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Abstract — Disasters like terrorist attacks, earthquakes, 

hurricanes, and volcano eruptions are usually unpredictable 

events that affect a high number of people. We propose an 

approach that could be used as a decision support tool for a post-

disaster response that allows the assignment of victims to 

hospitals and organizes their transportation via emergency 

vehicles. By exploiting the synergy between Mixed Integer 

Programming and Constraint Programming techniques, we are 

able to compute the routing of the vehicles so as to rescue much 

more victims than both heuristic based and complete approaches 

in a very reasonable time. 

 
Keywords — Disaster Recovery, Decision Support Systems, 

Constraint Programming, Mixed Integer Programming. 

 

I.   INTRODUCTION 

Disasters are unpredictable events that demand dynamic, real-

time, effective and cost efficient solutions in order to protect 

populations and infrastructures, mitigate the human and 

property loss, prevent or anticipate hazards and rapidly 

recover after a catastrophe. Terrorist attacks, earthquakes, 

hurricanes, volcano eruptions etc. usually affects a high 

number of persons and involve a large part of the 

infrastructures thus causing problems for the rescue operations 

which are often computationally intractable. Indeed, these 

problems have been tackled by using a pletora of different 

approaches and techniques, ranging from operational research 

to artificial intelligence and system management (for a survey 

please see [1]). 

Emergency response efforts [2] consist of two stages: pre-

event responses that include predicting and analyzing potential 

dangers and developing necessary action plans for mitigation; 

post-event response that starts while the disaster is still in 

progress. At this stage the challenge is locating, allocating, 

coordinating, and managing available resources. 

In this paper we are concerned with post-event response. 

We propose an algorithm and a software tool that can be used 

as a decision support system for assigning the victims of a 

disaster to hospitals and for scheduling emergency vehicles for 

their transportation. Even though our algorithm could be used 

to handle daily ambulance responses and routine emergency 

calls, we target specifically a disaster scenario where the 

number of victims and the scarcity of the means of 

transportation are usually overwhelming. Indeed, while for 

normal daily operations the ambulances can be sent following 

the order of the arrival of emergency calls, when a disaster 

happens this First In First Out policy is not more acceptable. In 

these cases, the number of victims involved and the quantity of 

damages require a plan and a schedule of rescue operations, 

where usually priority is given to more critical cases, trying in 

any case to maximize the number of saved persons. In this 

context there are clearly also essential ethical issues which we 

do not address in this paper (for example, is ethically 

acceptable not to save a person immediately if this behavior 

allow us to save more persons later on?). 

Our tool then assumes a simplified scenario where the 

number, the position and the criticality of victims is known.  

The tool computes solutions that try to maximize the global 

number of saved victims. In many practical cases finding the 

optimal solution in not computationally feasible, hence we use 

a relaxation of the pure optimization problem. Our approach 

uses a divide-et-impera technique that exploits both Mixed 

Integer Programming (MIP) and Constraint Programming in 

order to solve the underlining assignment and scheduling 

problems. 

To evaluate the effectiveness of our approach we have 

compared it against two alternative approaches: on one hand, a 

greedy algorithm based on the heuristic that send the 

ambulances first to the most critical victims and later to the 

others and, on the other hand, a complete algorithm that tries 

to find the optimal solution in terms of number of rescued 

victims. 

Empirical results based on random generated disaster 

scenarios show that our approach is promising: it is able to 

compute the schedule usually in less than half a minute and 

almost always save more victims than other approaches. 

 Paper Structure. In Section II we define the model we are 

considering while in Sections III and IV we present the 

algorithms and the tests we have conducted. In Section V we 

present some related work. We conclude giving some 
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directions for future work in Section VI. 

II.   MODEL 

In the literature a lot of models have been proposed to 

abstract from a concrete disaster scenario. Some of them are 

extremely complex and involve a lot of variables or probability 

distributions [3], [4]. For the purposes of this paper we adapt 

one of the simplest models, following [5], which considers 

only three entities: victims, hospitals, and ambulances. 

