
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-67-

Abstract — Disasters like terrorist attacks, earthquakes,

hurricanes, and volcano eruptions are usually unpredictable

events that affect a high number of people. We propose an

approach that could be used as a decision support tool for a post-

disaster response that allows the assignment of victims to

hospitals and organizes their transportation via emergency

vehicles. By exploiting the synergy between Mixed Integer

Programming and Constraint Programming techniques, we are

able to compute the routing of the vehicles so as to rescue much

more victims than both heuristic based and complete approaches

in a very reasonable time.

Keywords — Disaster Recovery, Decision Support Systems,

Constraint Programming, Mixed Integer Programming.

I. INTRODUCTION

Disasters are unpredictable events that demand dynamic, real-

time, effective and cost efficient solutions in order to protect

populations and infrastructures, mitigate the human and

property loss, prevent or anticipate hazards and rapidly

recover after a catastrophe. Terrorist attacks, earthquakes,

hurricanes, volcano eruptions etc. usually affects a high

number of persons and involve a large part of the

infrastructures thus causing problems for the rescue operations

which are often computationally intractable. Indeed, these

problems have been tackled by using a pletora of different

approaches and techniques, ranging from operational research

to artificial intelligence and system management (for a survey

please see [1]).

Emergency response efforts [2] consist of two stages: pre-

event responses that include predicting and analyzing potential

dangers and developing necessary action plans for mitigation;

post-event response that starts while the disaster is still in

progress. At this stage the challenge is locating, allocating,

coordinating, and managing available resources.

In this paper we are concerned with post-event response.

We propose an algorithm and a software tool that can be used

as a decision support system for assigning the victims of a

disaster to hospitals and for scheduling emergency vehicles for

their transportation. Even though our algorithm could be used

to handle daily ambulance responses and routine emergency

calls, we target specifically a disaster scenario where the

number of victims and the scarcity of the means of

transportation are usually overwhelming. Indeed, while for

normal daily operations the ambulances can be sent following

the order of the arrival of emergency calls, when a disaster

happens this First In First Out policy is not more acceptable. In

these cases, the number of victims involved and the quantity of

damages require a plan and a schedule of rescue operations,

where usually priority is given to more critical cases, trying in

any case to maximize the number of saved persons. In this

context there are clearly also essential ethical issues which we

do not address in this paper (for example, is ethically

acceptable not to save a person immediately if this behavior

allow us to save more persons later on?).

Our tool then assumes a simplified scenario where the

number, the position and the criticality of victims is known.

The tool computes solutions that try to maximize the global

number of saved victims. In many practical cases finding the

optimal solution in not computationally feasible, hence we use

a relaxation of the pure optimization problem. Our approach

uses a divide-et-impera technique that exploits both Mixed

Integer Programming (MIP) and Constraint Programming in

order to solve the underlining assignment and scheduling

problems.

To evaluate the effectiveness of our approach we have

compared it against two alternative approaches: on one hand, a

greedy algorithm based on the heuristic that send the

ambulances first to the most critical victims and later to the

others and, on the other hand, a complete algorithm that tries

to find the optimal solution in terms of number of rescued

victims.

Empirical results based on random generated disaster

scenarios show that our approach is promising: it is able to

compute the schedule usually in less than half a minute and

almost always save more victims than other approaches.

 Paper Structure. In Section II we define the model we are

considering while in Sections III and IV we present the

algorithms and the tests we have conducted. In Section V we

present some related work. We conclude giving some

A Constraint-Based Model for

Fast Post-Disaster Emergency Vehicle Routing

Roberto Amadini 1, Imane Sefrioui 2, Jacopo Mauro 1, Maurizio Gabbrielli 1
1 Department of Computer Science and Engineering/Lab. Focus INRIA.

University of Bologna, Italy
2 Computer Science, Operational Research and Applied Statistics Lab.

Faculty of Sciences, Abdelmalek Essaadi University, Tetuan, Morocco

DOI: 10.9781/ijimai.2013.248

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/287123688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-68-

directions for future work in Section VI.

II. MODEL

In the literature a lot of models have been proposed to

abstract from a concrete disaster scenario. Some of them are

extremely complex and involve a lot of variables or probability

distributions [3], [4]. For the purposes of this paper we adapt

one of the simplest models, following [5], which considers

only three entities: victims, hospitals, and ambulances.

However, note that the flexibility of the Constraint

Programming paradigm would also allow to handle more

sophisticated models. Formally, we consider three disjoint

sets:

 the set of the ambulances Amb := {

, …,
m

};

 the set of the victims Vict := {V
1

, …, V
n

};

 the set of the hospitals Hosp := {H
1

, …, H
p

};

and we assume to know the following data:

 the spatial coordinates of every ambulance

i

;

 the spatial coordinates of every victim V
j

;

 the spatial coordinates of every hospital
k

;

 the capacity of every ambulance
i

;

 the capacity of every hospital
k

;

 the estimated time to death of every victim

V
j

;

 the estimated dig-up time of every victim

V
j

, i.e. the time needed by the rescue team to be able

to rescue the victim as soon as the ambulance arrives

on the spot;

 the a function that estimates the

time needed by an ambulance to move between two

given points;

 the initial time an ambulance become

available (an ambulance may be dismissed or already

busy when the disaster strikes).

