critical path lower bound and average (max) processing times can
be seen in Table 2.7.

We compare the results of the proposed algorithm to the best 5 of 28 algorithms, taken from
Kolisch and Hartmann (2006). These algorithms fall into two categories: Algorithms where it
makes sense to count the number of schedules generated and algorithms where it does not (such
as methods based on implicit enumeration). The proposed algorithm falls into the first category,
since in each iteration the schedule corresponding to the current solution is destroyed and a new
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Table 2.6: Effect of the adaptive layer on the average deviation from the critical path lower bound (%).
For each line boldface indicates the best average makespan.

With adaptive Without adaptive

1,000 schedules
J30 13.64 13.63
J60 11.58 11.61
J120 34.35 34.35

5,000 schedules
J30 13.47 13.47
J60 11.12 11.15
J120 32.91 32.97

50,000 schedules
J30 13.41 13.40
J60 10.73 10.75
J120 31.54 31.58

Table 2.7: Average deviation from the critical path lower bound (%) and the average (max) processing
time in seconds.

max. #schedules

Instance 1,000 5,000 50,000

J30 13.64 13.47 13.41
0.01(0.04) 0.07(0.21) 0.71(2.26)

J60 11.58 11.12 10.73
0.03(0.11) 0.12(0.57) 1.24(5.56)

J120 34.35 32.91 31.54
0.17(0.48) 0.71(2.07) 6.78(18.00)

schedule is generated from a partial one by the repair neighborhood (actually 3 schedules, since
double justification is employed). We have therefore chosen only to compare it to algorithms
within the first category. We additionally include two recently proposed algorithms, marked with
a † in Tables 2.8 – 2.10. These tables shows the critical path average deviation (smaller is better)
for the different benchmark instances (for Table 2.10 it is the average deviation from the optimal
solution).

2.7 Conclusion

An application of the ALNS framework to the RCPSP has been presented, where a number of
neighborhood structures and techniques from other algorithms were unified within the ALNS
framework. Computational results from running the algorithm on the J30, J60 and J120 bench-
mark instances show that the algorithm is competitive with the state-of-the-art and confirms the
strength of the ALNS framework. Additionally a number of experiments have been run in order
to investigate the effect of the different parameters and components of the algorithm. These ex-
periments among other things show that the adaptive layer does improve the solutions for most of
the instances – but only slightly. Interestingly the proposed algorithm is the only non-population
based algorithm to rank within the top-5 algorithms and as such represents a promising alter-



Bibliography 40

Table 2.8: Average deviation from critical path lower bound (%) - J120

max. #schedules

Reference Algorithm 1,000 5,000 50,000

Valls et al. (2008) GA 34.07 32.54 31.24
Ranjbar et al. (2009)† SS 35.08 33.24 31.49
ALNS ALNS 34.35 32.91 31.54
Debels et al. (2006)† SS 35.22 33.10 31.57
Valls et al. (2005) GA 35.39 33.24 31.58
Kochetov and Stolyar (2003) GA, TS 34.74 33.36 32.06
Valls et al. (2005) GA 35.18 34.02 32.81
Hartmann (2002) GA 37.19 35.39 33.21

Table 2.9: Average deviation from critical path lower bound (%) - J60

max. #schedules

Reference Algorithm 1,000 5,000 50,000

Ranjbar et al. (2009)† SS 11.59 11.07 10.64
Debels et al. (2006)† SS 11.73 11.10 10.71
Valls et al. (2008) GA 11.56 11.10 10.73
ALNS ALNS 11.58 11.12 10.73
Kochetov and Stolyar (2003) GA, TS 11.71 11.17 10.74
Valls et al. (2004) GA 12.21 11.27 10.74
Hartmann (2002) GA 12.21 11.70 11.21
Hartmann (1998) GA 12.68 11.89 11.23

Table 2.10: Average deviation from optimal makespan (%) - J30

max. #schedules

Reference Algorithm 1,000 5,000 50,000

Ranjbar et al. (2009)† SS 0.10 0.03 0.00
Kochetov and Stolyar (2003) GA, TS 0.10 0.04 0.00
Debels et al. (2006)† SS 0.10 0.04 0.00
Valls et al. (2008) GA 0.27 0.06 0.02
ALNS ALNS 0.18 0.07 0.02
Alcaraz and Maroto (2001) GA 0.33 0.12 -
Valls et al. (2004) GA 0.34 0.20 0.02
Tormas and Lova (2003a) sampling 0.25 0.13 0.05

native approach to the usual population based algorithms. Another encouraging sign is that the
algorithm ranks better on the larger and more difficult instances.
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Abstract We present an Adaptive Large Neighborhood Search algorithm for the Multi-mode Re-

source-Constrained Project Scheduling Problem (MRCPSP). We incorporate techniques for deriving ad-

ditional precedence relations and propose a new method, so-called mode-diminution, for removing modes

during execution. These techniques make use of bound arguments, and we propose and experiment with

three new bounds for the MRCPSP, in addition to bounds found in the literature. We propose a simple

technique, so-called opportunistic mode-flipping, which can be applied whenever a schedule is generated,

and which significantly improves the results of the algorithm. Computational experiments are performed

on a set of standard benchmark instances from the PSPLIB, and a comparison is made with other algo-

rithms found in the literature. The experiments show that the algorithm is competitive, lying among the

three best heuristics found in the literature. Some of the elements of the algorithm perform well, that is

the bound arguments, the mode-removal procedure, and in particular opportunistic mode-flipping, and

these elements may perhaps be used to improve the results of other algorithms for this problem.

Keywords: Project scheduling, Heuristic, Large neighborhood search, Resource-constrained,
Multi-mode

3.1 Introduction

Many processes within production scheduling and project management consists of scheduling a
number of activities, each activity having a certain duration and requiring a certain amount of
limited resources. Resources could for instance be machines or labor. Precedence relations may
exist between activities, such that one activity can not start before others are completed. Typically
one wishes schedule to the activities such that the total time taken to complete them is minimized.
Such problems can be modeled as a Resource-Constrained Project Scheduling Problem (RCPSP),
which is a generalization of the well-known Job-Shop-Scheduling problem. There exists a number
of variants of the RCPSP, see for instance Blażewicz et al. (1983), Brucker et al. (1999), or
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Hartmann and Briskorn (2010). We consider the the Multi-mode Resource-Constrained Project
Scheduling Problem (MRCPSP), which is a popular variant. In the MRCPSP each activity can be
performed in a number of different so-called modes, each representing alternative ways of executing
the activity.

There exists a large body of work for the Single-mode Resource-Constrained Project Scheduling
Problem (SRCPSP) and to a lesser extend for the MRCPSP. We refer to the surveys by Hart-
mann and Drexl (1998), Herroelen et al. (1998), Kolisch and Hartmann (2000, 2006), Kolisch and
Padman (2001), and Patterson (1984). Among the heuristic solution methods for the MRCPSP
are the immune-system based algorithm of Van Peteghem and Vanhoucke (2009), the (hybrid)
genetic algorithms of Alcaraz et al. (2003), Hartmann (2001), Lova et al. (2009), Mori and Tseng
(1997), Okada et al. (2010), Ozdamar (1999), Tseng (2008) and Tseng and Chen (2009), the tabu-
search based algorithm of Tchao and Martins (2008), the simulated annealing-based algorithms
of Bouleimen and Lecocq (2003) and Józefowska et al. (2001), the ant-colony optimization based
algorithm of Chiang et al. (2008), the particle swarm optimization algorithm of Jarboui et al.
(2008) and Zhang et al. (2006), the differential evolution based algorithm of Damak et al. (2009),
the hybrid scatter search based algorithm of Ranjbar et al. (2009), and the local-search based
algorithms of Boctor (1996), Drexl and Gruenewald (1993) and Kolisch and Drexl (1997). Cur-
rently the best performing algorithms are the immune-system based algorithm of Van Peteghem
and Vanhoucke (2009) and the genetic algorithm of Lova et al. (2009).

In this paper we experiment with an Adaptive Large Neighborhood Search (ALNS) algorithm,
which is a heuristic procedure. The motivation for using an ALNS based algorithm is twofold:
(1) ALNS is a relatively new meta-heuristic approach, which has been applied with good results
within the context of vehicle routing problems, and it would be of interest to see how the approach
performs in a different context. (2) The ALNS framework is very flexible, making it possible to
incorporate different neighborhood structures and letting the adaptive layer of the ALNS algorithm
select among the best performing during execution. The hope is that using this approach to
incorpore neighborhoods from state-of-the-art algorithms for the RCPSP into a single algorithm,
will be beneficial. A similar approach was examined by Muller (2009) for the single-mode RCPSP
with moderate success, and the algorithm described here is an extension of the algorithm of Muller
(2009).

We incorporate techniques for deriving additional precedence relations and propose and ex-
periment with a new method for removing modes during execution (so-called mode-diminution).
These techniques make use of lower bound arguments, and we propose and experiment with three
new lower (named LBX1, LBX2, and LB2X) for the MRCPSP, in addition to lower bounds found
in the literature. A preprocessing step, which strengthens these lower bounds, is also proposed
(so-called resource strengthening). We finally propose and experiment with a simple technique
which can be applied every time a new schedule is generated, and which significantly improves the
results (so-called opportunistic mode-flipping). The technique can be seen as an extension of the
single-pass improvement method used by Hartmann (2001) for his genetic algorithm.

Computational experiments are performed on a set of standard benchmark instances from the
PSPLIB, and a comparison is made with other algorithms from the literature. These experiments
show that the proposed algorithm is competitive, lying among the three best heuristics found in
the literature. Mode-diminution and in particular opportunistic mode-flipping perform well, and
the new lower bounds improve upon existing ones examined. Some of these elements may perhaps
successfully be used to improve upon solutions for other heuristics for this problem. To the best
of our knowledge, this is the first application of an ALNS algorithm to the MRCPSP.

The remaining of the document is organized as follows: in Section 3.2 a formal description of
the RCPSP is given, in Section 3.3 the ALNS framework is described, in Section 3.4 a number of
lower bounds used in the al gorithm are presented along with three new lower bound methods,
in Section 3.5 components of the propsed algorithm is presented. An ALNS heuristic include a
number of neighborhoods and these are described in Section 3.6. In Section 3.7 the computational
experiments are presented, and we conclude in Section 3.8.
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3.2 Problem description

The MRCPSP can be described as follows (see for instance Brucker et al. (1999)): A project
consists of a set A = {1, . . . , n} of activities, which must be scheduled. Traditionally activity 1
and n are so-called dummy activities, which represent the start and the end of the project. Each
activity j can be performed in a number of different modes Mj = {1, . . . , |Mj |}, each representing
a different way of performing the activity. There are two sets of resources, (1) renewable resources
R = {1, . . . , |R|}, and (2) nonrenewable resources R̃ = {1, . . . , |R̃|}. A renewable resource k ∈ R,
has capacity Rk in each time period, while a nonrenewable resource k ∈ R̃ has capacity R̃k spread
across all time periods. When an activity j is scheduled in mode m ∈ Mj , it has a processing
time of pjm (non-preemtible) and requires rjkm ≥ 0 units of renewable resource k ∈ R in each

time period, and r̃jkm ≥ 0 of nonrenewable resource k ∈ R̃ spread across all time periods. There
exists precedence relations between the activities, such that one activity j ∈ A can not be started
before all its predecessors, Pj , are completed. Symmetrically Sj denotes the set of successors. Let
E = {(i, j) ∈ A × A : i ∈ Pj} be the set of all precedence relations. Let T be a set of time-steps
during which the activities must be performed. The MRCPSP may be formulated as follows:

min σn

s.t. σj ≥ σi + pi,m(i) ∀(i, j) ∈ E (3.1)
∑

j∈A(t)

rj,k,m(j) ≤ Rk ∀k ∈ R, ∀t ∈ T (3.2)

∑

j∈A

r̃j,k,m(j) ≤ R̃k ∀k ∈ R̃ (3.3)

σj ≥ 0 ∀j ∈ A, (3.4)

where σj is the starting time of activity j, m(j) is the mode chosen for activity j, and A(t) = {j ∈
A|σj ≤ t ≤ σj + pj,m(j)}, i.e., the activities in progress at time t. Constraints (3.1) are denoted
the precedence constraints, constraints (3.2) are denoted the renewable resource constraints, and
constraints (3.3) are denoted the nonrenewable resource constraints. As mentioned previously the
RCPSP (and thus also the MRCPSP) is a generalization of the Job Shop Scheduling Problem and
is therefore NP-hard (see e.g. Blażewicz et al. (1983)).

3.3 Adaptive large neighborhood search

The ALNS framework was first proposed by Pisinger and Røpke (2007) for solving different variants
of vehicle routing problems, and promising results have been reported by Pisinger and Røpke
(2007) and Røpke and Pisinger (2006a,b). It is a framework which can be applied to a large class
of optimization problems and can be described as follows: ALNS is a local search framework in
which a number of simple neighborhoods compete to modify the current solution. In each iteration
a destroy neighborhood is chosen to destroy the current solution, and a repair neighborhood is
chosen to repair the solution. The new solution is accepted if it satisfies some criteria defined by
the local search method applied at the master level. The neighborhoods used are typically large
neighborhoods, which can reach a large part of the solution space.

An adaptive layer stochastically controls which neighborhoods to choose based on their past
performance (score). The more a neighborhood has contributed to the quality of the current
solution, the larger score it obtains, and hence has a larger probability of being chosen. The
adaptive layer uses roulette wheel selection for choosing one of the destroy and one of the repair
neighborhoods. If the past score of a neighborhood i is πi and we have ω neighborhoods, then
we choose neighborhood j with probability πj/

∑ω
i=1 πi. ALNS can be based on any local search

method, e.g., simulated annealing, tabu search or guided local search. An outline of the ALNS
framework is given by Algorithm 3.1. For a more detailed description we refer to Pisinger and
Røpke (2007).
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Algorithm 3.1 Outline of the ALNS framework

1: Construct feasible solution x.
2: x∗ ← x
3: while stop criteria not met do
4: Choose a destroy neighborhood N− and repair neighborhood N+ using roulette wheel se-

lection based on previously obtained scores {πj}.
5: Generate a new solution x′ from x using the heuristics corresponding to the chosen destroy

and repair neighborhoods, N− and N+.
6: if x′ can be accepted then
7: x← x′

8: end if
9: Update scores πj of N− and N+.

10: if f(x) < f(x∗) then
11: x∗ ← x
12: end if
13: end while
14: return x∗

3.4 Lower bounds

Good lower bounds are an important component in branch-and-bound algorithms in order to be
able to prune the search tree effectively. They may also prove useful in a heuristic setting, where
they may be used to speed up the heuristic by terminating early when an optimal solution has been
found, or to restrict the heuristic to parts of the solution space, where improving solutions may be
found. In order to find lower bounds, we make use of a so-called Finish-to-Start-Distance (FSD)-
matrix and a number of lower bound arguments, and we in the following give a formal presentation
of the FSD-matrix and the lower bounds employed.

Finish-to-Start-Distance (FSD)-matrix We employ a slight modification of the FSD-matrix
of Zhu et al. (2006), which is in itself a modification of the traditional Start-to-Start distance
matrix found in the literature, see for instance Bartusch et al. (1988), Brucker and Knust (2000),
or Demassey et al. (2005). An FSD-matrix is an integer matrix, B = (bij)A×A, which satisfies:

σj − τi ≥ bij + 1, ∀(i, j) ∈ A×A

for all feasible schedules, where τi is the completion time of activity i and σj is the starting time
of activity j. That is bij is a lower bound on the amount of time which must pass between the
completion time of i and the starting time of j. Note that bij may be negative, which means that
activity j must start before the completion of activity i. Define p

i
:= min{pim|m ∈ Mi} and

pi := max{pim|m ∈ Mi}. Since the relation (3.4) has the following transitive property:

σj − τi ≥ bij + 1 ∧ σk − τj ≥ bjk + 1⇒ σk − τi ≥ bij + p
j
+ bjk + 1,

the entries of an FSD-matrix may be updated by calculating the transitive closure of B. This can
be done using a variant of the Floyd-Warshall algorithm in O(|A|3) time, see Zhu et al. (2006).
Note that a pair of activities (i, j) must run in parallel if bij ≥ −pi−p

j
+1 and bji ≥ −pi−p

j
+1.

Given an upper bound, T , on the makespan the FSD-matrix B may be initialized as follows:

bij =







−pi if i = j
0 if (i, j) ∈ E
−T otherwise,

The difference between the FSD-matrix considered here, and the one of Zhu et al. (2006) is that
here the FSD-matrix is defined for all pairs of activities, whereas it in Zhu et al. (2006) is defined
only for pairs of activities being related by precedence.
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As will be explained in detail in Section 3.5, an FSD-matrix may be used to discover new prece-
dence relations, to eliminate modes from consideration, and to prove optimality. The effectiveness
of the methods rely on good lower bound arguments for the bij values. The values bij may be cal-
culated by constructing the subproblem induced by Si∩Pj and then applying any lower bounding
technique for the RCPSP on this smaller instance. A number of such lower bounds exists in the
literature. We do not give a description of these here but instead refer the reader to the excellent
work by Klein and Scholl (1999) where 11 such lower bounds are described and compared. Using
the name convention of Klein and Scholl (1999), the lower bounds considered here are: LB1, LB2,
LB6, LB8, LB10, and LB11. LB1 is the well-known critical path lower bound, LB2 is the also
well-known capacity bound (explained in more detail below), LB6 and LB8 are extensions of the
so-called weighed node packing bound of by Mingozzi et al. (1998) (see Klein and Scholl (1999)),
and LB10 and LB11 are lower bounds based on evaluating a lower bound for all possible ways of
resolving a resource conflict given respectively pairs, and triples of activities (again see Klein and
Scholl (1999)).

The lower bounds LB6, LB10, and LB11 themself use lower bound arguments on subproblems
of the problem for which the lower bound is calculated. Recall that this problem may in itself
be a subproblem corresponding to a bij entry. In order to to distinguish the two, we will refer
to subproblems used within the calculation of the lower bounds LB6, LB10, and LB11 as inner
subproblems. When calculating lower bounds on inner subproblems, one could recursively apply
lower bound arguments, but this can potentially by very time-consuming, and we thus, like Klein
and Scholl (1999), only apply the critical path lower bound (LB1) and capacity bound (LB2).
For the computational experiments we will investigating replacing LB2 with an extended variant
(LB2X described below), which provides better lower bounds, but at the cost of additional running
time.

In the following we describe three new lower bounds (LBX1, LBX2, and LB2X) for the
MRCPSP. These lower bounds are improvements of the critical path lower bound (LB1), and
capacity lower bound (LB2), and we begin with a short description of the latter.

LB1 (critical path) This lower bound is computed by finding the longest path (also called the
critical path) in the precedence graph. For the multi-mode case this critical path is calculated
based on the minimum processing time of each activity.

LB2 (capacity bound) For a activity i ∈ A, define aikm := pimrikm/Rk and let aik =
minm∈Mi

{aikm}. This lower bound is calculated as

LB2 = max
k∈R

{⌈

∑

i∈A

aik

⌉}

,

i.e., it is a lower bound based on the amount of renewable resource available versus the amount
of renewable resource required by a set of activities.

LBX1 (mode-fixed critical path 1) Let I be some multi-mode instance. Let LB1(I) and
LB2(I) denote the lower bounds as computed by the lower bounds LB1 and LB2 above. For a
subset S ⊆ A let MS denote the set of feasible mode assignments for the activities of S. For
a feasible mode assignment m ∈ MS , let I(m) denote the corresponding restriction of I to the
selected modes. It is clear that the lower bound calculated as

LB = max
S∈S

min
m∈MS

max{LB1(I(m)), LB2(I(m))},

where S is some powerset of A, is a strengthening of LB1 and LB2 in the multi-mode case. As the
number of feasible mode assignments grows exponentially in the size of S, S must be kept small
in order for the lower bound to be computationally tractable. LBX1 is calculated as above, where
S is the set of all pairs of activities from A.
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LBX2 (mode-fixed critical path 2) LBX1 may be improved by considering larger subsets of
activities. LBX2 is calculated as LBX1, except S is the set of all pairs, and triples of activities of
A.

LB2X (extended capacity bound) The capacity bound LB2 above is calculated separately for
each resource. In the multi-mode case the lower bound may be strengthened by taking into account
all the resources simultaneously. Finding the best lower bound using this approach amounts to
solving the following Mixed Integer Programming (MIP) problem:

min b (3.5)

s.t.
∑

i∈A

∑

m∈Mi

aikmxim ≤ b ∀k ∈ R (3.6)

∑

m∈Mi

xim ≥ 1 ∀i ∈ A (3.7)

b ≥ 0 (3.8)

xim ∈ {0, 1} ∀i ∈ A,m ∈Mi (3.9)

where xim = 1 if and only if activity i uses mode m.

Proposition 3.1. The MIP problem (3.6) – (3.9) is NP-hard.
Proof. We show this by reduction from the NP-hard partition problem (see Karp (1972)), which
in its optimization version asks: Given a set C of integer numbers, find a partition of C into two
subsets C1 and C2 such that max(sum(C1), sum(C2)) is minimized. The reduction is as follows:
Let |R| = 2 and let each resource have unit capacity. For each c ∈ C, create an activity i with
two modes with resource usages (c, 0) and (0, c).

As the problem (3.6) – (3.9) is NP-hard we instead consider a Lagrangian relaxation, where
the constraints (3.6) have been dualized. This gives rise to the following Langragian Dual (LD)
problem:

max
λk≥0

,
∑

k∈R λk≤1

min
∑

k∈R

λk

∑

i∈A

∑

m∈Mi

aikmxim (3.10)

s.t.
∑

m∈Mi

xim ≥ 1 ∀i ∈ A (3.11)

xim ∈ {0, 1} ∀i ∈ A,m ∈Mi, (3.12)

For any choice of λ the problem may be solved in linear time. Note that if one chooses λk = 1
and λk′ = 0 ∀k′ 6= k, then the solution to the inner minimization problem is the same as LB2
calculated on the resource k. The LD problem can be solved by using a subgradiant algorithm.

LB2X is defined as the best solution found after a specified number of iterations of the sub-
gradiant algorithm. The number of iterations has been experimentally fixed to 40.

As we will see later applying subgradiant algorithm may prove too slow in certain cases, when
the lower bound is used for the inner subproblems. We thus define an additional lower bound,
LB2X’, which is faster to compute, but also weaker: the lower bound is defined as the best solution
to the LD problem for a fixed number of of values of λ (|R|+1 values in total). These values of λ
are λk = 1 and λk′ = 0 ∀k′ 6= k, where k = 1 . . . |R| (giving |R| values of λ), and λk = 1/|R| ∀k ∈ R
(giving one additional value of λ).

3.5 Algorithm

The algorithm proposed is an extension to the MRCPSP of the algorithm presented in Muller
(2009) for the single-mode RCPSP. For the sake of completion we here repeat the elements from
that algorithm, which are relevant for the extension, and describe some new elements specific to
the extension.
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Representation A number of different solution representations of the RCPSP has been pro-
posed in the literature (see for instance Kolisch and Hartmann (1999)). The proposed algorithm
employs list representation, where a schedule is represented as an ordered list of activities. The
ordering is as follows: Let (i, j) ∈ E and let γi and γj be the positions within the list of activity i
and j respectively, then γi < γj .

When employing list representation, one additionally needs a scheme for converting the list into
a schedule. The two most commonly used are the serial and parallel Schedule Generation Schemes
(SGSs) (see for instance Kolisch and Hartmann (1999)). For the ALNS algorithm examined in
Muller (2009), in context of the SRCPSP the serial SGS turned out to produce better solutions
than the parallel SGS and we therefore used the serial SGS here. The serial SGS can be described
as follows: in the order defined by the list, schedule each activity in turn, at the earliest precedence
and resource feasible point in time.

Local search method As noted in Section 3.3 one needs to select a local search method on
top of which to build the ALNS algorithm. The method used here is as follows: In each iteration
a destroy and repair neighborhood is selected based on the current scores. Given the parameter
Q, which governs how many activities may be moved within the current list, a new schedule (and
corresponding activity list) is created based on the neighborhoods selected. Only solutions which
are as good as, or better than, the current solution are accepted. A tabu list is maintained to
ensure that the same activity list is not visited twice. The value Q is progressively reduced from
its initial value toward a final low value. This has the effect that in the beginning the algorithm
will look at large neighborhoods, but as the search progresses to good solutions the size gets
progressively reduced. The idea is that when a good solution has been found, the overall structure
of the solution is sound and should be kept but small changes may find a new better solution.

Scoring scheme As part of an ALNS algorithm, a scoring scheme for the destroy and repair
neighborhoods needs to be decided upon. As in Pisinger and Røpke (2007) we update the scores
at regular intervals rather than in each iteration. Thus scoring information is collected during a
number of iterations before the scores of each neighborhood is updated and the collection restarts.
In the following we use the same naming convention as Pisinger and Røpke (2007). Let the score
interval be the number of iterations which must pass between each score update. Let πj be the
current score, i.e., the score on the basis of which neighborhoods are chosen, and let π̄j the score
accumulated during the score interval (it will be explained later how π̄j is accumulated). The
score πj is updated as follows at the end of a score interval: πj = max{ρ · π̄j

aj
+ (1− ρ) · πj , πmin},

where aj is the number of times the neighborhood has been chosen during the last score interval
(if aj = 0, the score remains identical to the score in the previous interval), ρ is the score reaction
and πmin is a minimum score.

Let |Sx| be the makespan of the current solution, |Sx∗ | the makespan of the current best
solution, and |Sx′ | the makespan of the current candidate created by applying the destroy and
repair neighborhood N+ and N−. Let π̄j be the collected score so far for N+ (the procedure is
equivalent for N−), π̄j is updated as follows:

π̄j = π̄j +







10 if |Sx′ | < |Sx∗ |
5 if |Sx′ | < |Sx|
2|Sx|−|Sx′ |−1 otherwise

This scoring scheme differs slightly from the one employed in Pisinger and Røpke (2007), where
one of three fixed scores are attributed depending on whether the current solution was improved
globally, locally or a worse solution was accepted. The reason for this difference is that the
proposed algorithm only accepts equal or better solutions (while the local search method employed
in Pisinger and Røpke (2007) may accept worse solutions), which can results in many iterations
where there is no improvement at all. If a fixed scoring scheme was used all neighborhoods
would be scored equally bad, while for the employed scheme it is possible to differentiate the
neighborhoods who produce solutions which are (almost) as good as the current and the ones that
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produce solutions which are far worse. Note that even though only better solutions are accepted,
the middle case above may occur because the mode-change-algorithm, precedence augmentation,
and mode diminution procedures (see later) may result in the current solution being worse than
the best found solution.

Modes Throughout the course of the algorithm a feasible mode-selection is maintained. Note
that finding a feasible mode selection is in itself an NP-hard problem. In the initial stage of
the algorithm a feasible mode-selection is found by applying the Minimum Normalized Resources
(MNR) method of Lova et al. (2009). For the few cases, where this method can not find an feasible
mode-selection, we apply exhaustive search.

The destroy and repair neighborhoods work only on the current mode-selection. At regular
intervals a mode-change-algorithm is run, which attempts to find a new mode selection, which
then become the current until the next call to the mode-change-algorithm.

Let UB be the current upper bound, then the new mode-selection should be such that the lower
bound does not exceed UB − 1, otherwise no improving solution can be found using that mode-
selection. In order not to spend too much time searching for mode-selections with LB ≤ UB−1 (if
for instance, the optimal solution has already been found, such a mode-selection may not exists),
the frequency of calls to the mode-change-algorithm is halved when no new mode-selection could
be found. Initially this frequency is set to 2, i.e., every other iteration of the ALNS algorithm.
The mode-change-algorithm can be seen in Algorithm 3.2.

Algorithm 3.2 Pseudocode for the mode-change-algorithm

for all distinct triples (i, j, k) ∈ A×A×A do
for all mode combinations (mi,mj ,mk) ∈Mi ×Mj ×Mk do
if change to (mi,mj ,mk) is feasible then
Make change, and calculate lower bound: LB.
if LB ≤ UB − 1 then
Double call-frequency (if previously halved).
return new mode-selection

end if
Proceed with a new triple.

end if
end for

end for
Halve call-frequency.
return new mode-selection (does not satisfy LB ≤ UB − 1)

Initial mode and resource reductions As described by Sprecher et al. (1997) the number
of modes and resources may be reduced by application of the following preprocessing procedure:
Define r̃ik := min{r̃ikm|m ∈ Mi}, and r̃ik := max{r̃ikm|m ∈ Mi}. A mode m ∈ Mi is called
non-executable if either (1) rikm > Rk, for some k ∈ R, or (2)

∑

j∈A\{i} r̃jk + rikm > R̃k, for

some k ∈ R̃. A mode is called inefficient if there exits another mode m′ of Mi, such that
rikm ≥ rikm′ ∀k ∈ R, and r̃ikm ≥ r̃ikm′ ∀k ∈ R̃. A nonrenewable resource k is called redundant
if
∑

i∈A r̃ik ≤ R̃k. Non-executable and inefficient modes, and redundant nonrenewable resources
can be removed initially by the use of the algorithm described in Algorithm 3.3. This procedure is
also used by Alcaraz et al. (2003), Hartmann (2001), Józefowska et al. (2001), Okada et al. (2010),
Ranjbar et al. (2009), and Tseng and Chen (2009) for their algorithms.

Initial resource strengthening The lower bounds LB2, LB2X, and LB2X’ are dependant
upon the resource usages. If the resource usage of an activity in a certain mode can be increased
without changing the optimal solution, the resulting bounds will be stronger. The following rule
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Algorithm 3.3 Pseudocode for preprocessing of modes and nonrenewable resources

Remove non-executable modes.
repeat
Remove redundant nonrenewable resources.
Remove inefficient modes.

until No mode removed

is thus applied after the initial mode and resource reductions: Let (i, j) ∈ A × A be a pair of
activities. We say that two modes mi ∈Mi and mj ∈ Mj are incompatible if they can not be run
in parallel, either because of precedence relations between the activities, or because of resource
constraints. If a mode m ∈Mi of an activity i ∈ A, is found, which is incompatible with all other
modes of all other activities, then the resource usage is updated as rikm := Rk ∀k ∈ R.

Precedence augmentation When a new upper bound, UB, is found, one is only interested
in finding better solutions. Thus any sequencing of activities which has a lower bound larger
than UB − 1 can be forbidden. Let the head, hj , of an activity j ∈ A be the time that must
pass before activity j can be started and let the tail, tj , be the time that must pass from the
point where activity j has completed until the project can be completed. The head and tail of
an activity j can respectively be read from the entries b0j and bjn of the FSD-matrix. Define
rik := min{rikm|m ∈ Mi}. We now describe how precedence relations may be deduced on the
basis of heads and tails.

The following two rules (3.13) and (3.14), are a simple generalization to the multi-mode case
of rules employed by Fleszar and Hindi (2004) in their variable neighborhood search algorithm.
Let i, j ∈ A be a pair of activities for which no precedence relations exists. Precedence relations
may be deduced as follows:

hj + ti ≥ UB ⇒ i→ j (3.13)

∃k ∈ R : rik + rjk > Rk ∧ hj + p
j
+ p

i
+ ti ≥ UB ⇒ i→ j. (3.14)

We additionally use the following deduction rule: Let i, j, k ∈ A be a triple of activities for
which no precedence relation exists and assume that none of the three can be run in parallel. We
examine all 6 sequencing possibilities of the three activities: (1) i → j → k, (2) i → k → j, (3)
j → i → k, (4) j → k → i, (5) k → i→ j, and (6) k → j → i. Given a sequencing, a → b→ c, a
lower bound on the makespan is ha + p

a
+ p

b
+ p

c
+ tc. In the following let LB(1), . . . , LB(6) be

lower bounds corresponding to the sequences (1)–(6). New precedence relations may be deduced
as follows:

LB(1) ≥ UB ∧ LB(2) ≥ UB ∧ LB(5) ≥ UB ⇒ j → i

LB(3) ≥ UB ∧ LB(4) ≥ UB ∧ LB(6) ≥ UB ⇒ i→ j

LB(1) ≥ UB ∧ LB(2) ≥ UB ∧ LB(3) ≥ UB ⇒ k → i

LB(4) ≥ UB ∧ LB(5) ≥ UB ∧ LB(6) ≥ UB ⇒ i→ k

LB(1) ≥ UB ∧ LB(3) ≥ UB ∧ LB(4) ≥ UB ⇒ k → j

LB(2) ≥ UB ∧ LB(5) ≥ UB ∧ LB(6) ≥ UB ⇒ j → k

When new precedence constraints are added, the current solution may become infeasible and
needs to be “repaired” for the search to go on. Sometimes, this results in the new solution having
a worse makespan than the solution on the basis of which precedence relations were added, which
is inconvenient since the search will continue from this worse solution. It is thus worthwhile to
spend some time repairing a solution such that it is at least as good as the original one. To this
end, Fleszar and Hindi (2004) construct a special repair algorithm. We take a different approach
and use the repair neighborhoods: a partial activity list, and a corresponding set of activities to
be reinserted is constructed as follows: Scan through the activity list of the current solution, if
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an activity is encountered for which a least one predecessor has not yet been encountered, remove
that activity from the list. Each repair neighborhood is in turn given a chance to repair the
solution until either a solution which is at least as good as the original is found or there are no
neighborhoods left, in which case the repaired solution with the best makespan is used.

Mode diminution As is the case with precedence augmentation, when a new upper bound,
UB, is found, only subsequent improvements is of interest. Thus modes, which lead to a lower
bound larger than UB − 1 may be removed. When a new UB is found a mode m ∈ Mi of an
activity i ∈ A is removed, if one of the following expressions are true:

1. hi + pim + ti ≥ UB.

2. bii ≥ −pim + 1 .

3. The current entries of the FSD-matrix implies i must run in parallel with some activity j,
and m is incompatible with all modes of j.

If condition 2 is satisfied the mode can be removed because the condition implies σi + pim −
1 > τi. The removal of a mode may render other modes non-executable, and may render some
nonrenewable resources redundant. Thus the two first steps of Algorithm 3.3 are repeated, if a
mode is removed.

As for precedence augmentation, the removal of modes may render the current solution in-
feasible. If this is the case new modes must be selected for the affected activities. We employ
a two-step approach: Let i ∈ A be some affected activity. First try to select from among the
remaining modes of i one that satisfies the nonrenewable resource constraints. If no such mode
exists, then construct a new mode-selection as for the initial schedule. If this fails, stop.

Early termination Throughout the course of the algorithm a lower bound is maintained
through the entries of the FSD-matrix. If at any point the current upper bound equals the
lower bound, the search may be halted, as an optimal solutions has been found. One way to
calculate lower bounds is through so-called destructive arguments (see Klein and Scholl (1999)):
Assume a minimization problem, with integer-valued objective function f(x), has to be solved, and
that a lower bound LB is known. A so-called restricted problem is formed, where the constraint
f(x) ≤ LB is added. This constraint is then, via the application of so-called reduction algorithms,
used to discover new constraints or modify the problem data so as to strengthen the formulation.
If the problem is discovered to be infeasible, then the lower bound may be improved to LB + 1.

The process of imposing an upper bound of T = UB−1, when a new solutions has been found,
updating the entries of the FSD-matrix, and subsequently applying precedence augmentation and
mode diminution, can be seen as the application of such reduction algorithms. If through this
process the problem is found to be infeasible, the current UB is optimal. The following infeasibility
checks are performed:

1. Some i ∈ A exists such that bii ≥ −pi + 1.

2. Some pair (i, j) exists such that i and j must run in parallel, and this is not feasible for any
combination of modes.

3. Some triple (i, j, k) exists such i, j and k must be run in parallel, and this is not feasible for
any combination of modes.

One could also perform additional infeasibility checks, such as considering even larger sets of activ-
ities, but there is a trade-off between the gain of early termination and the time spent performing
these tests.
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Justification Valls et al. (2004) shows that a simple technique denoted justification can be eas-
ily added to algorithms for the RCPSP, improving the quality of the solution with little extra
computational effort. One speaks of left-justification, right-justification and double-justification.
Left-justification is essentially pulling all activities of a schedule as far towards time zero (left) as
possible, while right-justification is essentially pulling all activities as far towards the time corre-
sponding to the makespan (right) as possible. Double-justification consists of a right-justification
followed by a left-justification. Sometmies a double-justified schedule is better than the original
one. Since this is a simple technique, which has been shown to produce good results, all schedules
produced during the course of the ALNS algorithm are double-justified. This means that in each
iteration at least three schedules are generated (more may be generated if the current solution
must be repaired after precedence augmentation). The number of schedules generated in each
iteration is important since the total number of generated schedules is used as a stopping criteria
when comparing to other heuristics from the literature.

Opportunistic mode-flipping As for justification, opportunistic mode-flipping is a simple tech-
nique, which is applied after the generation of a new schedule, and which may result in an im-
provement. Let i ∈ A be some activity, and let m ∈Mi be the mode in which i is scheduled. Let
m′ 6= m be some other mode of i. If changing the mode of i from m to m′ does not result in an
increase of the makespan, we denote the change a makespan-preserving mode-flip.

Proposition 3.2. Let m(i) be the current mode of an activity i ∈ A for the schedule S. Let
σi be the starting time of i, let ξi = min{σj | j ∈ Si}, be the earliest starting time of a successor
of i, and let R(t0, t1)ik = min{Rk −

∑

j∈A(t)\{i} rjkm(j)| t ∈ [t0, t1]}, be the minimum amount of

capacity left in the interval [t0, t1] on the resource k ∈ R. Let m′ 6= m(i) be some other mode of
i. If R(σi, σi + pim′)ik ≥ rikm′ ∀k ∈ R ∧ σi + pim′ ≤ ξi, then changing m to m′ is a makespan-
preserving mode-flip.

Proof. R(σi, σi+ pim′)ik ≥ rikm′ ∀k ∈ R ensures that no activity scheduled in parallel with i after
the flip, has to be moved earlier or later. The only other effected activities could be successors of
i, but σi + pim′ ≤ ξi ensures these do not have to be moved either.

Opportunistic mode-flipping is applied every time a new schedule is generated: In the order
defined by the activity list each activity is examined to see if a makespan-preserving mode-flip
may be performed. If so, it is done. If more than one makespan-preserving mode-flip exists for
the same activity, the one resulting in the shortest processing time is performed.

The procedure can be seen as an extension of the single-pass improvement method used by
Hartmann (2001). The single-pass improvement method is itself based on the definition of the so-
called multi-mode left shift bounding rule originally used in an exact algorithm, see Sprecher et al.
(1997). The difference between the procedure of Hartmann (2001) and the procedure proposed
here is that for the former only mode-flips, which results in shorter processing times are performed,
while this is not the case for the latter.