However, note that the flexibility of the Constraint 

Programming paradigm would also allow to handle more 

sophisticated models. Formally, we consider three disjoint 

sets:  

 the set of the ambulances Amb := {


, …, 
m

}; 

 the set of the victims Vict := {V
1

, …, V
n

}; 

 the set of the hospitals Hosp := {H
1

, …, H
p

}; 

 

and we assume to know the following data: 

 the spatial coordinates  of every ambulance 


i 

;  

 the spatial coordinates  of every victim V
j 

; 

 the spatial coordinates  of every hospital 
k 

; 

 the capacity  of every ambulance 
i 

; 

 the capacity  of every hospital 
k 

; 

 the estimated time to death  of every victim 

V
j 

; 

 the estimated dig-up time  of every victim 

V
j

, i.e. the time needed by the rescue team to be able 

to rescue the victim as soon as the ambulance arrives 

on the spot; 

 the a function  that estimates the 

time needed by an ambulance to move between two 

given points; 

 the initial time  an ambulance become 

available (an ambulance may be dismissed or already 

busy when the disaster strikes). 

 

We are well aware that, especially in a disaster scenario, 

these data may be difficult to retrieve, imprecise and 

unreliable. Nevertheless our model can exploit these data to 

compute a first solution and then later, when the information 

become more precise, it can be rerun to improve the computed 

solution. Moreover, in order to get these information one can 

use the results of such works like [6], [7] that allow to esteem 

the time to death of a civilian or to find the best routes to reach 

the victims. 

Assuming that all the above information are known, our 

goal is then to find as quickly as possible an optimal 

scheduling of the ambulances in order to bring the maximal 

number of alive victims to the hospital. Of course, solving 

optimally such a scheduling may be computationally 

unfeasible, especially in the case of a large number of victims. 

Moreover, in our scenario, a fast response of the scheduling 

algorithm is important for different reasons. First of all, the 

quicker the response is, the faster we can move the ambulances 

and therefore more victims may be saved. In addition, waiting 

for a long time may be useless because usually information 

rapidly changes (i.e. more victims come, the criticality of the 

patients vary, the hospitals may have damages or emergencies, 

ambulances can be broken). Hence, spending a lot of time for 

computing an optimal solution that in few seconds could 

become non optimal may result in a waste of resources and 

then lead to the impossibility of saving some victims. On the 

other hand, a purely greedy approach that at each stage makes 

the locally optimal choice (according to heuristics such as the 

seriousness or the location of the victims) would be definitely 

faster, but could result in a smaller global number of victims 

saved. 

III.   PROCEDURE 

As previously mentioned, our aim is to find the best possible 

compromise between the optimality of the ambulances 

scheduling and the time it takes to find it.  

For this reason, we propose an approach that at the same 

time allows to compute a solution within a reasonable time 

limit and still allows us to save more victims than greedy 

strategies. Motivated by the success of hybrid algorithms on 

problems of resource assignment and scheduling [8], we 

developed a mixed approach that basically lies in the 

interaction of two phases: the allocation phase, in which we 

try to allocate as many victims as possible to ambulances and 

hospitals, and the scheduling phase, in which we compute the 

path that each ambulance must follow in order to bring the 

victims to the hospitals. In this section we first detail these two 

phases and then we show the pseudo-code explaining the 

interplay needed between the allocation and scheduling phase 

to solve the problem.  

A.   Allocation 

In the allocation phase, we relaxed some constraints of the 

problem assuming that every ambulance can save in parallel all 

the victims it contains (in other terms, each ambulance with 

capacity c can be seen as the union of c distinct ambulances 

with capacity 1). The allocation of every victim to an 

ambulance and a hospital is performed by solving a Mixed 

Integer Programming problem by using two kind of binary 

variables, denoted by  and . The variable  is set to 1 

if and only if the victim V
j 

is assigned to the ambulance 
i

, 

while  = 1 if and only if the victim V
j 

is assigned to the 

hospital 
k

. The constraints that we enforced are the 

followings: 

 

  (for each j = 1, …, n a victim V
j

 can not 

be assigned to more than one ambulance); 

  (for each j = 1, …, n a victim V
j 

can not 

be assigned to more than one hospital); 
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  (for each i = 1, ..., m the maximum 

number of patients on an ambulance 
i

 must not 

exceed its capacity); 

  (for each k = 1, ..., p the maximum 

number of victims in a hospital 
k

 must not exceed its 

capacity); 

  (for each j = 1, ..., n a victim V
j is assigned to an ambulance 

i

 if and only if V
j 

is 

assigned to an hospital 
k

: there must not be 

'dangling' victims); 

  

    (for each j = 1, ..., n the time an 

ambulance 
i

 needs to reach a victim V
j

, dig up and bring her 

to an hospital 
k

 is enough to save her). 