We are well aware that, especially in a disaster scenario,

these data may be difficult to retrieve, imprecise and

unreliable. Nevertheless our model can exploit these data to

compute a first solution and then later, when the information

become more precise, it can be rerun to improve the computed

solution. Moreover, in order to get these information one can

use the results of such works like [6], [7] that allow to esteem

the time to death of a civilian or to find the best routes to reach

the victims.

Assuming that all the above information are known, our

goal is then to find as quickly as possible an optimal

scheduling of the ambulances in order to bring the maximal

number of alive victims to the hospital. Of course, solving

optimally such a scheduling may be computationally

unfeasible, especially in the case of a large number of victims.

Moreover, in our scenario, a fast response of the scheduling

algorithm is important for different reasons. First of all, the

quicker the response is, the faster we can move the ambulances

and therefore more victims may be saved. In addition, waiting

for a long time may be useless because usually information

rapidly changes (i.e. more victims come, the criticality of the

patients vary, the hospitals may have damages or emergencies,

ambulances can be broken). Hence, spending a lot of time for

computing an optimal solution that in few seconds could

become non optimal may result in a waste of resources and

then lead to the impossibility of saving some victims. On the

other hand, a purely greedy approach that at each stage makes

the locally optimal choice (according to heuristics such as the

seriousness or the location of the victims) would be definitely

faster, but could result in a smaller global number of victims

saved.

III. PROCEDURE

As previously mentioned, our aim is to find the best possible

compromise between the optimality of the ambulances

scheduling and the time it takes to find it.

For this reason, we propose an approach that at the same

time allows to compute a solution within a reasonable time

limit and still allows us to save more victims than greedy

strategies. Motivated by the success of hybrid algorithms on

problems of resource assignment and scheduling [8], we

developed a mixed approach that basically lies in the

interaction of two phases: the allocation phase, in which we

try to allocate as many victims as possible to ambulances and

hospitals, and the scheduling phase, in which we compute the

path that each ambulance must follow in order to bring the

victims to the hospitals. In this section we first detail these two

phases and then we show the pseudo-code explaining the

interplay needed between the allocation and scheduling phase

to solve the problem.

A. Allocation

In the allocation phase, we relaxed some constraints of the

problem assuming that every ambulance can save in parallel all

the victims it contains (in other terms, each ambulance with

capacity c can be seen as the union of c distinct ambulances

with capacity 1). The allocation of every victim to an

ambulance and a hospital is performed by solving a Mixed

Integer Programming problem by using two kind of binary

variables, denoted by and . The variable is set to 1

if and only if the victim V
j

is assigned to the ambulance
i

,

while = 1 if and only if the victim V
j

is assigned to the

hospital
k

. The constraints that we enforced are the

followings:

 (for each j = 1, …, n a victim V
j

 can not

be assigned to more than one ambulance);

 (for each j = 1, …, n a victim V
j

can not

be assigned to more than one hospital);

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-69-

 (for each i = 1, ..., m the maximum

number of patients on an ambulance
i

 must not

exceed its capacity);

 (for each k = 1, ..., p the maximum

number of victims in a hospital
k

 must not exceed its

capacity);

 (for each j = 1, ..., n a victim V
j is assigned to an ambulance

i

 if and only if V
j

is

assigned to an hospital
k

: there must not be

'dangling' victims);

 (for each j = 1, ..., n the time an

ambulance
i

 needs to reach a victim V
j

, dig up and bring her

to an hospital
k

 is enough to save her).

Since the objective of the MIP problem is to try to

maximize the number of rescued victims, we defined an

objective function which takes into account both the

seriousness and the location of the victims. Specifically, we

require the maximization of the following objective function:

where:

Recall that solving this problem does not necessarily mean

to solve the overall problem: the solution found gives an

esteem of the victims that could be saved and a preliminary

allocation of every victim to an ambulance and a hospital.

Indeed, since this is a relaxation of the original problem, it

may be possible that not all the victims allocated to an

ambulance may be saved. Anyway, it is worth noticing that the

allocation guarantees that at least one victim for ambulance

can be rescued. Also, there are no restrictions on the number

of hospitals that an ambulance can visit.

B. Scheduling

Once the victims have been allocated by the first phase, the

scheduling phase allows to define the path that each

ambulance must follow in order to maximize the number of

victims saved. After solving the above MIP we can assume

that the allocation phase identifies a partition

 where for each i = 1, ..., m we define:

 := {(V
j

,
k

) : V
j

 is transported to
k

 by
i

}.