Overview An overview of the algorithm can be seen in Algorithm 3.4, where x indicates an ac-
tivity list, while Sx is the associated schedule after it has been generated and |Sx| is the makespan.
Lines 1–2 corresponds to the initial mode and resource reductions, and the initial resource strength-
ening. Lines 5–11 corresponds to the propagation of lower bounds, and subsequent application of
precedence augmentation and mode diminuation. Lines 13–15 is where the mode-change algorithm
is called. On Line 16 the destroy and repair neighborhoods are chosen, and a new activity list is
created. Finally on Line 18 a new schedule is generated and double justification and opportunistic
mode-flipping is applied.
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Algorithm 3.4 Pseudocode for the ALNS algorithm

Require: Initial values of Q and c, the initial scores {πj} and the #schedules max.
1: Remove non-executable and inefficient modes and redundant nonrenewable resources.
2: Strengthen resource constraints.
3: s← 0, LB ← lower bound.
4: Create an initial solution Sx∗ .
5: Do precedence augmentation and mode diminution using |Sx∗ | as upper bound. If this results

in a better lower bound store it in LB.
6: if x∗ is no longer precedence feasible then
7: Repair x∗ using the repair neighborhoods and store the best found schedule in Sx. If this

results in a better makespan then store it as Sx∗ .
8: end if
9: if x∗ is no longer mode feasible then

10: Find new mode-selection for x∗. If this results in a better makespan then store it as Sx∗ .
11: end if
12: while s < max and |Sx∗ | > LB do
13: if iterations since last run of mode-change-algorithm is large enough then
14: Run mode-change-algorithm
15: end if
16: Choose a destroy and repair neighborhood (N−, N+) based on {πj} and create a new

candidate activity list x′ from the current schedule Sx.
17: if not Tabu(x′) then
18: Create a new candidate schedule Sx′′ from x′ using serial SGS, double justification, and

opportunistic mode-flipping.
19: if |Sx′′ | < |Sx∗ | then
20: Sx∗ ← Sx′′

21: Repeat the procedure from line 5 – 11 with the new best solution Sx∗ .
22: else if |Sx′′ | ≤ |Sx| then
23: Sx ← Sx′′

24: end if
25: end if
26: Q← c ·Q
27: Update the number of generated schedules s.
28: Update the scores πj for N− and N+

29: end while
30: return Sx∗

3.6 Neighborhoods

An important part of an ALNS algorithm are the destroy and repair neighborhoods. Even though
there is an adaptive layer, one should remain careful about adding too many neighborhoods,
especially when only a limited number of iterations is allowed. The reason is that a number of
iterations will be needed before any neighborhoods performing poorly on the current instance will
have been filtered out, and these neighborhoods will end up taking time from the good ones. It is
also important to have a good mix of neighborhoods, which are good at search intensification and
diversification. In the following we describe the destroy and repair neighborhoods employed.

Destroy neighborhoods Given the parameterQ and an activity list, L, a destroy neighborhood
must remove Q activities from L. Some of the destroy neighborhoods share the same structure:
A predicate function marks activities from L. The marked activities are then removed at random
from L along with zero or more activities relating to the ones removed, until Q activities are
removed, or no more marked activities are left. More formally: For j ∈ A the predecessor-
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cluster of j is defined as Cp(j) = {i ∈ A|i ∈ Pj ∨ σi + pim(i) = σj}, and the cluster of j as
Cc(j) = {i ∈ A|i ∈ Cp(j) ∨ i ∈ Sj ∨ σj + pjm(i) = σi}, where σj denotes the starting time
of activity j. Let p : A → {0, 1} be some predicate, then a core removal candidate set, C, is
constructed as C = {j ∈ A|p(j) = 1}. At random an activity j from C is removed from the list
along with elements from either Cp(j) or Cc(j) (depending on the neighborhood) until either the
set C is empty or Q elements have been removed from L.

The idea behind clusters is that one wants as much flexibility as possible for the repair neighbor-
hood, e.g., if all the predecessors and successors of an activity are left in place there is potentially
little room for inserting the activity in new positions.

There are in total 10 destroy neighborhoods, which are described below.

• random (two flavors) This neighborhood ensures diversification by randomly removing Q
activities from the current solution. It comes in two flavors, one where predecessor-clustering
is used and one where clustering is used.

• most-mobile Let j ∈ A. As in Fleszar and Hindi (2004), we define the left limit LL(j) and
the right limit RL(j) as LL(j) = max{γi|i ∈ Pj}+1 and RL(j) = min{γi|i ∈ Sj}−1, where
γi is the position of i within the activity list. Now, the mobility, mob(j), of j is defined as
mob(j) = RL(j)− LL(j).

This neighborhood selects the Q activities with the highest mobility from the current activity
list and also ensures diversification, but in a different way than the random neighborhood
described above. It ensures that the neighborhood explored is large by selecting activities
which have many reinsertion possibilities.

• non-peak (two flavors) In the hybrid genetic algorithm proposed by Valls et al. (2008) the
peak crossover operator employed passes on to its children the parts of the schedules with
high utilization, so-called peaks. Similarly we define a non-peak predicate. A peak is defined
in the same way as by Valls et al. (2008): Given a schedule, S, the Resource Utilization
Ratio is defined as follows

RUR(t) =
1

|R| ·
∑

j∈A(t)

∑

k∈R

rjk
Rk

Given some δ ∈ [0; 1] we say that a point in time, t, is of high utilization if RUR(t) ≥ δ.
Similarly we say that a time interval I is of high utilization if ∀t ∈ I : RUR(t) ≥ δ. Let
I be the set of disjunctive maximal intervals of high utilization for the schedule S, then a
peak activity j ∈ A is an activity which satisfies ∃I ∈ I : [σj ;σj + pjm(j)] ∩ I 6= ∅, i.e., all
activities, which are active during some interval of high utilization. A non-peak activity is
an activity which is not a peak activity. The non-peak predicate selects all activities, which
are non-peak activities.

This neighborhood uses the non-peak predicate and tries to preserve the structure of the
solution where the utilization is good, and destroy the parts where it is not. The neighbor-
hood comes in two flavors one where predecessor-clustering is used and one where clustering
is used. In both cases the activities are chosen at random from the removal candidate set.

• critical-path (two flavors) Given the current schedule S we construct a weighted directed
graph G = (A, E), where E = {(i, j) ∈ A × A|σi + pim(i) = σj} and the weight of a
vertex j is pjm(j). Since the schedule S does not contains “holes” where no activities are
in progress, there must exist at least one path with weight equal to the makespan of S. In
order to improve the makespan, at least one of the activities on this path must be moved
elsewhere. The critical-path predicate selects all activities, which are part of a critical path
and at random selects Q for removal. The neighborhood comes in two flavors, one where
predecessor-clustering is used and one where clustering is used.

• segment This neighborhood ensures a certain intensification by selecting a subsequence of
length Q from the activity list. This subsequence corresponds to a sub-schedule, which can
hopefully be improved.
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• time-windows (two flavors) Let the head and tail of an activity j be given by hj and
tj respectively, and let UB be the current upper bound. For any schedule to improve upon
this upper bound, j must be scheduled in the interval [hj ;UB − tj − (pjm(j) − p

j
)]. The

time-window predicate selects all activities which are scheduled outside this interval in the
current schedule.

The neighborhood comes in two flavors, one where predecessor-clustering is used and one
where clustering is used. The activities from the candidate set are chosen at random. If the
candidate set has less than Q elements, additional activities are randomly chosen.

Repair neighborhoods Given a partial activity list and a set of activities to be reinserted a
repair neighborhood must construct a new precedence ordered activity list. Again each repair
neighborhood shares some structure: Given an ordering of the set of activities to be reinserted,
the activities are considered one at a time, and inserted into the activity list such that the activity
list is still precedence ordered. Each activity j is inserted randomly within the interval defined by
LL(j) and RL(j). A similar move operator was used by Fleszar and Hindi (2004).

There are in total 11 repair neighborhoods, where each neighborhood corresponds to some
ordering of the candidates to be reinserted. We employ ordering corresponding to the following
well-known priority-rules for the RCPSP (see for instance Kolisch and Hartmann (1999) or Hart-
mann (1999)): Shortest processing time (SPT), most total successors (MTS), earliest start time
(EST), minimum latest finish time (LFT), minimum slack (MSLK), greatest rank positional weight
(GRPW), Weighted Resource Utilization and Precedence (WRUP) and minimum latest start time
(LST). These neighborhoods ensure that the solution will be a mix of these priority rules and is
in a sense similar to multi-pass methods, where the priority rule is changed between passes.

We define two additional priority rules based on the volume of an activity: For some j ∈ A, we
define the volume of j as v(j) = pjm(j) ·

∏

r∈{r̃jkm(j) | r̃jkm(j)>0,k∈R} r. The first priority rule called

smallest volume first (SVF) orders the activities non-decreasingly w.r.t volume, while the second
priority rule called largest volume first (LVF) orders the activities non-increasingly w.r.t. volume.

The two last orderings, are the random ordering (RAN), and the reverse (REV) ordering,
which reverses the order of the activities in the current activity list.

3.7 Computational experiments

In this section we present the computational experiments performed. This includes the quality and
effect of the lower bounds and the effects of the different components of the proposed algorithm.
We conclude with a comparison to other algorithms for the MRCPSP.

The algorithm has been coded in C++, compiled with gcc 4.4.3 and the experiments have been
run on a PC with 2 Intel(R) Xeon(R) CPU X5550 @ 2.67GHz (16 cores in total, but only a single
core is used), with 24 GB of RAM, and running Ubuntu 10.4. The code is available for download
at http://diku.dk/~laurent.

The experiments have been performed on the well-known MRCPSP benchmark classes, J10,
J12, J14, J16, J18, J20 and J30 available at http://129.187.106.231/psplib/. The benchmark
classes consists of instances containing respectively 10, 12, 14, 16, 18, 20, and 30 non-dummy
activities. Each activity may be performed in up to 3 different modes, there are two nonrenewable,
and two renewable resources. The number of feasible instances in each benchmark class J10–J20
is respectively 536, 547, 551, 550, 552, and 554. For these classes all optimal solutions are known.
This is not the case for J30. Here there are in total 640 instances of which 552 are known to be
feasible.

In order to establish whether the remaining 88 instances of J30 are in fact infeasible, we
construct an Interger Programming (IP) containing only the nonrenewable resource costraints,
and use ILOG CPLEX 12.1 to solve the problems. This confirms that these 88 instances are
infeasible. As a result, when experimenting on this benchmark class J30, the algorithm is only
run on the feasible instances.
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Each experiment has been repeated 10 times and the average is reported. Traditionally the
maximum number of generated schedules is used as stopping criteria in order to make it easy to
compare algorithms. One generated schedule should correspond to the work needed to assign all
activities a starting time, as is done by a pass using the serial SGS. For the ALNS algorithm we
count 1 schedule for every conversion of the activity list into a schedule, 2 additional schedules
for the application of double justification, and finally 1 additional schedule for the application
of opportunistic mode-flipping. Unless otherwise specified 5000 generated schedules is used as
stopping criteria.

The following parameters are set as found by Muller (2009): score reaction = 0.2, score inter-
val = 5, initial Q = 40%, minimal score = 10−4, and cooling coefficient c set such that Q reaches
a percentage corresponding to one activity after the number of generated schedules specified as
the stopping criteria.

3.7.1 Lower bounds

We here examine the quality of the lower bounds, and the time spend to calculate them on the
J10, J20, and J30 benchmark classes. Each bound is initially tested individually. Based on these
tests, two groups of lower bounds are created, and additional experiments performed.

The results of the initial experiment can be seen in Table 3.1. As can be seen, for all classes
the bound LBX2 performs the best. However, LBX2 has a large computational cost. LBX1 is
relatively close to LBX2 while taking considerably less time.

Using LB2X to replace LB2 as a stand-alone bound improves the bound, and does not re-
sult in a significant increase in computational time (around a factor 2), given the relatively low
computational times (in the order of seconds in total for around 550 instances).

Using the simpler bound LB2X’ to replace LB2 as a stand-alone bound, is again an improvement
compared to LB2, while the computational time is unchanged compared to LB2. However, the
bound improvement is less than when using LB2X, which is as expected.

Using resource strengthening as expected improves the bound for LB2, LB2X, and LB2X’. Most
significantly on the smaller J10 instance. In the following we thus enable resource strengthening.

Using the bound LB2X instead of LB2 for the inner subproblems is effective, yielding improved
lower bounds in all cases, although in many cases the improvement is slight. The increase in
computational time from using LBX2 instead of LB2 could be deemed acceptable for lower bounds
other than LBX1 and LBX2, where it is prohibitively large. The reason is that more inner
subproblems are evaluated for LBX1, and LBX2 than for the remaining. Using the simpler bound
LB2X’ gives results relatively close to using LB2X but using less computational time.

To further test the lower bounds we create two groups: the group LBS contains LB1, LB2X,
LB6, LB8, and LB11, and the group LBSX1 contains all the lower bounds of the group LBS
and then the LBX1. The reason for this experiment, is that we want to see whether it is worth
including the time-consuming bound LBX1, and whether it is worth using LB2X, or LB2X’ when
evaluating inner subproblems.

The results from comparing these two groups can be seen in Table 3.2. As can be seen including
LBX1 does improve the lower bounds, though as expected at an increased computational time.
Using LB2X, and LB2X’ (rather than LB2) for the inner subproblems also improves the lower
bounds, but only slightly. Again the running time increases. However, the increase is much
smaller for LB2X’ than for LB2X.

We deem that the improvement in quality from including LBX1 is worth the increase in run-
ning time, while we choose not to use LB2X, nor LB2X’ when calculating lower bounds of inner
subproblems, as the improvement in quality is only slight compared to the additional running
time incurred. In the sequel, unless otherwise stated we thus employ LBSX1, with LB2 for inner
subproblems.
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Table 3.1: Quality of different lower bounds, and the time spend. The Avg. column is the average
relative distance in percent to the critical path lower bound. Thus higher is better. The T. Time column
is the total time used in seconds to calculate the bound accumulated across all the instances of a class.
LB2X’, and LB2X indicates that the respective bound is used instead of LB2 when calculating lower
bounds on inner subproblems (empty for lower bounds which do not use inner subproblems, and for LB2
it means that this bound is replaced by the respective bound). For each class boldfont indicates the best
bound, while for each bound an underline indicates the best result (where applicable). An asterix (*)
means that resource strengthening has not been used.

Normal LB2X’ LB2X

Bound Avg.(%) T. time(s) Avg.(%) T. time(s) Avg.(%) T. time(s)

J10

LB1 0.00 0.1 – – – –
LB2 4.99 0.1 5.14 0.1 5.30 0.2
LB2* 3.79 0.1 3.93 0.1 4.05 0.2
LB6 5.78 0.2 5.84 0.1 5.98 0.4
LB8 3.58 0.1 – – – –
LB10 5.12 0.1 5.25 0.1 5.35 0.2
LB11 5.45 0.1 5.58 0.1 5.70 0.2
LBX1 5.87 0.3 5.91 0.5 5.92 6.7
LBX2 5.95 1.3 5.98 2.6 5.99 34.7

J20

LB1 0.00 0.1 – – – –
LB2 1.81 0.4 1.91 0.4 1.97 0.9
LB2* 1.79 0.4 1.90 0.4 1.96 0.9
LB6 1.36 1.0 1.42 1.1 1.47 4.7
LB8 0.45 0.9 – – – –
LB10 1.62 0.4 1.70 0.4 1.73 0.8
LB11 1.97 0.6 2.06 0.7 2.11 1.1
LBX1 2.14 6.1 2.18 10.9 2.20 139.8
LBX2 2.22 66.3 2.24 128.1 2.24 1571.9

J30

LB1 0.00 0.2 – – – –
LB2 2.11 0.9 2.21 0.9 2.25 2.1
LB2* 2.10 0.7 2.20 1.0 2.24 2.1
LB6 1.29 3.1 1.33 3.5 1.36 17.0
LB8 0.04 2.4 – – – –
LB10 1.12 0.9 1.18 1.0 1.21 2.2
LB11 2.11 2.1 2.21 2.1 2.25 3.4
LBX1 2.28 31.1 2.35 54.2 2.38 649.2
LBX2 2.31 539.1 2.36 918.8 2.39 10875.9

Table 3.2: Quality of groups of lower bounds, and the time spend. LBS contains LB1, LB2X, LB6, LB8
and LB11. LBSX1 in addition contains LBX1. The columns are equivalent to those of Table 3.1.

Normal LB2X’ LB2X

Bound Avg.(%) T. time(s) Avg.(%) T. time(s) Avg.(%) T. time(s)

J10
LBS 6.47 0.4 6.48 0.5 6.49 0.8
LBSX1 6.90 0.8 6.92 1.0 6.94 7.8

J20
LBS 2.22 3.1 2.24 3.2 2.24 7.6
LBSX1 2.39 9.5 2.43 14.8 2.45 152.9

J30
LBS 2.26 9.4 2.27 9.8 2.27 25.2
LBSX1 2.34 40.6 2.37 63.9 2.40 670.8
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3.7.2 Components

We here examine the effects of the different components of precedence augmentation, mode-
diminution, opportunistic mode-flipping, tabu-list, scoring, and lower bounds in order to judge
their effectiveness. For each of the experiments, all components are enabled, except for the one
being examined.

Precedence augmentation We first examine the effect of precedence augmentation. For each
of the J10, J20, and J30 benchmark classes we make two experiments, with and without precedence
augmentation enabled. The results can be seen in Table 3.3. Precedence augmentation does not
appear to have a significant impact on the quality of the solutions. We believe that the reason
for this is that even though the search space is narrowed, the algorithm may continue from a
worse solution than the current best, because the addition of precedence relations has rendered
the current best solution infeasible. This means that fewer iterations will be used for searching
neighborhoods of best solution.

Table 3.3: Shows effect of precedence augmentation. Avg. is the average relative distance in percent
to the critical path lower bound, Dev. is the standard deviation of this value across the 10 runs which
constitute the experiment, Added is the average number of precedence relations added, and Time is the
average time used per instance. boldface indicates the best average relative distance for each benchmark
class.

Precedence augmentation

Without With

Avg.(%) Dev. Time(s) Avg.(%) Dev. Added Time(s)

J10 32.36 0.036 0.03 32.32 0.029 1.08 0.03
J20 19.12 0.084 0.09 19.13 0.067 5.93 0.11
J30 16.01 0.080 0.34 16.01 0.101 16.11 0.40

Mode-diminution We next examine the effect of mode-diminution. We proceed as earlier and
make two different experiments, with and without mode-diminution enabled. The results can
be seen in Table 3.4. The reason why there are still modes removed when mode-diminution is
disabled is that the initial mode removal procedure is still run. As can be seen mode-diminution
gives an improvement in solution quality. We judge the increase in computational time is worth
the improved solutions, and include mode-diminution for the final results.

Table 3.4: Shows effect of mode-diminution. The columns Avg., Dev. and Time, and boldface
notation is as earlier. The Rem. column is the average number of modes removed.

Mode diminution

Without With

Avg.(%) Dev. Rem. Time(s) Avg.(%) Dev. Rem. Time(s)

J10 32.86 0.055 1.99 0.04 32.35 0.055 7.62 0.03
J20 20.25 0.143 2.62 0.11 19.12 0.092 9.95 0.11
J30 16.86 0.101 3.52 0.34 15.98 0.086 10.71 0.42

Opportunistic mode-flipping We next examine the effect of opportunistic mode-flipping. We
proceed as earlier and make two different experiments, with and without opportunistic mode-
flipping enabled. As this procedure can be seen as an extension of the single-pass improvement
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method used by Hartmann (2001) it would be of interest to compare to this procedure also. We
thus perform an experiment, where mode-flipping only occurs, if the processing time is reduced.
This is equivalent to the procedure used in Hartmann (2001).

The results can be seen in Table 3.5. Opportunistic mode-flipping has a significant effect on
the quality of the solutions. This effect gets more pronounced as the size of the instances grow.
The total time used is also decreased when using this technique, which is explained by the fact
that the upper bound is better, and thus more often the algorithm may stop early because the
lower bound has been reached.

Opportunistic mode-flipping improves upon the results of the procedure equivalent to the one
used by Hartmann (2001), which justifies the proposed extension. Opportunistic mode-flipping
is not tied to the algorithm itself, and could be plugged into other algorithms for the MRCPSP,
perhaps resulting in improved results, at very little extra work. We include opportunistic mode-
flipping for the final results.

Table 3.5: Shows the effect of opportunistic mode-flipping. In the last group (With – only shorter),
mode-flipping only occurs if the processing time is reduced. The columns Avg., Dev. and Time, and
boldface notation is as earlier.

Opportunistic mode-flipping

Without With With – only shorter

Avg.(%) Dev. Time(s) Avg.(%) Dev. Time(s) Avg.(%) Dev. Time(s)

J10 33.03 0.113 0.03 32.35 0.040 0.03 32.44 0.659 0.03
J20 24.67 0.169 0.14 19.13 0.071 0.11 20.19 0.146 0.12
J30 24.28 0.164 0.59 16.03 0.076 0.42 17.88 0.153 0.45

Tabu-list We next examine the effect of the tabu-list. We proceed as earlier and make two
different experiments, with and without the tabu-list enabled. The results can be seen in Table 3.6.
The tabu-list has a slightly positive effect. The difference in time consumption is very low. We
thus enable the tabu-list for the final results.

Table 3.6: Shows the effect of the tabu-list. The columns Avg., Dev. and Time, and boldface notation
is as earlier.

Tabu list

Without With

Avg.(%) Dev. Time(s) Avg.(%) Dev. Time(s)

J10 32.36 0.034 0.02 32.33 0.039 0.03
J20 19.18 0.085 0.11 19.16 0.092 0.11
J30 16.07 0.137 0.41 16.04 0.078 0.42

Adaptive layer We next examine the effect of the adaptive layer. We proceed as earlier and
make two different experiments, in the first experiment neighborhoods are picked at random dis-
regarding how they have performed, while in the second experiment the scoring scheme is enabled.
As 5000 schedules, will only result in around 1500-2000 iterations of the of the ALNS algorithm,
which may not be enough for the addaptive layer to stabilize, we additionally peform a run with
500000 schedules. The results can be seen in Table 3.7. The adaptive layer, disappointingly, has
very slight impact on the solutions, in one situation the impact is even negative. However, as
there is possitive impact for the remaning cases, we enable the adaptive layer for the final results.
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Table 3.7: Shows the effect of the adaptive layer. The columns Avg., Dev. and Time, and boldface
notation is as earlier.

Adaptive layer

Without With

#Sch. Avg.(%) Dev. Time(s) Avg.(%) Dev. Time(s)

5000
J10 32.34 0.035 0.03 32.32 0.039 0.03
J20 19.11 0.089 0.11 19.07 0.075 0.11
J30 16.04 0.093 0.42 16.00 0.106 0.42

500000
J10 32.26 0.022 2.9 32.26 0.025 2.8
J20 18.14 0.051 6.4 18.18 0.063 6.4
J30 14.62 0.040 13.1 14.60 0.065 13.2

Lower bound arguments We finally examine the effect of using strong bound arguments, as
opposed to the simple critical path lower bound. We proceed as earlier and make two different
experiments, in the first experiment the algorithm is run using the set of lower bounds LBSX1,
while in the second experiment only the critical path lower bound (LB1) is used. The results
can be seen in Table 3.8. As can be seen a stronger bound argument, does not appear to have
a significant impact on the quality of the solutions, nor on the number of precedence relations
added, nor the number of modes removed. Even though there is an increase in computational
time, we include the stronger bound set for the final results, as there is an improvement for two
of the benchmark classes, though slight.

Table 3.8: Effect of using strong lower bound arguments as opposed to the critical path lower bound.
The column LBSX1 are the results with the LBSX1 lower bounds enabled, while the column LB1 are
the results with the critical path lower bound alone. The rows indicate respectively the average deviation
from the critical path lower bound, the average number of precedence relations added, the average number
of modes removed, and average time used per instance. boldface indicates the best result for each line
and benchmark class.

J10 J20 J30

LBSX1 LB1 LBSX1 LB1 LBSX1 LB1

Avg. dev.(%) 32.33 32.36 19.14 19.12 16.00 16.01
Prec. added 1.08 0.97 5.93 5.75 16.79 15.81
Modes rem. 7.60 7.25 9.90 9.74 10.56 10.64
Time(s) 0.03 0.03 0.11 0.07 0.42 0.19

3.7.3 Final results

In this section we compare the results of the proposed heuristics to other heuristics from the
literature. To recap, for these final experiments: the bound group LBSX1 is used with LB2 for
the inner subproblems, resource strengthening and mode-removal is applied initially, precedence
augmentation is disabled, and mode-diminution, opportunistic mode-flipping, the tabu-list, and
the adaptive layer is enabled.

The results from running the algorithm on the benchmark classes for different values of the
maximum number of generated schedules can be seen in Table 3.9. Table 3.10 gives a comparison
to other heuristics for the MRCPSP found in the literature on the benchmark classes J10-J20
for 5000 schedules. Table 3.11 gives a comparison to other heuristics for the MRCPSP on the
benchmark class J30 for 5000 schedules. As not all solutions to this benchmark class are known
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to optimality, we only state the average relative deviation to the critical path lower bound. Not
all heuristics state their results as a function of the number of generated schedules. To be able to
compare with these, we do as Lova et al. (2009). The results can be seen in Table 3.12. We note
that we in this case beat the algorithm of Lova et al. (2009), when using 50.000 schedules, though
using more computational time.

Table 3.9: Results on benchmark instances J10-J20, and J30 for different number of schedules. The
Avg. column is the average relative distance in percent to the optimal solutions for J10–J20, and for J30
it is the average relative deviation from the critical path lower bound. Opt. is the percentage of instances
solved to optimality for J10–J20, and for J30 it is the number of instances with solutions equal to the best
known. Time is the average time used per instance.

#Sch. Avg.(%) Opt.(%) Time(s)

J10

1000 0.26 95.56 0.01
3000 0.09 98.41 0.02
5000 0.05 99.01 0.03
6000 0.05 99.09 0.03
50000 0.02 99.76 0.50
500000 0.02 99.72 2.90

J14

1000 1.13 79.24 0.03
3000 0.70 85.99 0.05
5000 0.55 88.75 0.08
6000 0.50 89.40 0.07
50000 0.28 94.03 0.39
500000 0.21 95.86 5.96

J18

1000 1.89 69.84 0.24
3000 1.28 76.30 0.31
5000 1.14 78.75 0.31
6000 1.06 79.46 0.32
50000 0.77 85.89 0.78
500000 0.62 89.09 5.53

J30

1000 17.04 58.95 0.20
3000 16.32 61.68 0.27
5000 15.96 62.97 0.34
6000 15.95 63.06 0.37
50000 15.11 67.74 1.63
500000 14.58 72.81 13.67

#Sch. Avg.(%) Opt.(%) Time(s)

J12

1000 0.56 89.89 0.01
3000 0.26 94.7 0.02
5000 0.20 95.59 0.03
6000 0.18 96.07 0.04
50000 0.11 97.77 0.43
500000 0.06 98.72 5.84

J16

1000 1.45 74.49 0.06
3000 0.93 82.07 0.07
5000 0.78 84.76 0.09
6000 0.71 86.35 0.10
50000 0.48 91.16 0.46
500000 0.40 92.40 4.55

J20

1000 2.32 65.32 0.05
3000 1.72 70.72 0.07
5000 1.52 72.87 0.10
6000 1.46 73.57 0.11
50000 1.05 81.06 0.61
500000 0.85 85.24 6.34

New best solutions During the experiments new best solutions were found for the following
instances of the J30 benchmark class (compared to those reported by the PSPLIB): j3013 4 (new
solution 41, previous was 42), j3046 7.mm (new solution 43, previous was 44), and j3047 7.mm

(new solution 28, previous was 29).

3.8 Conclusion

We have presented an ALNS-based algorithm for the MRCPSP. As part of this algorithm we
have proposed three new multi-mode specific bounds for the MRCPSP: one (LB2X) is based on a
Lagrange relaxation and is an extension of the capacity bound LB2, while the two others (LBX1
and LBX2) are based on testing all combination of mode assignments for respectively pairs and
triples of activities. A lightweight version of LB2X, LB2X’, was also examined. Computational
experiments have shown that these bounds are an improvement over existing bounds found in the
literature (which do not take multiple modes into account), but take additional computation time.
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Table 3.10: Comparison to other heuristics on the benchmark class J10-J20, and for 5000 schedules.
The Avg. column is the average relative distance in percent to the optimal solutions, and Opt. is the
percentage of instances solved to optimality

J10 Avg. Opt.
(%) (%)

Van Peteghem and Vanhoucke
(2009)

0.02 99.44

ALNS 0.05 99.01
Lova et al. (2009) 0.06 98.51
Chiang et al. (2008) 0.16 –
Ranjbar et al. (2009) 0.18 –
Alcaraz et al. (2003) 0.24 –
Tseng and Chen (2009) 0.33 95.16
Józefowska et al. (2001) 1.16 –

J12 Avg. Opt.
(%) (%)

Van Peteghem and Vanhoucke
(2009)

0.07 98.35

Lova et al. (2009) 0.17 96.53
ALNS 0.20 95.59
Tseng and Chen (2009) 0.52 90.57
Ranjbar et al. (2009) 0.65 –
Alcaraz et al. (2003) 0.73 –
Józefowska et al. (2001) 1.73 –

J14 Avg. Opt.
(%) (%)

Van Peteghem and Vanhoucke
(2009)

0.20 95.10

Lova et al. (2009) 0.32 92.92
ALNS 0.55 88.75
Ranjbar et al. (2009) 0.89 –
Tseng and Chen (2009) 0.92 82.03
Alcaraz et al. (2003) 1.00 –
Józefowska et al. (2001) 2.60 –

J16 Avg. Opt.
(%) (%)

Van Peteghem and Vanhoucke
(2009)

0.39 90.36

Lova et al. (2009) 0.44 90.00
ALNS 0.78 84.76
Ranjbar et al. (2009) 0.95 –
Tseng and Chen (2009) 1.09 77.39
Alcaraz et al. (2003) 1.12 –
Józefowska et al. (2001) 4.07 –

J18 Avg. Opt.
(%) (%)

Van Peteghem and Vanhoucke
(2009)

0.52 86.23

Lova et al. (2009) 0.63 84.96
ALNS 1.14 78.75
Ranjbar et al. (2009) 1.21 –
Tseng and Chen (2009) 1.30 73.38
Alcaraz et al. (2003) 1.43 –
Józefowska et al. (2001) 5.52 –

J20 Avg. Opt.
(%) (%)

Van Peteghem and Vanhoucke
(2009)

0.70 81.59

Lova et al. (2009) 0.87 80.32
Chiang et al. (2008) 1.44 –
ALNS 1.52 72.87
Ranjbar et al. (2009) 1.64 –
Tseng and Chen (2009) 1.71 66.66
Alcaraz et al. (2003) 1.91 –
Józefowska et al. (2001) 6.74 –

Table 3.11: Comparison to other heuristics on the benchmark class J30, and for 5000 schedules. The
Avg. column is the average relative distance in percent to the optimal solutions.

J30 Avg.(%)

Van Peteghem and Vanhoucke (2009) 11.90
Lova et al. (2009) 14.77
ALNS 15.96
Tseng and Chen (2009) 18.32

The algorithm employs a number of different techniques for reducing the search space. Again
computational experiments have shown that some of these techniques (mode-diminuation and
opportunistic mode-flipping) are effective, while others (precedence augmentation, the adaptive
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Table 3.12: Comparison to other heuristics on the benchmark class J10. The columns Avg., Opt., and
Time are as earlier, while #Schedules is the maximum number of schedules for the algorithms (where
applicable).

J10 Avg.(%) Opt.(%) #Schedules Time(s)

ALNS 0.02 99.76 50,000 0.50s
Lova et al. (2009) 0.04 99.07 6,000 0.10sa

ALNS 0.05 99.09 6,000 0.03s
Hartmann (2001) 0.10 98.10 – –

Alcaraz et al. (2003) 0.19 96.50 6,000 0.19sb

Bouleimen and Lecocq (2003)c 0.21 96.30 – 19.3sc

Kolisch and Drexl (1997) 0.50 91.80 6,000 –
Ozdamar (1999) 0.86 88.10 6,000 –
a Pentium with 3.0 GHz and 1 Gbytes of RAM.
b Pentium III with 1.13 GHz and 256 MB RAM.
c Pentium with 100 MHz and 32 Mbytes of RAM.

layer and the tabu-list) do not have a significant impact. For the techniques that employ lower
bound arguments (precedence augmentation and mode-diminuation), we have investigated the
effect of the quality of lower bound on the effectiveness of the techniques. Surprisingly it turns
out that the quality of the bound argument only has a very small influence.

Two relatively simple techniques, opportunistic mode-flipping and mode diminution, proved
to be effective. An interesting area of research would be to investigate whether these techniques
could be beneficially incorporated into other heuristics for the MRCPSP.

Experiments on a set of standard benchmark instances from the literature have shown that
the ALNS algorithm is competitive with other state-of-the-art heuristics, lying among the three
best heuristics from the literature. We were able to find a new best solutions for 3 the benchmark
instances.

Most lower bound arguments found in the literature target the SRCPSP, and one suggestions
for further research is to investigate MRCPSP-speficic lower bounds.

The computational experiments showed that the adaptive component of the algorithm had a
very small impact. Another suggestion for further research, could be to examine the reason for
this more closely, and to experiment with other types of methods for selecting neighborhoods.
Such research would be of interest for the ALNS framework as a hole.
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Abstract We consider the second-order conic equivalent of the classic knapsack polytope where the

variables are subject to generalized upper bound constraints. We describe and compare a number of

separation and extension algorithms which make use of the extra structure implied by the generalized

upper bound constraints in order to strengthen the second-order conic equivalent of the classic cover cuts.

We show that determining whether a cover can be extended with a variable is NP-hard. Computational

experiments are performed comparing the proposed separation and extension algorithms. These exper-

iments show that applying these extended cover cuts can greatly improve solution time of second-order

cone programs.

4.1 Introduction

We consider the second-order conic equivalent of the classic knapsack polytope, where the variables
are subject to so-called generalized upper bound (GUB) constraints. In the following we first define
what is understood by GUB constraints, and then define the second-order conic knapsack polytope.

Let N be a finite index set and let Q1, . . . , Q|K| be a division of N into |K| independent sets.
i.e.,

⋃

k∈K Qk = N , and Qi ∩Qj = ∅, ∀i, j ∈ K, i 6= j. GUB constraints are a set of constraints of
the form

∑

i∈Qk

xi ≤ 1, ∀k ∈ K,

where x ∈ {0, 1}|N |. In the following we will also refer to the sets Q1, . . . , Q|K| as GUB-sets.

For a subset S ⊆ N and k ∈ K, define S∩k := S∩Qk and S\k := S\Qk, and for some v ∈ R|N |

define v(S) :=
∑

i∈S vi. For a binary vector x ∈ {0, 1}|N |, define Sx := {i ∈ N : xi = 1}. Let
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f : 2|N | →R be a set function defined as

f(S) := a(S) + ω
√

d(S),

where a ∈ R+|N |
0 , d ∈ R+|N |

0 , and ω ≥ 0. The polytope considered here is

X :=







x ∈ {0, 1}|N | : f(Sx) ≤ b,
∑

i∈Qk

xi ≤ 1, ∀k ∈ K







,

where b ≥ 0. We denote X the second-order conic knapsack polytope with GUB constraints. We
use the term second-order conic because the constraint f(Sx) ≤ b is equivalent to the second-order
cone constraint: ax+ ω‖Dx‖2 ≤ b, where Dii =

√
di, and Dij = 0 for i 6= j.

The motivation for considering the function f is that constraints of the form f(Sx) ≤ b arise
when modelling certain types of chance-constraints of the form: prob (ax ≤ b) ≥ ǫ, where a is an
n-vector of random variables, x is an n-vector of binary variables, b ∈ R, and ǫ ∈ [0, 1]. If each
variable ai is normally distributed with mean µi and variance σ2

i , and ǫ ≥ 1
2 , the above chance-

constraint can be formulated as the second-order cone constraint (see e.g. Boyd and Vandenberghe
(2004)):

n
∑

i=0

µixi +Φ−1(ǫ)
√

σ2
i x

2
i ≤ b,

where Φ is the cumulative distribution function. Since x2
i = xi for binary variables, the above is

equivalent to f(Sx) ≤ b with a = (µ1, . . . , µn), d = (σ2
1 , . . . , σ

2
n), and ω = Φ−1(ǫ).

The motivation for considering GUB constraints is the same as for the linear case: GUB
constraints may be used the strengthen cover inequalities. Note that if one changes the “≤” to
“=” in the GUB constraints the techniques described here are still applicable.

As mentioned earlier, we focus on cuts derived from X . The literature pertaining to these kind
of cuts is quite sparse: Atamtürk and Narayanan (2010) and Cezik and Iyengar (2005) describe
rounding cuts, Atamtürk and Narayanan (2009a) describe lifting procedures and Atamtürk and
Narayanan (2009b) consider the sub-modular knapsack polytope, which is the same as the polytope
considered here except that there are no GUB constraints, and f need only be sub-modular. For
this polytope, the authors describe the conic equivalent of cover inequalities known from mixed
integer linear programming, and present a heuristic for separating them based on a LP-relaxation
of the separation problem. They additionally describe procedures for extending and lifting cover
inequalities in order to strengthen them. As mentioned the polytope considered by the authors
does not include GUB constraints, and this work can be seen as an extension to the case where
GUB constraints are present.

Cover inequalities for linear knapsack constraints was introduced independently by Balas
(1975), Hammer et al. (1975), and Wolsey (1975). Both Balas (1975) and Wolsey (1975) treat the
lifting of such cover inequalities. Complexity results for obtaining lifted cover inequalities can be
found in Zemel (1989) and Hartvigsen and Zemel (1992). If GUB constraints are present, these
may be used during lifting to further strengthen the cover inequalities. Lifting has in this setting
been treated by Johnson and Padberg (1981), Wolsey (1990) and Nemhauser and Vance (1994).
The separation problem has been examined by a number of people: Ferreira et al. (1996), Klabjan
et al. (1998), and Gu et al. (1999) show that the separation problem for different classes of cover
inequalities is NP -hard, while Crowder et al. (1983) have shown that the problem is equivalent
to solving a knapsack problem. A number of exact and heuristic methods exists for solving the
separation problem, see for instance Gu et al. (1998) for an investigation of algorithmic and im-
plementational issues with respect to branch-and-cut algorithms. For some recent surveys, see for
instance Atamtürk (2005) or Kaparis and Letchford (2010).

The contribution of this work is the proposal and analysis of a number of separation and
extension algorithms for cover inequalities for second-order conic knapsack constraints in the
presence of GUB constraints. As a theoretical results we show that the problem of determining
whether a cover may be extended with a variable isNP-hard. Through computational experiments
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on a set of generated test instances the different proposed algorithms are compared with respect
to time used and bounds produced. We show that the application of extended cover inequalities
can greatly improve the solution time of second-order cone programs.

The outline of the remaining paper is as follows, in Section 4.2 covers, extended covers, and
extended covers under the presence of GUB constraints are introduced, in Section 4.3 a number of
algorithms for extending covers are proposed, in Section 4.4 separation of covers are introduced,
and a number of separation algorithms are proposed, in Section 4.5 the efficiency of the proposed
algorithms are evaluated on a set of generated test instances, we conclude in Section 4.6.

4.2 Cover inequalities

A subset C ⊆ N is called a cover for X if f(C) > b. A cover C is called a minimal cover if the
above property is not satisfied for any C′ ⊂ C. If C is such that |C∩k| ≤ 1, ∀k ∈ K, we call it a
base cover. Given a cover C, the following inequality is valid for X (see Atamtürk and Narayanan
(2009b))

∑

i∈C

xi ≤ |C| − 1. (4.1)

Example. Consider the polytope







3x1 + 4x2 + 2x3 + 3x4 + 1x5 +
√
2x1 + 1x2 + 2x3 + 1x4 + 10x5 ≤ 7

x1 + x2 ≤ 1, x3 + x4 + x5 ≤ 1
x1, . . . , x5 ∈ {0, 1}.







The set C′ = {1, 2}, is a cover, but not a base cover as x1 and x2 are in the same GUB-set. The
set C = {1, 4} on the other hand is a base cover. Both C and C′ are minimal.