Since the objective of the MIP problem is to try to 

maximize the number of rescued victims, we defined an 

objective function which takes into account both the 

seriousness and the location of the victims. Specifically, we 

require the maximization of the following objective function: 

 

                   
where: 

 

               
 

Recall that solving this problem does not necessarily mean 

to solve the overall problem: the solution found gives an 

esteem of the victims that could be saved and a preliminary 

allocation of every victim to an ambulance and a hospital. 

Indeed, since this is a relaxation of the original problem, it 

may be possible that not all the victims allocated to an 

ambulance may be saved. Anyway, it is worth noticing that the 

allocation guarantees that at least one victim for ambulance 

can be rescued. Also, there are no restrictions on the number 

of hospitals that an ambulance can visit. 

B.   Scheduling 

Once the victims have been allocated by the first phase, the 

scheduling phase allows to define the path that each 

ambulance must follow in order to maximize the number of 

victims saved. After solving the above MIP we can assume 

that the allocation phase identifies a partition 

 where for each i = 1, ..., m we define: 

 

            

 := {(V
j

, 
k 

) : V
j

 is transported to 
k

 by 
i

}. 

 

The ambulance scheduling for each ambulance 
i

 is then 

obtained by computing a minimal Hamiltonian path in a 

weighted and direct graph derived from . Given such an  , 

let us consider the graph   where: 

 the set of nodes  corresponds to a set of spatial 

coordinates, in particular each node represents either: 

◦ the initial position  of the ambulance 
i 

; 

◦ the position of the victims , ...,  that 
i

 

transports; 

◦ the position of the hospitals , ...,  that 
i

 

visits; 

 the set of arcs  corresponds to the 

movements that 
i

 can do from one node to another 

and it is defined as follows: 

◦  (
i

 can go to any assigned victim 

V
j

 from its initial position); 

◦ if V
j 

is assigned to 
k

, then   (
i

 

can bring a victim to its assigned hospital); 

◦ if V
j

 ≠ V
j'

 are assigned to the same hospital, then 

 (
i

 can move from an assigned 

victim to another one, but no victims assigned to 

different hospitals can be simultaneously on 
i

); 

◦ if V
j

 is not assigned to 
k

, then  

(
i

 can move from an hospital to a victim only if 

she is not assigned to such hospital); 

◦ no other arcs belongs to  (no other move is 

allowed). 

 the weight function  corresponds to 

the estimated time for moving from one point to 

another, including dig-up time: 

◦  

◦  

◦  

◦  
Therefore, if 

i

 has assigned n
i

 victims and has to visit p
i

 

hospitals, the number of nodes will be  while 

the number of arcs will be . 

The scheduling of each ambulance 
i

 can be computed by 

finding the minimum cost Hamiltonian path 

 where: 

 P
1

 corresponds to the initial location  of 
i 

; 

 P
j

 for each 1 < j < n
i

, corresponds either to the 

location of a victim or the location of an hospital; 

 P
ni

 is the location of an hospital of ; 

 Ω < ttd
j

 , where Ω is the total cost of the path and 

ttd
j

 the time-to-death of each victim of . 

The scheduling phase can therefore be mapped into a 

Constraint Optimization Problem (COP) with the goal of 

minimizing Ω and solved by using constraint programming 

techniques.  

