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Résumé 

La transformation numérique et le mouvement « industrie 4.0 » reposent sur des concepts tels que 

l'intégration et l'interconnexion des systèmes utilisant des données en temps réel. Dans le secteur 

manufacturier, un nouveau paradigme d'allocation dynamique des ressources humaines devient 

alors possible. Plutôt qu'une allocation statique des opérateurs aux machines, nous proposons 

d'affecter directement les opérateurs aux différentes tâches qui nécessitent encore une intervention 

humaine dans une usine majoritairement automatisée. Nous montrons les avantages de ce nouveau 

paradigme avec des expériences réalisées à l’aide d’un modèle de simulation à événements 

discrets. Un modèle d'optimisation qui utilise des données industrielles en temps réel et produit 

une allocation optimale des tâches est également développé. Nous montrons que l'allocation 

dynamique des ressources humaines est plus performante qu'une allocation statique. L'allocation 

dynamique permet une augmentation de 30% de la quantité de pièces produites durant une semaine 

de production. De plus, le modèle d'optimisation utilisé dans le cadre de l'approche d'allocation 

dynamique mène à des plans de production horaire qui réduisent les retards de production causés 

par les opérateurs de 76 % par rapport à l'approche d'allocation statique. Le design d’un système 

pour l’implantation de ce projet de nature 4.0 utilisant des données en temps réel dans le secteur 

manufacturier est proposé. 
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Abstract 

The Industry 4.0 movement is based on concepts such as the integration and interconnexion of 

systems using real-time data. In the manufacturing sector, a new dynamic allocation paradigm of 

human resources then becomes possible. Instead of a static allocation of operators to machines, we 

propose to allocate the operators directly to the different tasks that still require human intervention 

in a mostly automated factory. We show the benefits of this new paradigm with experiments 

performed on a discrete-event simulation model based on an industrial partner’s system. An 

optimization model that uses real-time industrial data and produces an optimal task allocation plan 

that can be used in real time is also developed. We show that the dynamic allocation of human 

resources outperforms a static allocation, even with standard operator training levels. With 

discrete-event simulation, we show that dynamic allocation leads to a 30% increase in the quantity 

of parts produced. Additionally, the optimization model used under the dynamic allocation 

approach produces hourly production plans that decrease production delays caused by human 

operators by up to 76% compared to the static allocation approach. An implementation system for 

this 4.0 project using real-time data in the manufacturing sector is furthermore proposed. 
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Introduction 

The machining industry has evolved along with the various industrial revolutions, and so has the 

relationship between humans and machines. While a machine was entirely dependent on a human 

operator following the first industrial revolution, the third revolution and the automation of 

processes allowed a machine to operate automatically, following a computer program. These 

specific types of machines are called computer-numerical control (CNC) machines and can be 

found in most metal manufacturing job-shops around the world. The use of CNC machines leads 

to different advantages, such as a reduced lead time, elimination of operator errors, and lower 

labour cost (Pabla and Adithan, 1994) since an operator may run two or more machines 

simultaneously. Nevertheless, a static allocation of an operator to a pre-determined set of machines 

may appear sub-optimal in terms of productivity as it typically leads to idle time for operators. 

With the fourth industrial revolution upon us (Lasi et al., 2014), which brings integration and 

interconnection of systems with the use of real-time data, the relationship between humans and 

machines may be redefined once again, with a set of operators dynamically allocated to a set of 

machines. While this proposition suggests a reduction of the important idle times and a possible 

productivity gain, many challenges may arise. The allocation decisions currently made by 

production managers are limited to the allocation of one operator to a set of machines for their 

work shift. A dynamic worker-machine allocation strategy would imply multiple allocation 

decisions per minute which a human could no longer be expected to do. Additionally, the task 

allocations cannot be planned much in advance since the production is constantly evolving, and 

unforeseen events happen frequently. When these events happen, the task allocation plan must be 

adapted, so the use of real-time data is necessary, as well as powerful algorithms which generate 

new optimal plans quickly. 

In this master thesis, we propose and study a new paradigm of dynamic allocation of human 

resources in a 4.0 manufacturing context. Currently, an operator is allocated to a set of machines 

for which he or she is responsible during the work shift.  With our industrial partner, APN Global, 

we have undertaken to implement this new dynamic allocation paradigm in their 4.0 high-precision 

metal manufacturing factory. Thus, we set the following objectives: 
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1. Analyze a metal manufacturing system, focusing on the different tasks necessary for the 

production of metal parts 

2. Define scenarios allowing real-time allocation of operators for such a system  

3. Measure the impact of this form of allocation in terms of number of parts produced in a 

week and delay caused by operators in the production 

4. Facilitate the implementation of the dynamic allocation method in the real world  

The study was carried out in four main phases. First, a literature review was conducted to explore 

the different available techniques and methods, as well as what had been previously done regarding 

dynamic allocation. The methods to use for this project, such as optimization and discrete-event 

simulation, were also chosen in this part. 

In the second part, we focused on developing and running a discrete-event simulation model based 

on our industrial partner’s factory, in order to study the dynamic allocation paradigm. The model 

included 22 CNC machines as well as four measurement machines and represented the entire 

machining section of the factory. The different tasks were modeled with extensive detail. Using 

this model, we were able to compare the static with the dynamic allocation and measure the impact 

of such a paradigm change on the factory’s productivity, such as, for example, the number of parts 

produced during one week of production. 