4.2.1 Extended cover inequalities

Given a cover C, the corresponding cover inequality may be strengthened by including additional
variables. When chosen appropriately these variables will add to the left-hand side of (4.1) without
raising the right-hand side. The process of adding variables to an existing cover is called extending
the cover and can be seen as a lifting procedure where lifting coefficients may only take values
0 or 1. Atamtürk and Narayanan (2009b) describe a procedure for extending a minimal cover,
when no GUB constraints are present. This procedure may still be used when GUB constraints
are present, but the resulting cover inequalities may be weaker, than if GUB constraints are taken
into account.

4.2.2 Extended cover inequalities with GUB constraints

We now describe how GUB constraints can be used to strengthen cover inequalities. For some
n ≥ 0, and subset S ⊆ N , define W(S, n) := {T ⊆ S : |T | ≥ n ∧ |T∩k| ≤ 1, ∀k ∈ K}, i.e., the set
of all subsets of S, of at least size n, which contain at most one element from each Qk. We call a
subset C ⊆ N an extended cover of size n ≥ 0 if S is a cover ∀S ∈ W(C, n). An extended cover
is called minimal if C is not an extended cover for any n′ < n. Note that a base cover C is an
extended cover of size |C|.

Proposition 4.1. If C is an extended cover of size n, then the following inequality is valid for X

∑

i∈C

xi ≤ n− 1.

Proof. Let x ∈ X . Assume for the sake of contradiction that
∑

i∈C xi ≥ n. Let S = C ∩ Tx. We
have x ∈ X ⇒ Tx ∩ Qk ≤ 1, ∀k ∈ K ⇒ S ∩ Qk ≤ 1, ∀k ∈ K, and |S| = ∑i∈S 1 =

∑

i∈C∩Tx
1 =

∑

i∈C xi ≥ n. Thus S ∈ W(C, n), which is a contradiction since f(Sx) ≤ f(Tx) ≤ b.
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Example (continued). Assume the set C is extended with the element x2 resulting in the set
C′′ = {1, 2, 4}. W(C′′, 2) = {{1, 4}, {2, 4}}, and since {1, 4}, and {2, 4} are both covers, the set
C′′ is an extended cover of size n = 2 and the inequality x1 + x2 + x4 ≤ 1 is thus valid. C′′ is
also an extended cover of size n = 3, but C′′ would then not be minimal resulting in the weaker
inequality x1 + x2 + x4 ≤ 2.

Proposition 4.2. Let C be an extended cover and let i∗ ∈ Qk\C for some k∗ ∈ K, be such that

f(S ∪ {i∗}) = a(S) + ai∗ + ω
√

d(S) + di∗ > b, ∀S ∈ W(C\k∗

, n− 1), (4.2)

then C ∪ {i∗} is an extended cover.

Proof. Let T ∈ W(C ∪ {i∗}, n). If i∗ 6∈ T , then T is a cover by assumption. Assume i∗ ∈ T , then
T = S ∪ {i∗} for some S ∈ W(C\k∗

, n − 1), and thus f(T ) = f(S ∪ {i∗}) > b, and T is thus a
cover.

Proposition 4.2 suggest a method for extending a cover: Start with identifying a base cover,
create some ordering of the variables currently not in the cover, then one at a time check if one
of the variables not in the cover can be included by evaluating condition (4.2). This may be done
by solving the following optimization problem:

OPT :
ν = min a(S) + ai∗ + ω

√

d(S) + di∗

s.t. S ∈ W(C\k∗

, n− 1).

If ν > b, the variable can be added to the extended cover. OPT is the constrained minimization
of a submodular function. For surveys of submodular function minimization we refer to Fujishige
(2005), and Iwata (2008).

Example (continued). Consider again the extended cover C′′ = {1, 2, 4}. We have two GUB-
sets: Q1 = {1, 2} and Q2 = {3, 4, 5}. Assume we are considering extending C′′ with the variable x5.
In this case i∗ = 5 and k∗ = 2. We have W(C′′\2, 1) = {{1}, {2}}, and since 3+ 1+

√
2 + 10 > 7,

and 4 + 1 +
√
1 + 10 > 7 the cover may be extended with x5.

We now show that solving OPT isNP-hard. First note that OPT is equivalent to the following
conic quadratic integer program (CQIP):

min
∑

i∈C\k∗

aiyi + ai∗ + ω

√

∑

C\k∗

diyi + di∗ (4.3)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈ K, k 6= k∗ (4.4)

∑

i∈C\k∗

yi ≥ n− 1 (4.5)

yi ∈ {0, 1} ∀i ∈ C\k∗

, (4.6)

where yi = 1 if and only if the set S contains the ith element. Constraints (4.4) ensure that S
contains at most one element from each GUB-set, and Constraints (4.5) ensure that S constains
at least n− 1 elements.

Proposition 4.3. Solving the optimization problem (4.3)-(4.6) is NP-hard.
Proof. For ease the exposition, let I = C\k∗

= {1, . . . , p}, let K = K\{k∗}, let Qk = C∩k∀k ∈ K,
let m = n− 1, and let ai∗ = di∗ = 0. The problem considered is

P :

min
∑p

i=1 aiyi + ω
√
∑p

i=1 diyi
s.t.

∑

i∈Qk
yi ≤ 1 k ∈ K

∑p
i=1 yi ≥ m

yi ∈ {0, 1} ∀i = 1, . . . p.
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If the second part of the objective is zero (e.g. ω = 0), the problem may be solved in polynomial
time using a simple greedy algorithm: Let ak = min{ai ∈ Qk}. Now choosing the m smallest
values of ak gives an optimal solution y′ with value l. The solution l is a lower bound for the
general problem P .

We can also find an upper bound on an optimal solution value of P as follows: Let D =
ω
√
∑p

i=1 di, then the optimal solution value is not bigger than u = l+D. To see this, assume an
optimal solution has value larger than l +D, now construct a new solution corresponding to y′,
clearly

∑p
i=1 aiy

′
i + ω

√

diy′i ≤ l+D.
In order to prove that P is NP-hard, we consider the decision problem:

P ′ :

∑p
i=1 aiyi + ω

√
∑p

i=1 diyi + s = E
∑

i∈Qk
yi ≤ 1 k ∈ K

∑p
i=1 yi ≥ m

yi ∈ {0, 1} ∀i = 1, . . . p
0 ≤ s ≤ D.

The variable s is a slack variable, and since u − l = D we can restrict s to be between 0 and D.
Other cases of E are treated as follows: if E < l, we answer “no”, while if E > l +D we answer
“yes” returning y′ as a certificate.

Consider the NP-complete two-partition problem (see Karp (1972)): Given a set of positive
integers, W = {w1, . . . , wq}. Is it possible to separate them into two sets, W1 and W2, such that
∑

i∈W1
wi =

∑

i∈W2
wi = C = 1

2

∑q
i=1 wi?

We reduce the two-partition problem to P ′ as follows. Let p := 2 · q, and for i = 1, . . . , q set
ai := 2Dwi, aq+i := 0, di := 0, dq+i := wi, set K := {1, . . . , q}, Qk := {i, k + i}∀k ∈ K, m := q,

E := 2DC +
√
C, and ω := 1. This leads to the following instance of P ′:

∑q
i=1 2Dwiyi + ω

√
∑q

i=1 wiyq+i + s = 2DC +
√
C

yi + yk+i ≤ 1 k ∈ K
∑2q

i=1 yi ≥ q
yi ∈ {0, 1} ∀i = 1, . . . p
0 ≤ s ≤ D.

The constraints yi + yq+i ≤ 1 and
∑2q

i=1 yi ≥ q together imply that yi + yq+i = 1.
Assume that two-partition has a feasible solution, i.e., there exists a binary vector y, such that

∑q
i=1 wiyi = C. Setting yq+i = 1− yi, we find a solution to the above problem with s = 0.
Now assume the above problem has a feasible solution. The second part of the objective

satisfies
0 ≤

√
∑q

i=i wiyq+i + s ≤ 2D.

This means that if

∑q
i=1 2Dwiyi +

√
∑q

i=1 wiyq+i + s = 2DC +
√
C,

then both the following constraints are satisfied
∑q

i=1 wiyi = C
√
∑q

i=1 wiyq+i + s =
√
C.

(4.7)

To see this assume
∑q

i=1 wiyi 6= C. This means
∑q

i=1 wiyi = C − k for some k ∈ Z. We have

2D(C − k) +

√

√

√

√

q
∑

i=1

wiyq+i + s =2DC +
√
C ⇒

√

√

√

√

q
∑

i=1

wiyq+i + s =
√
C + k2D

{

> 2D, if k ∈ Z+

< 0, if k ∈ Z− .
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both of which are contradictions.
But the first equation of (4.7) above means we have found a solution to the two-partition

problem.

In the next section we give a number of algorithms, which can be used to check the condition
of proposition 4.2. The effectiveness of the proposed algorithms will be evaluated in section 4.5.

4.3 Algorithms for extending cover inequalities

First observe that it is not necessary to solve OPT to optimality in order to decide whether a
variable xi can be added to the extended cover C. Given a lower bound LB on ν, the variable
may be added if LB > b. Finding a lower bound may be computationally easier, but the resulting
cover inequalities may be weaker, because certain variables, which could have been added to the
cover, were not. There is thus a trade-off between the time spend extending the covers, and the
strength of the resulting cover inequalities.

We now give a generic extension algorithm, which can be used with any procedure giving a
lower bound on ν, starting with some initial base cover, C, of size n = |C|. In the following, unless
otherwise stated, we will assume that the variable considered for extension has index i∗ ∈ N and
belongs to the GUB-set with index k∗ ∈ K. Assume that given some extended cover C, the
function LB(C, i∗) gives a lower bound on OPT . Let I = N\C, and assume that I is given some
ordering. Different orderings will result in different extended covers. As the final aim is to find a
violated cover inequality, and variables with a large value in the current solution is beneficial in
this regard, the set I is sorted non-increasingly w.r.t. this value. The generic extension algorithm
is shown in Algorithm 4.1.

Algorithm 4.1 Generic algorithm for extending a base cover C

Require: The initial base cover C to be extended.
Let I = N\C.
Sort I non-increasingly w.r.t. the value of corresponding variables.
for all i∗ ∈ I do
LB ← LB(C, i∗).
if LB > b then
C ← C ∪ {i∗}.

end if
end for
return C

In the following a number of lower bounding approaches along with an optimal solution ap-
proach is described. The latter is included in order to evaluate the lower bounding approaches.
Any of these approaches can be used for calculating LB(C, i∗) in Algorithm 4.1.

4.3.1 Optimal

As we saw in the previous section OPT can be formulated as a CQIP. The resulting problem, is the
minimization of a sub-modular function over a convex set. Atamtürk and Narayanan (2008) treat
such a minimization problem using a cutting plane approach. For the computational experiments,
we do however not employ this approach, but instead give the above model to a CQIP solver.
Note that the optimization may be halted as soon as the current lower bound is above b.

4.3.2 Lower bound 1

A simple lower bound is relaxing the CQIP (4.3) - (4.6) by allowing the yi’s to take fractional
values. In the following we denote this bound by LB1.
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4.3.3 Lower bound 2

Consider the minimization problem:

ν′ = za + zd,

where

za = min
∑

i∈C\k∗

aiyi + ai∗ (4.8)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈ K, k 6= k∗ (4.9)

∑

i∈C\k∗

yi ≥ n− 1 (4.10)

yi ∈ {0, 1} ∀i ∈ C\k∗

, (4.11)

and

zd = min ω

√

∑

C\k∗

diyi + di∗ (4.12)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈ K, k 6= k∗ (4.13)

∑

i∈C\k∗

yi ≥ n− 1 (4.14)

yi ∈ {0, 1} ∀i ∈ C\k∗

. (4.15)

ν′ is a lower bound on ν, since the above optimization problem is a relaxation ofOPT. The two opti-
mization problems, (4.8) - (4.11), and (4.12) - (4.15), are solved independently of each other. A so-
lution to the first problem can be found as follows in: Let Imin = {imin

1 , . . . , imin
k∗−1, i

min
k∗+1, . . . , i

min
|K| },

where imin
k = argmin{ai : i ∈ C∩k}. If a C∩k = ∅, then no imin

k is included. Order Imin non-
decreasingly by the value of ai. A solution is the first n − 1 elements of Imin. A solution to the
second problem can be found similarly. The running time is O(|Imin| log |Imin|). In the following
this bound is denoted LB2.

We now show that LB1 is stronger than LB2, i.e., LB2 ≤ LB1.

Lemma 4.1. Let µ∗ be the optimal solution to the the minimization problem:

min
∑

i∈I

fiµi

s.t.
∑

i∈Qk

µi ≤ 1 ∀k ∈ K
∑

i∈I

µi ≥ m

µi ∈ {0, 1} ∀i ∈ I,

where fi ≥ 0 ∀i ∈ I, m ≥ 0, Qk ∩ Qk′ = ∅ ∀k, k′ ∈ K : k 6= k′, and
⋃

k∈KQk = I. Then for any
fractional solution µ̃: fµ∗ ≤ fµ̃.

Proof. Let µ̃ be the optimal solution, where the integer constraints have been relaxed. It is enough
to show that fµ∗ = fµ̃. We can assume there are at least least two fractional variables, since
otherwise, the single fractional variable can be fixed to 0, producing an integer solution, µ∗, with
fµ∗ ≤ fµ̃ because fi ≥ 0 ∀i ∈ I, and because of the optimality of µ̃ we have fµ∗ = fµ̃.
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Let µ̃i, µ̃j , be two fractional variables. Assume w.l.o.g. that fi ≤ fj . Let ǫ = min{1− µ̃i, µ̃j}.
Then updating µ̃i := µ̃i + ǫ, and µ̃j = µ̃j − ǫ produces a new feasible solution, µ̃′, with fµ̃′ ≤ fµ̃
and at least one less fractional variable. Again because of the optimality of µ̃ we have fµ̃′ = fµ̃.
Iterating this process produces an integer solution.

Proposition 4.4. LB2 ≤ LB1.

Proof. For ease of exposition assume ai∗ = di∗ = 0. This assumption does not affect the cor-
rectness of the proof. Let I = C\k∗

, let ỹ be a (fractional) solution to the optimization problem
corresponding to LB1, and let ya, and yd be (integer) solutions to the two optimization problems
corresponding to LB2. Assume LB1 < LB2. We have

LB1 =
∑

i∈I

aiỹi + ω

√

∑

I

diỹi <
∑

i∈I

aiy
a
i + ω

√

∑

i∈I

diydi = LB2 ⇐⇒

∑

i∈I

aiỹi −
∑

i∈I

aiy
a
i < ω

√

∑

i∈I

diydi − ω

√

∑

i∈I

diỹi.

Because of Lemma 4.1 we have
∑

i∈I aiỹi −
∑

i∈I aiy
a
i ≥ 0, while again because of Lemma 4.1

and because the square root function is increasing, ω
√

∑

i∈I diydi − ω
√
∑

i∈I diỹi ≤ 0, which is a

contradiction.

4.4 Separation of cover inequalities

Disregarding GUB constraints, the separation of a cover inequality is the process, when given
a fractional solution x∗, to find a cover C, such that

∑

i∈C x∗
i > |C| − 1, i.e., a violated cover

inequality. As described by Atamtürk and Narayanan (2009b), a violated cover inequality can be
separated (if one exists) by solving the minimization problem:

η =min

n
∑

i=1

(1− x∗
i )yi (4.16)

s.t.

n
∑

i=1

aiyi + ω

√

∑

i∈N

diyi ≥ b+ ǫ (4.17)

y ∈ {0, 1}|N |, (4.18)

where ǫ is some small positive number. If η < 1, then a violated cover inequality has been found.
Even though η ≥ 1, a cover has been identified, and an attempt at extending the cover can be
made. After extending the cover, the corresponding extended cover inequality may be violated,
even though the original cover inequality was not.

When GUB constraints are present we instead wish to solve the above problem with the
following set of constraints added:

∑

i∈Qk

yi ≤ 1, ∀k ∈ K. (4.19)

This ensures that the resulting covers are base covers. Again if η < 1, a violated cover inequality
has been found. In any case, a base cover has been found, and the earlier described generic
extension algorithm coupled with a bound may by applied.

Atamtürk and Narayanan (2009b) solve the separation problem (4.16) - (4.18) heuristically
based on the rounding of solutions to an LP -relaxation of an equivalent problem. Their approach
does however not carry over well to the case with GUB constraints. In the following we describe
a number of approaches for constructing good candidate base covers, which are to then to be
extended using the genetic extension algorithm described earlier (see Algorithm 4.1) in conjunction
with one of the lower bounds previously prestented.
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4.4.1 Algorithms for separating base covers

The algorithms for separating base covers, should identify a number of good candidate base covers
for extension. A good candidate for a base cover may be one, where the corresponding cover
inequality is close to, or is violated, but it may also be one which is easy to extend.

Separation algorithm 1

For the first separation algorithm, we simply solve the separation problem (4.16) - (4.19), by giving
it to a CQIP solver. The problem (4.16) - (4.19) is however not a CQIP in its present form and
is thus reformulated as follows before being given to the solver:

η =min
n
∑

i=1

(1 − x∗
i )yi (4.20)

s.t.

n
∑

i=1

aiyi + ωz ≥ b+ ǫ (4.21)

z2 ≤
∑

i∈N

diyi (4.22)

∑

i∈Qk

yi ≤ 1 ∀k ∈ K (4.23)

y ∈ {0, 1}|N |, z ≥ 0, (4.24)

where we have introduced the variable z. Because the separation problem for classic knapsack
constraints is NP-hard(see Ferreira et al. (1996), Klabjan et al. (1998), and Gu et al. (1999)),
the above problem is likewise NP-hard, and the problem can thus be computationally cumber-
some, and is primarily included to evaluate the remaining separation algorithms. The separation
algorithm is depicted in Algorithm 4.2.

Algorithm 4.2 Heuristic for finding violated cover inequalities

Require: Current solution x∗.
Solve the problem (4.20) - (4.24) by the use of CQIP solver.
if feasible solution found then
Extend the found cover C using the generic extension algorithm and one of the bounds.
if C constitutes a violated cover inequality then
return C

end if
end if
return no cover found.

Separation algorithm 2+3

This separation algorithm orders the variables, within each Qk, by a weight calculated on the basis
of the current fractional solution. Then a set C is created containing the |K| largest-weighted
variables. If C is not a cover, a new set C is created where the second largest-weighted variable
from some Qk replaces the current variable from the same set and so on. The algorithm progresses
until a cover is found or there are no more variables. Let x∗ be the value of the current solution
and let w(xi) be the weight associated with the variable xi. We investigate two different weight
functions: 1) w(xi) = x∗

i , and 2) w(xi) = (x∗
i −1)/(ai+ω

√
di), giving rise to separation algorithm

2, and 3 respectively. Crowder et al. (1983) use a weight-function similar to 2) for the linear case.
Algorithm 4.3 gives the details of these algorithms.
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Algorithm 4.3 Heuristic for finding violated cover inequalities

Let C be the largest-weighted variable from each Qj w.r.t. the current fractional solution x∗

and weight function w.
Mark the variables in C.
while there are unmarked variables do
if C is a cover then
Extend C.
if C constitutes a violated cover inequality then
return C

end if
end if
Add to C the largest-weighted unmarked variable and remove from C the variable from the
same Qj as the newly added variable.
Mark the newly added variable.

end while
return no cover found.

4.5 Computational experiments

4.5.1 Test instances

In order to evaluate the different algorithms, a number of test instances are generated of the form:

max
∑

i∈N

cixi (4.25)

∑

i∈N

aimxi + ω

√

∑

i∈N

d2imxi ≤ bm m = 1, . . . ,M (4.26)

∑

i∈Qk

xi ≤ 1 k ∈ K (4.27)

x ∈ {0, 1}|N | (4.28)

The size of N used is {50, 75, 100}. The size of M used is {10, 20}. The value for ω used is 3.
For each instance the values of ci is chosen at random in the integer interval [1; 1000], the values of
aim is chosen at random in the integer interval [0; 100], and the values of dim is chosen at random
in the integer interval [0; aim]. The GUB-sets, Qk, are created such that they are disjoint, each set
contain a random number of variables in the interval [0.1 ·N ; 0.3 ·N ], and such that

⋃

k∈K Qk = N .
The value of bm is set as

bm = β ·





∑

i∈S

aim + ω

√

∑

i∈T

d2im



 ,

where S is the index-set of variables with the maximal value of aim within each Qk, and T is
likewise the index-set of variables with maximal value of dim within each Qk. The value of β
used is {0.3, 0.5}. For each combination of N , M and β five instances are generated, giving a
total of 60 test instances. These instances along with the source code is available for download at
http://diku.dk/~laurent.

4.5.2 Test setup

For the computational experiments, we use ILOG CPLEX 12.1 (CPLEX), which solves conic
quadratic relaxations at the nodes of a branch-and-bound tree. CPLEX heuristics are turned
off, and a single thread is used. When comparing to CPLEX, the MIP search strategy is set to
traditional branch-and-bound, rather than the default dynamic search. The reason for this is that
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we wish to investigate the effect of adding extended cover cuts using the proposed algorithms
and bounds, and not to compare branch-and-bound with with extended cover cuts to dynamic
search (it is not possible to add cuts in CPLEX while retaining the dynamic search strategy).
When CPLEX is used in connection with a separation algorithm (separation algorithm 1) or for
calculating a bound (OPT and LB1) all settings are left at their default (except for the number
of threads, which is set to one).

Experiments were performed on a machine with 2 Intel(R) Xeon(R) CPUs @ 2.67Ghz (16
logical cores), with 24 GB of RAM, and running Ubuntu 10.4.

4.5.3 Cuts

Depending on the combination of separation algorithm and bound used for the generic extension
algorithm, cutting is either applied only at the root node, or locally throughout the branch-and-
bound tree. Cutting throughout the tree turned out to be effective for the “fast” separation
algorithms and bound arguments, but for the more computationally expensive the overhead of
cutting in each node was to high. Table 4.1 lists how cutting is applied for the different combi-
nations. In the following Sep1(conic), Sep2(x-sort), and Sep3(x/coef-sort) respectively refers to
separation algorithm 1, 2, and 3, and Exact(conic), LB1(lprelax), and LB2(minsum) respectively
refers to solving OPT , and the lower bounds LB1 and LB2.

Sep1(conic) Sep2(x-sort) Sep3(x/coef-sort)

Exact(conic) root root root
LB1(lprelax) root root root
LB2(minsum) all all all

Table 4.1: Table indicating whether cuts are applied only at the root (root) node, or throughout the
branch-and-bound tree (all).

4.5.4 Results

We first compare the different combination of separation algorithms and bounds used for the
generic extension algorithm, next we examine the effect of extending covers as compared to not
extending them, and finally we examine the effect of using the GUB information to extend covers
as compared to not using this information.

In the tables to come, the column rgap is the average optimality gap at the root node after
addition of cuts. The rgap is calculated as (UB−UB∗)/UB∗, where UB is the value at the root
node, and UB∗ is the optimal solution. If no combination of algorithms could solve a given instance
to optimality within the given time limit of 3600 secs, then UB∗ is the best found solution across
all the examined algorithms. In order to avoid cases with UB∗ = 0, we add 1 to the objective
function. For the combination of separation algorithms and bounds where cutting is only applied
at the root node, the column cuts is the average number of cuts added at the root node, while for
the combinations where cutting is applied throughout the branch-and-bound tree, the column is
the average number of cuts added per node, and the number in parenthesis is the number of cuts
added at the root node. nodes is the average number of nodes of the branch-and-bound tree, rt
is the time used in the root node in seconds, and time is the average total time used in seconds,
where the number in parenthesis is how many of the 5 instances were solved to optimality within
the time limit. Bold font indicates that all instances where solved to optimality.

Comparison of separation algorithms and bounds The branch-and-bound algorithm is
run for each combination of separation algorithm and bound argument. Table 4.3, Table 4.4, and
Table 4.5 contains the results for separation algorithm 1, 2, and 3 combined with the different
bounds. Results from CPLEX can be seen in Table 4.2.
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CPLEX

N M β rgap cuts nodes rt time

50
10

0.3 77.8 0 865 0 2(5)
0.5 22.87 0 1737 0 9(5)

20
0.3 147.59 0 1335 1 11(5)
0.5 38.83 0 2108 0 83(5)

75
10

0.3 80.24 0 2954 0 32(5)
0.5 21.12 0 3594 0 55(5)

20
0.3 183.4 0 2338 2 29(5)
0.5 25.06 0 4724 2 760(4)

100
10

0.3 57.69 0 4664 0 187(5)
0.5 7.78 0 1613 0 13(5)

20
0.3 155.09 0 5175 3 1035(4)
0.5 23.9 0 9279 3 2674(2)

Agg. time 4889(55)

Table 4.2: Results from CPLEX

We first consider the CPLEX results. As can be seen from Table 4.2 all instances could be
solved up to N = 75, and m = 10. One instance can not be solved for N = 75 and M = 20, while
for N = 100 all instances can be solved for M = 10, while 6 instances can be solved for M = 20.
CPLEX solves a total of 55 instances using in total 4889 seconds.

We next compare the results of each combination of bound with separation algorithm 1 (Ta-
ble 4.3), and compare these to CPLEX (Table 4.2). As can be seen, in general the impact of adding
cuts using separation algorithm 1 has some effect on the computational time. For Exact(conic)
and LB1(relax) the number of instances solved remains the same (55) but the computational time
is reduced to 4131 and 4161 seconds respectively compared to the 4889 seconds of CPLEX. For
LB2(minsum) the effect of cutting is quite noticable, the total number of solved instances increases
to 59, and the total computational time is reduced to 1228 seconds. All combinations improves
the root gaps compared to CPLEX. With respect to root gaps the best combination among the
three is, as expected, Sep1+Exact(conic), but the time used at the root node is also the largest,
which is also as expected. The combination Sep1+LB2(minsum) produces in general better root
node gaps than Sep1+LB1(lprelax) using less time at the root node. Overall Sep1+LB1(lprelax)
performs the best.

We next make a comparison, with separation algorithm 2 (Table 4.4). In general considerable
more cuts are added at the root node, and as a consequence the root gap is lower than for
separation algorithm 1. This may seem odd, as the separation problem is solved to optimality
for separation algorithm 1. The reason is, separation algorithm 1 only attempts to extend the
single cover corresponding to the solution of (4.20)–(4.24), while separation algorithm 2 will run
through a number of covers, trying to extend each one. Extending the cover corresponding to the
solution of (4.20)–(4.24) might not result in a violated inequality, while extending some of the
covers examined by separation algorithm 2 might. The numerous covers examined by separation
algorithm 2, also explains why Sep2+Exact and Sep2+LB1 spends considerably more time spend
in the root node, than their counterparts for separation algorithm 1. The additional cuts separated
by the combinations of Exact(conic), and LB1(lprelax) with separation algorithm 2 does however
not outweigh the additional time spend in the root node compared to separation algorithm 1, and
the total computational time increases to respectively 13836 and 7077 seconds, while only a single
extra instance is solved for LB1(lprelax). As the size of N grows, we see a clear advantage of
using separation algorithm 2 with LB2(minsum), both compared to separation algorithm 1 and
to CPLEX. This combination solves all 60 instances using only 132 seconds.

Finally considering separation algorithm 3 (Table 4.5), we see that the results are very similar
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Sep1(conic)+Exact(conic) Sep1(conic)+LB1(lprelax)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.4 35 1 8 8(5) 5.78 40 19 3 3(5)
0.5 21.23 6 1597 4 12(5) 21.11 11 1663 2 11(5)

20
0.3 28.38 55 70 14 14(5) 33.87 50 95 7 7(5)
0.5 32.79 24 1526 11 51(5) 33.48 23 1970 3 85(5)

75
10

0.3 36.62 18 1365 5 17(5) 40.15 21 1346 3 14(5)
0.5 16.68 18 3104 13 68(5) 17.2 22 3504 3 113(5)

20
0.3 16.94 47 72 18 19(5) 34.7 51 136 10 12(5)
0.5 20.7 20 5189 31 822(4) 22.56 16 4860 12 780(4)

100
10

0.3 51.44 14 2135 6 16(5) 53.08 12 2638 2 16(5)
0.5 5.91 12 1365 31 46(5) 5.81 17 1623 5 47(5)

20
0.3 87.48 32 816 22 44(5) 91.04 33 883 7 26(5)
0.5 22.07 17 7906 55 3016(1) 22.46 14 10635 15 3048(1)

Agg. time 4131(55) 4161(55)

Sep1(conic)+LB2(minsum)

N M β rgap cuts nodes rt time

50
10

0.3 2.22 45(42) 4 1 1(5)
0.5 21.2 696(8) 191 1 12(5)

20
0.3 25.41 91(51) 16 2 4(5)
0.5 32.9 949(24) 228 1 28(5)

75
10

0.3 35.48 276(22) 59 1 5(5)
0.5 17.3 1768(21) 467 1 47(5)

20
0.3 20.73 84(50) 14 4 5(5)
0.5 22.17 3296(14) 686 6 123(5)

100
10

0.3 52.29 414(13) 100 1 9(5)
0.5 5.69 769(19) 223 2 23(5)

20
0.3 92.59 256(32) 40 3 9(5)
0.5 22.11 5450(20) 1087 12 962(4)

Agg. time 1228(59)

Table 4.3: Results from combinations of separation 1 and the different bounds.

to separation algorithm 2, but the performance is slightly worse. This is not so surprising as the
only difference between separation algorithm 2 and 3, is the weight assigned to each variable, when
these are sorted.

If we compare the separation algorithms, separation algorithms 2, and 3 outperforms separation
algorithm 1. The main reason is that for separation algorithm 1, a conic quadratic program needs
to be solved, which is slow compared to the sorting done for separation algorithms 2, and 3. Also
more cuts, can be separated per call, for the two latter, as more than one cover is attempted
extended. There seems to be a slight advantage to using separation algorithm 2 over separation
algorithm 3, which seems to imply that the fractionality of a variable is more important than its
weight, when attempting to find a violated inequality.

Comparing the different bounds LB2(minsum) has a clear advantage compared to the others.
This is primarily because it is fast, and can thus be used to separate cuts throughout the branch-
and-bound tree.

In order to better illustrate the advantage of cutting compared to CPLEX, Table 4.6 shows
the results of CPLEX side-by-side with the best combination, i.e., separation algorithm 2, using
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Sep2(x-sort)+Exact(conic) Sep2(x-sort)+LB1(lprelax)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.0 70 0 146 146(5) 0.67 120 2 57 57(5)
0.5 17.12 52 1112 155 161(5) 17.54 58 1175 64 68(5)

20
0.3 19.64 129 28 700 700(5) 26.33 192 27 186 187(5)
0.5 26.51 92 1097 400 496(5) 28.43 102 1742 98 232(5)

75
10

0.3 20.57 113 103 699 699(5) 25.32 175 199 186 187(5)
0.5 14.7 55 2635 271 400(5) 15.3 79 3191 77 270(5)

20
0.3 13.52 161 12 998 998(5) 9.52 290 15 460 460(5)
0.5 18.13 84 3881 644 1412(4) 19.57 99 4327 210 1158(4)

100
10

0.3 31.58 125 244 1710 1711(5) 36.73 231 477 428 431(5)
0.5 4.79 35 785 339 348(5) 5.12 48 1518 63 215(5)

20
0.3 42.1 277 58 2481 2776(5) 39.66 342 109 885 887(5)
0.5 20.76 65 6961 1101 3989(1) 21.03 76 9223 228 2925(2)

Agg. time 13836(55) 7077(56)

Sep2(x-sort)+LB2(minsum)

N M β rgap cuts nodes rt time

50
10

0.3 0.73 96(95) 1 0 0(5)
0.5 17.29 931(56) 113 1 1(5)

20
0.3 24.64 194(126) 17 1 1(5)
0.5 27.56 1290(97) 140 1 3(5)

75
10

0.3 24.59 375(145) 33 1 2(5)
0.5 14.57 2592(82) 238 0 5(5)

20
0.3 12.43 238(206) 8 3 3(5)
0.5 18.62 5013(111) 410 15 30(5)

100
10

0.3 37.19 652(160) 48 1 2(5)
0.5 4.92 1702(47) 165 2 5(5)

20
0.3 44.64 504(304) 32 6 7(5)
0.5 20.73 13624(85) 860 21 71(5)

Agg. time 132(60)

Table 4.4: Results from combinations of separation 2 and the different bounds.

LB2(minsum).

Effect of extending covers In order to examine the effect of extending cover inequalities, we
compare the results from running the best separation algorithm (separation algorithm 2), with
and without the the bound resulting from the exact solution of OPT . The reason for using this
bound, even though it is slow, is that it is optimal and should thus best illustrate the root bound
quality gained from using extension. Cutting was in both cases only applied at the root node.
As can be seen from the results in Table 4.7 there is a clear gain in quality of the root bound,
in the number of cuts added, and in the number of branch-and-bound nodes, when extension is
used. The use of the slower exact extension however means that the time spend cutting at the
root node, does not translate into a gain in total solution time.

Effect of using GUB information In order to examine the effect of using the GUB information
when extending a cover, we perform two experiments. In the first experiment we compare the
results of two runs, using separation algorithm 1 along with the optimal bound, i.e, solving OPT .
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Sep3(x/coef-sort)+Exact(conic) Sep3(x/coef-sort)+LB1(lprelax)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.0 69 0 145 145(5) 0.47 108 4 57 57(5)
0.5 18.54 32 1120 169 175(5) 18.97 31 1560 45 55(5)

20
0.3 25.43 91 30 463 463(5) 27.79 157 40 152 152(5)
0.5 28.38 64 1049 398 420(5) 30.81 63 1737 96 176(5)

75
10

0.3 22.74 102 137 685 685(5) 25.81 164 264 137 138(5)
0.5 16.38 42 3432 289 672(5) 16.39 53 3517 64 367(5)

20
0.3 11.59 200 20 1562 1599(5) 13.18 298 13 321 321(5)
0.5 20.6 53 3943 710 1469(4) 21.35 59 4500 155 935(4)

100
10

0.3 35.36 134 253 1942 1944(5) 42.36 196 612 254 258(5)
0.5 5.17 23 1163 411 507(5) 5.84 23 1729 56 769(5)

20
0.3 44.88 309 123 3364 3784(5) 41.38 438 74 731 732(5)
0.5 22.76 36 8416 906 3810(1) 22.03 30 8144 170 3355(1)

Agg. time 15673(55) 7316(55)

Sep3(x/coef-sort)+LB2(minsum)

N M β rgap cuts nodes rt time

50
10

0.3 0.0 106(106) 0 0 0(5)
0.5 20.42 868(24) 159 0 1(5)

20
0.3 24.45 212(138) 17 1 1(5)
0.5 29.78 1111(62) 166 1 3(5)

75
10

0.3 27.22 373(146) 38 1 2(5)
0.5 16.28 2381(54) 432 0 12(5)

20
0.3 11.96 295(246) 15 3 4(5)
0.5 21.26 4155(52) 597 7 40(5)

100
10

0.3 39.33 625(172) 69 1 2(5)
0.5 5.75 879(31) 184 1 4(5)

20
0.3 46.13 539(393) 23 5 7(5)
0.5 22.04 12336(34) 1674 13 270(5)

Agg. time 347(60)

Table 4.5: Results from combinations of separation 3 and the different bounds.

In the first run the GUB information is used, while in the second run it is not. Not using the
GUB information means removing constraints (4.4) and constraints (4.23) from their respective
mathematical programs. In both cases cutting is only applied at the root node. As can be seen
from the results in Table 4.8 using GUB information results in an improvement of the root gap.
This does however not translate into a better total solution time.

In order to get a better indication of the usefulness of using GUB information, we con-
duct a second experiment. In this experiment we compare the best separation and bound,
i.e., Sep2+LB2(minsum), with an implementation of the separation and extension algorithm
of Atamtürk and Narayanan (2008), which does not make use of GUB information. We do not
include their advanced lifting procedure, but only their extension algorithm. The ordering of the
variables used when extending is the same as for the other bounds examined. Cuts are applied
throughout the branch-and-bound tree for both algorithms. As can be seen from the results in
Table 4.9 there is a clear gain from employing GUB information when separating and extending
cuts. It is surprising that for some of the instances so few cuts are separated at the root node
by our implementation of the separation and extension described by Atamtürk and Narayanan
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CPLEX Sep2(x-sort)+LB2(minsum)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 77.8 0 865 0 2(5) 0.73 96(95) 1 0 0(5)
0.5 22.87 0 1737 0 9(5) 17.29 931(56) 113 1 1(5)

20
0.3 147.59 0 1335 1 11(5) 24.64 194(126) 17 1 1(5)
0.5 38.83 0 2108 0 83(5) 27.56 1290(97) 140 1 3(5)

75
10

0.3 80.24 0 2954 0 32(5) 24.59 375(145) 33 1 2(5)
0.5 21.12 0 3594 0 55(5) 14.57 2592(82) 238 0 5(5)

20
0.3 183.4 0 2338 2 29(5) 12.43 238(206) 8 3 3(5)
0.5 25.06 0 4724 2 760(4) 18.62 5013(111) 410 15 30(5)

100
10

0.3 57.69 0 4664 0 187(5) 37.19 652(160) 48 1 2(5)
0.5 7.78 0 1613 0 13(5) 4.92 1702(47) 165 2 5(5)

20
0.3 155.09 0 5175 3 1035(4) 44.64 504(304) 32 6 7(5)
0.5 23.9 0 9279 3 2674(2) 20.73 13624(85) 860 21 71(5)

Agg. time 4889(55) 132(60)

Table 4.6: Comparison of best combination to CPLEX.

(2008), but we believe that a reason could be that ILOG CPLEX 12.1 separates a number of
unspecified conic cuts, which may be similar to cover cuts without GUB information (the version
of CPLEX used in Atamtürk and Narayanan (2008) is 11.0 and does not separate any conic cuts).
We note however that the implementation still beats CPLEX.

4.6 Conclusion

We have described how the second-order conic equivalent of cover cuts can be extended by using
the structure imposed by GUB constraints. We have proposed a number of separation and ex-
tension algorithms, and compared these to one another and to CPLEX on a set of generated test
instances. These experiments show that a relatively simple separation and extension algorithm,
which employs the GUB constraints, can speed up the solution time considerably. Fast separation,
and extension algorithms are an advantage, since this makes it possible to cut locally through-out
the branch-and-bound tree as opposed to only in the root node.

As a theoretical contribution we have showed that the problem of deciding if a cover can be
extended with a varible is NP-hard, and have established the relation between two bounds: one
based on an LP relaxation (LB1) and the other based on decomposing the problem (LB2).
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Sep2(x-sort)+Exact(conic) Sep2(x-sort)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.0 70 0 146 146(5) 36.34 45 270 0 1(5)
0.5 17.12 52 1112 155 161(5) 22.29 5 1758 0 9(5)

20
0.3 19.64 129 28 700 700(5) 77.54 36 669 1 6(5)
0.5 26.51 92 1097 400 496(5) 37.86 4 1926 0 85(5)

75
10

0.3 20.57 113 103 699 699(5) 56.86 35 2173 1 21(5)
0.5 14.7 55 2635 271 400(5) 19.18 10 3598 0 58(5)

20
0.3 13.52 161 12 998 998(5) 83.23 80 681 2 17(5)
0.5 18.13 84 3881 644 1412(4) 24.95 1 5155 3 887(4)

100
10

0.3 31.58 125 244 1710 1711(5) 55.32 12 3916 0 129(5)
0.5 4.79 35 785 339 348(5) 7.1 9 1512 1 13(5)

20
0.3 42.1 277 58 2481 2776(5) 100.4 64 1856 4 85(5)
0.5 20.76 65 6961 1101 3989(1) 23.6 5 9140 3 2836(2)

Agg. time 13836(55) 4145(56)

Table 4.7: Results from running separation algorithm 2 with and without the Exact(conic) bound.