The ambulance scheduling for each ambulance
i

 is then

obtained by computing a minimal Hamiltonian path in a

weighted and direct graph derived from . Given such an ,

let us consider the graph where:

 the set of nodes corresponds to a set of spatial

coordinates, in particular each node represents either:

◦ the initial position of the ambulance
i

;

◦ the position of the victims , ..., that
i

transports;

◦ the position of the hospitals , ..., that
i

visits;

 the set of arcs corresponds to the

movements that
i

 can do from one node to another

and it is defined as follows:

◦ (
i

 can go to any assigned victim

V
j

 from its initial position);

◦ if V
j

is assigned to
k

, then (
i

can bring a victim to its assigned hospital);

◦ if V
j

 ≠ V
j'

 are assigned to the same hospital, then

 (
i

 can move from an assigned

victim to another one, but no victims assigned to

different hospitals can be simultaneously on
i

);

◦ if V
j

 is not assigned to
k

, then

(
i

 can move from an hospital to a victim only if

she is not assigned to such hospital);

◦ no other arcs belongs to (no other move is

allowed).

 the weight function corresponds to

the estimated time for moving from one point to

another, including dig-up time:

◦

◦

◦

◦
Therefore, if

i

 has assigned n
i

 victims and has to visit p
i

hospitals, the number of nodes will be while

the number of arcs will be .

The scheduling of each ambulance
i

 can be computed by

finding the minimum cost Hamiltonian path

 where:

 P
1

 corresponds to the initial location of
i

;

 P
j

 for each 1 < j < n
i

, corresponds either to the

location of a victim or the location of an hospital;

 P
ni

 is the location of an hospital of ;

 Ω < ttd
j

 , where Ω is the total cost of the path and

ttd
j

 the time-to-death of each victim of .

The scheduling phase can therefore be mapped into a

Constraint Optimization Problem (COP) with the goal of

minimizing Ω and solved by using constraint programming

techniques.

As already stated, it may be the case that not all the victims

allocated to an ambulance may be saved, since differently to

what happen in the relaxed problem now an ambulance has to

save the victims sequentially. When this happens we have to

compute a schedule that saves a maximal subset of such

victims. However, instead of considering as maximal subset

-70-

the one which contains the greater number of elements, we

choose the one which has the maximum priority value that is

calculated as follows. We first compute the remaining time RT
j

:= ttd
j

 – dig
j

 of each victim by subtracting her dig-up time

from the expected time to death. Then, given a subset of

victims W Vict, we set its priority to (bigger

values of w means higher priority). We decided to use this sum

to evaluate the priority because, analogously to what happens

for the harmonic average, the sum of the reciprocal gives

priority to the victim having least remaining time and it

mitigates at the same time the influence of large outliers (i.e.

victims with big remaining time that can be easily saved later).

When an ambulance is scheduled, the model is updated

accordingly and the allocation phase is possibly restarted in

order to try to allocate the victims which have not yet been

assigned. The procedure ends when no more victims can be

saved.

C. A&S Algorithm

Listing 1: A&S Algorithm

The main procedure called Allocate & Schedule (A&S) and

presented in Listing 1 takes as input the set of ambulances

Amb, the set of victims Vict, and the set of hospitals Hosp. It

consists of a cycle where, first of all, the victims that can not

be saved (i.e. victims with a remaining time less than or equal

to 0) are removed. This operation is performed by the external

function REMOVE_NOT_RESCUABLE_VICTIMS at line 3.

The ALLOCATE function solves the MIP problem described in

Section III-A and returns the allocation of every victim to one

ambulance and one hospital. The ambulances are then sorted

by the function SORT_AMBS_BY_PRIORITY according to the sum

of the priority values of the victims assigned to each

ambulance; in this way, the schedule of the ambulances which

transport victims with higher priority is performed earlier.

 The nested loop starting at line 6 is responsible to compute

the schedule of all the ambulances. Considering the ambulance

i

, in line 7 the variable V is defined to be the set of the

victims assigned to
i

. If V is not empty then SCHEDULE(
i
,V,∏)

returns a possible schedule ∑ and its cost Ω for the ambulance

i

. This is done following the procedure described in Section

III-B. If the schedule problem has no solution (line 10) then

another solution that involves less victims is computed (lines

11-23). In particular, the priority of the set of the victims w is

initialized to 0, while the cost of the solution Ω to +∞ (lines

12-13).

The loops enclosed between lines 13 and 23 have the aim of

calculating a maximum eligible subset of victims, i.e. a subset

V' of V that both maximizes the value of and admits

a feasible schedule. In order to compute all the subsets of V we

exploit the function GET_SUBSET(i, k, A) that returns the i-th

subset (w.r.t. lexicographic order) among all the subsets

of with cardinality k. Note that computing all the subsets is

in general exponential on the capacity of the ambulances.

However, in real cases, this can be computationally feasible

since the capacity of the ambulances is usually small. In line

15 a subset V' is retrieved and its weight is computed in line

16. In case the weight is greater than the weight of the current

solution, a schedule of the ambulance
i

 for victims in V' is

computed (line 18). If the schedule is feasible and has a lower

cost in case of equal weight then the current schedule ∑, the

current weight w and the current cost Ω are updated.