As already stated, it may be the case that not all the victims 

allocated to an ambulance may be saved, since differently to 

what happen in the relaxed problem now an ambulance has to 

save the victims sequentially. When this happens we have to 

compute a schedule that saves a maximal subset of such 

victims. However, instead of considering as maximal subset 
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the one which contains the greater number of elements, we 

choose the one which has the maximum priority value that is 

calculated as follows. We first compute the remaining time RT
j

 

:= ttd
j

 – dig
j

 of each victim by subtracting her dig-up time 

from the expected time to death. Then, given a subset of 

victims W  Vict, we set its priority to  (bigger 

values of w means higher priority). We decided to use this sum 

to evaluate the priority because, analogously to what happens 

for the harmonic average, the sum of the reciprocal gives 

priority to the victim having least remaining time and it 

mitigates at the same time the influence of large outliers (i.e. 

victims with big remaining time that can be easily saved later). 

When an ambulance is scheduled, the model is updated 

accordingly and the allocation phase is possibly restarted in 

order to try to allocate the victims which have not yet been 

assigned. The procedure ends when no more victims can be 

saved. 

C.   A&S Algorithm 

Listing 1: A&S Algorithm 

 
 

The main procedure called Allocate & Schedule (A&S) and 

presented in Listing 1 takes as input the set of ambulances 

Amb, the set of victims Vict, and the set of hospitals Hosp. It 

consists of a cycle where, first of all, the victims that can not 

be saved (i.e. victims with a remaining time less than or equal 

to 0) are removed. This operation is performed by the external 

function REMOVE_NOT_RESCUABLE_VICTIMS at line 3. 

The ALLOCATE function solves the MIP problem described in 

Section III-A and returns the allocation of every victim to one 

ambulance and one hospital. The ambulances are then sorted 

by the function SORT_AMBS_BY_PRIORITY according to the sum 

of the priority values of the victims assigned to each 

ambulance; in this way, the schedule of the ambulances which 

transport victims with higher priority is performed earlier. 

 The nested loop starting at line 6 is responsible to compute 

the schedule of all the ambulances. Considering the ambulance 


i

, in line 7 the variable V is defined to be the set of the 

victims assigned to 
i

. If V is not empty then SCHEDULE(
i
,V,∏) 

returns a possible schedule ∑ and its cost Ω for the ambulance 


i

. This is done following the procedure described in Section 

III-B. If the schedule problem has no solution (line 10) then 

another solution that involves less victims is computed (lines 

11-23). In particular, the priority of the set of the victims w is 

initialized to 0, while the cost of the solution Ω to +∞ (lines 

12-13).  

The loops enclosed between lines 13 and 23 have the aim of 

calculating a maximum eligible subset of victims, i.e. a subset 

V' of V that both maximizes the value of  and admits 

a feasible schedule. In order to compute all the subsets of V we 

exploit the function GET_SUBSET(i, k, A) that returns the i-th 

subset (w.r.t. lexicographic order) among all the  subsets 

of  with cardinality k. Note that computing all the subsets is 

in general exponential on the capacity of the ambulances. 

However, in real cases, this can be computationally feasible 

since the capacity of the ambulances is usually small. In line 

15 a subset V' is retrieved and its weight is computed in line 

16. In case the weight is greater than the weight of the current 

solution, a schedule of the ambulance 
i

 for victims in V' is 

computed (line 18). If the schedule is feasible and has a lower 

cost in case of equal weight then the current schedule ∑, the 

current weight w and the current cost Ω are updated. 

By construction, once exiting from the above loops a 

schedule that involves at least a victim is always found. Then, 

we just need to update the model. First, we update the start 

time of the ambulance 
i

 with the total cost of the schedule ∑ 

(line 24). Then, for each hospital 
k

 we decrease the hospital 

capacity  according to the number of victims that 
i

 brings 

to them (lines 25-26). The new spatial location of 
i

 is set to 

the value of the last hospital it visits (line 27) and we remove 

from Vict all the victims that 
i

 has rescued. Finally, the 

schedule ∑ is added to the associative array schedule that is 

the output of the A&S procedure. 

In case only a part of the victims allocated to the ambulance 


i

 were saved (line 30) the cycle starting at line 6 is 

interrupted in order to compute a new allocation that may 

allocate the remaining victims to other ambulances.  