Sep1(conic)+Exact(conic) Sep1(Conic)+Exact(conic)-GUB

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.4 35 1 8 8(5) 0.83 43 1 10 10(5)
0.5 21.23 6 1597 4 12(5) 22.13 4 1621 4 12(5)

20
0.3 28.38 55 70 14 14(5) 33.53 43 90 15 15(5)
0.5 32.79 24 1526 11 51(5) 36.32 12 2022 11 120(5)

75
10

0.3 36.62 18 1365 5 17(5) 40.53 22 1373 10 21(5)
0.5 16.68 18 3104 13 68(5) 19.15 10 3390 11 65(5)

20
0.3 16.94 47 72 18 19(5) 39.0 52 176 25 27(5)
0.5 20.7 20 5189 31 822(4) 24.61 5 5025 14 618(5)

100
10

0.3 51.44 14 2135 6 16(5) 53.92 13 2603 4 16(5)
0.5 5.91 12 1365 31 46(5) 6.53 12 1402 24 33(5)

20
0.3 87.48 32 816 22 44(5) 95.34 28 953 20 38(5)
0.5 22.07 17 7906 55 3016(1) 22.99 8 10812 36 2537(3)

Agg. time 4131(55) 3512(58)

Table 4.8: Results from running Sep1+Exact(conic) with and without use of GUB information.
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Sep2(x-sort)+LB2(minsum) Atamtürk and Narayanan (2008)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.73 96(95) 1 0 0(5) 51.49 227(24) 30 0 1(5)
0.5 17.29 931(56) 113 1 1(5) 22.85 1193(1) 441 0 7(5)

20
0.3 24.64 194(126) 17 1 1(5) 76.95 342(30) 28 2 4(5)
0.5 27.56 1290(97) 140 1 3(5) 38.09 1861(1) 485 0 17(5)

75
10

0.3 24.59 375(145) 33 1 2(5) 73.67 1065(8) 163 1 11(5)
0.5 14.57 2592(82) 238 0 5(5) 19.59 3313(9) 1161 0 60(5)

20
0.3 12.43 238(206) 8 3 3(5) 114.11 412(43) 26 3 7(5)
0.5 18.62 5013(111) 410 15 30(5) 24.95 6021(1) 1433 3 179(5)

100
10

0.3 37.19 652(160) 48 1 2(5) 55.68 2011(8) 277 1 37(5)
0.5 4.92 1702(47) 165 2 5(5) 7.46 1290(3) 489 1 41(5)

20
0.3 44.64 504(304) 32 6 7(5) 123.24 1215(31) 69 6 35(5)
0.5 20.73 13624(85) 860 21 71(5) 23.78 21045(2) 3405 3 1411(5)

Agg. time 132(60) 1811(60)

Table 4.9: Comparison of Sep2+LB2(minsum) with Atamtürk and Narayanan (2008)
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Abstract Many processes within production scheduling and project management involve the schedul-

ing of a number of activities, each activity having a certain duration and requiring a certain amount of

limited resources. The duration and resource requirements of activities are commonly the result of estima-

tions, and thus generally subject to uncertainty. If this uncertainty is not taken into account the resulting

schedules may not be robust in the sense that, when executed, the uncertainty may cause the schedules to

take longer than expected, consume more resources, or be outright infeasible. We propose a new variant

of the Multi-mode Resource-Constrained Project Scheduling Problem, where the nonrenewable resource

requirements of each mode is given by a Gaussian distribution, and the nonrenewable resource constraints

must be satisfied with a certain probability ǫ. Such constraints are also known as chance constraints. We

present a Conic Quadratic Integer Program model of the problem, and describe and experiment with a

branch-and-cut algorithm for solving the problem. In each node of the branch-and-bound tree, the branch-

ing decisions are propagated in order to remove variables from the problem, and thus improve bounds. In

addition we experiment with cutting on the conic quadratic resource constraints. Computational experi-

ments show that the branch-and-cut algorithm outperforms CPLEX 12.1. We finally examine the “cost

of uncertainty” by investigating the relation between values of ǫ, the makespan, and the solution time.

These experiments show that taking stochasticity into account only increases the makespan by about 7%

on average, while not increasing the computation time dramatically.

Keywords: Project scheduling, Stochastic, Branch-and-cut, Resource-constrained, Multi-mode

5.1 Introduction

Many processes within production scheduling and project management involve the scheduling of
a number of activities, each activity having a certain duration and requiring a certain amount of
limited resources. Resources could for instance be machines, labor, budget, or stock. Precedence
relations may exist between activities, such that one activity can not start before others are
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completed. Typically one wishes to schedule the activities such that the total time taken to
complete them all is minimized. Being models of real-life processes, the duration and resource
requirements of an activity is commonly the result of estimations, and thus generally subject to
uncertainty. If this uncertainty is not taken into account the resulting schedules may not be robust
in the sense that, when executed, the uncertainty may cause the schedules to take longer than
expected, consume more resources, or be outright infeasible. Thus it is of interest to take into
account uncertainty when scheduling such projects.

Disregarding uncertainty, the above described problem may be modeled as a Resource-Con-
strained Project Scheduling Problem (RCPSP), which is a generalization of the well-known Job-
Shop-Scheduling problem. There exists a number of variants of the RCPSP, see for instance
Blażewicz et al. (1983), Brucker et al. (1999), or Hartmann and Briskorn (2010). The Multi-mode
Resource-Constrained Project Scheduling Problem (MRCPSP) is a popular variant, in which each
activity can be performed in a number of different so-called modes, each representing alternative
ways of executing the activity, i.e., different duration and resource requirements. A mode may
for instance model that consuming more resources the activity will be completed faster, or that
there is an alternative for the choice of resources to be used. For the MRCPSP one distinguishes
between renewable resources and nonrenewable resources: renewable resources are replenished
in each timestep, while this is not the case for nonrenewable resources, here resource usage is
accumulated across the entire project. A renewable resource could be man-hours per day, or the
capacity of a machine, while a nonrenewable resource could be a budget, or some kind of stock.

Much research has focused on extending the RCPSP to the case where the activity durations
are stochastic. There are different approaches: one approach is to construct a so-called policy,
or strategy, which, when executed, will result in the best expected makespan across a number of
scenarios. For policy-related results see Radermacher (1981), Igelmund and Radermacher (1983b),
Möhring et al. (1984), Möhring et al. (1985), Möhring and Radermacher (1985), Radermacher
(1986), Fernandez and Armacost (1996), and Fernandez et al. (1998a,b), and for computational
results see Igelmund and Radermacher (1983a), Golenko-Ginzburg and Gonik (1997), Tsai and
Gemmill (1998), Valls et al. (1998), and Stork (2001).

A different approach is so-called proactive and reactive scheduling. In proactive scheduling
the aim is to find a baseline schedule, which has a good probability of coping with uncertainty
in activity durations, typically by inserting time buffers into the schedule. In reactive scheduling
the aim is to cope with the problems resulting from uncertainty when they occur, also known as
disruption management. Van de Vonder et al. (2007b) and Van de Vonder et al. (2008) propose and
compare a large number of heuristics for allocating buffers throughout a schedule in order to make it
more robust. Van de Vonder et al. (2007a) and Deblaere et al. (2011) presents heuristic procedures
focusing on the reactive approach, while Van de Vonder et al. (2005, 2006) and Chtourou and
Haouari (2008) present heuristic procedures focusing on the proactive approach. Zhu et al. (2007)
take a different approach and formulate the problem as a 2-stage stochastic optimization problem,
and present an exact and a heuristic solution approach. Van de Vonder (2006) gives a good
overview. Uncertainty in the renewable resource requirements and capacities may also affect the
quality of schedules, and some research has considered this case, see for instance Lambrechts et al.
(2008a,b). For surveys on the subject see for instance Herroelen and Leus (2004, 2005). No
research seems to have examined the case of stochastic nonrenewable resource requirements.

Considering the case of stochastic nonrenewable resource requirements is of interest for at
least two reasons: (1) Ideally one would like to be able to model and solve RCPSP problems
with uncertainty in all parameters of the model, i.e., activity durations, resource requirements,
etc. The case considered here can be seen as another step in the direction of achieving this goal.
(2) The problem may also be of interest in itself. Many projects span many years, and for some,
uncertainty in cost may be of more interest, than, say, uncertainty in activity durations. Certainly
many large projects are known to run over budget.

We thus consider a new variant of the RCPSP, where the nonrenewable resource requirements
are stochastic, and where given a so-called risk factor 0 ≤ ǫ ≤ 1, one wishes to find a minimum
makespan schedule, such that the nonrenewable resource constraints are satisfied with with prob-
ability at least ǫ. For modelling reason we will assume ǫ ≥ 0.5, which seems acceptable, since for
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practical applications it is hard to image scenarios where one would be interested in satisfying a
budget with a propability less than 50%. We call this problem the Multi-mode Resource-Constrai-
ned Project Scheduling Problem with Stochastic Nonrenewable Resource Consumption (MRCPSP-
SNR).

The contribution of this paper, is the description and modeling (as a Conic Quadratic Integer
Program (CQIP)) of the MRCPSP-SNR. We additionally propose and experiment with a branch-
and-cut algorithm for solving the problem. In each node of the branch-and-bound tree, branching
decisions are propagated, in a way similar to Constraint Programming (CP), in order to fix
additional variables and improve bounds. The propagation is dependent on the variables of the
model, and we experiment with adding additional (but redundant) variables to enable stronger
branching. Computational experiments on a large set of instances, adapted from instances found
in the literature, show that the branch-and-cut algorithm with propagation outperforms ILOG
CPLEX 12.1 (CPLEX). We finally examine the “cost of uncertainty”, that is: what is the effect
of the risk factor on the makespan?

In Section 5.2 a formal description of the MRCPSP-SNR is given, in Section 5.3 the problem is
modeled as a CQIP, in Section 5.4 cuts based on the second-order cone constraints are presented,
in Section 5.5 the developed branch-and-cut procedure is described, includinf bounding arguments,
and propagation rules, and in Section 5.6 we present the computational results. We conclude in
Section 5.7.

5.2 Problem

We here give a formal description of the MRCPSP-SNR: A project consists of a set A = {1, . . . , n}
of activities to be scheduled. Traditionally, activity 1 and n are so-called dummy activities,
which represent the start and the end of the project. Each activity j can be performed in a
number of different modes Mj = {1, . . . , |Mj |}, each representing a different way of performing
the activity. Let T be the set of time-steps during which the activities must be performed.
There are two sets of resources, (1) renewable resources R = {1, . . . , |R|}, and (2) nonrenewable
resources R̃ = {1, . . . , |R̃|}. A renewable resource k ∈ R, has capacity Rk in each time step, while
a nonrenewable resource k ∈ R̃ has capacity R̃k spread across all time steps of the project. When
an activity j is scheduled in mode m ∈Mj , it has a processing time of pjm (non-preemtible) and
requires rjkm ≥ 0 units of renewable resource k ∈ R in each time period and a certain amount

of the nonrenewable resource k ∈ R̃ spread across all time periods. The nonrenewable resource
consumption is for each activity j ∈ A and each mode m ∈Mj given by a Gaussian distribution,
where r̃jkm is the mean, and σ2

jkm is the variance. There exists precedence relations between
the activities, such that one activity j ∈ A cannot be started before all its predecessors, Pj , are
completed. Symmetrically, Sj denotes the set of successors. Let E = {(i, j) ∈ A × A : i ∈ Pj}
be the set of all precedence relations. In addition to the project a risk factor ǫ ≥ 0.5 is given,
and the objective is to find a precedence and resource-capacity feasible schedule which minimizes
the makespan and satisfy the nonrenewable resource constraints with probability at least ǫ. The
MRCPSP-SNR may be formulated as follows:

min σn

s.t. σj ≥ σi + pi,m(i) ∀(i, j) ∈ E (5.1)
∑

j∈A(t)

rj,k,m(j) ≤ Rk ∀k ∈ R, ∀t ∈ T (5.2)

P
({

∑

j∈A r̃j,k,m(j) ≤ R̃k, ∀k ∈ R̃
})

≥ ǫ (5.3)

σj ≥ 0 ∀j ∈ A, (5.4)

where σj is the starting time of activity j, m(j) is mode chosen for activity j, and A(t) = {j ∈
A : σj ≤ t ≤ σj + pj,m(j)}, i.e., the activities in progress at time t. Constraints (5.1) are denoted
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the precedence constraints, Constraints (5.2) are denoted the renewable resource constraints, and
Constraints (5.3) are denoted the stochastic nonrenewable resource constraints. These constraints
are so-called chance constraints (see for instance Boyd and Vandenberghe (2004)), which means
that the constraints must be satisfied with a certain probability ǫ. As mentioned previously, the
RCPSP is a generalization of the Job Shop Scheduling Problem and is therefore NP-hard (see
e.g. Blażewicz et al. (1983)). As the MRCPSP-SNR reduces to the RCPSP when the variance off
all activities are 0, and ǫ = 1, the MRCPSP-SNR is also NP-hard.

5.3 Model

In this section we first give a brief description of how a chance constraint may be modelled as a
second-order cone constraint, next we propose how the joint chance constraints of the problem,
i.e., the nonrenewable resource constraints, can be divided into independent chance constraints,
and finally we show how the problem may be formulated as a CQIP.

5.3.1 Modelling chance constraints

A second-order cone constraint is a constraint of the form

ay + ω‖Dy + d‖2 ≤ b,

where a ∈ R
n, d ∈ R

n, b ∈ R, ω ≥ 0 and D ∈ R
n×n are constants, y ∈ R

n is a decision-variable,
and ‖ · ‖2 is the euclidean norm. A chance constraint of the form

P(ry ≤ s) ≥ ǫ,

where s ∈ R and 0 ≤ ǫ ≤ 1 are constants, and r is a Gaussian random vector with mean vector
µ and variance vector σ2, may be formulated as the constraint (see e.g. Boyd and Vandenberghe
(2004)):

n
∑

i=0

µiyi +Φ−1(ǫ)
√

σ2
i y

2
i ≤ b, (5.5)

where where Φ is the cumulative distribution function. If ǫ ≥ 0.5, and thus Φ−1(ǫ) ≥ 0, then
Constraint (5.5) is equivalent to a second-order cone constraint with a = µ, d = 0, ω = Φ−1(ǫ),
b = s, and Dii = σi, Dij = 0 for i 6= j.

5.3.2 Separating joint chance constraints

The Constraints (5.3) are joint chance constraints, meaning that all of them must be satisfied
with probability ǫ jointly. One can thus not simply reformulate each constraint individually as
second-order cone constraints using the value of ǫ. Since in many cases |R̃| is a relatively small
number, we propose to separate them into individual chance constraints as follows: Let ǫ be the
given risk factor: ∀k ∈ R̃ select 0.5 ≤ ǫk ≤ 1 : Πk∈R̃ǫk = ǫ, e.g., ǫk = |R̃|

√
ǫ. The joint chance

constraints may now be split into individual chance constraints using the selected values for each
ǫk, and then formulated as second-order cone constraints.

5.3.3 Conic Quadratic Integer Program

For some activity i and mode m ∈ Mi, let T e
im and T l

im be respectively the earliest and latest
possible completion time of i when executed in mode m. T e

im and T l
im may be calculated given

an upper bound on the makespan, and using any lower bound argument, such as the well-known
critical path lower bound. Assuming a risk factor ǫ ≥ 0.5, the MRCPSP-SNR may be formulated
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as the following CQIP:

min
∑

m∈Mn

T l
nm
∑

t=T e
nm

t · xntm (5.6)

s.t.
∑

m∈Mi

T l
im
∑

t=T e
im

t · xitm ≤
∑

m∈Mj

T l
jm
∑

t=T e
jm

xjtm(t− pjm) ∀(i, j) ∈ E (5.7)

∑

j∈A

∑

m∈Mj

min{t+pjm−1,T l
jm}

∑

t′=max{t,T e
jm

}

rjkm · xjt′m ≤ Rk, ∀k ∈ R, ∀t ∈ T (5.8)

∑

j∈A

∑

m∈Mj

µjkm · yjm +Φ−1(ǫk)

√

∑

j∈A

∑

m∈Mj

σ2
jkm · yjm ≤ Rk, ∀k ∈ R̃ (5.9)

∑

m∈Mj

T l
jm
∑

t=T e
jm

xjtm = 1, ∀j ∈ A (5.10)

xjtm ∈ {0, 1} ∀j ∈ A, ∀m ∈ Mj, (5.11)

where the binary variable xjtm is 1 if and only if activity j completes at time t using mode m. For

ease of exposition we have introduced artificial variables yjm :=
∑T l

jm

t=T e
jm

xjtm, such that yjm is 1

if and only if activity j is scheduled using mode m. We will in Section 5.6 investigate whether it is
worth including the y-variables explicitly in the model for the sake of branching. The precedence
constraints (5.7) ensure that no activity is started before its predecessors have completed, the
renewable resource constraints (5.8) ensure that at no point in time the resource requirements of
the activities in progress exceed the capacity of a renewable resource, the stochastic nonrenew-
able resource constraints (5.9) ensure that the combined nonrenewable resource consumption of
all activities satisfy the capacity of nonrenewable resources with probability at least ǫ, and the
constraints (5.10) ensure that each activity is completed only once using exactly one mode. Note,
that we have used the fact that y2jm = yjm since yjm is binary.

5.4 Conic cover cuts

We will in this section describe a class of cuts, which may be used to strengthen the formulation.
As the proposed algorithm makes use of CPLEX, which is already effective at separating cuts for
linear Mixed Integer Programming (MIP) constraints, we instead focus on cuts for the second-order
cone constraints.

Let N be a finite index set and let Q1, . . . , Q|K| be a division of N into |K| independent sets.
i.e.,

⋃

k∈K Qk = N , and Qi ∩Qj = ∅, ∀i, j ∈ K, i 6= j. Consider the following polytope

Z :=







z ∈ {0, 1}|N | :

n
∑

i=0

µizi + ω
√

σ2
i zi ≤ b,

∑

i∈Qk

zi ≤ 1 ∀k ∈ K







,

where b ≥ 0 and ω ≥ 0. If ω = 0, Z can be recognized as the classic knapsack polytope with
Generalized Upper Bound (GUB) constraints. We thus refer to Z (when ω > 0) as a second-order
cone knapsack polytope with GUB constraints.

So-called cover cuts are well-known for the classic knapsack polytope: Given a set C ⊆ N for
which

∑

i∈C µi > b a cover cut has the form:

∑

i∈C

µi ≤ |C| − 1. (5.12)
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Given a cover C, the corresponding cover inequality may be strengthened by including additional
variables. When chosen appropriately, these variables will add to the left-hand side of (5.12)
without raising the right-hand side. The process of adding variables to an existing cover, is called
extending the cover, and can be seen as a lifting procedure, where lifting coefficients may only take
values 0 or 1. It is well-known that if GUB constraints are present, these can be used to further
strengthen cover cuts.

When the knapsack constraint is second-order conic, i.e., ω > 0, cover cuts may still be applied.
The process of separation, and extension is in this case however more complicated. Atamtürk and
Narayanan (2009) treat the problem of separating and extending cover constraints for second-
order conic knapsack constraints, where no GUB constraints are present. Atamtürk et al. (2011)
extend this work to the case where GUB constraints are present, and experiment with a number of
separation and extension algorithms. Computational results show, that separation and extension of
cover inequalities (using GUB constraints) can greatly improve the time needed to solve problems
including second-order cone knapsack constraints.

The constraints (5.9) and (5.10) define a second-order cone knapsack polytope with the same
structure as Z. We separate the conic cover cuts described above using the best performing
separation and extension algorithm found in Atamtürk et al. (2011). That is the variables within
each Qk are ordered non-increasingly by their value in the current fractional solution. Then a set
C is created containing the |K| largest-valued variables. If C is not a cover, a new set C is created
where the second largest-weighted variable from some Qk replaces the current variable from the
same set and so on. The algorithm progresses until a cover is found or there are no more variables.
If a cover is found an attempt is made to extend it: For k ∈ K, define µ

k
= min{µi : i ∈ Qk} and

σ2
k = min{σ2

i : i ∈ Qk}. Let xi∗ be the current candidate variable considered for extending the
cover, and assume i∗ ∈ Qk∗ . The variable xi∗ is added to C if

∑

k∈K\{k∗}

µ
k
+ µi∗ + ω

√

∑

k∈K\{k∗}

σ2
k + σ2

i∗ > b.

5.5 Solution methodology

We propose to solve the MRCPSP-SNR using a branch-and-cut approach using the commer-
cial solver CPLEX, which solves conic quadratic relaxations in each branch-and-bound node. In
branch-and-cut algorithms, branching typically occurs by fixing a fractional binary variable to 0 in
one branch and to 1 in the other. The information derived from such a branching can be used to
fix additional variables, through bound and feasibility arguments. For example, fixing the variable
yim := 1 for some activity i and mode m ∈ Mi in a node, means that activity i must use mode
m in the sub-tree rooted at that node. Using this information, one may find improved lower and
upper bounds on the completion time of predecessors and successors of i, and thus fix additional
variables. Within the context of CP such a process is known as propagation. In the following we
examine different propagation alternatives.

The bound arguments employed to tighten the upper and lower bounds on completion times
are based on a so-called Finish-to-Start-Distance (FSD)-matrix, which we will introduce in Sec-
tion 5.5.1 along with a number of lower bounding methods used to update the entries of the
FSD-matrix.

Following the introduction of the FSD-matrix, we will present the different components of the
algorithm: In Section 5.5.2 we describe a number of preprocessing steps used to reduce the problem
size. In section 5.5.3 we describe how we find initial upper bounds, and how an upper bound can be
used to further reduce the problem size. In Section 5.5.4 we describe how the number of variables
of the model may be reduced using lower bound arguments and the FSD-matrix. In Section 5.5.5,
and Section 5.5.6 we describe how additional variables may be included in order to create a more
balanced branch-and-bound tree, and how branching on these variables is propagated. Finally
in Section 5.5.7 and Section 5.5.8 we describe how additional variables may be fixed, and nodes
pruned based on the FSD-matrix.



95 5.5. Solution methodology

The approach presented has similarities with the approach used by Zhu et al. (2006) for the
MRCPSP, and can be placed within the Constraint Integer Programming (CIP) paradigm (see
Achterberg (2007)).

5.5.1 Finish-to-Start-Distance-matrix and lower bounds

In the following we first give a description of the concept of an FSD-matrix, and then the bounds
used in connection with the FSD-matrix.

Finish-to-Start-Distance (FSD)-matrix We employ a slight modification of the FSD-matrix
of Zhu et al. (2006), which is in itself a modification of the traditional Start-to-Start-Distance
matrix found in the literature (see for instance Bartusch et al. (1988), Brucker and Knust (2000),
or Demassey et al. (2005)). An FSD-matrix is an integer matrix, B = (bij)A×A, which satisfies:

σj − τi ≥ bij + 1, ∀(i, j) ∈ A×A

for all feasible schedules, where τi is the completion time of activity i and σj is the starting time
of activity j. That is, bij is a lower bound on the amount of time which must pass between the
completion time of i and the starting time of j. Note that bij may be negative, which means that
activity j must start before the completion of activity i. Define p

i
:= min{pim|m ∈ Mi} and

pi := max{pim|m ∈ Mi}. Since the relation (5.5.1) has the following transitive property:

σj − τi ≥ bij + 1 ∧ σk − τj ≥ bjk + 1⇒ σk − τi ≥ bij + p
j
+ bjk + 1,

the entries of an FSD-matrix may be updated by calculating the transitive closure of B. This can
be done using a variant of the Floyd-Warshall algorithm in O(|A|3) time, see Zhu et al. (2006).
Note that a pair of activities (i, j) must run in parallel if bij ≥ −pi−p

j
+1 and bji ≥ −pi−p

j
+1.

Given an upper bound, T , on the makespan, the FSD-matrix B may be initialized as follows:

bij =







−pi if i = j
0 if (i, j) ∈ E
−T otherwise,

The difference between the FSD-matrix considered here, and the one of Zhu et al. (2006) is that
here the FSD-matrix is defined for all pairs of activities, whereas in Zhu et al. (2006) it is defined
only for pairs of activities being related by precedence.

As will be explained in detail in the following sections, an FSD-matrix may be used to eliminate
modes and variables from consideration. The effectiveness of the methods rely on good bound
arguments for the bij values. The values bij may be calculated by constructing the subproblem
induced by Si∩Pj and then applying any lower bounding technique for the RCPSP on this smaller
instance.

A number of such lower bounds exists in the literature. We do not give a description of these
here but instead refer the reader to the excellent work by Klein and Scholl (1999) where 11 such
bounds are described and compared. Using the name convention of Klein and Scholl (1999), the
bounds considered here are: LB1, LB6, LB8, LB10, and LB11. LB1 is the well-known critical
path lower bound, LB6 and LB8 are extensions of the so-called weighed node packing bound by
Mingozzi et al. (1998) (see Klein and Scholl (1999)), and LB10 and LB11 are bounds based on
evaluating a lower bound for all possible ways of resolving a resource conflict given respectively
pairs and triples of activities (again see Klein and Scholl (1999)).

The lower bounds LB6, LB10, and LB11 themself use lower bound arguments on subproblems
of the problem for which the lower bound is calculated. Recall that this problem may in itself
be a subproblem corresponding to a bij entry. In order to to distinguish the two, we will refer
to subproblems used within the calculation of the lower bounds LB6, LB10, and LB11 as inner
subproblems. When calculating lower bounds on inner subproblems, one could recursively apply
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lower bound arguments, but this can potentially by very time-consuming, and we thus, like Klein
and Scholl (1999), only apply the critical path lower bound (LB1) and capacity bound (LB2).

We additionally include two MRCPSP-specific lower bounds recently proposed by Muller
(2011): The mode-fixed critical path (denoted LBX1 in Muller (2011)) is based on calculating
the critical path for all possible mode-assignments of a subset of the activities, and the extended
capacity bound (denoted LB2X in Muller (2011)) is based on the Lagrange Relaxation of the
problem of calculating the best possible capacity bound (LB2) taking into account all resources
simultaneously.

5.5.2 Preprocessing

We here describe a number of preprocessing steps, which are applied to the problem initially.

Mode and resource reductions As described by Sprecher et al. (1997) the number of modes
and resources may be reduced by application of the following preprocessing procedure: Define
r̃ik := min{r̃ikm|m ∈ Mi}, and r̃ik := max{r̃ikm|m ∈ Mi}. A mode m ∈ Mi is called non-
executable if either rikm > Rk, for some k ∈ R, or ∑j∈A\{i} r̃jk + rikm > R̃k, for some k ∈ R̃. A
mode is called inefficient if there exits another mode m′ ofMi, such that rikm ≥ rikm′ ∀k ∈ R,
and r̃ikm ≥ r̃ikm′ ∀k ∈ R̃. A nonrenewable resource k is called redundant if

∑

i∈A r̃ik ≤ R̃k. Non-
executable and inefficient modes, and redundant nonrenewable resources can be removed initially
by the use of the algorithm described in Algorithm 5.1.

Algorithm 5.1 Pseudo-code for preprocessing of modes and nonrenewable resources

Remove non-executable modes.
repeat
Remove redundant nonrenewable resources.
Remove inefficient modes.

until No mode removed

Resource strengthening The lower bounds LB2, and LB2X depend upon the resource usages.
If the resource usage of an activity in a certain mode can be increased without changing the
optimal solution, the resulting bounds will be stronger. As in Muller (2011) the following rule is
applied after the initial mode and resource reductions: Let (i, j) ∈ A × A be a pair of activities.
We say that two modes mi ∈ Mi and mj ∈Mj are incompatible if they can not be run in parallel,
either because of precedence relations between the activities, or because of resource constraints.
If a mode m ∈ Mi of an activity i ∈ A, is found incompatible with all other modes of all other
activities, then the resource usage is updated as rikm := Rk , ∀k ∈ R.

5.5.3 Upper bounds and problem reductions

When solving problems by use of a branch-and-cut approach, good upper bounds are an advantage,
as this makes it possible to prune nodes in the search-tree and thus reduce the search space.
Additionally, as the number of variables in the CQIP model (5.6)–(5.11) is dependant on the
earliest and latest possible completion time of each activity, and these completion times again
are dependant on the upper bound, a good upper bound both reduces the size of the model, and
improves the linear relaxation based lower bound. Further more a good upper bound may be used
to deduce new precedence relations and remove modes. In the following we describe how upper
bounds are found, how new precedence relations are added to the problem, and how modes are
removed from the problem.
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Upper bounds To find good upper bounds, we run the Adaptive Large Neighborhood Search
(ALNS) algorithm for the MRCPSP proposed by Muller (2011), having changed the evaluation
of the nonrenewable resource usages to take into account the square-root term in (5.9). The
algorithm is run using the parameters found in Muller (2011) and with a stopping criteria of
50,000 generated schedules.

Precedence augmentation When an upper bound, UB, is found, one is only interested in
finding better solutions. Thus, any sequencing of activities which has a lower bound larger than
UB− 1 can be forbidden. Let the head, hj , of an activity j ∈ A be the time that must pass before
activity j can be started and let the tail, tj , be the time that must pass from the point where
activity j has completed until the project can be completed. The head and tail of an activity j can
respectively be read from the entries b0j and bjn of the FSD-matrix. Define rik := min{rikm|m ∈
Mi}. We now describe how precedence relations may be deduced on the basis of heads and tails.

The following two rules (5.13) and (5.14), are a simple generalization to the multi-mode case of
a subset of the rules employed by Fleszar and Hindi (2004) in their variable neighborhood search
algorithm. Let i, j ∈ A be a pair of activities for which no precedence relations exists. Precedence
relations may be deduced as follows:

hj + ti ≥ UB ⇒ i→ j (5.13)

∃k ∈ R : rik + rjk > Rk ∧ hj + p
j
+ p

i
+ ti ≥ UB ⇒ i→ j. (5.14)

We additionally use the following deduction rule also used by Muller (2011): Let i, j, k ∈ A be
a triple of activities for which no precedence relation exists and assume that none of the three can
be run in parallel. We examine all 6 sequencing possibilities of the three activities: (1) i→ j → k,
(2) i → k → j, (3) j → i → k, (4) j → k → i, (5) k → i → j, and (6) k → j → i. Given a
sequencing, a→ b→ c, a lower bound on the makespan is ha+p

a
+p

b
+p

c
+tc. In the following let

LB(1), . . . , LB(6) be such lower bounds corresponding to the sequences (1)–(6). New precedence
relations may be deduced as follows:

LB(1) ≥ UB ∧ LB(2) ≥ UB ∧ LB(5) ≥ UB ⇒ j → i

LB(3) ≥ UB ∧ LB(4) ≥ UB ∧ LB(6) ≥ UB ⇒ i→ j

LB(1) ≥ UB ∧ LB(2) ≥ UB ∧ LB(3) ≥ UB ⇒ k → i

LB(4) ≥ UB ∧ LB(5) ≥ UB ∧ LB(6) ≥ UB ⇒ i→ k

LB(1) ≥ UB ∧ LB(3) ≥ UB ∧ LB(4) ≥ UB ⇒ k → j

LB(2) ≥ UB ∧ LB(5) ≥ UB ∧ LB(6) ≥ UB ⇒ j → k

If new precedence relations have been added to the problem, the ALNS algorithm is repeated,
in order to see if a better upper bound can be found.

Mode diminution As is the case with precedence augmentation, when a new upper bound,
UB, is found, only subsequent improvements are of interest. Thus modes, which lead to a lower
bound larger than UB − 1 may be removed. When a new UB is found, a mode m ∈ Mi of an
activity i ∈ A is removed if one of the following expressions are true:

1. hi + pim + ti ≥ UB.

2. bii ≥ −pim + 1.

3. The current entries of the FSD-matrix implies that i must run in parallel with some activity
j, and m is incompatible with all modes of j.

If condition 2 is satisfied the mode can be removed because the condition implies σi+pim−1 > τi.
The removal of a mode may render other modes non-executable and may render some nonre-

newable resources redundant. Thus the two first steps of Algorithm 5.1 are repeated if a mode is
removed. As for precedence augmentation, if a mode is removed, the ALNS algorithm is repeated
in order to see if a better upper bound can be found.
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5.5.4 Initial variable reduction

In the branch-and-cut algorithm proposed by Zhu et al. (2006) a so-called variable reduction
technique is applied initially in order to fix variables to zero through bound calculations for the
entries of the FSD-matrix. We apply a procedure almost identical to the one of Zhu et al. (2006),
the only difference being the bound arguments applied.

In the variable reduction procedure of Zhu et al. (2006), for each pair of precedence relations
(i, j) ∈ E , the subproject, q, corresponding to the FSD-matrix entry bij is constructed. Before a
potentially time consuming lower bound argument is applied, a genetic algorithm is run on q to
see whether a schedule can be found with makespan bij , if this is the case the bound cannot be
improved. The lower bound arguments applied to q by Zhu et al. (2006) is a truncated branch-
and-cut procedure, and a lower bound based on renewable resources.

We instead apply the bound arguments described earlier, i.e., LB1, LB6, LB8, LB10, LB11,
LBX1, and LB2X. To further improve the bounds, we also apply a truncated branch-and-cut
procedure, but rather than applying the procedure only to the subproblem corresponding to the
entry of the FSD-matrix under consideration, we apply it to the complete problem, with the
objective of minimizing the term

σi − τj =
∑

m∈Mi

T l
im
∑

t=T e
im

xitm(t− pim)−
∑

m∈Mj

T l
jm
∑

t=T e
jm

t · xjtm,

Including all activities of the project may produce better lower bounds, than only considering
activities of the subproject, but as the problem is larger, solving it may also be more time con-
suming.

In order to save time we, as Zhu et al. (2006), only apply the bound arguments to some of the
subprojects. Zhu et al. (2006) only apply the lower bound arguments if their heuristic can not find
a solution with a makespan equal to the current value of bij , which is sensible since only in this
case may the bound be improved. In our case it may be possible to improve the bound regardless
of such a check, because the truncated branch-and-cut procedure considers all activities of the
project. Even so, we choose to run the truncated branch-and-cut procedure only if the heuristic
(in our case the ALNS algorithm) can not find a solution equal to the current value of bij , as we
deem such a case the most promising for improving the bound bij .

In addition to removing variables before starting the branch-and-cut algorithm, variable reduc-
tion may also improve the bounds of the FSD-matrix (because of the truncated branch-and-cut
procedure), which is a benefit as the FSD-matrix, as we shall see, is used throughout the branch-
and-bound tree.

5.5.5 Variables and branching

Branching based directly on fractional x-variables has the potential to create an unbalanced search-
tree, as the branch corresponding to xjtm = 0 may not change the value of the LP-relaxation
much. We now describe two methods, which may produce a more balanced search-tree. We will in
Section 5.6 examine whether it is profitable from a computational point of view to include these
methods.

Mode-branching (y-variables) One solution for creating a more balanced search-tree is bran-

ching on the modes of an activity, i.e.,
∑T l

jm

t=T e
jm

xjtm = 0 in one branch, and
∑T l

jm

t=T e
jm

xjtm = 1

in the other, for some activity i ∈ A and mode m ∈ Mi. In order to achieve this behavior, we

add the artificial variables yim :=
∑T l

im

t=T e
im

xjtm described earlier explicitly to the model, and let

CPLEX decide when to branch on these variables.

Time-branching (SOS) As described by Zhu et al. (2006), for each j ∈ A the set of variables
Wj = {xjtm : m ∈ Mj , t = T e

jm, . . . , T l
jm} can be seen to be a Special Ordered Set (SOS) of type
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1, i.e., a set of binary variables where at most one variable can be non-zero. In a SOS each variable
is assigned a weight and as Zhu et al. (2006) we assign each variable xjtm a weight of t.

Let x∗ be the fractional solution of some branch-node. CPLEX branches using special ordered
sets, by selecting some Wj . The variables of Wj are divided into two sets: W1 and W2 based on
the weight assigned to each variable. In one branch the constraint

∑

(t,m)∈S1
xjtm ≤ 0 is enforced,

while in the other branch the constraint
∑

(t,m)∈S2
xjtm ≤ 0 is enforced.

The division of variables is such that ∀(t,m) ∈ W1 : tx∗
jtm ≤ C and ∀(t,m) ∈W2 : tx∗

jtm ≥ C,
where C =

∑

i∈S tx∗
jtm, i.e., C is a weighted average. Thus branching on Wj can be seen as

branching on the time-interval in which the activity j can complete. In one branch the j must
complete no later than ⌊C⌋, while in the other branch the activity j may complete no earlier than
⌈C⌉.

5.5.6 Variables and propagation

As mentioned earlier, when branching on a variable, additional information may be deduced. This
information may be used to update the FSD-matrix, and subsequent calculation of the closure of
the FSD-matrix may lead to a tightening of the earliest and latest possible completion of some
activities, and the corresponding variables may be fixed to zero. The information contained in
the FSD-matrix of the current branch-and-bound node is passed down to its children nodes, so
information gathered from branching decisions are accumulated as branching progresses. Fixing
variables may result in improved lower bounds, but propagation may be time-consuming and
there is a trade-off between the time spent per branch-and-bound node, and the gain in number
of branch-and-bound nodes having to be considered. We will in Section 5.6 examine whether it
is profitable to include propagation. In the following we describe how propagation is performed
for each of the three possible branching types, that is, branching on x-varibles, branching on
y-variables, and branching on Sepcial Ordered Sets.

y-variables When mode-branching occurs, one disallows a mode m, for an activity j in one
branch (yjm = 0), while fixing the activity to run in that mode in the other branch (yjm = 1).
Since some of the bound arguments used to calculate the entries of the FSD-matrix are dependant
on the available modes, reapplying these bound arguments may lead to improvements of some
entries of the FSD-matrix.

SOS When time-branching occurs, depending on the branch, some activity j is fixed to complete
either before or after some point in time λ. This may again be reflected in the entries of the FSD-
matrix: requiring that j completes before time λ means the FSD-matrix may be updated as
bj0 = −(λ + 1), while requiring that j completes after time λ means the FSD-matrix may be
updated as b0j = λ−max{pjm|m ∈ Mj}+ 1.

x-variables When branching on x-variables, in one branch some activity j is fixed to complete
at some point in time λ using some mode m, while in the other branch j may not complete at
time λ using mode m.

In case of the first branch, the FSD-matrix updated firstly in the same manner as for the
y-variables, i.e., reapplying the bound arguments that depend on available modes, and secondly
by setting bj0 = −(λ+ 1) and b0j = λ− pjm + 1. This update imply σj + pjm − 1 = λ.

In case of the second branch, i.e, the xjλm = 0 branch, let λ = min{t ∈ T : xjtm = 0,m ∈ Mj}
and let λ = max{t ∈ T : xjtm = 0,m ∈ Mj}, i.e., the earliest and latest possible completion time
given the current state of the branch-and-bound tree. The FSD-matrix is then updated by setting
bj0 = −(λ+ 1) and b0j = λ−max{pjm|m ∈Mj}+ 1.
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5.5.7 FSD-matrix-based mode removal

Based on the entries of the updated FSD-matrix and the modes disallowed at the current node,
further modes may be removed:

Heads and tails If an activity i ∈ A and mode m ∈ Mj exists, such that hi + pim + ti ≥ UB,
the mode may be removed (this check is equivalent to condition 1 described in connection with
mode diminution in Section 5.5.3).