By construction, once exiting from the above loops a

schedule that involves at least a victim is always found. Then,

we just need to update the model. First, we update the start

time of the ambulance
i

 with the total cost of the schedule ∑

(line 24). Then, for each hospital
k

 we decrease the hospital

capacity according to the number of victims that
i

 brings

to them (lines 25-26). The new spatial location of
i

 is set to

the value of the last hospital it visits (line 27) and we remove

from Vict all the victims that
i

 has rescued. Finally, the

schedule ∑ is added to the associative array schedule that is

the output of the A&S procedure.

In case only a part of the victims allocated to the ambulance

i

 were saved (line 30) the cycle starting at line 6 is

interrupted in order to compute a new allocation that may

allocate the remaining victims to other ambulances.

The algorithm terminates when no more victims can be

saved. From the computational point of view this algorithm

cyclically solves MIP and COP problems, which are well

known NP-hard problems. However, by exploiting the

relaxation of the MIP problem, on one hand, and the limited

size of the COP problems, on the other, it is possible to get

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-71-

quickly optimal solutions by exploiting current MIP and COP

solvers. An empirical proof of this is provided in the next

section.

IV. TESTS

We did not find in the literature suitable and extensive

benchmarks of disaster scenarios that we could use to evaluate

and compare the performances of our approach. For this

reason, in order to evaluate our algorithm we extended the

methodology used in [9]. In particular, we built random

generated scenarios obtained by varying the number of

hospitals in the set {1, 2, 4}, the number of ambulances in {4,

8, 16, 32, 64}, and the number of victims in {8, 16, 32, 64,

128, 256, 512}. The position of each entity was randomly

chosen in a grid of 100×100 by using the Euclidean distance to

estimate the time needed for moving from one point to

another.

The capacities of the ambulances and the hospitals were

selected randomly in the intervals [1..4] and [300..1000],

respectively, while the dig-up time and the time to death of

every victim were randomly chosen in [5..30] and [100..1000],

respectively. For i = 1, ..., m we considered initially start
i

 = 0.

Listing 2: GREEDY Algorithm

 To increase the accuracy and the significance of the results

we tested our approach by running the experiments 20 times

for each different scenario and by measuring the average

number of rescued victims as well as the time required to solve

the problem. In total we tested then 105 different scenarios.

For every different scenario we compared the results of

A&S w.r.t. a greedy approach GREEDY and a complete

approach COMP that are used as baselines. In the following,

before reporting the results, we briefly explain the algorithms

we used as baselines.

A. GREEDY

GREEDY is a heuristic based algorithm that at each time

tries to assign the most critical victims to the closest available

ambulance and then such ambulance to the closest available

hospital. Moreover, GREEDY also looks if in the path from

the ambulance to the hospital it is possible to save other

critical victims.

The pseudo-code of GREEDY is summarized in Listing 2.

As in Listing 1, the main procedure takes as input the

ambulances, the victims, and the hospitals. After removing all

the non rescuable victims (line 2), it sorts all the victims by

decreasing priority (line 3). At line 4 it starts the main loop,

which is repeated until no more victims can be saved. First, the

most critical victim is extracted into the variable V
j

 (line 5):

this is the victim that the ambulance will save first. In line 6

the function CLOSEST_AMB is used to retrieve the closest free

ambulance
i

 to victim V
j

 while CLOSEST_HOSP is a function

that returns the closest available hospital to V
j

. In lines 9-13

we define some auxiliary variables for computing the schedule

of the ambulance. In particular deadline, position, and

victims are used to store respectively the minimum time to

death of the transported victims, the position of the last victim

of the schedule, and the total number of victims on the

ambulance. The variable hosp keeps track of the total cost of

the path from the ambulance to the hospital while hosp_time

represents instead the cost of the last segment of the path, i.e.

time needed for moving from the last victim to the hospital
k

.

The ambulance
i

 is immediately sent to hospital
k

 unless

there are other victims that can be saved along the way. In

order to look for such additional victims, we use a loop that

scans each remaining victim V
l
 of sorted_victs (line 14).

Within the cycle, in line 15 we evaluate the cost t needed for

carrying the victim V
l
 to

k

. If such a transportation is

possible, that is the capacity of
i

 and
k

 is not exceeded and

there is enough time for saving all the victims of
i

 (lines 16-

17) then in lines 18-25 we update the ambulance schedule by

updating the corresponding variables.

When the foreach cycle terminates, all the victims that could

be saved by
i

 (according to the heuristic) have been

considered and therefore the ambulance is sent to the hospital.

Therefore, in lines 26-28 we update the start-time of
i

, its

location and the capacity of the hospital. Finally, in line 29 we

remove all the not rescuable victims and the while cycle starts

again until no more victims can be saved.

B. COMP algorithm

COMP is an algorithm that maps the rescue problem into a

COP and computes the schedule of every ambulance without a

-72-

pre-allocation phase. COMP is a complete algorithm: it tries to

maximize the number of rescuable victims and when it

terminates with success it always returns an optimal solution.