The algorithm terminates when no more victims can be 

saved. From the computational point of view this algorithm 

cyclically solves MIP and COP problems, which are well 

known NP-hard problems. However, by exploiting the 

relaxation of the MIP problem, on one hand, and the limited 

size of the COP problems, on the other, it is possible to get 
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quickly optimal solutions by exploiting current MIP and COP 

solvers. An empirical proof of this is provided in the next 

section. 

IV.   TESTS 

We did not find in the literature suitable and extensive 

benchmarks of disaster scenarios that we could use to evaluate 

and compare the performances of our approach. For this 

reason, in order to evaluate our algorithm we extended the 

methodology used in [9]. In particular, we built random 

generated scenarios obtained by varying the number of 

hospitals in the set {1, 2, 4}, the number of ambulances in {4, 

8, 16, 32, 64}, and the number of victims in {8, 16, 32, 64, 

128, 256, 512}. The position of each entity was randomly 

chosen in a grid of 100×100 by using the Euclidean distance to 

estimate the time needed for moving from one point to 

another. 

The capacities of the ambulances and the hospitals were 

selected randomly in the intervals [1..4] and [300..1000], 

respectively, while the dig-up time and the time to death of 

every victim were randomly chosen in [5..30] and [100..1000], 

respectively. For i = 1, ..., m we considered initially start
i

 = 0. 

 

Listing 2: GREEDY Algorithm 

 
 

 To increase the accuracy and the significance of the results 

we tested our approach by running the experiments 20 times 

for each different scenario and by measuring the average 

number of rescued victims as well as the time required to solve 

the problem. In total we tested then 105 different scenarios. 

 

For every different scenario we compared the results of 

A&S w.r.t. a greedy approach GREEDY and a complete 

approach COMP that are used as baselines. In the following, 

before reporting the results, we briefly explain the algorithms 

we used as baselines. 

A.   GREEDY 

GREEDY is a heuristic based algorithm that at each time 

tries to assign the most critical victims to the closest available 

ambulance and then such ambulance to the closest available 

hospital. Moreover, GREEDY also looks if in the path from 

the ambulance to the hospital it is possible to save other 

critical victims. 

The pseudo-code of GREEDY is summarized in Listing 2. 

As in Listing 1, the main procedure takes as input the 

ambulances, the victims, and the hospitals. After removing all 

the non rescuable victims (line 2), it sorts all the victims by 

decreasing priority (line 3). At line 4 it starts the main loop, 

which is repeated until no more victims can be saved. First, the 

most critical victim is extracted into the variable V
j

 (line 5): 

this is the victim that the ambulance will save first. In line 6 

the function CLOSEST_AMB is used to retrieve the closest free 

ambulance 
i

 to victim V
j

 while CLOSEST_HOSP is a function 

that returns the closest available hospital to V
j

. In lines 9-13 

we define some auxiliary variables for computing the schedule 

of the ambulance. In particular deadline, position, and 

victims are used to store respectively the minimum time to 

death of the transported victims, the position of the last victim 

of the schedule, and the total number of victims on the 

ambulance. The variable hosp keeps track of the total cost of 

the path from the ambulance to the hospital while hosp_time 

represents instead the cost of the last segment of the path, i.e. 

time needed for moving from the last victim to the hospital 
k

. 

The ambulance 
i

 is immediately sent to hospital 
k

 unless 

there are other victims that can be saved along the way. In 

order to look for such additional victims, we use a loop that 

scans each remaining victim V
l
 of sorted_victs (line 14). 

Within the cycle, in line 15 we evaluate the cost t needed for 

carrying the victim V
l
 to 

k

. If such a transportation is 

possible, that is the capacity of 
i

 and 
k

 is not exceeded and 

there is enough time for saving all the victims of 
i

 (lines 16-

17) then in lines 18-25 we update the ambulance schedule by 

updating the corresponding variables. 

When the foreach cycle terminates, all the victims that could 

be saved by 
i

 (according to the heuristic) have been 

considered and therefore the ambulance is sent to the hospital. 

Therefore, in lines 26-28 we update the start-time of 
i

, its 

location and the capacity of the hospital. Finally, in line 29 we 

remove all the not rescuable victims and the while cycle starts 

again until no more victims can be saved. 