Parallel activities If the current entries of the FSD-matrix implies i must run in parallel with
some activity j, and m is incompatible with all modes of j, then the mode may be removed (this
check is equivalent to condition 3 described in conncetion with mode diminution in Section 5.5.3).

Nonrenewable resources If an activity i ∈ A and mode m ∈ Mj exists such that m is
non-executable, then the mode may be removed.

5.5.8 FSD-matrix-based pruning

The entries of the FSD-matrix and the modes currently disallowed may also be used to prune
search nodes:

Infeasible completion times If through the tightening of bounds on earliest and latest com-
pletion times, a variable, which was earlier fixed to 1 by a branching, has to be fixed to 0, the
node may be pruned.

Infeasible modes If through the application of the mode removal arguments just described, a
mode, which was earlier fixed to 1 by a branching, has to be fixed to 0, the node may be pruned.

Parallel activities If the current entries of the FSD-matrix implies i and j must run in parallel
and no pair of modes is compatible, or if the FSD-matrix implies that the activities i, j, and k
must run in parallel and no triple of modes is compatible, then the node may be pruned.

5.6 Computational experiments

In this section we describe the computation experiments performed. This includes testing the
effect of the variables included in the model, the effect of cutting, and the effect of branching-
based propagation. We conclude with a study of the effect of the risk factor on the average
makespans, and on the time taken to find solutions.

The algorithm has been coded in C++, compiled with gcc 4.4.3 and the experiments have
been run on a PC with 2 Intel(R) Xeon(R) CPU X5550 @ 2.67GHz (16 cores in total, but only a
single core is used), with 24 GB of RAM, and running Ubuntu 10.4. CPLEX is left at its default
settings, except for the following parameters: GUB-covers are set to be separated aggressively,
clique-covers are set to be separated very aggressively, the local-branching heuristic is on and the
cutfactor is set to 6. These settings were taken from Zhu et al. (2007). For the root node, the
emphasis is set to best bound, after which it is set to balanced as this gave the best performance in
preliminary tests. Only a single thread is used. For the truncated branch-and-cut algorithm used
in the variable reduction procedure ,CPLEX is left at its default settings, except for the following
parameters: GUB-covers are set to be separated aggressively, clique-covers are set to be separated
very aggressively, the emphasis is set to best bound, repeat presolve is set to off, the node limit is
set to 100, and the time limit is set to 5 seconds. Again only a single thread is used. The code is
available for download at http://diku.dk/~laurent.
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5.6.1 Benchmark instances

As the Single-mode Resource-Constrained Project Scheduling Problem (SRCPSP) has not been
considered before, there are no benchmark instances available in the literature. There are, however,
a number of benchmark instances for the MRCPSP available from the PSPLIB, which have been
widely used in the literature (see also Kolisch and Sprecher (1996)). The PSPLIB may be found
at http://129.187.106.231/psplib/. It seems natural to extend these benchmark instances to
the problem considered here. We extend the benchmark classes: J10, J12, J14, J16, J18, and
J20. These benchmark classes consists of instances containing respectively 10, 12, 14, 16, 18 and
20 non-dummy activities. Each activity may be performed in up to 3 different modes, there are
two nonrenewable, and two renewable resources. The number of instances in each benchmark
class J10–J20 is respectively 536, 547, 551, 550, 552, and 554. For these, all optimal solutions
are known. The new instances are generated as follows: the mean of the stochastic nonrenewable
resource usage (r̃jkm) is set to the value of the nonrenewable resource usage of the corresponding
deterministic instance, and the standard deviation (σjkm) is chosen at random within the range
[a · r̃jkm; b · r̃jkm], where a = 0, and b = 0.15. The value of the risk factor ǫ, is not part of the
instance. The instances are available for download at http://diku.dk/~laurent.

5.6.2 Evaluation of components

We here examine the different components of the algorithm, in order to establish which com-
binations perform the best. As the instances may take a long time to solve, we restrict these
experiments to the same subset of instances from the J20 benchmark class as Zhu et al. (2006):
J2013 containing 10 instances. The value of ǫ is fixed to 0.95 for these experiments.

Model (no propagation) We first examine the effect of including the redundant y-variables,
and the Special Ordered Sets when solving the model without propagation. All other components
are disabled, i.e., variable reduction, cutting, and propagation. The results can be see in Table 5.1.
Including y-variables has a slightly positive effect on the integrality gap compared to the model
with no y-variables and SOS. All other combinations are worse.

Table 5.1: Effect of including the redundant y-variables and the special ordered sets. The column #Opt
is the number of instances solved to optimality within 3600 seconds, the column Dev. Best is average
percentage deviation from the optimal solution for the deterministic case, the column Gap is the average
percentage integrality gap of instances not solved to optimality, the column Nodes is the average number
of nodes in the branch-and-bound tree, and the column Time is the total time used across all 10 instances.
In the Vars. column y means the y-variables are included, y means the y-variables are given priority over
x-variables for branching, and sos means that SOS are included.

Vars. #Opt Dev. Best(%) Gap(%) Nodes Time(s)

6 3.38 6.064 34066 16396
sos 3 3.94 11.721 138742 26543
y 6 2.81 4.289 12816 17391
y 5 3.15 13.645 23437 21302
y,sos 3 4.23 12.205 65189 26784
y, sos 1 4.23 21.014 52707 32434

Variable reduction (no propagation) We next examine the effect of initial variable reduction.
We use the best combination from the previous test, i.e., y-variables are included. Again all other
components are disabled. The results can be seen in Table 5.2. Variable reduction has a slight
negative effect, and many more branch nodes are examined.
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Table 5.2: Effect of variable reduction. The column Vars. is the average number of binary variables
in the problem, and the column Rem. is the average number of varibles removed by variable reduction.
The remaning columns are as earlier.

#Opt Dev. Best(%) Gap(%) Nodes Time(s) Vars. Rem.

No Var. Red 6 2.81 4.289 12823 17390 0.00 0.00
Var. Red 6 2.88 5.440 26278 18578 906.25 63.75

Cuts We next examine the effect of cutting on the stochastic nonrenewable resource constraints.
y-variables are included, and variable reduction is disabled, as are the remaining components. The
results can be seen in Table 5.3. Cutting locally throughout the branch-and-bound tree performs
the best which agrees with the findings of Atamtürk et al. (2011). Disappointingly, the effect
of cutting is slight. We beleive the reason for this is, that there are only 2 second-order cone
constraints in the problem, and that these may thus not influence the complete problem structure
much.

Table 5.3: Effect of including cuts for the nonrenewable resources. The columns are as earlier.

#Opt Dev. Best(%) Gap(%) Nodes Time(s)

No cutting 6 2.81 4.289 12825 17389
Root cutting 6 2.88 4.951 14794 18540
Global cutting 6 3.10 6.732 12692 17470
Local cutting 6 2.59 4.618 14314 17867

Model (with propagation) We now turn our attention to propagation. Propagating on a
branching type takes additional computational time, and we want to examine, which combination
of variables included and which type of branch propagated leads to the best performance. Recall
that we may propagate on any of the following: x-variables, y-variables, and Special Ordered Sets.
For these experiments cutting is enabled, as is FSD-matrix-based mode removal and pruning,
while variable reduction is disabled. The results can be seen in Table 5.4. In order to better
present the differences between combinations, the table is sorted with respect to the number
of optimal solutions, on ties the average deviation from the optimal solutions known from the
deterministic case, on ties finaly on the average gap. The combination where branching on y-
variables is propagated, and y-variables are given priority over x-variables for branching gives the
best performance solving a total of 8 instances to optimality, which is better than the 6 instance
solved to optimality without propagation.

Variable reduction (with propagation) As mentioned earlier, variable reduction may im-
prove the bounds of the FSD-matrix and as the FSD-matrix is used as part of the propagation,
it is of interest to examine the effect of enabling variable reduction, when propagation is used.
For these experiments the best propagation strategy from the previous test is used, and the same
components are enabled. The results can be seen in Table 5.5. Variable reduction can be seen to
improve the average deviation from the optimal solutions known from the deterministic case, i.e.,
the average makespan, but the integrality gap is worsened.

Summary Table 5.6 summarise the improvement of using the best solution strategy found
compared to CPLEX.
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Table 5.4: Performance for different combinations of variables and type of branching propagated. An
x, y and sos in the Prop column means that branching on x-variables, y-variables, and Special Ordered
Sets respectively are propagated. The remaining columns are as earlier.

Vars. Vars. prop. #Opt Dev. Best(%) Gap(%) Nodes Time(s)

y y 8 2.59 4.417 15020 15996
y x,y 8 2.59 4.963 14371 15007
y x,y 7 3.16 7.303 18254 15528
y x 6 3.10 8.959 11275 19137
y x 6 3.16 5.922 20319 17514
y y 6 3.38 6.064 13743 16708
y,sos y,sos 5 3.65 15.080 25406 20497
y,sos y 5 3.65 15.111 27335 22059
y,sos x,y,sos 5 3.65 15.227 24348 21197
y,sos x,y 5 3.65 15.252 24007 20761
y,sos x,y,sos 4 3.65 9.890 43433 25845
y,sos x,sos 4 3.65 10.299 47898 25867
sos x,sos 4 3.65 10.497 30682 25519
y,sos y 4 3.67 10.355 41874 25867

x 4 3.94 7.391 28995 22852
sos x 4 4.00 13.137 31201 25568
y,sos sos 4 4.23 10.832 49584 26229
y,sos sos 3 3.65 17.719 34299 29359
y,sos y,sos 3 3.94 9.164 49029 27308
y,sos x,y 3 3.94 9.513 39935 26958
y,sos x 3 3.94 10.487 43893 26933
sos sos 3 4.23 11.048 37344 26750
y,sos x,sos 2 4.23 18.585 29066 29404
y,sos x 2 4.23 18.690 28547 29416

5.6.3 Final results

We here examine the effect of the risk factor ǫ on the average makespan. We use the best solution
strategy found in the previous experiments, that is, y-variables are included and given priority over
x-variables for branching, cutting is performed locally in each branch-and-bound node, and variable
reduction is used. For these experiments we run on all instances from the J10–J20 benchmark
classes. We remind the reader that the number of instances in each benchmark classes J10–J20
is respectively 536, 547, 551, 550, 552, and 554. We experiment with four values of ǫ shown in
Table 5.7. Recall that for the benchmark instances considered |R̃| = 2, and thus ǫk =

√
ǫ, ∀k ∈ R̃.

Setting ǫ = 0 corresponds to not taking uncertainty into account. For this case the problem is a
regular MIP rather than a CQIP and corresponds to the deterministic case.

The results from running on the J10–J20 benchmark instances can be seen in Table 5.8. As
expected the average makespan of the solutions increase as the value of ǫ increases, illustrating

Table 5.5: Effect of including variable reduction with propagation. The column Vars. is the average
number of binary variables in the problem, and the column Rem. is the average number of varibles
removed by variable reduction. The remaning columns are as earlier.

#Opt Dev. Best(%) Gap(%) Nodes Time(s) Vars. Rem.

No Var. Red. 8 2.59 4.350 15321 15471 0.00 0.00
Var. Red. 8 2.22 5.999 12702 14823 906.25 63.38
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Table 5.6: Comparison of best solution strategy to CPLEX.

#Opt CP Dev.(%) Gap(%) Nodes Time(s)

CPLEX 6 3.38 6.064 34066 16396
Best 8 2.22 5.999 12702 14823

Table 5.7: Values of ǫ used, and the corresponding values of ǫk and Φ−1(ǫk)

ǫ ǫk Φ−1(ǫk)

0.99 0.995 2.58
0.95 0.975 1.96
0.85 0.922 1.42
0 0 0

the trade-off between the length of the makespan and the probability that the project will not
run “over budget”. The increase in makespan is around 7% when requiring the project to stay
on budget with a 99% probability as compared to not taking stochasticity into account. This
increase seems an acceptable price to pay for robustness. When the value of ǫ increases, so does
the number of infeasible problem instances, but this number stays relatively low: up to around
2% of the instances for J12–J20, and up to around 10% for J10.

On all instances, when increasing ǫ to a positive number, i.e., changing the model from being
a regular MIP model to being a CQIP, the computational time increases. The average times per
instance are however relatively small, and using less than 5 minutes to solve a scheduling problem,
which could span days, weeks, or months seems acceptable. When comparing the minimum,
maximum, and average time, one observes that there is a big variance, with some instances taking
almost no time, while others take the full time allotted (the reason why some run times are above
the allotted 3600 seconds, is that the time spend cutting and solving in the root node is not
counted towards the 3600 seconds). This indicates that a few instances are hard taking up a lot
of time, while the remaining are solved in a short time.

We can consistently solve almost all instances up to J18 (1 is unknown for J16 and ǫ = 0.95, and
up to 4 are unknown for J18), while for J20 around 20–25 instances are not solved to optimality.
For J20 the average optimality gap is relatively small (below around 8%), while it is somewhat
larger for J18 (below around 16%). The heuristic performs remarkably well and is less than 1%
from the best found solution, and in some cases much closer.

5.7 Conclusion

We have presented a new variant of the MRCPSP, where nonrenewable resources are stochastic
and described by a mean and a variance, and the nonrenewable resources take the form of chance
constraints. We have shown how the problem can be modelled as a CQIP, where the chance
constraints are modelled as second-order cone constraints. This problem is of interest both in
itself, and as a stepping stone towards a completely stochastic RCPSP model.

In order to solve the problem we have proposed a branch-and-cut algorithm and experimented
with propagation rules based on the branching decisions performed in the branch-and-bound tree,
and with cuts for the nonrenewable resources. These experiments show that the branch-and-cut
algorithm using propagation outperforms CPLEX.

We have further experimented with the branch-and-cut algorithm on a large number of bench-
mark instances found in the literature and adapted to the MRCPSP-SNR. These experiments
show that taking stochasticity into account only results in an increase of around 7% of the average
makespan. Solving a CQIP instead of a MIP as expected results in an increase of the running
time, but on average these running times stay relatively low.
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Table 5.8: Results from running on the J10–J20 benchmark classes. The column #O is the number of
instances solved to optimality, #I is the number of instances proved to be infeasible, #U is the number
of instances which were neither proved optimal optimal nor infeasible, Mks is the average makespan, ∆H
is the average percentage deviation between the final solution and the solution found by the heuristic,
Gap is the average gap in percent when the algorithm terminated, Avg, Min and Max is respectively
the average, minimum, and maximum time in seconds per instance

ǫ #O #I #U. Mks ∆H(%) Gap(%) Min(s) Max(s) Avg(s)

J10

0.99 482 54 0 20.39 0.01 0.000 0.00 232.50 3.65
0.95 507 29 0 20.52 0.01 0.000 0.00 124.05 2.78
0.85 526 10 0 20.36 0.03 0.000 0.00 372.57 3.96
0 536 0 0 19.04 0.00 0.000 0.00 63.61 1.53

J12

0.99 536 11 0 22.95 0.16 0.000 0.00 2799.68 16.24
0.95 542 5 0 22.59 0.10 0.000 0.00 1092.07 7.73
0.85 544 3 0 22.24 0.09 0.000 0.00 466.30 6.03
0 547 0 0 21.35 0.03 0.000 0.00 236.34 3.04

J14

0.99 542 9 0 24.95 0.32 0.000 0.00 1825.06 22.67
0.95 546 5 0 24.51 0.29 0.000 0.00 828.58 17.23
0.85 546 5 0 24.08 0.30 0.000 0.00 2248.01 17.91
0 551 0 0 23.23 0.06 0.000 0.00 324.54 4.02

J16

0.99 544 6 0 26.61 0.55 0.000 0.00 3017.48 38.39
0.95 543 6 1 26.09 0.51 5.263 0.00 3769.63 41.63
0.85 545 5 0 25.79 0.46 0.000 0.00 3987.37 32.00
0 550 0 0 25.00 0.14 0.000 0.00 3058.17 13.86

J18

0.99 546 2 4 28.23 0.84 11.420 0.00 4137.56 121.19
0.95 548 2 2 27.79 0.73 13.255 0.00 4170.98 98.67
0.85 549 2 1 27.39 0.67 15.634 0.00 3998.94 77.36
0 552 0 0 26.66 0.29 0.000 0.00 2186.09 26.89

J20

0.99 524 5 25 29.87 0.97 8.432 0.00 4649.16 289.04
0.95 530 3 21 29.31 0.97 8.169 0.01 5171.45 260.19
0.85 530 2 22 28.87 1.04 8.476 0.01 4842.29 253.77
0 548 0 6 27.88 0.43 8.063 0.01 4031.13 95.22

It would be of interest to investigate how to merge stochastic nonrenewable resources, with
stochastic models for the RCPSP such as stochastic activity durations, or renewable resource
consumptions.
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Abstract This paper describes a Benders Decomposition based framework for solving the large scale

energy management problem that was posed for the ROADEF 2010 challenge. The problem was taken

from the power industry and requires one to schedule the outage dates for a set of nuclear power plants,

which need to be regularly taken down for refueling and maintenance, in such a way that the expected

cost of meeting the power demand in a number of potential scenarios is minimized. We show that the

problem structure naturally lends itself to Benders decomposition; however, due to several non-linear

constraints, it cannot be applied conventionally. The two phase solution procedure we present first uses

Benders decomposition to solve the linear programming relaxation of a relaxed version of the problem.

In the second phase, integer solutions are enumerated and a procedure is applied to make them satisfy

constraints not included in the relaxed problem. To cope with the size of the formulations arising in

our approach we describe efficient preprocessing techniques to reduce the problem size and show how

aggregation can be applied to each of the subproblems. Computational results on the test instances show

that the procedure competes well on small instances of the problem, but runs into difficulty on larger ones.

It was one of the few exact approaches proposed, and we placed 14th out of the 19 teams in the final.

Unlike the competing heuristic approaches, this methodology provides lower bounds on solution quality.

6.1 Introduction

Approximately every two years since 1999 the French Operations Research Society, Recherche
Opérationnelle et d’Aide à la Décision (ROADEF), has organized the so-called ROADEF chal-
lenge, an international operations research contest in which participants must solve an industrial
optimization problem. Given the success of previous contests, in 2010 it was jointly organized
for the first time with the European Operational Research Society (EURO) and known as the
ROADEF/EURO 2010 challenge. The competition was run in collaboration with Electricité de
France (EDF), one of the largest utility companies in the world, and required contestants to solve
a large scale energy management problem with varied constraints.

EDF’s power generation facilities in France stand for a total of 98.8 GW of installed capacity,
most of which is produced using thermal, and in particular nuclear, power plants. In 2008 thermal
power plants accounted for 90% of its total electricity production, 86% of which was delivered by
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nuclear power plants. The ROADEF/EURO 2010 challenge focused on the nuclear power plants,
since these need to be regularly shut down for refueling and maintenance, and asked contestants
to schedule these outages in such a way that the various constraints regarding safety, maintenance,
logistics, and plant operation were satisfied, while minimizing the expected cost of meeting the
power demand in a number of potential scenarios. The problem thus consisted of the following
two dependent subproblems

1. Determine a schedule of nuclear power plant outages. This entails determining when the
nuclear power plants should be taken offline and how much fuel should be reloaded at each
outage. An outage lasts for some predefined (plant specific) period of time during which the
nuclear power plant cannot be used for power generation. The coupling of an outage followed
by a production period (until the next outage) for a nuclear power plant is termed a cycle
and it is not uncommon to have to schedule up to six cycles for each nuclear power plant. In
determining an outage schedule one must obey several safety requirements as well as observe
restrictions arising from the limited resources available to perform the fuel reloading.

2. Given an outage schedule, determine a production plan for each of the power plants, i.e. the
quantity of electricity to produce in each time step, for each possible demand scenario. The
power plants are divided into two categories termed type 1 and type 2, respectively. Type 2
power plants refer to the nuclear power plants and must be reloaded with fuel, while type 1
power plants represents thermal power plants, which can be supplied with fuel continuously,
such as coal, gas, and oil powered plants. Several technical constraints govern the possible
levels of power production at each power plant. Due to the stochastic nature of power
markets, one is required to consider multiple demand scenarios.

The concepts of cycles, outages, and production plans for three power plants are illustrated in
Figure 6.1.

Figure 6.1: Depicts how the production plan could look for three plants. The x-axis is time, and the
y-axis is the amount of power production. A grey box represents an outage where the plant is taken offline
for refueling. A cycle runs from the start of an outage to the start of the next outage. The production
campaign is the part of the cycle between two outages.

One important aspect of the challenge is handling the size of the problem: There can be as
many as one hundred power plants and scenarios, and the planning horizon is in the order of
years, with a granularity down to hours. This means that a solution alone can contain in the
order of 108 variables. The structure of the problem, however, is such that as soon as an outage
schedule has been determined for the nuclear power plants, each of the different demand scenarios
can be solved independently by considering the online power plants in each of the time steps. The
problem is essentially a two-stage stochastic program with recourse, and, as such, it is very natural
to consider the application of Benders Decomposition. Many other teams focused on advanced
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meta-heuristics; however, a major focus of our approach was to push the boundary on what an
exact approach might achieve here. Despite the natural decomposition from a Benders perspective,
one is still left with what can be an extremely large restricted master problem, and possibly many
large subproblems. To combat the size of the restricted master problem, which must determine
the outage dates, we describe effective preprocessing techniques to reduce the number of binary
variables. The subproblems, on the other hand are only linear programmes; however, aggregation
of time steps is used in when determining power production levels for each scenario to reduce their
size and improve the run time of the algorithm.

There are several constraints, stipulated in the problem description, that cannot be satisfacto-
rily modelled linearly, and as a result we cannot implement a conventional Benders Decomposition
approach. Instead, we propose a two stage approach which first solves the linear programming
relaxation of a relaxed version of the restricted master problem. Relaxed in the sense that it does
not contain the non-linear constraints. Standard Benders Decomposition is applied to find the
optimal solution to this problem. In the second phase, a branch-and-bound tree is built using the
solution to the first phase and we enumerate integer solutions. A procedure is then applied to each
integer solution to make it adhere to the constraints that are left out of the initial formulation. A
simple heuristic is then used to improve the solution quality of the resulting solution, and the algo-
rithm terminates with the best found solution. Our approach was one of the few exact approaches
proposed and we placed 14th out of the 19 teams in the final. While the algorithm competes well
on small instances, it runs into difficulty on larger ones. The competing meta-heuristics perform
better with a one hour time limit; however, they are unable to produce any bounds on solution
quality. Our framework can provide valid lower bounds.

The remainder of the paper is organized as follows. Section 6.2 gives an overview of the entire
problem, while Section 6.3 presents a Mixed Integer Programming (MIP) model for (parts of)
the problem. In Section 6.4 we give a general outline of the proposed procedure and present
the Benders Decomposed model. Section 6.5 gives techniques for how the problem size can be
reduced, and Section 6.6 describes a number of additional constraints that we add to the model in
an attempt to reduce the number of infeasible subproblems. In Section 6.7 we present a procedure
for taking a solution, which does not satisfy all the constraints, and making it do so. Extensive
computational results are reported in Section 6.8 and conclusions from this research are drawn in
Section 6.9.

6.2 Problem Definition

In this section we provide a formal definition of the large scale energy management problem
considered in this paper. In Table 6.1 we also give a brief summary of the different constraints in
the problem. Due to space limitations we cannot provide a full description of each constraint, but
instead refer the interested reader to the official competition document by Porcheron et al. (2009).
To aid in the definition, we begin by introducing a number of sets and parameters that will be
used to formally state the model in Section 6.3. Additionally, we define some sets and variables
that will only be used to assist in the definition of the constraints.

As was briefly mentioned in the introduction, the aim of the problem is to schedule cycles for
a set, I, of type 2 (nuclear) power plants. Each plant i ∈ I is assumed to have a set of Ki possible
cycles. One has a finite time horizon over which the cycles can be scheduled. This time horizon
is assumed to consist of a set of contiguous weeks, W , or an equivalent set of contiguous time
steps T . Each week w ∈ W consists of the same number of time steps. A cycle comprises an
outage and the subsequent production period. During an outage the nuclear power plant is taken
offline for a certain number of weeks, denoted Lik (where i ∈ I and k ∈ Ki), and the plant is
reloaded with fuel. A unit of fuel is assumed to cost cik. Associated with each cycle k ∈ Ki of
each plant i ∈ I is a time window on when the outage can be scheduled, the first week of which
is denoted TO

ik , while the last is given as TA
ik. The reloaded fuel can then be used in the following

production campaign. Each plant i ∈ I is assumed to have an initial fuel level, denoted Xi. It is
further assumed that the amount of power a unit of fuel produces is time step dependent – this
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conversion factor is denoted Ft, where t ∈ T . One must also observe a maximum bound on the
possible power production levels for each plant i ∈ I in each time step t ∈ T . This maximum level
is given as P it. Note that, unlike the outage, the length of the production campaign can vary.

When reloading fuel at a nuclear power plant, several bounds must be respected. For each plant
i ∈ I and each cycle k ∈ Ki, the amount reloaded must be at least a certain minimum amount,
Rik, but no more than a given maximum amount, Rik. Furthermore, one needs to ensure that
immediately prior to a reload the fuel level is no more than a certain threshold, Amax

ik . Similarly,
after a reload the fuel level can be no more than Smax

ik units. Additionally, during a reload one
can keep only a proportion of fuel from the preceding cycle. This proportion is encapsulated by
the coefficient Qik and, for ease of exposition, we define Q̃ik := Qik−1

Qik
. For each cycle k ∈ Ki of

each plant i ∈ I there is a critical fuel level, Bik, below which production at plant i must follow
a so-called shutdown curve. This is a piece-wise linear decreasing function which states what the
production must be (within an ǫ tolerance) as a function of the remaining fuel level. The price of

any fuel on hand at the end of the scheduling horizon is assumed to cfi , where i ∈ I.
One must combine the scheduling of the cycles, and the corresponding production levels of

the nuclear plants with the production levels from a set J of thermal power plants to meet the
power demand in each time step of the scheduling horizon. To model the stochastic nature of the
power demand, one is required to consider a set S of possible demand scenarios. The required
power in time step t ∈ T for s ∈ S is given as Dts, while the minimum and maximum power
production levels for each plant j ∈ J are also scenario dependent and are denoted by P jts and

P jts, respectively, while the maximum production of a plant i ∈ I is the same across all scenarios.
The cost of producing a unit of power at plant j ∈ J in time step t ∈ T of scenario s ∈ S is known
to be cjts. For this problem the objective is to schedule the cycles of the nuclear power plants,
find the corresponding reload amounts, and determine the production levels of all power plants
(both type 1 and type 2) such that the cost of the fuel plus the expected cost of meeting the power
demand (minus the price of any fuel on hand at the end of the time horizon) across the scenarios
is minimized.

To provide a comprehensive list of all constraints in the problem, we have included Table 6.1,
which is taken directly from the official competition document by Porcheron et al. (2009). To un-
derstand the constraints we first introduce the decision variables stated in Porcheron et al. (2009).
Note that our decision variables are introduced in Section 6.3. The non-negative, continuous vari-
ables p(i, t, s) (p(j, t, s)), which are defined for all i ∈ I (j ∈ J), t ∈ T , and s ∈ S, give the power
production levels at the plants in each time step of each scenario. The variables r(i, k) (defined for
all i ∈ I and k ∈ Ki) and x(i, t, s) (defined for all i ∈ I, t ∈ T , and s ∈ S), are also continuous and
non-negative. The former gives the amount of fuel reloaded in each cycle of each nuclear power
plant, while the latter gives the fuel level at each nuclear power plant in each time period of each
scenario. The non-negative, integer variable ha(i, k) gives the first week of the outage for cycle
k ∈ Ki at plant i ∈ I. The set ea(i, k) (ec(i, k)) contains the the set of time steps comprising the
outage (production campaign) of cycle k ∈ Ki at plant i ∈ I. The constraints of the problem are
given as follows.

Table 6.1: Overview of the constraints of the problem

Name Description

CT1 Constraint coupling load and production: during every time step t ∈ T of every
scenario s ∈ S, the sum of production of type 1 and type 2 power plants has to be
equal to the demand:

∑

i∈I

p(i, t, s) +
∑

j∈J

p(j, t, s) = Dts, ∀(t, s)
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Table 6.1: Continued – Overview of the constraints of the problem

Name Description

CT2 Bound on production: During every time step t ∈ T of every scenario s ∈ S, production
of plant j ∈ J has to be between minimum and maximum bounds:

P jts ≤ p(j, t, s) ≤ P jts, ∀(j, t, s)

CT3 Offline power: During every time step t ∈ T of every scenario s ∈ S where plant i ∈ I
is offline, its production is equal to zero:

t ∈ ea(i, k)⇒ p(i, t, s) = 0, ∀(i, t, s)

CT4 Minimum power: During every time step t ∈ T of every scenario s ∈ S where plant
i ∈ I is online, its production is non-negative:

0 ≤ p(i, t, s), ∀(i, t)

CT5 Maximum power before activation of imposition of power profile constraint (see CT6):
During every scenario s ∈ S and every time step t ∈ T of the production campaign of
cycle k ∈ Ki, if the current fuel level of plant i ∈ I is greater than or equal to Bik, the
production level has to be equal or less than its maximum bound:

t ∈ ec(i, k) ∧ x(i, t, s) ≥ Bik ⇒ p(i, t, s) ≤ P it, ∀(i, t, s)

CT6 Maximum power after activation of imposition of power level constraint: During every
scenario s ∈ S and every time step t ∈ T of the production campaign of cycle k ∈ Ki,
if the current fuel level of plant i ∈ I is inferior to Bik, production has to follow
the power profile Pik : R → [0; 1] with a tolerance ǫ, where Pik is a piecewise linear
function of the fuel level:

t ∈ ec(i, k) ∧ x(i, t, s) ≤ Bik ⇒ p(i, t, s) ≈ Pik(x(i, t, s)), ∀(i, t, k, s)

CT7 Bounds on refueling: The reload performed during cycle k ∈ Ki of plant i ∈ I has to
be inside its minimum and maximum bounds:

Rik ≤ r(i, k) ≤ Rik, ∀(i, k)

CT8 Initial fuel level:
x(i, 0, s) = Xi, ∀(i, s)

CT9 Fuel level variation during a production campaign of a cycle:

t ∈ ec(i, k)⇒ x(i, t+ 1, s) = x(i, t, s)− p(i, t, s) · Ft, ∀(t, i, k, s)
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Table 6.1: Continued – Overview of the constraints of the problem

Name Description

CT10 Fuel level variation during an outage: In the process of refueling a type 2 power plant
at time t ∈ T , i.e., t is the first timestep of an outage, a certain amount of unspent
fuel has to be removed to make the addition of new fuel possible:

x(i, t+ 1, s) = Q̃ik · (x(i, t, s)−Bi,k−1) + r(i, k) +Bik, ∀(i, k, s)

CT11 Bounds on fuel level at the instant, t ∈ T , of outage and after refueling (t+ 1):

x(i, t, s) ≤ Amax
ik , x(i, t+ 1, s) ≤ Smax

ik , ∀(i, k, s)

CT12 Constraint on maximum modulation over a cycle: Modulating the power output of
a type 2 power plant leads to a certain amount of wear on the equipment involved.
Therefore frequent power modulations at type 2 power plants are undesirable:

∑

t∈{t′∈ec(i,k):x(i,t′,s)≥Bik}

(P it − p(i, t, s)) · Ft ≤Mmax
ik , ∀(i, k, s)

CT13 Constraint on the earliest and latest date of an outage: Outage of cycle k ∈ Ki of
plant i ∈ Ki has to start during a given interval:

TO
ik ≤ ha(i, k) ≤ TA

ik, ∀(i, k),
ha(i, k + 1) ≥ ha(i, k) + Lik, ∀(i, k)

If no CT13 constraint is present, then scheduling the corresponding cycle is optional,
but the cycle must still be scheduled in order for any subsequent cycle k′ > k to be
scheduled.

CT14 Constraint on the minimum spacing/maximum overlapping between outages: a set of
outages, A14

m , have to be spaced by at least S14
m weeks, with m = 1, . . .M14:

ha(i, k)−ha(i′, k′)−Li′k′ ≥ S14
m ∨ha(i′, k′)−ha(ik)−Lik ≥ S14

m , ∀(i, k), (i′, k′) ∈ A14
m

CT15 Minimum spacing/maximum overlapping between outages during a specific period: a
set of outages, A15

m , that intersect an interval [Um;Vm] have to be spaced by at least
or can overlap by at most S15

m weeks, with m = 1, . . .M15:

Um − Lik + 1 ≤ ha(i, k) ≤ Vm ∧ Um − Li′k′ + 1 ≤ ha(i′, k′) ≤ Vm

⇒ ha(i, k)− ha(i′, k′)− Li′k′ ≥ S15
m ∨ ha(i′, k′)− ha(ik)− Lik ≥ S15

m ,

∀(i, k), (i′, k′) ∈ A15
m
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Table 6.1: Continued – Overview of the constraints of the problem

Name Description

CT16 Minimum spacing constraint between decoupling dates: decoupling dates of of a set of
outages, A16

m , have to be spaced by at least S16
m weeks, with m = 1, . . .M16:

|ha(i, k)− ha(i′, k′)| ≥ S16
m , ∀(i, k), (i′, k′) ∈ A16

m

CT17 Minimum spacing constraint between dates of coupling: Coupling dates of a set of
outages, A17

m , have to be spaced by at least S17
m weeks, with m = 1,M17:

|ha(i, k) + Lik − ha(i′, k′)− Li′k′ | ≥ S17
m , ∀(i, k), (i′, k′) ∈ A17

m

CT18 Minimum spacing constraint between coupling and decoupling dates: coupling and
decoupling dates for a set of outages, A18

m , have to be spaced by at least S18
m weeks,

with m = 1, . . .M18:

|ha(i, k) + Lik − ha(i′, k′)| ≥ S18
m , ∀(i, k), (i′, k′) ∈ A18

m

CT19 Resource constraint: the use of resources on a given set of outages, A19
m , is subject to

constraints due to their limited availability, with Uikm, and Vikm indicating the start
and the length of the resource usage period with m = 1, . . .M19:

∑

(i,k)∈A19
m

δ(t, i, k) ≤ Qm, ∀w,

where δ(t, i, k) = 1 ⇐⇒ t ∈ [ha(i, k) + Uikm;ha(i, k) + Uikm + Vikm]

CT20 Constraint on the maximum number of overlapping outages during a given week:
At most Nm(w) outages of A20

m (w) can overlap during the weekw ∈ W , with
m = 1, . . .M20:

∑

(i,k)∈A20
m

δ(t, i, k) ≤ Nm(w), ∀w,

where δ(t, i, k) = 1 ⇐⇒ t ∈ [ha(i, k);ha(i, k) + Lik].

CT21 Constraint on the offline power capacity of a set of power plants during a time period:
For a given period, [Um;Vm] the power capacity of the set of plants C21

m that are offline
has to be inferior to a maximum bound, Imax

m , with m = 1, . . . ,M21:

∑

i∈C21
m

∑

w∈[Um;Vm]∩ec(i,k)

∑

t∈w

P it ≤ Imax
m

6.3 Model

In this section we formulate the problem as a MIP model. We will first present the variables, sets
and constants used and then describe how the constraints CT1–CT21 are modelled using these.
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For each plant i ∈ I and cycle k ∈ Ki, let W o
ik ⊆ W be the set of weeks where an outage

can begin for the given cycle k, and let let W p
ik ⊆ W be the set of weeks where cycle k can be

in a production campaign (let T p
ik ⊆ T be the corresponding set of timesteps). These sets can be

determined on the basis of CT13. Given a plant i ∈ I and a week w ∈ W , let Ki(w) ⊆ Ki be
the set of cycles of i which could be in a production campaign in week w. For a timestep t ∈ T
let w(t) ∈ W be the week containing t, and let Tw ⊆ T be the set of timesteps in week w ∈ W .
In connection with CT12, let M21 be the set of such constraints, and let Cm be the set of type 2
power plants associated with each m ∈M21.

We define the following variables: For each plant i ∈ I, cycle k ∈ Ki, and w ∈W o
ik let yiwk be

a binary variable indicating if the outage at the beginning of cycle k occurs in week w, let rik ≥ 0
be the amout of fuel reloaded in cycle k. Additionally for each scenario s ∈ S, let xb

iks ≥ 0 and
xe
iks ≥ 0 be the amount of fuel at the beginning and at the end of cycle. For each scenario s ∈ S

and plant j ∈ J , let pjts ≥ 0 be the amount of power production occuring in time step t ∈ T for
the given scenario. Finally for each s ∈ S, plant i ∈ I, and cycle k ∈ Ki, let pitks ≥ 0 be the
amount of power production occuring in timestep t ∈ T p

ik when in cycle k for the given scenario.
Production of type 2 power plants has the additional k-index for modelling reasons.

We now describe how each of the constraints CT1–CT21 are modelled.

CT1 This constraint is straight forward to model:
∑

i∈I

∑

k∈Ki(w(t))

pitks +
∑

j∈J

pjts = Dts ∀t ∈ T, ∀s ∈ S (6.1)

CT2 This constraint is straight forward to model:

P jts ≤ pjts ≤ P jts ∀j ∈ J, ∀t ∈ T, ∀s ∈ S (6.2)

CT3, CT4, CT5, CT6, and CT12 These constraints all relate to the allowed production of
type 2 power plants. The constraints CT5, CT6, and CT12 are too complicated to include
in the MIP model. The first two state that once the fuel level at a given nuclear power plant
falls below a certain threshold, production must follow a piecewise linear decreasing function,
while the second ensures a high utilization of the nuclear power plants by stipulating that
the average deviation of the production cannot be more than a certain tolerance from the
maximum possible production level (however, only prior to the aforementioned threshold).
As a result, these constraints are not enforced in the model, but rather in a post-processing
step that attempts to repair a solution. We instead enforce CT3, CT4, and a modified CT5
where the thresshold part of the constraint is neglected.

Because the production variables for plants of type 2 (pitks) are indexed by cycle in addition
to time, production must be fixed to zero, when outside the cycle, and bounded by P it when
inside the cycle. Let

ρ(i, w, k) :=







1−∑w′≤w yi,w′,k+1, k = 0
∑

w′≤w−Lik
yi,w′,k, k = |Ki| − 1

∑

w′≤w−Lik
yi,w′,k −

∑

w′≤w yi,w′,k+1, otherwise

Because cycle k can not be scheduled unless cycle k − 1 is scheduled, the following relation
holds ρ(i, w, k) = 1 ⇐⇒ cycle k ∈ Ki is in a production campaign in week w ∈ W . CT3,
CT4 and the modified CT5 may then be modelled as:

0 ≤ pitks ≤ P it · ρ(i, w(t), k) ∀i ∈ I, ∀k ∈ Ki, ∀t ∈ T p
ik, ∀s ∈ S (6.3)

CT7 This constraint is modelled as follows:

rik ≥ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I, ∀k ∈ Ki (6.4)

rik ≤ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I, ∀k ∈ Ki (6.5)
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It states that if a cycle k is scheduled for an outage, i.e.,
∑

w∈Wik
yiwk = 1, then the proper

bounds on reload amouts are imposed.

CT8 and CT9 Rather than maintaining the fuel level in each timestep, the fuel level is main-
tained at the start and the end of a cycle:

xb
i0s = Xi ∀i ∈ I, ∀s ∈ S (6.6)

xe
iks = xb

iks −
∑

t∈T

pitks · Ft ∀i ∈ I, ∀k ∈ Ki, ∀s ∈ S (6.7)

Modelling these constraints in this way would not have been possible without the extra
k-index on the production variables.