COMP assigns to all the ambulances, victims, and hospitals

an unique identifier. In particular all the ambulances of Amb

have an identifier i D
a

 := [0..m], all the victims of Vict have

an identifier j D
v
 := [m+1..m+n] and all the hospitals in

Hosp have an identifier k D
h

 := [m+n+1..m+n+p].

The schedule of ambulance
i

 at its j-th round (where by

round we mean a path from its starting point to exactly one

hospital) was encoded with an array R
i,j

 of integer variables

indexed from 0 to + 2. We then defined m ∙ n arrays

containing the identifiers of the victims and the hospital that

each ambulance should visit in sequence.

R
i,j

[0] {i} D
h

 is the index corresponding to the

location of the ambulance
i

 at the beginning of the j-th round.

Since in the first round the starting point of
i

 is always start
i

and in the following rounds the starting point is always the

location of a hospital, we have R
i,1

[0] = i and R
i,j

[0] D
h

for i = 1,..., m and j = 2,..., n.

R
i,j

[1] ,…, R
i,j

[ca
i
] {0} D

v
 are instead the indexes of

the victims that
i

 can rescue. In case the ambulance round

was not filled completely one or more elements of R
i,j

 are set

to 0, signaling for every element set to 0 that a place was not

used.

The last two elements of the arrays contain the index of the

hospital where the ambulance ends its round and the total cost

of the round. Note that each R
i,j

 definition also entails that a

victim can not be assigned to more than one hospital and that

the maximum number of victims on
i

 must not exceed its

capacity ca
i

. Additional constraints are needed in order to

achieve the soundness of the solution and to reduce the search

space. In particular, we added constraints enforcing that:

 the total cost of each round R
i,j

 has to be lower than

the time to death of each victim of R
i,j

;

 if R
i,j

 does not save any victim then all the

subsequent rounds will not save any victim;

 the maximum number of victims in a hospital
k

 must

not exceed its capacity ch
k

 ;

 a victim can occur in at most one round.

The objective of the COP is maximize the number of

rescued victims, i.e. maximize the cardinality of the disjoint

union of the victims assigned to each round. In order to encode

the problem, we used basic constraints (such as <, +, ...) as

well as global constraints [10] (namely, element,

alldifferent_except_0, and count).

As can be imagined, solving such a problem may consume

too many resources. In order to conduct the experiments using

scenarios of nontrivial size we imposed some limitations that

in some cases may result in a loss of completeness. We first

limited the number of rounds for each ambulance to the ratio

between victims and ambulances whenever the number of

victims was greater than the number of ambulances. Then,

during the computation of the solutions, we have limited the

use of the virtual memory to 50% of the total available space

and set a timeout of 300 seconds keeping the best solution

founded up to that time if no solution was proven optimal.

C. Results

Fig. 1 shows the average percentage of rescued victims

obtained by using A&S, GREEDY, and COMP approaches.

The x-axis values represent scenarios sorted lexicographically

by increasing number of victims, ambulances, and hospitals

(labels are omitted for the sake of readability, since each x-

value is actually a triple of values).

Our approach is in average able to rescue the 87.08% of the

victims (from a minimum of 18.02% to a maximum of 100%).

Considering the median value, in half of the scenarios we are

able to rescue more than 99.38% of the victims.

In only 2 cases (0.02% of the scenarios) GREEDY is better

than our approach, while in only one case COMP is better than

A&S. However, in these few cases the difference of saved

victims is minimal (between 0.31% and 1.48%) while the gap

between A&S and GREEDY or COMP can reach peaks of

about 78% and 100% respectively. In average, A&S is able to

rescue about 31.03% of victims more than GREEDY and

59.38% more than COMP.

From the plot we can also see that our approach is

Fig.1 Average percentage of rescued victims.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-73-

especially better for scenarios involving a large number of

victims. In particular, COMP algorithm can not find a solution

within the timeout when the number of victims is greater than

128. It is therefore clear that this approach, although

conceptually complete, is not scalable to large sizes. This can

be a significant problem in scenarios like ours: it is not

permissible to wait 5 minutes and having no solutions.

GREEDY usually makes local choices that have a huge impact

on the total number of the victims that could be saved.

Although better than COMP for scenarios with many victims,

the gap between GREEDY and A&S is significant. On the

other hand, our approach in these cases tries to come up with a

better global choice and therefore it can be far superior than a

simple heuristic based approach.

In Fig. 2 we show the time needed to compute the entire

schedule of the ambulances (please note the logarithmic scale).

Although it is not surprising that GREEDY is faster while

COMP is slower (the timeout expired often), it can however be

observed that our approach takes reasonable times. In fact, in

average the ambulances are allocated in 24.48 seconds, which

means that on average in less than half a minute all the

ambulances will be able to know the path that should be

followed. Moreover, the median value indicates that for half of

the scenarios the entire schedule is computed in less than 1.17

seconds.