 

B.   COMP algorithm 

COMP is an algorithm that maps the rescue problem into a 

COP and computes the schedule of every ambulance without a 
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pre-allocation phase. COMP is a complete algorithm: it tries to 

maximize the number of rescuable victims and when it 

terminates with success it always returns an optimal solution. 

COMP assigns to all the ambulances, victims, and hospitals 

an unique identifier. In particular all the ambulances of Amb 

have an identifier i  D
a

 := [0..m], all the victims of Vict have 

an identifier j  D
v
 := [m+1..m+n] and all the hospitals in 

Hosp have an identifier k  D
h

 := [m+n+1..m+n+p]. 

The schedule of ambulance 
i

 at its j-th round (where by 

round we mean a path from its starting point to exactly one 

hospital) was encoded with an array R
i,j

 of integer variables 

indexed from 0 to  + 2. We then defined m ∙ n arrays 

containing the identifiers of the victims and the hospital that 

each ambulance should visit in sequence. 

R
i,j 

[0]  {i}  D
h

 is the index corresponding to the 

location of the ambulance 
i

 at the beginning of the j-th round. 

Since in the first round the starting point of 
i

 is always start
i

 

and in the following rounds the starting point is always the 

location of a hospital, we have R
i,1

[0] = i and R
i,j 

[0]  D
h

 

for i = 1,..., m and j = 2,..., n. 

R
i,j 

[1] ,…, R
i,j 

[ca
i
]  {0}  D

v
 are instead the indexes of 

the victims that 
i

 can rescue. In case the ambulance round 

was not filled completely one or more elements of R
i,j

 are set 

to 0, signaling for every element set to 0 that a place was not 

used. 

The last two elements of the arrays contain the index of the 

hospital where the ambulance ends its round and the total cost 

of the round. Note that each R
i,j

 definition also entails that a 

victim can not be assigned to more than one hospital and that 

the maximum number of victims on 
i

 must not exceed its 

capacity ca
i

. Additional constraints are needed in order to 

achieve the soundness of the solution and to reduce the search 

space. In particular, we added constraints enforcing that:  

 the total cost of each round R
i,j

 has to be lower than 

the time to death of each victim of R
i,j 

; 

  if R
i,j

 does not save any victim then all the 

subsequent rounds will not save any victim; 

 the maximum number of victims in a hospital 
k

 must 

not exceed its capacity ch
k

 ; 

 a victim can occur in at most one round. 

 

The objective of the COP is maximize the number of 

rescued victims, i.e. maximize the cardinality of the disjoint 

union of the victims assigned to each round. In order to encode 

the problem, we used basic constraints (such as <, +, ...) as 

well as global constraints [10] (namely, element, 

alldifferent_except_0, and count). 

As can be imagined, solving such a problem may consume 

too many resources. In order to conduct the experiments using 

scenarios of nontrivial size we imposed some limitations that 

in some cases may result in a loss of completeness. We first 

limited the number of rounds for each ambulance to the ratio 

between victims and ambulances whenever the number of 

victims was greater than the number of ambulances. Then, 

during the computation of the solutions, we have limited the 

use of the virtual memory to 50% of the total available space 

and set a timeout of 300 seconds keeping the best solution 

founded up to that time if no solution was proven optimal. 

C.   Results 

Fig. 1 shows the average percentage of rescued victims 

obtained by using A&S, GREEDY, and COMP approaches. 

The x-axis values represent scenarios sorted lexicographically 

by increasing number of victims, ambulances, and hospitals 

(labels are omitted for the sake of readability, since each x-

value is actually a triple of values). 

Our approach is in average able to rescue the 87.08% of the 

victims (from a minimum of 18.02% to a maximum of 100%). 

Considering the median value, in half of the scenarios we are 

able to rescue more than 99.38% of the victims. 

In only 2 cases (0.02% of the scenarios) GREEDY is better 

than our approach, while in only one case COMP is better than 

A&S. However, in these few cases the difference of saved 

victims is minimal (between 0.31% and 1.48%) while the gap 

between A&S and GREEDY or COMP can reach peaks of 

about 78% and 100% respectively. In average, A&S is able to 

rescue about 31.03% of victims more than GREEDY and 

59.38% more than COMP. 