CT10 This constaint is modelled as follows, and is correct because cycle k − 1 will always come
right before cycle k.

xb
iks = rik +Bik

∑

w∈Wo
ik

yiwk + Q̃ik



xe
i,k−1,s − Bi,k−1

∑

w∈Wo
ik

yiwk



 ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (6.8)

If cycle k is scheduled, i.e.,
∑

w∈Wo
ik
yiwk = 1 it reduces to the expression of CT10.

CT11 These constraints are modelled as:

xe
iks ≤ Amax

i,k+1 +



1−
∑

w∈Wo
ik

yi,w,k+1





(

M1
ik −Amax

i,k+1

)

∀i ∈ I, ∀k ∈ Ki, ∀s ∈ S (6.9)

xb
iks ≤ Smax

ik +



1−
∑

w∈Wo
ik

yiwk





(

M2
ik − Smax

ik

)

∀i ∈ I, ∀k ∈ Ki, ∀s ∈ S (6.10)

where M1
ik and M2

ik are large enough constants, for instance M1
ik = Smax

i,k−1, and M2
ik =

Q̃ik · Smax
i,k−1 (see Constraint (6.8) when

∑

w∈Wo
ik
yiwk = 0).

CT13–CT20 These constraints all represent conflicts between possible outage dates of cycles
(execpt the first part of CT13, which will be treated later), i.e., the y-variables, and may all
be represented as constraints of the form:

∑

(iwk)∈H

yiwk ≤ KH ∀H ∈ H, (6.11)

where H is a class of sets of conflicting outage dates. These typically have KH = 1, but in
the case of CT19, and CT20, the righthand side is respectively Qm, and Nm(w).

CT21 This constraint is modelled as:

yiwk ·
t(w+1)−1
∑

t=t(w)

Pmax
it ≤ Imax

m ∀m ∈M21, ∀w ∈ W (6.12)

Additional constraints The following two constraints do not have a CTXX counterpart but are
necessary:

∑

w∈Wik

yiwk ≥
∑

w∈Wi,k+1

yi,w,k+1 ∀i ∈ I, ∀k ∈ Ki (6.13)

xf
is ≤

∑

k′>k

∑

w∈Wo
ik

yiwk′Mi + xe
iks ∀i ∈ I, ∀k ∈ Ki, ∀s ∈ S. (6.14)



Chapter 6. A solution approach to a stochastic large scale energy management problem based
on Benders Decomposition 118

Constraints (6.13) ensure that if a cycle for a plant is scheduled, then all preceding cycles
must be scheduled, and Constraints (6.14) ensure the fuel level at the end of the last scheduled
cycle is the plant’s final fuel level, which is used in the objective function. Mi is a large
constant, for instance Mi = maxk∈Ki

Smax
ik . Since xf

is enters the objective function with a
negative coefficient and the problem is a minimization problem, it is enough to bound it
from above to the end fuel level of the last scheduled cycle.

Objective function The objective function is:

P : min
∑

i∈I

∑

k∈K

cikrik +
1

|S|
∑

s∈S

(
∑

t∈T

∑

j∈J

cjtsFtpjts −
∑

i∈I

cfi x
f
is), (6.15)

subject to all the prevous constraints. In the following we refer to the complete minimization
problem as P .

6.4 Methodology

In this section we present a Benders Decomposition based framework to solve the compact formu-
lation P . We begin by providing a short introduction to Benders Decomposition in general before
describing the Benders reformulation of P . Once the necessary models have been introduced, we
discuss, in detail, the components of the algorithm developed to solve this reformulation.

6.4.1 Benders Decomposition

Benders Decomposition is a well-known technique for solving large scale mixed integer program-
ming (MIP) problems that have a special block structure (see Benders, 1962). It is commonly
found in stochastic applications where one is required to make a so-called first stage decision and
then, upon the realization of some random event, solve a second problem that ameliorates the first
stage decision. This is often the case in the power industry, where the demand is highly stochas-
tic. Recent applications of Benders in the power industry include (see Canto, 2008; Santos and
Diniz, 2009; Cabero et al., 2010; Wu and Shahidehpour, 2010). However, it has also been applied
in a variety of other areas including telecommunication network design (see Naoum-Sawaya and
Elhedhli, 2010), staff scheduling (see Guyon et al., 2010), aircraft routing and crew planning (see
Mercier et al., 2005), and uncapacitated hub location (see Contreras et al., 2010).

The Benders approach decomposes the original problem into a mixed integer master prob-
lem and one or more independent, linear subproblems. Consider the following formulation as an
example.

µ = min cTx+ fT y

s.t. Ax = b (6.16)

Bx+Dy = d (6.17)

x ∈ X ⊆ R
p, y ∈ Y ⊆ R

q,

where x and y are vectors of decision variables with dimension p and q, X and Y are polyhedrons,
A, B, and D are matrices, and c, f , b, and d are vectors (all with appropriate dimensions). Let u
be the dual variables for (6.17). From Benders theory, this problem can be restated as

RMP: min cTx+ z

s.t. Ax = b

(ri)
T (d− Bx) ≤ 0 ∀ri ∈ R, (6.18)

(ui)
T (d− Bx) ≤ z ∀ui ∈ U, (6.19)

x ∈ X ,
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where U (R) is the set of extreme points (rays) of the polyhedron defined by DTu ≤ f . Since
there can be an exponential number of constraints of the form (6.18) and (6.19), it is impractical
to generate them all and include them initially. The so-called Restricted Master Problem (RMP)
starts with a subset of these and dynamically identifies violated ones as needed. Thus, one usually
adopts an iterative process where at any iteration a candidate solution (x∗, z∗) is found. The
subproblem is then solved to calculate z(x∗). If z(x∗) = z∗, the algorithm terminates, otherwise a
violated feasibility or optimality cut exists. One adds the respective cut to the RMP and iterates
again. In what follows we provide the Benders reformulation of P .

6.4.2 Benders Reformulation

For the problem under consideration one can observe that once the outage dates and reload
amounts have been fixed, one can independently solve each scenario and find the cheapest way of
supplying the respective power demand of each. That is, the problem naturally decomposes into n
independent subproblems, where n is the number of different possible scenarios. Thus, the role of
the master problem in this context is to identify good outage/reloading schedules. We model this
as a MIP since it contains binary decision variables, which govern outage dates, and continuous
variables that reflect the corresponding reload amounts. The Benders RMP (without the addition
of any feasibility and optimality cuts) can be stated as follows.

Master problem

min
∑

i∈I

∑

k∈K

cikrik +
1

|S|

∑

s∈S

θs (6.20)

s.t. rik ≥ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (6.21)

rik ≤ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (6.22)

∑

w∈Wik

yiwk ≥
∑

w∈Wi,k+1

yi,w,k+1 ∀i ∈ I,∀k ∈ Ki (6.23)

∑

i∈Cm

∑

k∈Ki

∑

w∈ITm

w
∑

w′=w−Lik+1

yiw′k ·

t(w+1)−1
∑

t=t(w)

Pmax
it ≤ Imax

m ∀m ∈ M21,∀w ∈ W (6.24)

∑

(iwk)∈H

yiwk ≤ KH ∀H ∈ H (6.25)

rik ≥ 0 ∀i ∈ I,∀k ∈ Ki (6.26)

yiwk ∈ {0, 1} ∀i ∈ I,∀k ∈ Ki,∀w ∈ W o
ik, (6.27)

Each constraint is as described in Section 6.3. Associated with each scenario s ∈ S is a decision
variable θs that reflects the cost of supplying the power demanded in scenario s. In addition to
the constraints described here, a number of additional constraints, which will be described in
Section 6.6, are added to the master problem. Given a candidate solution (r, y, θ) to this problem,
one can solve |S| power production subproblems to separate any violated feasibility and optimality
cuts. The structure of the subproblems that must be solved is given below.
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Subproblem (for given s ∈ S)

min
∑

t∈T

∑

j∈J

cj,tFtpj,t −
∑

i∈I

c
f
i x

f
is (6.28)

s.t. xe
iks = xb

iks −
∑

t∈T

pitks · Ft ∀i ∈ I,∀k ∈ Ki (6.29)

xb
iks = rik +Bik

∑

w∈Wo
ik

yiwk + Q̃ik



xe
i,k−1,s − Bi,k−1

∑

w∈Wo
ik

yiwk



 ∀i ∈ I,∀k ∈ Ki (6.30)

xe
iks ≤ Amax

i,k+1 +



1−
∑

w∈Wo
ik

yi,w,k+1





(

M1
ik −Amax

i,k+1

)

∀i ∈ I,∀k ∈ Ki (6.31)

xb
iks ≤ Smax

ik +



1−
∑

w∈Wo
ik

yiwk





(

M2
ik − Smax

ik

)

∀i ∈ I,∀k ∈ Ki (6.32)

x
f
is ≤

∑

k′>k

∑

w∈Wo
ik

yiwk′Mi + xe
iks ∀i ∈ I,∀k ∈ Ki (6.33)

pitks ≤ P it · ρ(i, w(t), k) ∀i ∈ I, k ∈ Ki, t ∈ T
p
ik

(6.34)

Pjts ≤ pjts ≤ P jts ∀j ∈ J,∀t ∈ T (6.35)
∑

i∈I

∑

k∈Ki(w(t))

pitks +
∑

j∈J

pjts = Dts ∀t ∈ T (6.36)

xb
i0s = Xi ∀i ∈ I (6.37)

xb
iks ≥ 0, xe

iks ≥ 0 ∀i ∈ I,∀k ∈ Ki (6.38)

pitks ≥ 0 ∀i ∈ I, k ∈ Ki, t ∈ T
p

ik
(6.39)

pjts ≥ 0 ∀j ∈ J, t ∈ T (6.40)

Again each constraint is as described in Section 6.3. Each subproblem is modelled as a linear
program (LP) and determines how much each power plant should produce in each time step so
that the demand for the given scenario is satisfied and the various constraints regarding fuel levels
are respected. In addition to this one must respect several production level bounds at each power
plant. We remind the reader that two constraints, CT6 and CT12, were too complicated to include
in the LP formulation and are instead enforced in a post-processing step that attempts to repair
the subproblem solution.

In typical Benders Decomposition fashion, optimality cuts are separated using solutions to
each of the subproblems and are added to the master problem to direct it towards more promising
outage/reloading schedules. In order to minimize the need for feasibility cuts to the master
problem, constraints are preemptively added to the master problem and try to enforce CT11.
These constraints also partly enforce CT6 and are discussed in Section 6.6.

6.4.3 Solution Approach

In this section we provide an overview of the algorithm we propose for solving the Benders refor-
mulation. Here we simply provide a sketch of the approach, more detailed discussions on certain
components of the algorithm are provided in the subsequent sections. The algorithm can be
separated into three distinct phases, and we discus each in turn.

Stage 1 In this stage, the root node of the relaxed master problem is solved. The relaxed
master problem is obtained by removing the integrality restriction on the yiwk variables. Solving
the root node is an iterative procedure between the master problem and the subproblems, where
the subproblems are used to separate any violated feasibility and optimality cuts given a solution
to the master problem. Note that we do not solve all subproblems per Benders iteration since this
would simply take too long. A round robin approach is adopted in which only one subproblem is
solved per Benders iteration. Since even solving a single instance of the subproblem can be quite
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time consuming, an aggregated version is used (see Section 6.5.2). In the aggregated subproblem,
the time step is considered to be weeks as opposed to days or even hours. When no optimality
cut has a magnitude of violation greater than some prespecified epsilon, or some predetermined
time limit is reached, this stage terminates. CPLEX 12.1 is used to solve both the master and the
subproblems.

Stage 2 In the final stage of the algorithm the master problem is solved to integrality without
the addition of anymore optimality cuts using a standard branch-and-bound technique. CPLEX’s
populate routine is used to collect integeral solutions found in the branch-and-bound tree. Once
a certain number of integer solutions have been found, all subproblems are solved to obtain a
complete solution. However, the complete solution may violate CT6 and CT12. To remedy this,
the solution to each subproblem is repaired so that CT6 and CT12 are satisfied. The routine to
do this is described in Section 6.7.1. Once a complete solution satisfying all constraints has been
found, a heuristic is used to improve its quality. This is detailed in Section 6.7.2. The best found
solution is retained. Stage 2 continues until either all integer solutions from the branch-and-bound
tree are enumerated, or a prespecified time limit is reached. The pseudo code for the complete
methodology is given in Algorithm 6.1.

Algorithm 6.1 Core Methodology

Preprocess problem instance
{Stage 1}
repeat
Solve relaxed master problem
Solve next aggregated subproblem
Separate violated optimality/feasibility cut and append

until No violated optimality/feasibility cuts exist or time limit exceeded
{Stage 2}
Convert to MIP and run branch-and-bound
repeat
Populate integral solution pool with a certain number of solutions
for s ∈ S do
Solve subproblem associated with scenario s
Repair subproblem solution
Run 2-opt heuristic to improve solution quality

end for
if A feasible solution is found for each subproblem then
Update best known solution if total cost is better than that of the current best solution

end if
until All integer solutions have been enumerated or time limit exceeded

6.5 Reducing the problem size

As the problems may contain a huge number of variables, it is an advantage both with respect
to computational time and memory consumption to reduce the problem size. In the following we
describe two such reduction procedures.

6.5.1 Preprocessing

For the master problem employed, there is a yiwk variable for each possible week w the outage of
cycle k for plant i can occur. Because many of the constraints (CT13-CT21) concern these outage
dates, many of them are infeasible, and removing them in a preprocessing step will reduce the size
of the master problem. In the following we present a simple, yet effective preprocessing procedure.
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Let G = (V,E) be a graph, where each node v ∈ V corresponds to the outage date, wv of
some cycle, kv, of plant iv. There is an edge (u, v) ∈ E, if there is a conflict between the two
corresponding outage dates, i.e., it is infeasible for cycle ku to start its outage in week wu while
cycle kv starts its outage in week wv. How the conflicts are derived is explained later. For a set
S ⊆ V let N(S) = {v ∈ V \S : ∀u ∈ S : ∃(u, v) ∈ E}, i.e., the set of nodes incident to all nodes in
S. Now if S ⊆ V is a set of nodes, for which it is known that at least one of the corresponding
outage dates must be chosen in any solution, then the set N(S) may be removed from the graph,
as the corresponding outage dates can never be used. As it is known from the input data that
some of the cycles must be scheduled, the set of nodes corresponding to the outage dates of these
cycles can be used to perform the above described elimination.

Conflicts between outage dates are derived as follows:

1. All outage dates of the same cycle are in conflict.

2. Assume that the outage of cycle k of plant i occurs in week w, then the outage of any
following cycle of the same plant must occur after week w + Lik − 1 (see constraint CT13).
This can be represented as conflicts between the individual outage dates.

3. Similarly assume that the outage of cycle k of plant i occurs in week w. Because of constraint
CT11, the fuel level must be below Amax

i,k+1 before the outage of the next cycle can occur, and
be below Smax

i,k+1 after the reload. Let LB be a lower bound on the fuel level at the beginning
of cycle k, and let UB(w0, w1) be an upper bound on the production capacity from week w0

to week w1 for plant i. A lower bound on the fuel level at any time after w, may then be
calculated as LBS(w1) = LB − UB(w,w1). The outage of cycle k + 1 must occur after

wmin = argmin{w1 : LBS(w1) ≤ Amax
i,k+1 ∧ LBS(w1) ≤ f(Smax

i,k+1, Ri,k+1)},

where f(x, r) returns the fuel level after a reload of r given end fuel level x, as specified by
CT10. We set LB = Rik, and UB(w0, w1) is calculated by assuming a production of P it as
long as the fuel level is above Bik, and then the shutdown curve is followed. Again this can
be represented as conflicts between the individual outage dates.

4. Constraints CT14-CT18 can be represented as conflicts between individual outage dates.

5. (Optional) The previous methods are exact in the sense that only outage dates which are
infeasible are removed. These methods derive a large number of conflicts, and as a con-
sequence a large number of outage dates may be removed. Even so, for some less tightly
constrained instances (see Section 6.8 on computational results) this may not reduce the size
of the problems enough and we thus include a heuristic for deriving conflicts. The working
assumption for this heuristic is that it is not optimal to have a type 2 plant without fuel for
too long before the next reload occurs. Assume that the outage of cycle k of plant i occurs
in week w. Let UB be an upper bound on the fuel level at the beginning of cycle k, and let
LB(w0, w1) be a lower bound on the fuel which must be consumed from week w0 to week
w1. Note that this lower bound is not zero because of constraint CT12. Given w ∈ W , let

wmax = (1 + α) argmin{w1 : UB − LB(w,w1) ≤ 0},

where α ≥ 0. We add conflicts between w and all outage dates w′ > wmax of the following
cycle k+1 for the same plant. The value α controls how long we allow a plant to lay idle in
the worst case. As UB we use Smax

ik , and LB(w0, w1) is calculated by assuming a production
of zero until CT12 is violated, then production at P it as long as the fuel level is above Bik,
and then the shutdown curve is followed.

In addition to the above conflicts we remove certain outage date as follows: Let k be a cycle
that does not necessarily have to be scheduled. Let w = TA

ik +Lik be the latest point in time
the production campaign of cycle k can start, let wmax be defined as above. We remove all
outage dates w′ > wmax for the following cycle k + 1. This may remove additional outage
dates.
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Additional conflicts can be deduced by the calculation described in point 3 above if the Amax
ik ,

Smax
ik , or Rmax

ik values can be tightened. For any i ∈ I and k ∈ Ki the values may be tightened as
follows:

Amax
ik :=min{Amax

ik , f̃(Smax
ik , Rik})

Smax
ik :=min{Smax

ik , f(Amax
ik , Rik)}

Rik :=min{Rik, f̂(0, S
max)}

where f(x, r) is as earlier, f̃(y, r) gives the end fuel level which results in fuel level y after a reload

of r as specified by CT10, and f̂(x, y) gives the reload which results in fuel level y given end fuel
level x, as specified by CT10.

All conflicts of the conflict graph are added to the master problem as clique constraints,
which thus include the constraints CT13–CT18, and only CT19 and CT20 are included using
the form (6.25). The complete preprocessing algorithm is sketched in Algorithm 6.2.

Algorithm 6.2 Preprocessing of outage dates

Tighten Amax and Smax values.
Construct conflict graph G.
repeat
for all i ∈ I do
for all cycles, k, of i which must be scheduled do
Eliminate vertices of G.

end for
end for

until No vertices could be eliminated

6.5.2 Aggregation

Unlike the preprocessing technique described in Section 6.5.1, which attempts to remove as many
redundant variables as possible from the master problem, the aggregation technique focuses on the
subproblem and reduces the size of this problem by aggregating the individual time step production
variables into variables that determine the weekly production level for each power plant (both type
1 and type 2). Since the time discretization of the master problem is weekly, one does not need
the production levels for each individual time step (which can be as short as 4 hours) when solving
the subproblem in the cutting phase of our methodology. This simple aggregation approach can
dramatically reduce the size of the subproblem; the number of production variables can be reduced
by a factor 42 at best. This primarily allows faster Benders iterations to be performed; however,
it can also be used to determine the likelihood of finding a feasible solution to the subproblem.
If the aggregated version is infeasible, then the disaggregated version will also be infeasible. The
reverse, however, is not true. In Section 6.8 we assess the impact of using the aggregated version in
the repair phase of the algorithm. Next, we formalize how both the aggregation and the necessary
disaggregation are performed.

Minimal changes are required to model (6.28)-(6.36) in order to obtain the aggregated version.
In introducing the weekly production variables piwks and pjws, one is required to update the
minimum and maximum production levels for each power plant, i.e. (6.34) and (6.35), the demand
constraints, i.e. (6.36), and the production cost for each plant of type 2 to reflect the weekly
structure. That is, (6.34), (6.35), and (6.36) become
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piwks ≤ ρ(i, w, k) ·
∑

t∈wt

P it ∀i ∈ I, ∀k ∈ Ki, ∀w ∈W p
ik, ∀s ∈ S (6.41)

∑

t∈wt

P jt ≤ pjws ≤
∑

t∈wt

P jts ∀j ∈ J, ∀w ∈ W, ∀s ∈ S (6.42)

∑

i∈I

∑

k∈Ki(w)

piwks +
∑

j∈J

pjws ≥ Dws, ∀w ∈ W, s∀s ∈ S (6.43)

where Dws =
∑

t∈Tw
Dts. The cost of each piwks variable is assumed to be the average cost of

production for the aggregated time intervals.

In order to provide a feasible solution to the subproblem in stage 2, any aggregated solution
must be disaggregated (if this is possible). This routine works in a similar way to the repair
heuristic described in Section 6.7.1. In an aggregated solution one has the weekly production levels
of each plant which must be disaggregated into time step production levels in such a way that the
demand of each time step is satisfied. Since each type 1 plant has a certain minimum production
level in each time step, the procedure begins by first identifying the type 1 plant contribution to the
demand in each of the time steps. The respective time step demands are then reduced accordingly.
Next, the type 2 power plants are considered in order and an attempt is made to disaggregate their
weekly production levels in each of their scheduled cycles. In this disaggregation step one proceeds
by assigning the plant’s maximum production level in each of the time steps, or the remaining
demand for that time step, whichever is the smaller. If disaggregation fails (i.e. the assigned
weekly production level for the plant cannot be met), an attempt is made to identify a time step
(or as many as required) within the week for which there is unmet demand and for which the plant
is currently not producing. If this cannot consume the surplus fuel, one repeats this process but
looks across the weeks in the cycle. Finally, an attempt is made to push the remaining fuel to the
subsequent cycle as long as CT11 is satisfied. If CT11 is violated, disaggregation is deemed not
possible, although there is no guarantee that it is actually not possible. Once disaggregation has
been successfully performed for each type 2 power plant, any unmet demand in any time step is
satisfied by the cheapest type 1 power plant.

Algorithm 6.3 Disaggregation Algorithm

Require: A feasible solution to an aggregated subproblem
for all j ∈ J do
for all t ∈ T do
Reduce the demand in time step t by the minimum required production level for plant j.

end for
end for
for all i ∈ I do
for all cycles k of i that must be scheduled do
for all weeks w of k do
Disaggregate weekly production level
if Surplus power remains then
Try to consume the surplus fuel in the given week. If this is not possible, try to
consume the fuel in the given cycle. If the remaining fuel still cannot be used, try to
move it to the subsequent cycle. If a CT11 violation occurs, disaggregation is deemed
impossible.

end if
end for

end for
end for
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6.6 Feasibility

In the following we describe a number of additional constraints added to the master problem. These
constraints are added for two reasons: (i) to reduce the time needed before feasible solutions to the
subproblems are found (ii) to make the solutions to the subproblem easier to repair by enforcing
(part of) the structure of the shutdown curve. The description of these constraints is divided into
two: first we introduce so-called fuel bounding constraints, and we then describe the so-called fuel
cuts, which require the presence of the fuel bounding constraints.

6.6.1 Fuel bounding constraints

When solving the master problem in the initial stages, before many Benders cuts have been
separated, the resulting solutions may often result in infeasible subproblems, because of the bounds
on fuel levels, i.e., the CT8 and CT11 constraints, as these are only present in the subproblems.
This may result in time being wasted on separating feasibility cuts. To remedy this situation we
include an artificial fuel level variable in the master problem, which must satisfy constraints CT8
and CT11 given upper bounds on production levels. The fuel bounding constraints are thus very
similar to the corresponds constraints of the subproblem enforcing CT8 and CT11, i.e., Constraints
(6.29), (6.30), (6.31), and (6.32). Let xb

ik be a lower bound on the fuel level at the beginning of
cycle (i, k) and let xe

ik be an lower bound on the fuel level at the end of cycle (i, k). The fuel
bounding constraints added to the master problem are:

xe
ik ≥ xb

ik −
∑

t∈T
p
ik

P it · Ft · ρ(i,w(t), k) ∀i ∈ I, k ∈ Ki (6.44)

xb
ik = rik +BOik

∑

w∈Wik

yiwk +
Qik − 1

Qik



xe
i,k−1 −BOi,k−1

∑

w∈Wik

yiwk



 ∀i ∈ I, k ∈ Ki (6.45)

xe
ik ≤ Amax

i,k+1 +



1−
∑

w∈Wik

yi,w,k+1





(

M1
ik − Amax

i,k+1

)

∀i ∈ I,∀k ∈ Ki (6.46)

xb
ik ≤ Smax

ik +



1−
∑

w∈Wik

yiwk





(

M2
ik − Smax

ik

)

∀i ∈ I,∀k ∈ Ki (6.47)

As in the subproblem, constraints (6.44) ensure fuel level consistency between the starting fuel
level of a cycle and its end fuel level assuming maximal production in all time steps, while con-
straints (6.45) reflect the requirement that some fuel is lost as a plant goes through a reload.
The Amax bounds and Smax bounds are enforced by constraints (6.46) and constraints (6.47)
respectively.

6.6.2 Fuel cuts

The fuel cuts are introduced to enforce some of the structure of the shutdown curve, i.e., CT6,
on the fuel level bound variables xb

ik, x
e
ik : i ∈ I, k ∈ K defined above. The cuts are divided into

three sets described in the following:

Cut-SI

xb
ik −

∑

w′>w

yi,w′,k+1

(

UB1
ik(w,w′) + Amax

i,k+1

)

≤

(

1−
∑

w′>w

yi,w′,k+1

)

Smax
ik + (1− yiwk)S

max
ik ∀(i, w, k)

(6.48)

where UB1
ik(w,w

′) := max production from w to w′ assuming Smax
ik at time w with no intermediate

refueling. UB1
ik(w,w

′) is bounded from above by Smax
ik .
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There are three parts to these cuts:

• yiwk = 0: This means that for plant i, week w is not the date of outage for cycle k. In this
case the cut evaluates to xb

ik ≤ Smax
ik + ρ with ρ being some positive number. This does not

bound xb
ik further than the already existing bound of Smax

ik .

• yiwk = 1 and
∑

w′>w yi,w′,k+1 = 0: This means that for plant i, week w is the date of outage

for cycle k and for cycle k+1 there is no outage. In this case the cut evaluates to xb
ik ≤ Smax

ik ,
which does not bound xb

ik further.

• yiwk = 1 and yi,w′,k+1 = 1 for some w′ > w: This means that for plant i, week w is the
date of outage for cycle k and for the following cycle k + 1 week w′ is the date of outage.
In this case the cut evaluates to xb

ik − UB1
ik(w,w

′) ≤ Amax
i,k+1, which ensures that the begin

fuel level xb
ik of cycle k is small enough for the maximum permitted fuel prior to reload in

cycle k + 1 is not violated, assuming maximum production in cycle k and no interactions
from other plants j ∈ I : i 6= j.

Special case. For k = 0:

XI −
∑

w′>w

yi,w′ ,k+1

(

UB1
ik(w,w′) +Amax

i,k+1

)

≤

(

1−
∑

w′>w

yi,w′,k+1

)

XI ∀(i, 0, 0) (6.49)

Similar to above, several cases exist:

• ∑w′>w yi,w′,k+1 = 0: Evaluates to XI ≤ XI, which requires no further comments.

• yi,w′,k+1 = 1 for some w′ > w: Evaluates to XI − UB1
ik(w,w

′) ≤ Amax
i,k+1. By following the

argumentation above, this can be shown to be valid.

Cut-SII

Rik −
∑

w′>w

yi,w′,k+1UB2
ik(w,w′) ≤ xe

ik +

(

1−
∑

w′>w

yi,w′,k+1

)

Rik + (1− yiwk)Rik ∀(i, w, k) (6.50)

where UB2
ik(w,w

′) := max production from w to w′ assuming Ri,k at time w.

As for Cut-SI there are three parts to these cuts:

• yiwk = 0: In this case the cut evaluates to 0 ≤ xe
ik + ρ with ρ being some positive number.

This does not bound xb
ik further than the already existing bound of 0.

• yiwk = 1 and
∑

w′>w yi,w′,k+1 = 0: In this case the cut evaluates to 0 ≤ xe
ik, which does not

bound xb
ik further.

• yiwk = 1 and yi,w′,k+1 = 1 for some w′ > w: In this case the cut evaluates to Rik −
UB2

ik(w,w
′) ≤ xe

ik, which ensures that the begin fuel level xb
ik is large enough compared

to the minimum fuel reload, assuming maximum production in cycle k and no interactions
from other plants j ∈ I : i 6= j.

Special case. For k = 0:

XI −
∑

w′>w

yi,w′,k+1UB2
ik(w,w′) ≤ xe

ik +

(

1−
∑

w′>w

yi,w′ ,k+1

)

XI ∀(i, 0, 0) (6.51)

Similar to above, several cases exist:

• ∑w′>w yi,w′,k+1 = 0: Evaluates to 0 ≤ xe
ik, which requires no further comments.

• yi,w′,k+1 = 1 for some w′ > w: Evaluates to XI − UB2
ik(w,w

′) ≤ xe
ik. By following the

argumentation above, this can be shown to be valid.
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Cut-SIII

xb
ik − UB1

ik(w,w′) ≤ xe
ik + (2− yiwk − yi,w′,k+1)S

max
ik ∀i ∈ I,∀k ∈ K,∀w ∈ Wik,∀w

′ ∈ Wi,k+1, w < w′

(6.52)

where UB1
ik(w,w

′) is defined as before.

There are two parts to these cuts:

• yiwk+yi,w′,k+1 ≤ 1: In this case the cut evaluates to xb
ik ≤ xe

ik+ρ with ρ being some positive
number, since UB1

ik(w,w
′) ≤ Smax

ik . This is clearly dominated by the constraint xb
ik ≤ xe

ik.

• yiwk = 1 and yi,w′,k+1 = 1: In this case the cut evaluates to xb
ik −UB1

ik(w,w
′) ≤ xe

ik, which
ensures that the end lower bound on fuel level xe

ik compared to the start lower bound on
fuel level is not smaller than what can be explained by a maximum production in the cycle.

6.7 Postprocessing

The role of the postprocessing stage is to try to convert a solution, in the following also referred to
as the reference solution, which does not satisfy the CT6 and CT12 constraints into one that does.
This process is divided in two stages: in the first stage, called the repair stage, the production
levels and reload amounts are altered in an attempt to satisfy CT6, and CT12, without violating
any other constraints. If the solution can not be repaired, it is discarded. In the second stage,
called the postoptimization stage, the production levels are shuffled between plants in an attempt
to reduce the cost of the solution. The two stages are now described in further detail.

6.7.1 Repair

The input to this stage is a solution that satisfies all constraints except perhaps CT6, and CT12,
i.e., the production curve may not follow the shutdown curve it should, or the maximum modu-
lation is exceeded. The assumption is that the structure of the reference solution is good, and by
making small adjustments, it is possible to make it satisfy these two additional constraints without
changing the cost too much. Thus we want alterations to be as local as possible and since changes
in start and end fuel level of a cycle propagates to the remaining cycles, the changes in these should
be as small as possible. Satisfying CT6 means reducing production levels in some places, while
satisfying CT12 means increasing production in some places. Changing the production levels from
the reference solution, means that the fuel levels passed from one cycle to the next will change
from the reference solution. One observes that these changes in fuel levels can be kept small if a
decrease of production in one time step of a cycle can be absorbed by an increase in production in
another place of the cycle (see Figure 6.2 for an example). Changes in production within a cycle
could also be absorbed by a change of the amount of fuel reloaded, but this is at odds with the
principle of locality, as all scenarios are affected and previously repaired scenarios would thus have
to be repaired again.

We now describe the consequences on the remaining constraints, when the production levels
are changed: Lowering the production will raise the end fuel level of the cycle, which may lead to
CT11 becoming violated, either for that or a later cycle. Raising production will lower the end
fuel level, which may lead to shortage of fuel in later cycles, where demand can no longer be met.

The repair procedure is divided in two stages: In stage 1 only type 2 plants are considered,
and the production curves of these are adjusted so that they satisfy all constraints except perhaps
the demand constraints. Then in stage 2, the production of type 1 plants is adjusted such that
demand is covered. If any of the stages fail, the entire reference solution is discarded. We now
describe these two stages in detail.
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Figure 6.2: Example of repairing a cycle, such that the shutdown curve is respected by shuffling produc-
tion to an earlier part of the cycle, such that the end fuel level remains the same. The upper think line is
the production capacity, the upper dashed line is the production levels before repair, the thick line is the
repaired shutdown curve. The lower think dashed line is the fuel levels in the reference solution, while the
lower thick dashed line is the fuel levels assuming the shutdown curve is followed backwards from the end
fuel level. δ is the extra fuel that must be consumed earlier in the cycle for the end fuel level to remain
the same. The gray area represents the increase in production in order to consume the extra fuel.

Stage 1 For each plant i ∈ I, each cycle k ∈ Ki is treated one at a time, starting with the
earliest. Each time a cycle is repaired one of two cases may happen:

1. No change in the fuel levels at the start or end occurred. This means all changes of production
levels within the cycle, were absorbed by increasing of decreasing production somewhere else
within that cycle.

2. Given the repaired production levels, the end fuel level would be increased by δ. In this
case the algorithm has two possibilities: either backtrack and try to have δ less fuel at
the beginning, i.e., consume δ more earlier, or push the fuel excess to the next cycle. The
algorithm first backtracks, and if this is not possible pushes the fuel to the next cycle.

The repair algorithm is sketched in Algorithm 6.4, where xb
ik and xe

ik is the fuel level at the
beginning and end of the cycle respectively, tbik and teik is the beginning and end respectively of
the production campaign of that cycle, and δik ∈ R is the amount of fuel to consume, either from
a backtrack from a later cycle, or from an earlier cycle.

Stage 2 This stage is quite simple. For each t ∈ T it is checked whether demand is either
oversupplied or under-supplied. If demand is oversupplied the production of the most expensive
type 1 plants are reduced, if demand is under-supplied the production of the least expensive type
1 plants are raised. It may happen that demand can not be met because of the bounds on the
production of plant type 1. If so, an attempt to shuffle production within each cycle is made in
a manner similar to the procedure described in the next section. If demand can not be met, the
reference solution is discarded.

6.7.2 Postoptimization

The input to this stage is a solution that satisfies all constraints, and the role of the postoptimiza-
tion is to try to reduce the cost of the solution by performing alterations, which do not lead to any
new constraint violations but reduces the overall cost. As performing alterations which result in
changes to the end fuel level of a cycle propagates, calculating the consequence of such alterations
can be cumbersome, and we thus restrict our attention to alterations, where this is not the case.

One such alteration is the following: Let t1 and t2 be two points in time lying before the start
of the shutdown curve within the same cycle for some i ∈ I, let j1, j2 ∈ J be two plants such that
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Algorithm 6.4 Repair algorithm for a single cycle

Require: A plant i ∈ I and cycle k ∈ Ki

If we are in a backtrack, then update the end fuel level: xe
ik := max{0, xe

ik − δik}, otherwise
update the start fuel level: xs

ik := xe
ik + δik

Calculate shutdown curve backwards from xe
ik. Let tB and xB be the resulting time step and

fuel level right before entering this shutdown curve, and let xtB be the current fuel level at time
tB.
Set δ := xB − xtB , i.e., the difference between the actual fuel level and what it should be if a
fuel level of xe

ik should be reached at the end of the shutdown curve.
Raise production by δ (if possible) in the time interval [tik; tB]. Let δ be what is left.
if δ = 0 then
Check if CT12 is violated, if so augment production. This may change the point of the
shutdown curve and the end fuel level. Let x be the (new) end fuel level.
Set δi,k+1 := x− xe

ik, set x
e
ik := x, and proceed with next cycle.

else
Since all production is at the upper bound, CT12 is satisfied.
if k 6= 0 and an earlier backtrack has not reached cycle k = 0 then
Set δi,k−1 := δ and backtrack to previous cycle.

else
Set δi,k+1 := δ, set xe

ik := xe
ik + δ, and proceed with next cycle.

end if
end if

cj1t1 < cj2t2 , and let δ = min{P it2 − pit2 , pit1 , P j1t1 − pj1,t1 , pj2,t2 − P j2t2}, where p is the current
production level. Then updating pit1 := pit1 − δ, pit2 := pit2 + δ, pj1t1 := pj1t1 + δ, pit2 := pit2 − δ,
results in an improved cost while satisfying all constraints and not altering the end fuel level,
nor the shutdowncurve of the cycle in question. The postoptimization heuristic is sketched in
Algorithm 6.5.

Algorithm 6.5 Postoptimization heuristic

Require: A solution satisfying all constraints.
for all i ∈ I do
for all cycles, k, of i do
for some number of iterations do
Select at random some t1, t2 lying within k and before the start of a shutdown curve.
Select at random some j1, j2 ∈ J such that cj1t1 < cj2t2 .
δ = min{P it2 − pit2 , pit1 , P j1t1 − pj1,t1 , pj2,t2 − P j2t2},
Update pit1 := pit1 − δ, pit2 := pit2 + δ, pj1t1 := pj1t1 + δ, pit2 := pit2 − δ

end for
end for

end for

6.8 Computational results

In this section we present the computational experiments performed. The challenge instances are
divided in three groups: data0–data5 are the initial instances used for the qualification phase,
data6–data10 are the instances made public after the qualification phase, finally data11–data15
are the instances used for the final ranking of the competitors. These instances were not made
available until after the end of the challenge. As only data instances data0–data10 were available,
we restrict the experiments to these 11 instances, and consider only all the instances for the final
computational results. For some experiments we further restrict our attention to a representative



Chapter 6. A solution approach to a stochastic large scale energy management problem based
on Benders Decomposition 130

sample: data1, data5, data7, data8, and data10. Table 6.2 lists the characteristics of the instances.

Table 6.2: Characteristics of the problem instances. |T | is the number of time steps, |W | is the number
of weeks, |K| is the number of cycles, |S| is the number of scenarios, |J | is the number of plants of type
1, |I | is the number of plants of type 2, and 13–21 are the number of corresponding CTXX constraints.

Name |T | |W | |K| |S| |J | |I| 13 14 15 16 17 18 19 20 21

data0 623 89 2 2 1 2 4 1 0 0 0 0 0 0 0
data1 1750 250 6 10 11 10 46 7 0 1 3 0 1 1 1
data2 1750 250 6 20 21 18 84 13 0 1 3 0 1 1 1
data3 1750 250 6 20 21 18 80 10 2 1 3 2 1 1 1
data4 1750 250 6 30 31 30 122 19 0 1 3 0 1 1 1
data5 1750 250 6 30 31 28 120 18 0 1 3 0 1 1 3

data6 5817 277 6 50 25 50 222 33 40 1 3 0 1 50 5
data7 5565 265 6 50 27 48 192 31 35 1 3 0 1 50 5
data8 5817 277 6 121 19 56 114 37 45 1 3 0 1 50 5
data9 5817 277 6 121 19 56 114 37 45 1 3 0 1 50 5
data10 5565 265 6 121 19 56 235 37 45 1 3 0 1 50 5

data11 5817 277 6 50 25 50 239 33 40 1 3 0 1 50 5
data12 5523 263 6 50 27 48 207 31 35 1 3 0 1 50 5
data13 5817 277 6 121 19 56 260 37 45 1 3 0 1 50 5
data14 5817 277 6 121 19 56 256 37 45 1 3 0 1 50 5
data15 5523 263 6 121 19 56 245 37 45 1 3 0 1 50 5

Setup The computational experiments were performed on a machine with 2 Intel(R) Xeon(R)
CPU X5550 @ 2.67GHz (16 cores in total), with 24 GB of RAM, and running Ubuntu 10.4. The
version of CPLEX used is 12.1.