Technical details. All the experiments were conducted by

using an Intel
®

Core
TM

 2.93 GHz computer with 6 GB of RAM

and Ubuntu operating system. The code for COMP and

GREEDY algorithms was fully developed in Python. In

particular, GREEDY algorithm exploits Gurobi [11] optimizer

for solving the MIP problem and Gecode [12] solver for the

COP problems. The code for the subsets generation is instead

taken from [13]. Differently, for COMP algorithm we used

Python for generating a MiniZinc [14] model solved by using

the G12/FD solver of the MiniZinc suite. All the code

developed to conduct the experiments is available at

http://www.cs.unibo.it/~amadini/ijimai_2013.zip

V.RELATED WORK

In the literature many techniques from operational research

and artificial intelligence have been used to tackle different

aspects of the disaster management problem. Most of the

approaches are trying to develop and study pre-event solution

to decrease the severity of the disaster outcome. As an

example, in [15] the authors study the best allocation of

deposits that allows to handle in the most efficient way the

rescue operations in case natural disaster happens. In [4], the

authors use MIP in order to schedule the operation rooms and

the hospital facilities in case of a disaster. These paper

however have a different goal from ours: we are not concerned

with considering preventing measures that could allow to

mitigate the consequences of future disasters. We are instead

concerned with saving more victims, after the disaster

happened.

There is also a large literature related to the problem of

deciding the initial location of ambulances in order to decrease

the average response time for ambulance calls. However, very

few papers deal with the computation of the schedule for an

ambulance. Some authors focus just on computing the best

path for an ambulance toward the victim. For instance in [6]

the authors use graph optimization algorithms in order to find

a path for an ambulance. In our work we assume to have such

a path and we are concerned with the problem of defining the

order of the victims that an ambulance should pick up. In [16]

the authors propose a routing algorithm for ambulances but,

differently from our case, their model is probabilistic and it has

been applied just for two small scenarios (i.e. scenarios

containing few ambulances and victims).

In [5] the authors proposed the use of an interactive learning

approach which allows rescue agents to adapt their preferences

following strategies suggested by experts. The decision of the

ambulance is based on a utility function incrementally

improved through expert intervention.

Differently from our approach the authors here use an

heuristic to dispatch the ambulances which rely on expert

decision makers, while we rely only on optimization

techniques.

In [17] is solved a task scheduling problem in which

Fig.2 Average scheduling time.

-74-

rescuing a civilian is considered as a task and the ambulances

are considered as resources that should accomplish the task.

The goal is to perform as many tasks as possible by using the

Hogdson's scheduling algorithm to compute the solutions.

Differently from our case, the authors considered here only the

execution cost of the task and its deadline, ignoring important

constraints such as the capacity of the hospitals and

ambulances.

Combinatorial auctions are used in [18], [19], [20] to

perform task allocation for ambulances, fire brigades and

police forces. An ambulance management center is represented

as the auctioneer while ambulances bid for civilians to save.

Each free ambulance makes several bids and the auctioneer

determines the winners using a Branch and Bound algorithm.

A drawback of this approach is that it is difficult for bidders to

estimate the cost for bids containing many tasks. Moreover, as

pointed out in [21], if bidders bid on each and every possible

combination of tasks the computation of satisfactory results is

computationally expensive.

The authors in [22], [23] proposed a model based on a

Multi-Objective Optimization Problem. They adjust

controllable parameters in the interaction between different

classes of agents (hospitals, persons, ambulances) and

resources, in order to minimize the number of casualties, the

number of fatalities, the average ill-health of the population,

and the average waiting time at the hospitals. Then, they use

Multi-Objective Evolutionary algorithms (MOES) for

producing good emergency response plans. Their underline

model is completely different from ours and we argue that is

not very adaptable to deal with continuous changes and

unexpected situations.

In [20], authors proposed partitioning the disaster

environment in homogeneous sectors and assigning an agent to

be responsible for each sector. Similarly, in [24], the city areas

are partitioned and assigned to an ambulance. The number of

clusters is determined by the size of the city. Such solutions

could lead to unfair partitioning and inefficient assignment of

agents to partitions. A more powerful partitioning strategy

based on the density of blockades on the roads was used in

[25]. This approach however requires a real-time information

of the environment that is costly and sometimes difficult to

retrieve.

Similarly to the GREEDY algorithm that we use as baseline,

in [26] an heuristic is used to allocate the victims giving

priority to the civilian with the highest probability of death.

The shortcoming of this approach is that the cost of travel of

the ambulance from one civilian to another could be very

large; this could lead to a huge loss of lives if the size of the

map is too large as in real-world situations.

In [27] Earliest Deadline First algorithm is also used to form

coalition for rescuing victims. The victim with earliest

deadline is selected and the number of ambulances needed to

rescue this candidate in time is computed and called coalition.

The use of coalition formation however works well when a

task cannot be performed by a single agent, which is not the

case for the task of saving a victim.

Finally we are aware of the existence of commercial

applications for Emergency Dispatching (e.g. [28], [29]). The

technical details explaining how these software are working

unfortunately are always missing.

VI. CONCLUSIONS

In this work we have described a procedure that can be used

as a decision support tool for a post-disaster event when a big

number of victims need to be transported to the hospitals.