From the plot we can also see that our approach is  

Fig.1 Average percentage of rescued victims. 
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especially better for scenarios involving a large number of 

victims. In particular, COMP algorithm can not find a solution 

within the timeout when the number of victims is greater than 

128. It is therefore clear that this approach, although 

conceptually complete, is not scalable to large sizes. This can 

be a significant problem in scenarios like ours: it is not 

permissible to wait 5 minutes and having no solutions. 

GREEDY usually makes local choices that have a huge impact 

on the total number of the victims that could be saved. 

Although better than COMP for scenarios with many victims, 

the gap between GREEDY and A&S is significant. On the 

other hand, our approach in these cases tries to come up with a 

better global choice and therefore it can be far superior than a 

simple heuristic based approach. 

In Fig. 2 we show the time needed to compute the entire 

schedule of the ambulances (please note the logarithmic scale). 

Although it is not surprising that GREEDY is faster while 

COMP is slower (the timeout expired often), it can however be 

observed that our approach takes reasonable times. In fact, in 

average the ambulances are allocated in 24.48 seconds, which 

means that on average in less than half a minute all the 

ambulances will be able to know the path that should be 

followed. Moreover, the median value indicates that for half of 

the scenarios the entire schedule is computed in less than 1.17 

seconds.  

Technical details. All the experiments were conducted by 

using an Intel
®

Core
TM

 2.93 GHz computer with 6 GB of RAM 

and Ubuntu operating system. The code for COMP and 

GREEDY algorithms was fully developed in Python. In 

particular, GREEDY algorithm exploits Gurobi [11] optimizer 

for solving the MIP problem and Gecode [12] solver for the 

COP problems. The code for the subsets generation is instead 

taken from [13]. Differently, for COMP algorithm we used 

Python for generating a MiniZinc [14] model solved by using 

the G12/FD solver of the MiniZinc suite. All the code 

developed to conduct the experiments is available at 

http://www.cs.unibo.it/~amadini/ijimai_2013.zip 
 

V.RELATED WORK 

In the literature many techniques from operational research 

and artificial intelligence have been used to tackle different 

aspects of the disaster management problem. Most of the 

approaches are trying to develop and study pre-event solution 

to decrease the severity of the disaster outcome. As an 

example, in [15] the authors study the best allocation of 

deposits that allows to handle in the most efficient way the 

rescue operations in case natural disaster happens. In [4], the 

authors use MIP in order to schedule the operation rooms and 

the hospital facilities in case of a disaster. These paper 

however have a different goal from ours: we are not concerned 

with considering preventing measures that could allow to 

mitigate the consequences of future disasters. We are instead 

concerned with saving more victims, after the disaster 

happened. 

There is also a large literature related to the problem of 

deciding the initial location of ambulances in order to decrease 

the average response time for ambulance calls. However, very 

few papers deal with the computation of the schedule for an 

ambulance. Some authors focus just on computing the best 

path for an ambulance toward the victim. For instance in [6] 

the authors use graph optimization algorithms in order to find 

a path for an ambulance. In our work we assume to have such 

a path and we are concerned with the problem of defining the 

order of the victims that an ambulance should pick up. In [16] 

the authors propose a routing algorithm for ambulances but, 

differently from our case, their model is probabilistic and it has 

been applied just for two small scenarios (i.e. scenarios 

containing few ambulances and victims). 

In [5] the authors proposed the use of an interactive learning 

approach which allows rescue agents to adapt their preferences 

following strategies suggested by experts. The decision of the 

ambulance is based on a utility function incrementally 

improved through expert intervention.  

Differently from our approach the authors here use an 

heuristic to dispatch the ambulances which rely on expert 

decision makers, while we rely only on optimization 

techniques. 

In [17] is solved a task scheduling problem in which 

Fig.2 Average scheduling time. 
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rescuing a civilian is considered as a task and the ambulances 

are considered as resources that should accomplish the task. 

The goal is to perform as many tasks as possible by using the 

Hogdson's scheduling algorithm to compute the solutions. 