Preprocessing We here examine the effect of the preprocessing described in Section 6.5.1.
Table 6.3 shows the results. As can be seen the preprocessing is very effective removing 80%−90%
of the possible outage dates for all instances except the very small instance data0, and data8 and
data9. For the two latter the number of variables is around twice as large as the largest of the
other instances, and fewer variables are removed (around 63% and 68% respectively). The reason
can be gleamed from Table 6.2: data8 and data9 have much fewer CT13 constraints, i.e., few
cycles must be scheduled, which means the problem is less constrained and eliminating outage
dates is harder.

Table 6.3: Gives the total number of possible outage dates before preprocessing (Total), and the per-
centage of these removed by the preprocessing (Rem.).

Name Total Rem. Name Total Rem.

data0 36 28.78% data6 24683 85.65%
data1 3920 87.53% data7 35817 80.61%
data2 7941 88.47% data8 69481 68.03%
data3 8207 89.83% data9 69136 62.70%
data4 17514 89.41% data10 30061 85.43%
data5 15415 82.13%
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Heuristic preprocessing As mentioned earlier, the preprocessing is very effective, but still a
large number of variables remains on certain large instances (data8 and data9) where few cycles
have to be scheduled. For this reason the heuristic conflict detector described as point 5 in
Section 6.5.1 is included. As described there the value of α controls the aggressiveness of the
heuristic (lower values means more conflicts). We here examine the effect of including the heuristic
preprocessing. The value of α is fixed to 0.05 (for smaller values some instances were infeasible).
Table 6.4 shows the results with and without the heuristic given 3600 seconds respectively. For
this experiment the fuel constraints were added as described for Run 6 in Table 6.6, aggregation
was enabled and postoptimization was disabled. As can be seen, the effect on the final solution
quality is minor for data1–data3, for data4–data5 the solution is improved, while it is worse for
data6, data7, and data10, finally we are now able to provide a solution for data8, which was not
possible earlier.

Table 6.4: Shows the percentage of variables removed (Rem.) and the final solution (Sol.), without the
heuristic (No Heur.), and with the heuristic (Heur.) given 3600 seconds respectively. A dash (–) means
no solution could be found, and boldface indicates the best solution found for a given instance.

No Heur. Heur.

Name Rem. Sol. Rem. Sol.

data0 28.78% 8.7371e12 28.78% 8.7371e12
data1 87.53% 1.6990e11 87.63% 1.6971e11
data2 88.47% 1.4654e11 88.64% 1.4672e11
data3 89.83% 1.5537e11 89.92% 1.5578e11
data4 89.41% 1.1342e11 89.64% 1.1309e11
data5 82.13% 1.3272e11 83.28% 1.3153e11
data6 85.65% 9.0945e10 85.72% 9.2508e10
data7 80.61% 1.2307e11 80.68% 1.3663e11
data8 68.03% – 77.15% 3.2392e12
data9 62.70% – 74.13% –

data10 85.43% 1.5303e11 85.44% 1.7455e11

Aggregation Next we examine the effect of aggregation on the solution quality. To that effect
the algorithm is run for 3600 seconds with aggregation enabled and disabled for stage 2 (aggrega-
tion is always performed for stage 1). Table 6.5 shows the results, where Vars. is the number of
variables in the subproblem, Cons. is the number of constraints in the subproblem, and Sol. is
the final solution. For this experiment the fuel constraints were added as described for Run 7 in
Table 6.6, heuristic conflicts were included with α = 0.05 and postoptimization was disabled. As
can be seen the aggregation results in a big reduction in the number of variables and constraints
of the subproblem. For data8, and data10 no solution is found without the use of aggregation.

Fuel constraints We here examine the effect of including the constraints described in Sec-
tion 6.6, in an attempt to ensure the feasibility of the subproblem. One can choose to include
either all the constraints, or only a subset, and to included them only in stage 2 or in both stages.
Nine runs are performed, with the settings described in Table 6.6. The results can be seen in
Table 6.7. For this experiment heuristic conflicts were included with α = 0.05, aggregation was
enabled and postoptimization was disabled. As can be seen only Run 4, 7 and 10 completes for
all the tested instances. Run 10 achieves the best average results.

Postoptimization We here examine the effect of the postoptimization procedure described in
Section 6.7.2. For each of the 11 instances three runs are performed, with the number of iterations
respectively set to 50, 000, 150, 000, and 300, 000. The results can be seen in Table 6.8. For this
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Table 6.5: Effect on final solution of aggregating versus not aggregating in stage 2. Vars. is the number
of variables in the subproblem, Cons. is the number of constraints in the subproblem, and Sol. is the
final solution. The dash (–) and boldface are as earlier.

Enabled Disabled

Name Vars. Cons. Sol. Vars. Cons. Sol.

data1 5514 8693 1.6971e11 37692 58871 1.6968e11
data5 16696 25199 1.3147e11 114346 170849 1.3100e11
data7 25898 34181 1.3663e11 529438 686121 1.3412e11
data8 41762 48309 3.2392e12 860182 977529 –
data10 23150 29457 1.7455e11 469330 581637 –

Table 6.6: Description of the different settings used for the fuel constraint runs

Run Description
1 No fuel constraints included
2 Fuel constraints (6.44)–(6.47) included in stage 1.
3 Fuel constraints (6.44)–(6.47), SI and SII included in stage

1.
4 All fuel constraints included in stage 1.
5 Fuel constraints (6.44)–(6.47) included in stage 2.
6 Fuel constraints (6.44)–(6.47), SI and SII included in stage

2.
7 All fuel constraints included in stage 2.
8 Fuel constraints (6.44)–(6.47) included in stage 1, SI and

SII included in stage 2.
9 Fuel constraints (6.44)–(6.47) included in stage 1, remain-

ing included in stage 2.
10 Fuel constraints (6.44)–(6.47), SI and SII included in stage

1, remaining included in stage 2.

experiment the fuel constraints were added as described for Run 10 in Table 6.6, heuristic conflicts
were included with α = 0.05. Due to time constraints the previous tests could not be rerun. As
can be seen there is a clear correlation between the number of postoptimization iterations and the
final solution quality.

Time We finally examine the solution quality as a function of total time given to the algorithm.
Each of the 16 instance is run for respectively 3600 seconds, and 10800 seconds. The results
can be seen in Table 6.9, and Table 6.10 respectively, where the number in parenthesis is the
deviation from the best known solutions reported on the ROADEF/EURO 2010 challenge website
(http://challenge.roadef.org/2010). For the challenge a maximum time of 1800 seconds was
allowed for the first 6 instances, and 3600 seconds for the remaining 10.

As can be seen from the tables, the solution approach performs satisfactorily on instances zero
to five. These were the test instances used in the qualification phase of the contest and are less
complicated than the second and third set of instances (data6 to data10, and data11 to data15).
For the latter sets, the algorithm runs into difficulty due to the large number of binary variables,
particularly for data8 and data9 which are far from the best known solutions, and for data13 which
is not solved at all. Furthermore, formulating and solving the subproblem as an LP and repairing
its solution so that it satisfies CT6 and CT12 appears to be an expensive process, despite the
aggregation.
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Table 6.7: Effect of including fuel constraints. See Table 6.6 for a description of each run. The Avg. row
is the average solution across the instances when all instances were solved. The dash (–) and boldface
are as earlier.

Name Run 1 Run 2 Run 3 Run 4 Run 5

data 1 1.6986e11 1.6987e11 1.6981e11 1.6986e11 1.6973e11
data 5 – 1.2656e11 1.2593e11 1.2707e11 1.3163e11
data 7 – 1.3535e11 1.0514e11 1.2517e11 1.3363e11
data 8 – – – 2.8047e12 –
data10 – 1.3055e11 1.3785e11 1.3667e11 1.1532e11
Avg. – – – 6.7269e11 –

Name Run 6 Run 7 Run 8 Run 9 Run 10

data 1 1.6972e11 1.6972e11 1.6987e11 1.6979e11 1.6977e11
data 5 1.3039e11 1.3148e11 1.2656e11 1.2654e11 1.2593e11
data 7 1.3392e11 1.3663e11 1.4035e11 1.3373e11 1.0563e11
data 8 – 3.2393e12 – – 2.1963e12
data10 1.5162e11 1.7455e11 1.4273e11 1.6093e11 1.3864e11
Avg. – 7.7034e11 – – 5.4725e11

Table 6.8: Effect of postoptimization procedure. The number of iterations for the runs are respectively
50, 000, 150, 000, and 300, 000. boldface is as earlier.

Name 50,000 150,000 300,000

data1 1.69711e11 1.69710e11 1.69709e11
data5 1.26452e11 1.26453e11 1.26451e11
data7 1.10602e11 1.09518e11 1.09013e11
data8 2.88400e11 2.79264e11 2.75348e11
data10 1.30261e11 1.28788e11 1.28443e11

For the the smaller instances, many of the solutions are repairable, while for the larger instances,
there is a lot more variation. It is surprising that for two of the instances where the algorithm
performs poorly (data8 and data13), there is a large number of solutions found but only two are
repairable in one case, while none in the other. Generally it appears that for the larger instances,
either the solutions to the master problem can not be adjusted such that they satisfy CT6 and
CT12, or the repair algorithm does a poor job.

Doubling the amount of time (Table 6.10) does not significantly change the results and only
data1, data5, and data6 are improved. The trend of finding many solutions which are non-
repairable remain the same.

6.9 Conclusion

In conclusion, we have developed a Benders Decomposition approach to solve the large scale energy
management problem posed for the ROADEF/EURO 2010 challenge. The approach includes
a MIP model of the problem along with additional constraints for ensuring feasibility of the
subproblems, a very effective preprocessing and aggregation scheme, which reduces the size of the
problem significantly, and an algorithm for repairing a solution which only satisfies a subset of the
constraints.

On the first set of instances the approach is competitive, while on the the second two set of
instances it is not. This is mainly due to the size of the problems, and the time allotted. On the
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Table 6.9: Results for different problem instances given 3600 seconds. The following information is
shown: the number of optimality cuts added (#Cuts), the number of solutions found in stage 2 (#Sols),
the number of solutions found in stage 2 that were repairable (#Rep), the solution value (Sol.), the
percentage deviation from the best known solution (#Dev), and the average deviation for the three test
sets of respectively six, five and five instances (#Avg).

Name #Cuts #Sols. #Rep. Sol. Dev. Avg.

data0 5 2517 2517 8.7372e12 0.0709%
data1 6 352 312 1.6971e11 0.1008%
data2 17 82 82 1.4629e11 0.1639%
data3 14 86 86 1.5475e11 0.2050%
data4 23 36 35 1.1206e11 0.4157%
data5 21 38 37 1.2645e11 0.4997% 0.2427 %

data6 14 12 12 9.0113e10 8.0173%
data7 5 121 1 1.0901e11 34.2953%
data8 3 1486 2 2.7535e11 236.0938%
data9 9 7 3 3.5103e12 4193.8891%
data10 37 7 5 1.2844e11 62.3461% 906.9283 %

data11 61 447 11 8.8464e10 14.0143%
data12 20 12 12 8.8135e10 15.2850%
data13 16 1017 0 – –%
data14 10 8 4 1.0092e11 32.4820%
data15 46 35 2 1.5758e11 109.8220% 42.9008%

Table 6.10: Results for different problem instances given 10800 seconds. The information given is as for
the previous table.

Name #Cuts #Sols. #Rep. Sol. Dev. Avg.

data0 5 2517 2517 8.7372e12 0.0709%
data1 6 872 583 1.6971e11 0.1007%
data2 17 153 153 1.4629e11 0.1639%
data3 14 165 165 1.5475e11 0.2050%
data4 23 73 72 1.1206e11 0.4156%
data5 21 76 74 1.2643e11 0.4842% 0.2401 %

data6 14 23 23 8.9659e10 7.4733%
data7 5 481 22 1.0901e11 34.2953%
data8 3 4292 2 2.7535e11 236.0938%
data9 9 12 10 3.5103e12 4193.8891%
data10 37 10 9 1.2844e11 62.3461% 906.8179 %

data11 61 458 22 8.8464e10 14.0143%
data12 20 25 25 8.8135e10 15.2850%
data13 16 2187 0 – –%
data14 10 118 8 1.0092e11 32.4820%
data15 46 126 2 1.5758e11 109.8220% 42.9008%

second set of instances and 5 blind instances we placed 14th out of 19 teams in the final of the
competition. Being one of the few optimal methods proposed, it was unable to compete with the
heuristics given only 3600 seconds of computing time. The sophisticated approach can, however,
provide information as to the quality of solutions through the lower bound information which can
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be obtained at each iteration of the Benders algorithm as well as insights into the structure on
the problem.
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Abstract This paper presents a hybrid of a general heuristic framework and a general purpose mixed-

integer programming (MIP) solver. The framework is based on local search and an adaptive procedure

which chooses between a set of large neighborhoods to be searched. A mixed integer programming solver

and its built-in feasibility heuristics is used to search a neighborhood for improving solutions. The general

reoptimization approach used for repairing solutions is specifically suited for combinatorial problems where

it may be hard to otherwise design suitable repair neighborhoods. The hybrid heuristic framework is

applied to the multi-item capacitated lot sizing problem with setup times, where experiments have been

conducted on a series of instances from the literature and a newly generated extension of these. On average

the presented heuristic outperforms the commercial MIP solver ILOG CPLEX and the best heuristics from

the literature. Furthermore, we improve the best known upper bounds on 60 out of 100 and improve the

lower bound on all 100 instances from the literature.

Keywords: Adaptive large neighborhood search, capacitated lot sizing problem with setup times

7.1 Introduction

The adaptive large neighborhood search (ALNS) heuristic is a concept introduced by Røpke and
Pisinger (2006). The ALNS heuristic is a large neighborhood improvement heuristic that operates
on top of a construction heuristic. The improvement is done using a local search method, e.g.,
simulated annealing or tabu search, choosing between different neighborhoods. In each iteration of
the search a destroy neighborhood is chosen to destroy the current solution, and a repair neighbor-
hood is chosen to repair the solution. The neighborhoods are weighted according to their success
and weights are adjusted as the ALNS heuristic progresses. Destroy and repair neighborhoods are
normally assumed to be searched by fast heuristics.

The main motivation for extending the ALNS heuristic to a hybrid version is, that not all
problem types are equally well suited for defining neighborhoods. Especially the construction
and the exploration of repair neighborhoods can be a challenge, both with respect to finding a
meaningful repair operation and testing feasibility of such an operation. To address this problem,
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we propose to use a mixed integer programming (MIP) solver in the repair phase of the ALNS
heuristic. The idea is to solve a restricted subproblem that is based on a partial solution where
variables are fixed (or bounded). The process of constructing a subproblem, and the following
reoptimization of the subproblem with the use of a MIP solver, can in the context of an ALNS
heuristic be seen as the application of a destroy and a repair neighborhood. As such the hybrid
ALNS can be viewed as a specialization of the ALNS framework which simplifies the task of
defining repair neighborhoods.

The reoptimization of of the subproblems done in the repair neighborhoods relies heavily on
primal heuristics in the MIP solver to produce good upper bounds since it may be too cumbersome
to solve the subproblem to optimality. Heuristics found in modern MIP solvers include the local
branching heuristic by Fischetti and Lodi (2003), the feasibility pump introduced by Fischetti
et al. (2005) and refined by Bertacco et al. (2007); Achterberg and Berthold (2007), and the
relaxation induced neighborhood search by Danna et al. (2005). Naturally such MIP heuristics
are constructed in such a way that they can be applied directly to a problem without taking into
account special characteristics. Also, the MIP heuristics are limited in the sense that they are only
applied within the branch-and-bound tree and are induced from the current fractional solution.
The hybrid ALNS works with different neighborhoods, outside the scope of a branch-and-bound
tree, and takes historical information into account.

The ALNS framework by Røpke and Pisinger (2006) has grown out of the large neighborhood
search framework by Shaw (1998). The heuristic has several similarities with variable neighbor-
hood search, see e.g., Mladenović and Hansen (1997), and hyper-heuristics, see e.g., Burke et al.
(2003). However, there are no adaptiveness built into the basic idea of the variable neighborhood
search. This approach mainly relies on the diversity of the neighborhoods being used. The hyper-
heuristic approach operates on simpler low-level heuristics whereas the ALNS heuristic operates on
neighborhoods. Furthermore, an evaluation function is used to calculate a score for each low-level
heuristic, based on which the best scoring heuristics is chosen for the next iteration. The ALNS
heuristic uses a random selection between all weighted neighborhoods to choose a neighborhood for
the next iteration. This allows for bad performing neighborhoods to be chosen occasionally, which
increases the search diversity. ALNS heuristics have been implemented for vehicle routing prob-
lems with great success, see Røpke and Pisinger (2006); Pisinger and Røpke (2007). Examples of
an application of the framework outside a routing problem context are few: Cordeau et al. (2010)
schedule technicians and tasks in a telecommunications company and Muller (2009) presents an
ALNS heuristic for the resource-constrained project scheduling problem. For a recent survey on
large neighborhood search and the ALNS framework we refer to Pisinger and Røpke (2010).

The lot sizing problem (LSP) with setup times and setup costs can be defined as follows: Given
one resource, schedule the production of a set of items over a given number of time periods such
that all demands of items are met, and such that the capacity of the resource is not exceeded.
The production of an item and each setup of production consumes capacity on the resource and
has a cost. The difference between setup times and setup costs, is that setup times consumes an
amount of capacity on the resource, while setup costs is an extra cost incurred in the objective
function. The LSP with setup times and setup costs is NP-hard, see e.g., Pochet and Wolsey
(2006). Maes et al. (1991) show that the problem remains NP-hard for the case with no setup
costs (in fact just finding a feasible solution is NP-hard). Heuristics for the LSP with setup times
and setup costs include the tabu search heuristic of Gopalakrishnan et al. (2001), the variable
neighborhood search heuristic of Hindi et al. (2003), and the cross entropy-Lagrangian hybrid
heuristic of Caserta and Rico (2009). For some comparisons see for instance Jans and Degraeve
(2007) or Buschkühl et al. (2010). Exact approaches for the LSPST with setup times and setup
costs include branch-and-cut algorithms by Belvaux andWolsey (2000); Wolsey (2002); Miller et al.
(2000) and a branch-and-price algorithm by Degraeve and Jans (2007). The good performance of
the branch-and-cut algorithms suggest that using a MIP solver to solve restricted subproblems of
the LSP with setup times and setup costs can be done in reasonable time.

A recent study by Sural et al. (2009) shows that the standard benchmark instances of Trigeiro
et al. (1989) are considerably harder when setup costs are removed. Furthermore, Sural et al.
(2009) consider an extension of the standard (heterogeneous) instances denoted the homogeneous
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instances where all holding costs are equal. Their experiments showed that the homogeneous
instances have even larger integrality gaps than the heterogeneous instances. It is thus of interest
to develop heuristics for the case with setup times and no setup costs, and this is the problem
considered in the following. Papers relating to the LSP with setup times and no setup costs include
the MIP based heuristic of Denizel and Süral (2006), and the Lagrangian heuristic of Sural et al.
(2009). In the following we will refer to the LSP with setup times and no setup costs as the
LSPST.

The contribution of this paper is an ALNS heuristic which combines the strengths of modern
MIP solvers with the diversity of the ALNS heuristic, creating a “hybrid” approach. The repair
neighborhoods employ the MIP solver in a generic fashion and neighborhoods are thus applicable
to a large variety of problems. An evaluation of the hybrid ALNS heuristic is applied to the
LSPST, on a set of instances found in the literature. The ALNS algorithm outperforms ILOG
CPLEX and the current best heuristic of Sural et al. (2009) both with respect to the quality of
solutions and lower bounds. During the experiments we found 60 new best upper bounds (for
the 100 instances also considered by Sural et al. (2009)), and improved all lower bounds. This
indicates the usefulness of the hybrid ALNS approach.

The paper is organized as follows: Section 7.2 gives an outline of the ALNS framework and
describes the hybrid variant proposed in this paper, Section 7.3 presents an application of the
hybrid ALNS heuristic to the LSPST, and Section 7.4 contains the experimental results performed
on the instances of Sural et al. (2009) which is an extension of the instances of Trigeiro et al. (1989),
and on a new set of larger instances. Section 7.5 concludes the paper and suggest new directions
for future research.

7.2 A hybrid ALNS algorithm

We begin with an outline of the ALNS framework as described by Pisinger and Røpke (2007).
The framework is divided into three parts, i) a master local search framework, ii) a set of large
neighborhoods that either destroy for a solution or repair a for a partial solution, and iii) a
procedure for choosing neighborhoods which adapts based on historical information. Following
this we present the hybrid ALNS algorithm.

At the top level (also denoted master level) any local search heuristic can be applied, e.g.,
simulated annealing, tabu search, guided local search, or GRASP (greedy randomized adaptive
search procedure). A neighborhood of a solution is a set of solutions obtained by performing some
operation on the original solution. In large neighborhoods these operations involve changing several
settings in the solution at once leading to a neighborhood of potentially exponential size. The
procedure for choosing neighborhoods can be pictured as a roulette wheel spinning and randomly
choosing a neighborhood. The weights of all neighborhoods are updated based on historical
success. Hence, successful neighborhoods have a higher probability to be used as time passes,
although all neighborhoods have a small chance of being chosen to ensure diversity.

The ALNS framework can be described as follows: Given a starting solution, the heuristic
iteratively tries to improve it. The set of neighborhoods is divided into destroy neighborhoods
N− and repair neighborhoods N+. Given a current solution x a destroy neighborhood n− ∈
N− performs an operation on x, stores the removed elements in an item bank B and leaves a
partial solution x. A repair neighborhood inserts elements from the item bank into x creating
a new solution x′. In the case of the hybrid ALNS heuristic presented in this paper, the repair
neighborhoods make use of a MIP solver. A roulette wheel for each of the sets N− and N+ is used
in each iteration to choose which destroy and which repair neighborhood should be used. This is
based on a weight π for each neighborhood that is initialized at the beginning according to the
quality of the neighborhood (this is a user defined consideration to be made a priori). During the
local search the weights are updated according to the quality of the solutions produced with the
given neighborhoods. The motivation behind this is, that not all neighborhoods perform equally
well on all problem instances – hence the weights of the neighborhoods adapt to the instance
during the execution of the algorithm and hopefully produce better solutions overall.
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ALNS

1 x is an initial solution; set x∗ := x
2 repeat
3 Choose n− ∈ N− and a n+ ∈ N+ based on π
4 Generate solution x′ based on x, n−, and n+

5 if x′ is accepted
6 then x := x′

7 if x′ < x∗

8 then x∗ := x′

9 Update π for N− and N+

10 until stop criteria is meet
11 return x∗

Figure 7.1: Pseudo-code overview of the ALNS framework.

As mentioned above, the weights of the neighborhoods are updated according to how successful
a neighborhood is in obtaining better and new solutions. In the paper by Pisinger and Røpke (2007)
the weights are updated after certain given time segments and the weight of a neighborhood is
based on the observed weight πi,t of neighborhood i at time segment t which in each iteration is
incremented with values dependent on the quality of the new solution x′.

At the end of a time segment a smoothened weight πi,t is calculated for use in the roulette
wheel. This is based on π̄i,t and a reaction factor r which indicates how much the roulette weight
depends on previous success. Previous success is calculated as the observed weight π̄i,t divided
by the number of times ai,t neighborhood i has been chosen in time segment t. The updated
smoothened weight is:

πi,t+1 = r
πi,t

ai,t
+ (1− r)πi,t.

A low reaction factor keeps the weight at about the same level during the algorithm. A neighbor-
hood i has the probability:

pt(i) =
πi,t

∑

j∈N πj,t

of being chosen in time segment t.
In Figure 7.1, the pseudo-code is given for the ALNS framework. The criteria for accepting a

new solution in line 5 depends on the choice of local search framework and the score update on
line 9 can be performed using different strategies. The choices made for the hybrid ALNS heuristic
will be described in the following sections.

The basic idea behind the proposed hybrid ALNS heuristic is, that instead of designing special
purpose repair neighborhoods, which may not always be straight forward, we use a MIP solver in
order to repair (or reoptimize) a solution. The destroy neighborhood either explicitly or implicitly
selects a number of variables from the MIP model. A MIP based repair neighborhood then creates
a subproblem of the original problem where the selected variables are “free” in the sense that no
additional constraints are imposed on these variables, while the remaining variables are either fixed
or bounded based on their values in the current solution. Thus the MIP based repair neighborhood
will in effect search a neighborhood around the current solution. Using a MIP solver as a repair
neighborhood provides an easy tool to calculate lower bounds during the search. We propose,
that when an improved solution is found, the root node of the MIP is resolved with all variables
unfixed, and the current solution as an initial upper bound. For modern MIP solvers an initial
upper bound is used for both pre-processing and reduced cost fixing during the optimization.
Hence, a good initial upper bound may yield improved lower bounds compared to solving the root
node with no (or a bad) initial solution. This way, the ALNS heuristic can provide valid lower
bounds and an estimation of the solution quality based on the integrality gap.
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7.3 An application of ALNS to the LSPST

In this section we present an application of the hybrid ALNS heuristic to the LSPST. First,
a description of the mathematical model is given, then the master level local search procedure
is presented, next a description if an adjusted weight calculation method used in the adaptive
procedure is given, followed by a description of the neighborhoods employed, and finally the
parameter values are presented.

7.3.1 Problem description

This section briefly presents the traditional mathematical formulation (see e.g., Belvaux and
Wolsey (2000)) of the LSPST. Let I = {1, . . . , n} be the set of items and T = {1, . . . ,m} be
the set of time periods. The data set is given as follows: hi

t ≥ 0 is the unit inventory cost of item i
at time t, dit ≥ 0 is the demand of item i at time t, αi

t ≥ 0 is the capacity used for producing item
i at time t, βi

t ≥ 0 is the capacity used for setting up the production of item i at time t, Ct ≥ 0
is the capacity of the resource at time t, and M is a sufficiently large constant. The variables are
give as follows: si0 is the number of units of item i in the initial inventory, sit is the number of
units of item i in stock after time t, xi

t is the number of units of production of item i at time t,
and yit indicates if a setup for production of item i at time t has been done. All variables except
the y-variables are positive continuous variables. The y-variables are binary and force the other
variables to attain integer values (if all constants are also integer). The mathematical model for
the LSPST:

min
∑

i∈I

(

hi
0s

i
0 +

∑

t∈T

hi
ts

i
t

)

(7.1)

s.t. sit−1 + xi
t = dit + sit t ∈ T, i ∈ I (7.2)

xi
t ≤Myit t ∈ T, i ∈ I (7.3)
∑

i∈I

(

αi
tx

i
t + βi

ty
i
t

)

≤ Ct t ∈ T (7.4)

sit, s
0
t , x

i
t ≥ 0, yit ∈ B t ∈ T, i ∈ I (7.5)

The objective (7.1) is to minimize holding cost. Constraints (7.2) ensure flow conservation of the
item. That is, items in stock plus the items produced in a time period must equal the number
of items demanded in this time period plus the number of items in stock after this time period.
Constraints (7.3) ensure that production of an item can only occur if the resource is set up to
produce that item. Constraints (7.4) guarantee that the production and setup capacity usages
cannot exceed the resource capacity. The domains of the variable are specified by constraints
(7.5).

7.3.2 Local search

In this paper steepest descent has been chosen as the local search procedure. Because the destroy
neighborhoods merely unfixe parts of the variables, and because the MIP repair neighborhoods
use the current solution as an initial upper bound, it is always possible for the MIP solver to
find that solution again. Therefor, the MIP solver never returns a solution that is worse than the
current one. Hence, a selection process for choosing worse solutions would not apply.

To diversify the search, the search is restarted at different solutions when no improvements
have occurred in a number of iterations (chosen to be equal to the segment size for updating
the neighborhood weights). For the initial restart the second best solution is chosen (the current
solution is the best solution). In subsequent restarts, the local search either switches back to
the best solution if it is not the current one or switches to the next best solution that has not
previously been used for a restart. The reason for returning to the best solution in an attempt
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to find further improvements is that the neighborhoods may have obtained different scores in the
meantime yielding a diversified exploration of the neighborhood of that solution.

To speed up the subproblem solution process, we suggest to limit the number of explored
branch nodes or end the search after a given time limit. MIP heuristics are applied in the MIP
solver to obtain feasible solutions rapidly.

7.3.3 Adaptive weight adjustments

In this paper a slightly different approach, compared to the fixed scoring scheme of Røpke and
Pisinger (2006); Pisinger and Røpke (2007), is used for updating the observed weights. The
reason for this is the choice of local search procedure. For the selected procedure, a solution is
only accepted when it is better than the current solution, which may result in long periods without
any accepted solutions. If a fixed scoring scheme was used all neighborhoods would score equally
bad, while for the employed scheme it is possible to differentiate the neighborhoods that produce
solutions which are almost as good as the current one and the ones that produce solutions which
are far worse. Let cx be the objective value of the current solution and let cx′ be the objective
value of the new solution. The observed weight πi,t of neighborhood i at time segment t is updated
as follows

π̄i,t = π̄i,t + k(cx−cx′)/cx

where k is some constant.

7.3.4 Destroy neighborhoods

Except for the random removal neighborhood each neighborhood focuses on specific structural
problems in a solution to the LSPST, e.g., too many items in stock, or an often changing production
of items. A parameter Q controls how large a part of the current solution is destroyed. It is
measured in a percentage of combined production for the LSPST. The destroy neighborhoods
are divided in two steps: i) a removal candidate set, R, of sets of production variables, i.e., sets
of x-variables, is constructed based on the chosen destroy neighborhood, ii) iteratively a set of
production variables from R are selected for removal until production corresponding to Q has
been unfixed, or no more sets of variables remain. Depending on the destroy neighborhood chosen
these variables are either randomly selected or randomly selected based on some weight. Let in
the following (x̄, ȳ, s̄) denote the current solution.

Random. Unfixes production variables at random throughout the production plan:

R =
{

{xi
t} : x̄i

t > 0, t ∈ T, i ∈ I
}

.

Variable from R are chosen randomly. The neighborhood is good at diversing the search,
and is useful if the search is stuck in a local minimum.

Production causing stock. Unfixes production variables that causes items to be placed in
stock. Hopefully, the production can be inserted at a later time in the production plan,
hence saving inventory expenses:

R =
{

{xi
t} : s̄it > 0 ∨ s̄it+1 > 0, t ∈ T, i ∈ I

}

.

Variables from R are chosen randomly.

Capacity critical. Unfixes production of items in time steps, where some resource is fully loaded.
This allows for a reshuffling of the production:

R =
{

{xi
t} : x̄i

t∗ > 0 ∧ (t = t∗ ∨ t = t∗ − 1 ∨ t = t∗ + 1), i ∈ I
}

,

where t∗ = argmax{∑I x̄
i
t : t ∈ T }, i.e., t∗ is the time period with the most combined

production. Variables for time steps preceding and following t∗ are included to open the
possibility of shifting the production between these time periods. Variables from R are
unfixed randomly.
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Stocked items. Unfixes production of items that have the largest amount of units in stock
throughout the production plan. The idea is to attempt a reshuffle of stocked items be-
tween those types of items that are favorable to put in stock, e.g., due to low holding cost:

R =

{

{xi
t : t ∈ T } :

∑

t∈T

s̄it > 0, i ∈ I

}

Sets of variables from R are chosen randomly, where each set S ∈ R corresponding to some
item i∗ has weight

∑

t∈T s̄i
∗

t . A minimum of two item types are unfixed.

Time periods with high stock density. Unfixes production from time periods where many
items are in stock. The idea is to reshuffle the production (and thereby the stocked items)
into the previous or succeeding time periods. The time periods are sorted according to the
number of stocked items. When the production in a time period is cleared, the time period
before and after are also cleared:

R =
{

{xi
t−1, x

i
t, x

i
t+1 : i ∈ I} : t ∈ T

}

Sets of variables from R are chosen randomly, where each set S ∈ R corresponding to some
tripe of time (t∗ − 1, t∗, t∗ + 1) has weight

∑

i∈I(s̄
i
t∗−1 + s̄it∗ + s̄it∗+1).

Production higher than demand. When there are productions that are very high compared
to the demand of the corresponding item in the time period, a lot of items are put in stock.
Often a solution can be shifted, such that the majority of the production is moved to the
following time period:

R =
{

{xi
t−1, x

i
t, x

i
t+1} : t ∈ T, i ∈ I

}

Sets of variables from R are chosen randomly, where each set S ∈ R corresponding to some
item i∗ and some triple of time (t∗ − 1, t∗, t∗ + 1) has weight x̄i∗

t∗ − di
∗

t∗ .

7.3.5 Repair neighborhoods

The MIP repair neighborhoods employed for the LSPST are:

Bound by solution value. Bound non-unfixed variables x to a fraction of their current value,
i.e., if xi

t is a variable which has not been unfixed by a destroy neighborhood, fix xi
t ≥ δx̄i

t

for δ ∈ [0, 1]. In this paper δ = 0.5 was chosen. Production variables x imply the setup
variables y. Hence, whenever x̄i

t > 0 we bound the variable ytt = 1. Stock is generally to
be avoided, therefor we fix all lower bounds of the stock variables s to 0 so that we do not
accidentally force unnecessary stock.

Fix by solution value. Fix non-unfixed variables x, to their value in the current solution, where
production equals demand, i.e., we fix xi

t = x̄i
t where we have x̄i

t = dit. In solutions for the
LSPST, this scenario happens frequently in consecutive time periods for the production of
an item. In order to allow some diversification in the production we only fix production
when there is no stock in the preceding nor the succeeding item periods, i.e., we do not
fix the production in the first and the last time period in consecutive time periods, where
production equals demand for a certain item.

7.3.6 ALNS parameters

A time limit used at the master level of 300 seconds is chosen as the termination criteria of the
steepest descent local search. The reaction factor r is set fairly high at 0.8 since we expect few
iterations, and therefor would like the neighborhood weights to converge fast. All neighborhoods
are initialized with a weight of 1. During the first iteration, an estimate of the overall number of
iterations is calculated based on the running time of that iteration. The segment size for updating
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Hybrid-ALNS

1 x is an initial solution; set x∗ := x
2 repeat
3 Choose n− ∈ N− and a n+ ∈ N+ based on π
4 Select a set of variables, S, based on n− and x
5 Construct a restricted MIP model based on S, n+ and x
6 Solve problem with a MIP solver (subject to stop criteria)
7 Collect all solutions found by MIP solver into a pool
8 if no solution better than x found
9 then Set x to some random solution from the pool

10 else Let x′ be the best found solution.
11 if x′ is better than x
12 then x := x′

13 if x′ better than x∗

14 then x∗ := x′

15 Update π for N− and N+

16 until stop criteria is meet
17 return x∗

Figure 7.2: Pseudo-code overview of the ALNS framework.

the weights is set to one hundredth of the estimated number of overall iterations, or at least 10
and at most 50 iterations. As mentioned earlier the parameter Q controls how large a part of
the current solution is destroyed. Muller (2009) suggests an exponential decrease of Q. In this
paper we propose a linear decrease beginning at Q = 0.4 and decreasing toward Q = 0.1. The
linear decrease provides room for large neighborhoods in more iterations which is crucial when
few iterations are explored.

7.3.7 Overview

Figure 7.2 shows the pseudo-code for the complete algorithm. The initial solution is found by
solving the root node of the branch-and-bound-tree and returning the best heuristic solution
found by the MIP solver. For all the considered test instances this produced a feasible initial
solution. The stop criteria used for the call to the MIP solver in line 6 is to solve the root node
of the branch-and-bound tree and then return the best found heuristic solution. For this call the
MIP solver is initialized with the current solution.

7.4 Experimental results

The experiments compare the ALNS heuristic to ILOG CPLEX with default settings and to
the heuristic of Sural et al. (2009) which is currently the best for the problem considered. The
experiments are performed on a 2.66 GHz Intel(R) Xeon(R) X5355 machine with 8 GB memory
using ILOG CPLEX version 12.1. For the result reported by Sural et al. (2009) an IBM PC
with an Intel Pentium IV processor was employed, which SPEC rates as 3 times slower than the
processor used for these tests. The time limit for the ALNS heuristic and the tests with ILOG
CPLEX is 300 seconds which also is one of the stopping criteria used by Sural et al. (2009). For
the ALNS heuristic the average is calculated based on 10 runs.

7.4.1 Instances

The considered test instances are the same as those used by Sural et al. (2009). These instances
have been generated on the basis of the instances of Trigeiro et al. (1989) by setting the setup costs
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Group Instances – Homogeneous Instances – Heterogeneous

SE G53, G54, G51-10–G58-10, G66-10–G72-10,
G74-10, G66-15, G69-15, G71-15 (21 in-
stances)

G51–G56, G59, G51-10–G60-10, G66-10–
G75-10, G66-15, G67-15, G69-15–G71-15,
G74-15 (33 instances)

SH G51, G52, G55–G60, G66–G75, G59-10, G60-10,
G73-10, G75-10, G67-15, G68-15, G70-15,
G72-15–G75-15 (29 instances)

G57, G58, G60, G66–G75, G68-15, G72-15,
G73-15, G75-15 (17 instances)

ME – G54-30, G54-45 (2 instances)

MH G51-30–G60-30, G51-45–G60-45, G66-60–
G75-60, G66-90–G75-90 (40 instances)

G51-30–G53-30, G55-30–G60-30, G51-45–
G53-45, G55-45–G60-45, G66-60–G75-60,
G66-90–G75-90 (38 instances)

Table 7.1: The division of the instances in easy and hard groups for respectively the heterogeneous and
the homogeneous instances.

to 0, and setting all zero demand to two. The base set of Trigeiro et al. (1989) are divided into
four groups: the five instances G51–G55 each has 12 items and 15 time periods, the five instances
G56–G60 each has 24 items and 15 time periods, the five instances G66–G70 each has 12 items and
30 time periods, and the five instances G71-G75 each has 24 items and 30 time periods. In addition
to these instances, Sural et al. (2009) generate four new groups having 10 time periods and two
new groups having 15 time periods by taking the original instances and reducing the number of
time periods to respectively 10 and 15. These are in the following denoted by appending -10 and
-15 to the name of the original instance. This results in 50 heterogeneous instances. Additional
50 homogeneous instances were created by Sural et al. (2009) on the basis of the heterogeneous
instances by setting all holding costs to 1.

In order to experiment with larger (and harder) instances, we have generated a number of new
instances in a similar way as Sural et al. (2009): For each of the original instances containing 15
time periods an instance containing respectively 30 and 45 time periods is created by concatenating
the 15 time period instance (two respectively three times). Likewise, for each of the original
instances containing 30 time periods, an instance containing respectively 60 and 90 time periods is
created by concatenation. These are in the following denoted by appending -30, -45, -60 and -90

to the name of the original instance. Again, a further set of homogeneous instances is created on
the basis of these by setting all holding costs to 1. This results in a total of 40 new heterogeneous
and 40 new homogeneous instances. The total number of instances considered is thus 180.

During the conducting of the experiments, we observed that some instances appeared to be
harder than others. In order to better evaluate the performance of the ALNS heuristic, we divide
the instances into: hard and easy based on the following criteria: if ILOG CPLEX could not solve
the instance to optimality within 300 seconds the instance is hard, otherwise it is easy. The hard
and easy groups are again divided into two, one containing the instances of Sural et al. (2009),
the other containing the new instances created here. The group of easy and hard instances from
Sural et al. (2009) is in the following denoted SE and SH respectively, and the group of easy and
hard instances generated for this paper is denoted ME an MH respectively. Table 7.1 shows the
resulting groups and the instances they contain.