The proposed algorithm takes into account the position of

the victims and their criticality, and schedules the ambulances

in order to maximize the number of saved victims. Even

though there is no guarantee that the solution obtained is the

optimal one, experimental tests confirm that the number of

saved victims is greater than the one that could be obtained by

using, on one hand, a greedy priority-based heuristic and, on

the other hand, a complete algorithm with a reasonable timeout

of 5 minutes. Moreover, the proposed solution is usually fast

enough to assign all the available ambulances in less than half

a minute.

As a future work it would be interesting to evaluate our

approach in a more dynamic and realistic scenario since

assuming that the whole model is known a priori is not very

realistic. A dynamic approach needs to adapt itself to context

changes (e.g. new incoming victims, ambulances out of

service, the critical state of victims, etc...).

In the event of significant changes the solution may be

quickly updated exploiting the current allocation of

ambulances without recomputing from scratch everything.

Moreover we would like to integrate the model with

heuristics developed by domain experts.

Adopting these heuristics will allow the system to be able to

react to a change very quickly, by using a default behavior that

later can be changed if a better solution is found solving the

optimiztion problem.

Another direction worth investigating is to study the

performance and the scalability of the algorithm proposed

taking into account also the robustness of the solutions (i.e.

how the solutions vary depending on small changes of the

initial model).

VII.REFERENCES

[1] N. Altay and W. G. Green, “OR/MS research in disaster operations

management,” European Journal of Operational Research, vol. 175, no.

1, pp. 475–493, 2006.

[2] S. Tufekci and W. Wallace, “The Emerging Area Of Emergency

Management And Engineering,” Engineering Management, IEEE

Transactions on, vol. 45, no. 2, pp. 103–105, 1998.

[3] G. Erdogan, E. Erkut, A. Ingolfsson, and G. Laporte, “Scheduling

ambulance crews for maximum coverage,” JORS, vol. 61, no. 4, pp.

543–550, 2010.

[4] I. Nouaouri, N. Jean-Christophe, and J. Daniel, “Reactive Operating

Schedule in Case of a Disaster: Arrival of Unexpected Victims,” in

WCE, ser. Lecture Notes in Engineering and Computer Science.

International Association of Engineers, 2010, pp. 2123–2128.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-75-

[5] T.-Q. Chu, A. Drogoul, A. Boucher, and J.-D. Zucker, “Interactive

Learning of Independent Experts' Criteria for Rescue Simulations,” J.

UCS, vol. 15, no. 13, pp. 2701–2725, 2006.

[6] N.A.M. Nordin, N. Kadir, Z.A. Zaharudin, and N.A. Nordin, “An

application of the A* algorithm on the ambulance routing,” IEEE

Colloquium on Humanities, Science and Engineering (CHUSER),

2011, pp. 855–859.

[7] S. A. Suarez and C. G. Quintero, and J. L. de la Rosa, “A Real Time

Approach for Task Allocation in a Disaster Scenario,” PAAMS, 2010,

pp. 157–162.

[8] M. Lombardi, and M. Milano, “Optimal methods for resource

allocation and scheduling: a cross-disciplinary survey,” Constraints,

vol. 17, no. 1, pp. 51–85, 2012.

[9] R. Amadini

[10] , I. Sefrioui, J. Mauro, and M. Gabbrielli, “Fast Post-Disaster

Emergency Vehicle Scheduling,” Distributed Computing and Artificial

Intelligence, ser. Advances in Intelligent Systems and Computing,

Springer International Publishing, 2013, vol. 217, pp. 219–226.

[11] N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, “Global

Constraint Catalogue: Past, Present and Future,” Constraints, vol. 12,

no. 1, pp. 21–62, 2007.

[12] “Gurobi - The overall fastest and best supported solver available,”

http://www.gurobi.com

[13] “GECODE - An open, free, efficient constraint solving toolkit,”

http://www.gecode.org

[14] J. McCaffrey, “Improved Combinations with the BigInteger Data

Type,”

http://visualstudiomagazine.com/Articles/2012/08/01/Big

Integer-Data-Type.aspx?Page=3, 2013.

[15] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G.

Tack, “MiniZinc: Towards a Standard CP Modelling Language,” in

CP, 2007.

[16] T. Andersson, S. Petersson, and P. Värbrand, “Decision Support for

Efficient Ambulance Logistics,” ser. ITN research report. Department

of Science and Technology (ITN), Linköping University, 2005.

[17] K. Ufuk, T. Ozden, and T. Saniye, “Emergency Vehicle Routing in

Disaster Response Operations,” in Proceedings of the 23rd Annual

Conference on Production and Operation Management Society, 2012.

[18] S. Paquet, N. Bernier, and B. Chaib-draa, “Multiagent Systems Viewed

as Distributed Scheduling Systems: Methodology and Experiments,” in

Advances in Artificial Intelligence, ser. Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2005, vol. 3501, pp. 43–47.