Differently from our case, the authors considered here only the 

execution cost of the task and its deadline, ignoring important 

constraints such as the capacity of the hospitals and 

ambulances. 

Combinatorial auctions are used in [18], [19], [20] to 

perform task allocation for ambulances, fire brigades and 

police forces. An ambulance management center is represented 

as the auctioneer while ambulances bid for civilians to save. 

Each free ambulance makes several bids and the auctioneer 

determines the winners using a Branch and Bound algorithm. 

A drawback of this approach is that it is difficult for bidders to 

estimate the cost for bids containing many tasks. Moreover, as 

pointed out in [21], if bidders bid on each and every possible 

combination of tasks the computation of satisfactory results is 

computationally expensive. 

The authors in [22], [23] proposed a model based on a 

Multi-Objective Optimization Problem. They adjust 

controllable parameters in the interaction between different 

classes of agents (hospitals, persons, ambulances) and 

resources, in order to minimize the number of casualties, the 

number of fatalities, the average ill-health of the population, 

and the average waiting time at the hospitals. Then, they use 

Multi-Objective Evolutionary algorithms (MOES) for 

producing good emergency response plans. Their underline 

model is completely different from ours and we argue that is 

not very adaptable to deal with continuous changes and 

unexpected situations. 

In [20], authors proposed partitioning the disaster 

environment in homogeneous sectors and assigning an agent to 

be responsible for each sector. Similarly, in [24], the city areas 

are partitioned and assigned to an ambulance. The number of 

clusters is determined by the size of the city. Such solutions 

could lead to unfair partitioning and inefficient assignment of 

agents to partitions. A more powerful partitioning strategy 

based on the density of blockades on the roads was used in 

[25]. This approach however requires a real-time information 

of the environment that is costly and sometimes difficult to 

retrieve. 

Similarly to the GREEDY algorithm that we use as baseline, 

in [26] an heuristic is used to allocate the victims giving 

priority to the civilian with the highest probability of death. 

The shortcoming of this approach is that the cost of travel of 

the ambulance from one civilian to another could be very 

large; this could lead to a huge loss of lives if the size of the 

map is too large as in real-world situations.  

In [27] Earliest Deadline First algorithm is also used to form 

coalition for rescuing victims. The victim with earliest 

deadline is selected and the number of ambulances needed to 

rescue this candidate in time is computed and called coalition. 

The use of coalition formation however works well when a 

task cannot be performed by a single agent, which is not the 

case for the task of saving a victim. 

Finally we are aware of the existence of commercial 

applications for Emergency Dispatching (e.g. [28], [29]). The 

technical details explaining how these software are working 

unfortunately are always missing. 

VI.   CONCLUSIONS 

In this work we have described a procedure that can be used 

as a decision support tool for a post-disaster event when a big 

number of victims need to be transported to the hospitals.  

The proposed algorithm takes into account the position of 

the victims and their criticality, and schedules the ambulances 

in order to maximize the number of saved victims. Even 

though there is no guarantee that the solution obtained is the 

optimal one, experimental tests confirm that the number of 

saved victims is greater than the one that could be obtained by 

using, on one hand, a greedy priority-based heuristic and, on 

the other hand, a complete algorithm with a reasonable timeout 

of 5 minutes. Moreover, the proposed solution is usually fast 

enough to assign all the available ambulances in less than half 

a minute.  

As a future work it would be interesting to evaluate our 

approach in a more dynamic and realistic scenario since 

assuming that the whole model is known a priori is not very 

realistic. A dynamic approach needs to adapt itself to context 

changes (e.g. new incoming victims, ambulances out of 

service, the critical state of victims, etc...). 

In the event of significant changes the solution may be 

quickly updated exploiting the current allocation of 

ambulances without recomputing from scratch everything. 

Moreover we would like to integrate the model with 

heuristics developed by domain experts.  

Adopting these heuristics will allow the system to be able to 

react to a change very quickly, by using a default behavior that 

later can be changed if a better solution is found solving the 

optimiztion problem. 

Another direction worth investigating is to study the 

performance and the scalability of the algorithm proposed 

taking into account also the robustness of the solutions (i.e. 

how the solutions vary depending on small changes of the 

initial model). 
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