7.4.2 Comparison

Table 7.2 shows a comparison of the results obtained by applying the ALNS heuristic, default
ILOG CPLEX, and the best heuristic of Sural et al. (2009) (SDW) to the benchmark instances.
The results are shown as an average of over the instances in the groups divided by easy and
hard, and heterogeneous and homogeneous. Detailed results for each instance can be found in
Appendix 7.A.

When considering the instances of Sural et al. (2009), we see that both the ALNS heuristic
and the MIP solver outperforms the best heuristic (SDW) of Sural et al. (2009). Taking the best
upper and lower bounds found by either the ALNS heuristic or the MIP solver we find 24 new best
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ALNS MIP Sural et al. (SDW)

Group LB UB UB∗ gap Time(s) LB UB gap Time(s) LB UB gap Time(s)

SE 15.57 0.09 0.00 20.06 13.05 0.00 0.00 0.00 6.69 23.68 0.17 37.09 3.70

11.78 0.02 0.00 28.17 18.02 0.00 0.00 0.00 9.25 15.95 2.28 24.59 5.73

SH 11.86 0.25 0.01 14.75 101.65 12.36 0.52 33.37 216.57 14.69 0.96 21.04 12.82

11.88 0.32 0.02 15.07 135.48 13.77 0.53 41.95 248.24 15.24 4.32 27.28 24.59

SE+SH 13.42 0.18 0.01 16.98 64.44 7.17 0.30 19.36 128.42 18.46 0.63 27.78 8.99

11.81 0.12 0.01 23.71 57.96 4.68 0.18 14.26 90.51 15.71 2.98 25.51 12.14

ME - - - - - - - - - - - - -
3.53 0.00 0.00 3.65 25.23 0.00 0.00 0.00 1.54 - - - -

MH 15.44 0.67 0.07 20.40 229.50 20.57 1.29 161.75 264.18 - - - -
12.12 1.16 0.28 16.18 243.44 17.83 1.25 148.21 274.73 - - - -

ME+MH 15.44 0.67 0.07 20.4 229.50 20.57 1.29 161.75 264.18 - - - -
11.69 1.10 0.27 15.56 232.53 16.93 1.18 140.8 261.07 - - - -

All 14.32 0.40 0.04 18.50 137.80 13.12 0.74 82.64 188.76 - - - -
11.76 0.56 0.12 20.09 135.54 10.13 0.63 70.50 166.31 - - - -

Table 7.2: Comparison of the ALNS heuristic with default ILOG CPLEX and the SDW heuristic of Sural
et al. (2009). The LB column is the average deviation in percent of the lower bound from the best found
solution across all runs calculated as UB − LB/UB, thus smaller is better. The UB column is likewise
the average deviation of the upper bound form the best found solution, the UB∗ column is the best found
solution solution found across the 10 runs of the ALNS heuristic. The gap column is the average integrality
gap in percent at the point where the procedure stops, and the Time column is the average time used
to find the best solution for the ALNS heuristic and the MIP solver, and for the heuristic of Sural et al.
(2009) it is the total times reported in that paper. For the ALNS heuristics the results are reported as
average of 10 runs. For each class the upper line are the homogeneous results and the lower line are the
heterogeneous results. For each line the best value across the algorithms are indicated in boldface.

upper bounds and 50 new best lower bounds (out of 50) for the homogeneous instances, and 36
new best upper bounds and 50 new best lower bounds (out of 50) for the heterogeneous instances
(see the next section for details). Considering only the SE instances, the MIP solver outperforms
the ALNS heuristic on all parameters which is not surprising since optimality is proved. However,
for the SH instances the roles are reversed, and the ALNS heuristic outperforms the MIP solver
on all parameters. Taking the combined results for the SE and SH instances the ALNS produces
the best upper bounds and uses less time compared to ILOG CPLEX to find the best solutions
but the MIP solver produces the best lower bounds. On the homogeneous instances the ALNS
heuristic produces the best average gaps, while for the heterogeneous it is the MIP solver. To
be fair it must be noted that the heuristic of Sural et al. (2009) is by far fastest on average even
though it produces much worse solutions.

Next, considering the instances generated for this paper we see that for the ME instances
the ALNS heuristic and the MIP solver tie for the upper bound, while the MIP solver is better
with respect to lower bounds, gaps, and time to find best solutions. For the hard instances
the ALNS heuristic outperforms the MIP solver on all parameters for both homogeneous and
heterogeneous instances. Taking the combined results for the ME and MH instances, the ALNS
heuristic outperforms the MIP solver on all parameters.

Finally, considering all the instances together we see that the ALNS heuristic outperforms the
MIP solver on all parameters except for the lower bounds, producing upper bounds which are on
average about 46% better than the MIP solver on the homogeneous instances, and on average
about 11% better than the MIP solver on the heterogeneous instances.

7.5 Conclusion

We have presented a hybrid heuristic solution approach based on the ALNS framework where a
MIP solver is used in the repair phase. This results in a general hybrid ALNS algorithm where i)
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Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s) Tot. time(s)

G51-10 931.2 1049.0 1049 12.65 3.18 1049.0 1049 0.00 2.44 2.96
G52-10 585.1 676.0 676 15.54 1.10 676.0 676 0.00 0.11 0.54
G53-10 606.7 663.0 663 9.29 0.78 663.0 663 0.00 0.07 0.24
G53 1181.4 1483.4 1473 25.57 23.51 1473.0 1473 0.00 15.20 158.22
G54-10 243.0 363.0 363 49.36 1.73 363.0 363 0.00 0.07 0.10
G54 852.8 1050.0 1050 23.12 1.78 1050.0 1050 0.00 0.06 9.40
G55-10 1281.5 1383.6 1380 7.97 25.47 1380.0 1380 0.00 0.80 13.21
G56-10 665.3 770.0 770 15.74 1.45 770.0 770 0.00 2.97 90.95
G57-10 1701.4 1762.3 1758 3.58 66.12 1758.0 1758 0.00 8.63 25.12
G58-10 1942.9 2035.0 2035 4.74 58.30 2035.0 2035 0.00 19.78 158.68
G66-10 749.8 845.0 845 12.69 1.79 845.0 845 0.00 0.13 0.89
G66-15 1111.0 1346.8 1342 21.23 3.63 1342.0 1342 0.00 40.54 133.85
G67-10 447.5 480.0 480 7.26 0.38 480.0 480 0.00 0.05 0.07
G68-10 790.8 924.1 922 16.85 32.86 922.0 922 0.00 1.55 127.57
G69-10 118.0 186.0 186 57.64 0.04 186.0 186 0.00 0.03 0.05
G69-15 600.0 827.0 827 37.84 2.86 827.0 827 0.00 0.62 136.25
G70-10 694.0 795.0 795 14.56 1.15 795.0 795 0.00 0.13 5.85
G71-10 632.6 701.0 701 10.81 25.98 701.0 701 0.00 0.29 2.32
G71-15 708.5 891.0 891 25.76 14.37 891.0 891 0.00 1.74 114.52
G72-10 264.5 367.0 367 38.75 1.14 367.0 367 0.00 0.46 0.51
G74-10 780.2 860.0 860 10.23 6.52 860.0 860 0.00 44.75 126.79

21 15.57 0.09 0.00 20.06 13.05 0.0 0.00 0.00 6.69 52.77

Table 7.3: Detailed results for the homogeneous SE instances. Columns are similar to those of Table 7.2
with the addition of Tot. time(s) that is the total time used to prove optimality.

the “difficult” part of creating repair neighborhoods has been eliminated and ii) the strength of
modern MIP solvers can be exploited.

The proposed hybrid algorithm has been applied to the LSPST and the computational results
indicate that the heuristic is very competitive. On a set of benchmark instances from the literature
combined with a new set of larger instances generated for this paper, the ALNS algorithm is, within
a 300 second time limit, able to produce solutions which on average are 43%, and 11% better
than the commercial MIP solver ILOG CPLEX on respectively homogenous and heterogenous
instances. The ALNS heuristic was especially good on the hard homogeneous instances. Both the
ALNS heuristic and the MIP solver outperforms the current best heuristic found in the literature,
both with respect to the quality of the solution and the lower bounds produced. This indicates
that it may be beneficial to use general MIP based repair neighborhoods in combination with
problem specific destroy neighborhoods in ALNS.

Taking the best upper and lower bounds found by either the ALNS heuristic or the MIP
solver we were able to improve upon 24 (out of 50) upper bounds and all lower bounds for the
homogeneous benchmark instances of Sural et al. (2009), and improve upon 36 (out of 50) upper
bounds and all lower bounds for the heterogeneous instances of Sural et al. (2009).

A suggestion for a future improvement is to apply the hybrid ALNS heuristic within the
reoptimization process in the repair neighborhood. When solving larger problems the MIP solver
may become too slow to use in the repair neighborhoods, and it may be beneficial to apply a
meta-heuristic approach to reoptimize the subproblem. This approach can be applied recursively
until the subproblems are small enough for the MIP solver to be handled efficiently.
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7.A Detailed results

Table 7.3 and Table 7.4 lists detailed results for the SE homogeneous and heterogeneous instances
taken from Sural et al. (2009), Table 7.5 and Table 7.6 lists detailed results for the SH homogeneous
and heterogeneous instances taken from Sural et al. (2009), and Table 7.7, Table 7.8, and Table 7.9
lists detailed results for the heterogeneous ME and MH, and homogeneous MH of this paper.
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Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s) Tot. time(s)

G51-10 1380.8 1441.0 1441 4.36 0.89 1441.0 1441 0.00 0.11 0.11
G51 3579.3 3684.0 3684 2.93 8.56 3684.0 3684 0.00 0.44 1.09
G52-10 664.8 761.1 761 14.48 42.46 761.0 761 0.00 0.08 0.14
G52 1470.3 1773.0 1773 20.59 3.04 1773.0 1773 0.00 0.56 2.66
G53-10 794.6 842.0 842 5.97 0.28 842.0 842 0.00 0.06 0.08
G53 1894.3 2169.0 2169 14.5 32.89 2169.0 2169 0.00 6.09 9.58
G54-10 119.2 424.0 424 255.67 0.01 424.0 424 0.00 0.02 0.02
G54 2123.0 2183.0 2183 2.82 0.14 2183.0 2183 0.00 0.19 0.20
G55-10 1842.3 1940.0 1940 5.30 5.50 1940.0 1940 0.00 0.18 0.19
G55 4981.6 5298.4 5290 6.36 45.32 5290.0 5290 0.00 19.61 21.93
G56-10 1127.7 1183.0 1183 4.91 1.33 1183.0 1183 0.00 0.10 0.19
G56 5318.9 5586.7 5585 5.03 37.82 5585.0 5585 0.00 31.14 32.85
G57-10 2023.2 2124.0 2124 4.98 1.16 2124.0 2124 0.00 0.34 1.86
G58-10 2863.2 2902.0 2902 1.35 13.06 2902.0 2902 0.00 1.42 1.63
G59-10 3189.2 3307.7 3306 3.72 72.43 3306.0 3306 0.00 2.91 7.39
G59 9687.6 9965.1 9942 2.86 163.73 9942.0 9942 0.00 225.80 226.94
G60-10 2619.2 2737.0 2737 4.50 7.16 2737.0 2737 0.00 0.99 14.42
G66-10 974.7 1063.0 1063 9.05 0.13 1063.0 1063 0.00 0.06 0.15
G66-15 1545.4 1733.0 1733 12.14 3.93 1733.0 1733 0.00 0.30 4.74
G67-10 486.0 486.0 486 0.00 0.03 486.0 486 0.00 0.01 0.03
G67-15 2539.7 2929.0 2929 15.33 6.82 2929.0 2929 0.00 0.39 0.68
G68-10 1359.1 1534.0 1534 12.87 2.43 1534.0 1534 0.00 0.50 0.65
G69-10 37.5 189.0 189 404.40 0.01 189.0 189 0.00 0.03 0.03
G69-15 729.3 971.0 971 33.14 0.63 971.0 971 0.00 0.49 1.30
G70-10 1884.9 2021.0 2021 7.22 0.25 2021.0 2021 0.00 0.06 0.10
G70-15 4928.3 5397.0 5397 9.51 62.72 5397.0 5397 0.00 0.75 60.44
G71-10 770.8 815.0 815 5.74 26.11 815.0 815 0.00 0.06 0.08
G71-15 884.0 1056.0 1056 19.46 0.24 1056.0 1056 0.00 0.06 0.49
G72-10 330.6 376.0 376 13.72 0.76 376.0 376 0.00 0.21 0.24
G73-10 2636.4 2681.0 2681 1.69 2.77 2681.0 2681 0.00 0.26 0.38
G74-10 905.7 988.0 988 9.08 7.82 988.0 988 0.00 3.21 4.04
G74-15 2335.4 2613.7 2610 11.92 42.86 2610.0 2610 0.00 8.74 20.8
G75-10 2145.9 2227.0 2227 3.78 1.38 2227.0 2227 0.00 0.17 0.94

33 11.78 0.02 0.00 28.16 18.02 0.00 0.00 0.00 9.25 12.62

Table 7.4: Detailed results for the heterogeneous SE instances. Columns are similar to those of Table
7.2 with the addition of Tot. time(s) that is the total time used to prove optimality.

Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s)

G51 1842.4 2151.0 2151 16.75 19.48 1984.1 2151 8.41 271.32
G52 1287.1 1599.0 1599 24.23 2.88 1446.7 1599 10.53 0.84
G55 2880.1 3097.0 3097 7.53 99.47 3029.1 3097 2.24 0.70
G56 2475.0 2600.0 2600 5.05 54.43 2504.6 2600 3.81 51.88
G57 3270.8 3510.9 3502 7.34 126.70 3301.8 3504 6.12 273.77
G58 4153.1 4297.2 4293 3.47 96.89 4199.2 4295 2.28 93.19
G59-10 1911.2 1991.2 1990 4.19 47.84 1911.5 1990 4.10 276.42
G59 4639.2 4862.3 4852 4.81 165.83 4677.2 4863 3.97 283.84
G60-10 1439.1 1495.2 1490 3.90 60.72 1484.3 1490 0.39 169.77
G60 3709.6 4007.1 3992 8.02 107.08 3742.8 3979 6.31 287.28
G66 3434.1 4351.6 4306 26.72 123.33 3606.0 4362 20.96 289.43
G67-15 1567.5 1805.0 1805 15.15 27.43 1760.6 1805 2.52 215.56
G67 3752.5 4382.2 4378 16.78 105.09 3841.0 4433 15.41 281.27
G68-15 2441.6 2653.8 2650 8.69 91.16 2514.7 2650 5.38 285.74
G68 7342.3 8121.7 8097 10.62 238.33 7341.8 8244 12.29 299.93
G69 2271.8 2919.0 2919 28.49 96.93 2369.8 2950 24.49 299.79
G70-15 1558.2 1752.0 1752 12.44 14.84 1721.6 1752 1.77 9.82
G70 3933.8 4763.5 4754 21.09 204.25 4060.7 4770 17.47 289.39
G71 2019.6 2621.6 2620 29.81 128.09 1959.0 2634 34.46 296.21
G72-15 512.3 711.0 711 38.79 11.94 221.0 711 221.67 274.34
G72 1059.7 1619.0 1619 52.78 59.98 273.1 1619 492.88 297.30
G73-10 1637.1 1772.0 1772 8.24 70.35 1721.5 1772 2.93 7.08
G73-15 3645.0 3850.9 3841 5.65 123.21 3637.7 3871 6.41 276.34
G73 9451.0 10143.0 10100 7.32 251.91 9472.9 10175 7.41 299.83
G74-15 1857.1 2182.2 2142 17.51 50.28 1947.8 2234 14.69 2.58
G74 3960.2 4688.3 4663 18.39 205.13 3987.5 4712 18.17 297.55
G75-10 1457.7 1628.0 1628 11.68 8.30 1514.4 1628 7.50 270.19
G75-15 3446.0 3657.0 3656 6.12 91.05 3448.3 3656 6.02 281.33
G75 9987.0 10592.8 10545 6.07 265.03 10005.1 10724 7.19 297.95

29 11.86 0.25 0.01 14.75 101.65 12.36 0.52 33.37 216.57

Table 7.5: Detailed results for the homogeneous SH instances. Columns are similar to those of Table
7.2.

Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s)

G57 4245.1 4585.3 4583 8.01 72.70 4479.3 4576 2.16 249.61
G58 7082.1 7320.7 7319 3.37 41.66 7251.5 7318 0.92 47.75
G60 8292.3 8492.2 8492 2.41 116.46 8428.7 8492 0.75 226.52
G66 5461.1 6213.0 6203 13.77 93.06 5679.1 6191 9.01 279.67
G67 7080.9 8610.9 8533 21.61 179.80 7777.7 8539 9.79 289.45
G68-15 4975.4 5410.9 5401 8.75 45.70 5287.2 5401 2.15 47.18
G68 16261.0 17835.1 17745 9.68 208.52 16287.7 17951 10.21 276.06
G69 3217.1 4124.6 4093 28.21 121.06 3587.9 4129 15.08 290.33
G70 12496.2 14419.2 14366 15.39 203.84 12876.7 14515 12.72 278.49
G71 2879.4 3819.4 3803 32.65 162.19 3064.0 3856 25.85 278.81
G72-15 546.6 743.0 743 35.93 5.99 331.2 743 124.32 240.63
G72 1212.6 1724.0 1724 42.18 64.54 302.4 1724 470.19 298.29
G73-15 6730.5 6935.0 6935 3.04 67.63 6803.8 6935 1.93 271.95
G73 19527.5 20471.1 20385 4.83 284.89 19542.4 20701 5.93 288.96
G74 4989.5 5873.4 5857 17.71 218.91 5103.8 6024 18.03 289.72
G75-15 6001.6 6204.4 6198 3.38 128.88 6175.1 6196 0.34 270.52
G75 20618.7 21702.5 21511 5.26 287.26 20742.1 21537 3.83 296.15

17 11.88 0.32 0.02 15.07 135.48 13.77 0.53 41.95 248.24

Table 7.6: Detailed results for the heterogeneous SH instances. Columns are similar to those of Table
7.2.
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Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s) Tot. time(s)

G54-30 4222.0 4366.0 4366 3.41 15.65 4366.0 4366 0.00 0.31 2.37
G54-45 6302.4 6549.0 6549 3.91 34.81 6549.0 6549 0.00 2.77 100.10

2 3.53 0.00 0.00 3.66 25.23 0.00 0.0 0.00 1.54 51.24

Table 7.7: Detailed results for the heterogeneous ME instances. Columns are similar to those of Table
7.2 with the addition of Tot. time(s) that is the total time used to prove optimality.

Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s)

G51-30 3633.4 4303.6 4302 18.45 112.75 3734.1 4302 15.21 278.51
G51-45 5422.0 6484.3 6453 19.59 271.69 5485.9 6517 18.8 293.86
G52-30 2514.7 3198.0 3198 27.17 21.81 2607.5 3198 22.65 102.17
G52-45 3734.3 4797.0 4797 28.46 101.89 3798.3 4797 26.29 281.83
G53-30 2382.1 2968.1 2959 24.6 72.85 2547.5 2972 16.66 7.11
G53-45 3549.5 4456.7 4445 25.56 99.35 3667.8 4458 21.54 179.51
G54-30 1632.6 2100.0 2100 28.63 11.86 1870.4 2100 12.27 0.19
G54-45 2388.5 3150.0 3150 31.88 9.10 2589.7 3150 21.64 0.48
G55-30 5723.2 6227.8 6194 8.82 180.04 5748.8 6252 8.75 275.42
G55-45 8553.1 9369.2 9333 9.54 232.26 8550.1 9399 9.93 274.27
G56-30 4894.5 5218.3 5200 6.62 174.58 4879.0 5207 6.72 296.73
G56-45 7324.8 7870.3 7822 7.45 264.74 7281.3 7829 7.52 292.23
G57-30 6508.3 7054.6 7032 8.39 238.69 6521.5 7006 7.43 291.45
G57-45 9756.4 10654.5 10588 9.21 291.79 9749.1 10584 8.56 291.83
G58-30 8306.0 8609.1 8594 3.65 195.35 8326.8 8632 3.67 294.53
G58-45 12452.2 12984.1 12938 4.27 277.81 12466.8 13007 4.33 279.07
G59-30 9271.4 9807.6 9757 5.78 279.66 9281.2 9865 6.29 290.74
G59-45 13908.4 14902.4 14836 7.15 288.31 13892.0 14855 6.93 293.45
G60-30 7399.9 8017.0 7989 8.34 221.78 7409.0 8070 8.92 297.61
G60-45 11094.1 12097.0 12065 9.04 291.33 11083.8 12312 11.08 273.70
G66-60 6870.8 8804.7 8741 28.15 255.16 7002.8 8842 26.26 298.03
G66-90 10314.6 13347.4 13236 29.40 266.60 10367.2 13468 29.91 298.68
G67-60 7497.2 8862.4 8812 18.21 285.74 7569.0 8990 18.77 296.68
G67-90 11242.4 13570.5 13463 20.71 285.79 11275.6 13419 19.01 299.91
G68-60 14633.3 16700.6 16599 14.13 269.84 14600.8 16574 13.51 299.77
G68-90 21923.2 25390.1 25247 15.81 254.20 21868.4 25226 15.35 296.70
G69-60 4453.0 5862.7 5838 31.66 265.06 4534.5 5939 30.97 292.40
G69-90 6682.9 8906.8 8855 33.28 286.74 6701.6 9090 35.64 299.44
G70-60 7811.7 9674.0 9596 23.84 278.81 7887.8 9718 23.2 297.66
G70-90 11738.9 15158.0 14914 29.13 285.56 11748.7 14804 26.01 299.76
G71-60 3941.9 5325.2 5250 35.09 283.49 633.5 5418 755.29 299.88
G71-90 5923.2 8267.8 8142 39.58 284.12 613.5 9016 1369.50 299.89
G72-60 2107.7 3324.8 3294 57.74 272.93 235.5 3617 1435.89 300.02
G72-90 3183.4 5160.9 5063 62.12 283.59 216.1 5279 2342.74 299.98
G73-60 18900.5 20715.2 20639 9.60 286.50 18918.1 20775 9.82 298.73
G73-90 28351.1 31206.7 31049 10.07 271.96 28356.8 30860 8.83 298.45
G74-60 7906.6 9684.7 9516 22.49 284.24 7924.6 9792 23.57 298.37
G74-90 11875.9 14843.2 14716 24.99 285.09 11866.1 14635 23.33 299.21
G75-60 19974.5 21615.9 21467 8.22 281.03 19977.7 21614 8.19 298.95
G75-90 29959.9 32737.0 32644 9.27 275.89 29948.8 32666 9.07 300.02

40 15.44 0.67 0.07 20.40 229.5 20.57 1.29 161.75 264.18

Table 7.8: Detailed results for the homogeneous MH instances. Columns are similar to those of Table
7.2.
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Instance ALNS MIP
LB UB UB∗ gap Time(s) LB UB gap Time(s)

G51-30 7103.5 7368.0 7368 3.72 66.40 7346.7 7368 0.29 203.21
G51-45 10635.0 11052.0 11052 3.92 158.16 10645.0 11052 3.82 276.38
G52-30 2943.7 3546.0 3546 20.46 19.63 3255.3 3582 10.04 270.06
G52-45 4393.5 5344.2 5319 21.64 81.09 4602.9 5368 16.62 274.87
G53-30 3787.4 4350.9 4338 14.88 159.36 4008.3 4380 9.27 296.63
G53-45 5678.9 6557.9 6507 15.48 239.63 5810.7 6574 13.14 298.56
G55-30 9893.0 10640.3 10580 7.55 233.74 10101.7 10593 4.86 276.46
G55-45 14783.0 16170.8 15935 9.39 272.15 14889.5 16070 7.93 290.26
G56-30 10568.8 11277.5 11213 6.71 193.42 10821.9 11237 3.84 279.92
G56-45 15797.3 16938.6 16858 7.22 261.75 15914.1 16929 6.38 289.14
G57-30 8447.5 9217.1 9182 9.11 195.16 8460.1 9182 8.53 44.30
G57-45 12628.0 13853.6 13795 9.71 198.80 12623.6 14238 12.79 2.24
G58-30 14149.3 14681.4 14638 3.76 230.47 14243.2 14685 3.10 270.80
G58-45 21211.7 22161.6 22055 4.48 283.90 21232.6 22081 4.00 275.67
G59-30 19337.8 20281.7 20236 4.88 280.35 19423.8 19947 2.69 299.66
G59-45 28997.8 30909.8 30637 6.59 276.55 29061.1 30563 5.17 296.37
G60-30 16571.2 17044.6 16987 2.86 288.14 16604.5 17073 2.82 274.85
G60-45 24849.9 25931.2 25791 4.35 280.39 24869.1 25638 3.09 294.97
G66-60 10913.7 12671.5 12464 16.11 257.85 11039.8 12642 14.51 291.15
G66-90 16355.9 19260.7 18901 17.76 286.09 16443.4 18985 15.46 296.29
G67-60 13951.8 18038.9 17656 29.29 291.98 14300.4 17399 21.67 299.84
G67-90 20797.0 27224.3 26982 30.90 280.03 20825.0 26537 27.43 299.90
G68-60 32375.6 36315.6 36088 12.17 279.31 32292.0 35992 11.46 295.88
G68-90 48475.4 54950.7 54481 13.36 278.92 48361.1 54223 12.12 295.97
G69-60 6423.7 8302.3 8269 29.24 227.37 6664.7 8401 26.05 289.79
G69-90 9654.3 12577.3 12459 30.28 273.90 9782.8 12748 30.31 297.31
G70-60 24925.5 29187.2 28955 17.10 284.67 25239.1 29375 16.39 291.95
G70-90 37389.5 45072.3 44772 20.55 287.02 37632.0 43981 16.87 295.89
G71-60 5808.3 7769.1 7690 33.76 289.09 774.4 8061 940.90 294.17
G71-90 8740.7 12075.9 11824 38.16 284.05 856.1 13082 1428.08 299.45
G72-60 2484.1 3501.3 3454 40.95 278.58 330.4 3627 997.84 296.91
G72-90 3667.3 5565.1 5427 51.75 286.58 291.1 5779 1885.34 299.84
G73-60 38992.7 41590.9 41352 6.66 273.98 38985.0 41103 5.43 295.73
G73-90 58468.4 63192.7 62987 8.08 258.80 58423.6 62408 6.82 298.88
G74-60 9985.0 12115.1 11909 21.33 287.41 10023.9 12324 22.95 296.89
G74-90 14995.2 18473.5 18241 23.20 283.09 15005.3 18142 20.90 291.21
G75-60 41221.6 44762.1 43794 8.59 276.80 41308.6 43579 5.50 298.16
G75-90 61823.9 67228.9 66664 8.74 265.99 61833.2 66533 7.60 300.11

38 12.12 1.16 0.28 16.18 243.44 17.83 1.25 148.21 274.73

Table 7.9: Detailed results for the heterogeneous MH instances. Columns are similar to those of Table
7.2.
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Mladenović, N., Hansen, P. Variable neighborhood search. Computers and Operations Research,
24:1097–1100, 1997.

Muller, L. F. An adaptive large neighborhood search algorithm for the resource-constrained project
scheduling problem. In Proceedings of the VIII Metaheuristics International Conference (MIC)
2009, Hamburg, Germany, 13-16 July 2009.

Pisinger, D., Røpke, S. A general heuristic for vehicle routing problems. Computers and Operations
Research, 34(8):2403–2435, 2007.

Pisinger, D., Røpke, S. Large neighborhood search. In Gendreau, M., Potvin, J.-Y., editors,
Handbook of Metaheuristics. Springer Verlag, 2nd edition, 2010.

Pochet, Y., Wolsey, L. Production Planning in Mixed Integer Programming. Springer, 2006.

Røpke, S., Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Transportation Science, 40(4):455–472, 2006.

Shaw, P. Using constraint programming and local search methods to solve vehicle routing prob-
lems. CP-98 (Fourth International Conference on Principles and Practice of Constraint Pro-
gramming), 1520:417–431, 1998.

Sural, H., Denizel, M., Wassenhove, L. V. Lagrangean based heuristics for lot-sizing with setup
times. European Journal of Operational Research, 194:51–63, 2009.

Trigeiro, W., Thomas, L., McClain, J. Capacitated lot sizing with setup times. Management
Science, 35(3):353–366, 1989.

Wolsey, L. Solving multi-item lot-sizing problems with an MIP solver using classification and
reformulation. Management Science, 48(12):1587–1602, 2002.



Bibliography 152



Chapter 8

Conclusion

8.1 Summary, perspectives, and further research

In the following we give a summary of the work presented in this thesis, and discuss some per-
spectives and suggestions for further research. The main topic has been scheduling problems, in
particular the Resource-Constrained Project Scheduling Problem (RCPSP), and to a lesser extend
production planning problems.

The Resource-Constrained Project Scheduling Problem In Chapter 2 we developed an
Adaptive Large Neighborhood Search (ALNS) heuristic for the single-mode RCPSP, and in Chap-
ter 3 we extended this heuristic to the multi-mode RCPSP. Computational experiments on a large
set of benchmark instances from the PSPLIB showed that the single-mode algorithm was among
the five best heuristics from the literature, and the multi-mode algorithm was among the three
best heuristics from the literature. For the multi-mode case, we found three new upper bounds
for instances of the J30 benchmark class.

The heuristic developed for the multi-mode RCPSP incorporated a new method, mode-diminu-
tion, for removing modes during execution, and a simple technique, opportunistic mode-flipping,
which can be applied whenever a schedule is generated, and which significantly improved the
results of the algorithm. These methods are generally applicable and it would be of interest to
investigate whether these techniques could be beneficially incorporated into other algorithms for
the problem.

We proposed and experimented with three new lower bounds for the multi-mode RCPSP.
One lower bound is based on a Lagrange relaxation and is an extension of the capacity bound,
while the two others are based on testing all combinations of mode assignments for respectively
pairs and triples of activities. For the lower bound arguments examined, these new lower bounds
produced the best results, though at the cost of additional computational time. As most lower
bound arguments found in the literature target the single-mode RCPSP, it could be of interest to
further examine multi-mode specific lower bounds.

For both algorithms the computational experiments showed that the adaptive component of
the algorithm had a very small impact. It could be of interest to examine the reason for this
more closely, and to experiment with other types of methods for selecting neighborhoods, than
the score based approach currently used. Such research would not only be of interest for the
presented algorithms, but also for the ALNS framework as a hole.

In connection with the ALNS algorithm developed for the multi-mode RCPSP the techniques
of precedence augmentation and mode-diminution was used to reduce the search space. Both
these techniques make use of lower bound arguments and it is somewhat surprising, that using
the simple critical path lower bound, as opposed to a stronger lower bound, only has a very small
impact on the results and a further investigation of the reason for this could be of interest. For
instance, perhaps some structure of the problem could be identified which correlates with the
effectiveness of using the stronger lower bounds.
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The Multi-Mode RCPSP with Stochastic Nonrenewable Resource Consumption In
Chapter 5, we proposed and modeled a new variant of the multi-mode RCPSP where the non-
renewable resource consumption of each mode is given by a Gaussian distribution, and the goal
is to find a minimal makespan schedule which satisfies the nonrenewable resources with a certain
probability ǫ.

We developed a branch-and-cut algorithm where, in each node of the branch-and-bound tree,
the branching decisions are propagated in order to remove variables from the problem, and thus
improve the lower bound used to prune the branch-and-bound tree. We experiment with cutting
on the conic quadratic resource constraints using the cuts presented in Chapter 4.

An adapted version of the ALNS algorithm presented in Chapter 3 was used to find initial
upper bounds. These upper bounds were, for the instances where optimal solutions are known,
on average less than one percent from the optimal solutions.

Experiments showed that propagating branching decisions was effective, and the branch-and-
cut algorithm was able to outperform CPLEX 12.1. We finally examined the “cost of uncertainty”
by investigating the relation between values of ǫ, the makespan, and the solution time. These
experiments showed that taking robustness into account only increases the makespan by about
7% on average, while not increasing the computation time dramatically.

It could be interesting to merge the proposed model, with other stochastic variants of the
multi-mode RCPSP, such as the variant with stochastic activity durations. In a heuristic setting,
this should be quite easy, as only the evaluation of the nonrenewable resource constraints needs to
be changed to take into account the extra square-root term. In an exact setting, where a Mixed
Integer Programming (MIP) solver is used incorporating the stochastic nonrenewable resource
constraints should also be quite easy, the main inconvenience being that the problem is now a
quadratic integer program, rather than a linear one.

A further direction of research could be to investigate the formulation of other stochastic
RCPSPs using chance constraints. For instance, modeling stochastic activity durations using
chance constraints could be very interesting, but could also prove a challenge, as the precedence
constraints impose non-trivial dependencies between the starting time of the activities.

Second-order conic knapsack constraints In Chapter 4, we treated the subject of separating
and extending cover cuts for the second-order conic equivalent of the classic knapsack constraints,
where the variables were additionally subject to generalized upper bound (GUB) constraints.

We showed how the the cover cuts can be extended by using the structure imposed by GUB
constraints, proposed a number of separation and extension algorithms, and compared these with
CPLEX 12.1 on a set of generated test instances. These experiments showed that a relatively
simple separation and extension algorithm, which employs the structure imposed by the GUB
constraints, could speed up the solution time considerably.

As a theoretical contribution we showed that the problem of deciding if a cover can be extended
with a variable is NP-hard, and established the relation between two bounds used in connection
with the extension algorithms.

The work presented was mainly of a computational nature, and a possibility for further research
could be to analyze the theoretical results from the classic knapsack constraints, and generalize
these results to the second-order cone case.

ROADEF/EURO 2010 In Chapter 6, we developed a Benders Decomposition approach to
solve a large scale energy management problem posed for the ROADEF/EURO 2010 challenge.
As part of the approach we moddeled the problem as an MIP and experimented with different
additional constraints for ensuring feasibility of subproblems. The problem size is quite large and
we presented a very effective preprocessing and aggregation scheme, which reduces the size of the
problem significantly. Because of the nature of some of the constraints, these could not be included
in the MIP and we presented an algorithm which takes a solution from the MIP and “repairs” it
order to make the solution satisfy the remaining constraints
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On a set of smaller instances the approach was competitive, while on a set of larger instances it
was outperformed by local-search heuristics. This is mainly due to the size of the larger instances
in combination with the time allotted. On the instances used for rating the competitors, we
placed 14th out of 19 teams in the final of the competition. Being one of the few optimal methods
proposed, the algorithm was unable to compete with the heuristics given only 3600 seconds of
computing time. The sophisticated approach can, however, provide insights into the structure of
the problem and information as to the quality of solutions through the lower bound information
which can be obtained at each iteration of the Benders algorithm.

Even though the competition is over, the group behind the challenge is still interested in
further research on the topic and they are maintaining results and problem instances on-line. One
direction for further research could be to try to improve the proposed MIP model of the problem.
More specifically to examine whether the non-linear constraints, currently not included in the
model, could be added (or approximated) without an explosion in the number of variables and
constraints needed. Another possibility would be to experiment with non-linear models.

We remind the reader that given a solution to the MIP model, a heuristic was applied to
“repair” the solution in order to make it satisfy additional constraints not part of the model. A
direction for further research could be to improve this heuristic, by for instance leveraging the
network-flow structure of the problem.

From a theoretical perspective, a direction for research could be examining the complexity of
the problem, and to investigate its structure more closely. For instance, the cost of a solution is
composed of the cost of refueling and the cost of satisfying demand across a number of scenarios,
and it would be of interest to analyse where the biggest cost contribution comes from. This would
enable one to focus the algorithmic effort on the part of the problem having the most impact on
the cost.

Hybrid Adaptive Large Neighborhood Search In Chapter 7, we presented a hybrid heuris-
tic solution approach based on the ALNS framework where a MIP solver was used in the repair
phase. This results in a general hybrid ALNS algorithm where i) the “difficult” part of creating
repair neighborhoods has been eliminated and ii) the strength of modern MIP solvers can be
exploited.

The proposed hybrid algorithm was applied to a lot-sizing problem and the computational
results indicate that the heuristic is very competitive. On a set of benchmark instances from the
literature combined with a new set of larger instances generated, the ALNS algorithm was able to
outperform the commercial MIP solver CPLEX 12.1.

Both the ALNS heuristic and the MIP solver outperformed the best heuristic found in the
literature, both with respect to the quality of the solution and the lower bounds produced. This
indicates that it may be beneficial to use general MIP based repair neighborhoods in combination
with problem specific destroy neighborhoods in ALNS.

Taking the best upper and lower bounds found by either the ALNS heuristic or the MIP
solver, we were able to improve upon 60 (out of 100) upper bounds and all lower bounds on a set
of benchmark instances from the literature.

A suggestion for a future improvement is to apply the hybrid ALNS heuristic within the
reoptimization process in the repair neighborhood. When solving larger problems the MIP solver
may become too slow to use in the repair neighborhoods, and it may be beneficial to apply a
meta-heuristic approach to reoptimize the subproblem. This approach can be applied recursively
until the subproblems are small enough for the MIP solver to be handled efficiently.

8.2 General thoughts

We now leave the topics covered directly by the chapters of the thesis in order to present some
more general thoughts.

Very little work seems to have been done on branch-and-price algorithms for the RCPSP, and
investigating such algorithms could be interesting given the level of success of branch-and-price
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algorithms within other fields of combinatorial optimization. One direction for research could be
based on the arc-flow formulation of the RCPSP proposed by Artigues et al. (2003). Restating
their model using path-flows instead of arc-flows results in a model with exponentially many
columns, which could be well-suited for a branch-and-price approach. Another possibility could
be based on the column-based formulation of Mingozzi et al. (1998) (see Section 1.3.1).

The best performing heuristics for the RCPSP seems to be population based heuristics and one
interesting question is why population based approaches perform better than other approaches?
Is it some property of the RCPSP or is it just because population based heuristics, are the pet
approaches of researches within this area?

A promising technique seems to be to split the RCPSP into subproblems, apply a heuristic or
exact solution method to the subproblems, and then recombine these solution into a solution to
the complete problem. An interesting direction of research, could be to examine different ways of
splitting the RCPSP into smaller problems, and how to recombine these, both in a heuristic and
exact context. Perhaps information derived from one splitting of the problem, could be used to
induce a new splitting.

For the current heuristic approaches that use splitting, typically the same algorithm is applied
to every subproblem, but perhaps one type of algorithm would be better to use in the early parts
of the problem, while another type would be better in later parts. Perhaps other characteristics
of the subproblems could also be used to select the type of algorithm to use, such as the network
complexity, resource strength, or resource factor described in Section 1.3.3.

8.3 Final words

Scheduling and production planning is a fascinating field of research with both theoretical and
practical applications. The field is fascinating, not least because some of the problems, such as
the RCPSP, has been around for a long time, and even though the field has been very active, we
are still only able to solve relatively small instances to optimality. It seems there are still new
solution methods to be discovered and insights to be gained, before we can consistently solve the
kinds of scheduling and production planning problems considered in this thesis, and I would be
happy if I through this work could be but a tiny stumble towards this goal.

Bibliography

Artigues, C., Michelon, P., Reusser, S. Insertion techniques for static and dynamic resource-
constrained project scheduling. European Journal of Operational Research, 149(2):249 – 267,
2003. Sequencing and Scheduling.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L. An exact algorithm for the resource-
constrained project scheduling problem based on a new mathematical formulation. Management
Science, 44(5):714–729, 1998.