[19] S. Suarez and B. Lopez, “Reverse Combinatorial Auctions for

Resource Allocation in the Rescue Scenario,” in ICAPS Workshop on

Constraint Satisfaction Techniques for Planning and Scheduling

Problems, 2006.

[20] B. Lopez, S. Suarez, and J. D. L. Rosa, “Task allocation in rescue

operations using combinatorial auctions,” in Proceedings of the sixth

Catalan Congress on Artificial Intelligence. IOS Press, 2003.

[21] M. Sedaghat, L. Nejad, S. Iravanian, and E. Rafiee, “Task Allocation

for the Police Force Agents in RoboCupRescue Simulation,” in

RoboCup 2005, ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2006, vol. 4020, pp. 656–664.

[22] Nair, Ranjit and Ito, Takayuki and Tambe, Milind and Marsella, Stacy,

“Task Allocation in the RoboCup Rescue Simulation Domain: A Short

Note,” in RoboCup 2001, Springer-Verlag, 2002, pp. 751–754.

[23] N. Giuseppe, M. Venkatesh, N. Lewis, R. Dianne, T. Marc, H. Liza, P.

Ian, and M. Bud, “Complexities, Catastrophes and Cities: Unraveling

Emergency Dynamics,” in InterJournal of Complex Systems, vol. 4068,

no. 1745, 2006.

[24] G. Narzisi, V. Mysore, and B. Mishra, “Multi-objective evolutionary

optimization of agent-based models: An application to emergency

response planning,” in Computational Intelligence, 2006, pp. 228–232.

[25] M. Nanjanath, A. J. Erlandson, S. Andrist, A. Ragipindi, A.A.

Mohammed, A. S. Sharma, and M. Gini, “Decision and coordination

strategies for robocup rescue agents,” in SIMPAR, Springer-Verlag,

2010, pp. 473–484.

[26] S. Paquet, N. Bernier, and B. Chaib-draa, “Comparison of Different

Coordination Strategies for the RoboCupRescue Simulation,” in

Innovations in Applied Artificial Intelligence, ser. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2004, vol. 3029, pp.

987–996.

[27] J. Habibi, S. H. Yeganeh, M. Habibi, A. Malekzadeh, A.

Malekzadeh, S. H. Mortazavi, H. Nikaein, M. Salehe, M. Vafadoost,

and N. Zolghadr, “Impossibles08 Team Description RoboCup Rescue

Agent Simulation,” July 2008.

[28] O. A. Ghiasvand, and M. A. Sharbafi, “Using earliest deadline first

algorithms for coalition formation in dynamic time-critical

environment,” Education and Information Tech, vol. 1, no. 2, pp. 120–

125, 2011.

[29] “Odyssey website,”

http://www.plain.co.uk/index.php?option=com_content&task=view&i

d=67&Itemid=98

[30] “GeoFES,website,”

http://www.dhigroup.com/MIKECUSTOMISEDbyDHI/GeoFES.aspx

Roberto Amadini received a Bachelor (2007) and Master (2011) degree in

Computer Science from the University of Parma. He has worked as a

Laboratory Assistant at I.I.S. "G. Romani" of Casalmaggiore (CR) from 2007

to 2009 while in January 2012 he started his Ph.D. program in Computer

Science at the University of Bologna. Currently is a Ph.D. student working on

theory and application of Constraint (Logic) Programming for modeling and

solving combinatorial problems. He is also member of of the Focus Research

Group at INRIA (France).

Imane Sefrioui received a graduate degree in Computer Science "Diplôme

d'Ingénieur d'Etat" in 2011 from "Ecole Nationale des Sciences Appliquées"

in Tangier. In January 2012, she started her Ph.D. program in Computer

Science at the Faculty of Sciences of Tetuan in Abdelmalek Essaadi

University. She is currently a Ph.D. student working on the techniques and

algorithms for modeling and solving combinatorial optimization problems.

Maurizio Gabbrielli Maurizio Gabbrielli is professor of Computer Science

at the University of Bologna and is director of the Ph.D. program in

Computer Science. He received his Phd. in Computer Science in 1992 from

the University of Pisa and worked at CWI (Amsterdam) and at the University

of Pisa and of Udine. His research interests include constraint programming,

formal methods for program verification and analysis, service oriented

programming.

Jacopo Mauro received a bachelor and master degree in computer science

from Udine University. In 2012 he receive a PhD in computer science from

the University of Bologna. Since 2010 he is member of the Focus Research

Group at INRIA (France). He has been involved in numerous Italian, French,

and European research projects and a visiting student at CWI (Netherlands).

He is currently working at INRIA and interested in Concurrent Languages,

Service Oriented Computing, Constraint Programming, Constraint Handling

Rules and AI Planning.

http://visualstudiomagazine.com/Articles/2012/08/01/BigInteger-Data-Type.aspx?Page=3
http://visualstudiomagazine.com/Articles/2012/08/01/BigInteger-Data-Type.aspx?Page=3
http://visualstudiomagazine.com/Articles/2012/08/01/BigInteger-Data-Type.aspx?Page=3
http://www.atm.com/