In the third part, a real-time optimization/allocation model was developed, which led to the 

submission of an article. The model uses Constraint Programming (CP) (Rossi, van Beek and 

Walsh, 2006) and was implemented using the MiniZinc language. The model was able to produce 

an optimal task allocation plan for the next hour of production using real-time data in a few 

seconds. Different scenarios of operators’ allocation method (static or dynamic) and workforce 

skill levels (current skills or polyvalent operators) were compared based on productivity (i.e., 

tardiness of tasks) as well as human factors (i.e., operator occupation rates). 

Finally, the implementation of the project in an industrial setting was tackled in the last part of the 

methodology. We designed a system to implement the real-time dynamic task allocation paradigm 

proposed in the factory. Future industrial developments for the project were also established. 
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The results obtained indicate that implementing a dynamic allocation paradigm of human 

resources can lead to important productivity gains in the manufacturing sector. Even when current 

operator training-levels are considered, this approach leads to important improvements. Indeed, 

there is no need to suppose perfectly versatile operators in order to profit from the productivity 

gains. When simulating a week of production, we showed a 30% increase in the quantity of parts 

produced when using a dynamic allocation method. Additionally, using the allocation algorithm 

with a dynamic allocation approach yields hourly production plans that decrease production delays 

caused by human operators by 76%. 

This project contributes to research by proposing a new dynamic allocation paradigm in the 

manufacturing industry with a high-performance optimization model that allows real-time 

allocation of operators to the various tasks at hand. Different experiments conducted with the 

simulation model as well as with the optimization model show the strength of this new paradigm. 

This contribution is also considerable for the manufacturing sector, which can base their future 

decisions on the results of this study. Operator training is also addressed. Furthermore, an 

implementation framework is proposed, which may be followed by other industrials wishing to 

implement a similar project using real-time data in their factory.  

This thesis is divided into five chapters. In the first chapter, a literature review highlights the 

different preliminary concepts of this study. The second chapter describes more thoroughly the 

objectives pursued and the methods used in this project. In the third chapter, the simulation model 

is described as well as different experiments performed, and results obtained. The fourth chapter 

introduces an article that was written in the context of this research, which presents the 

optimization model. Finally, the fifth chapter presents the design of system for the implementation 

of those concepts. 
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Chapter 1: Preliminary concepts 

In this chapter, we introduce the main concepts used in this project with the existing literature. The 

concepts of simulation, optimization and Industry 4.0 are therefore explained. 

 

1.1 Computer simulation 

Computer simulation is a technique that consists of using computers to imitate a real-life system 

(Law and Kelton, 1991). The origins of computer simulation date back to the 1940s during the 

Second World War when John von Neumann and Stanislaw Ulam used it to solve neutron diffusion 

problems when designing a hydrogen bomb (Goldsman, Nance and Wilson, 2010). Simulation is 

used when systems cannot be modeled with analytical methods such as algebra. This can happen 

when systems are extremely complex, which often is the case in real-life systems. As first proposed 

by Schmidt and Taylor (1970), a system consists of entities which can be people or machines that 

interact together in order to reach a logical end. As shown in Figure 1, Law and Kelton (1991) 

presented the different ways to study a system. 

 

Figure 1: Ways to study a system, as represented by Law and Kelton (1991). 

In this master’s thesis project, different allocation policies need to be tested for operators in a 

factory with many complex processes. Conducting experiments with the actual system is therefore 

not conceivable. As for a physical model, it would be extremely complex and hard to simulate the 

system in such a way. Equally, an analytical solution would be too complex, and it would be harder 
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to account for the stochasticity present in the system. Computer simulation was therefore selected 

for the project. As listed in Banks et al. (2005), simulation is an appropriate technique when 

studying the internal interactions of a complex system. Simulation can be used to test 

organizational changes and observe their effect on the system’s behaviour. 

 

1.1.1 Discrete-event simulation 

Computer simulation can be characterized through three dimensions, as proposed by Law and 

Kelton (1991) and represented in Table 1. In a static simulation model, time plays no role. In our 

project, we therefore need to use dynamic simulation since time has an effect on the allocation 

policies. For a deterministic simulation model, the output is pre-determined according to the input 

and the relations established between the entities. Since this is not the case in our project as some 

aspects are stochastic, a stochastic simulation model will be used. A simulation model can finally 

be represented as continuous if the object of interest needs to be a flow. If we can represent the 

different events in the system as events occurring at discrete moments in time, we may then use 

discrete-event simulation to analyze it. For this project, the system is then represented as a chain 

of discrete events that have an effect on its state. In summary, we will propose a dynamic, 

stochastic, discrete-event simulation model to study the various worker allocation policies. This 

type of model will be referred to only as a discrete-event simulation model from now on, as is the 

case in the related literature. 

Table 1: Dimensions of a simulation model, as proposed by Law and Kelton (1991). 

 

While the use of discrete-event simulation traces back to the 1950s, when it was written in machine 

code, it is not until the 1980s that it began being used as a decision-support tool in the 

manufacturing industry (Robinson, 2005). Many tools now exist to create discrete-event 

simulation models, such as Simio (Pegden, 2008), AnyLogic (Borshchev, 2014) and Arena 

(Hammann and Markovitch, 1995). 

 

Static Dynamic

Deterministic Stochastic

Continuous Discrete

Dimensions of a simulation model
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1.1.2 Discrete-event simulation in the manufacturing industry 

Some areas of application of discrete-event simulation, as listed in Banks et al. (2005), consist of 

manufacturing applications, business processing, project management, health care, military, and 

transportation. In this project, we are interested in a case study in the manufacturing sector. 

The first review on simulation in the manufacturing industry was published in 1992 and stated that 

awareness of discrete-event simulation in the manufacturing industry was very low (Hollocks, 

1992). A decade later, Ingemansson, Bolmsjö and Harlin, (2002) found that of the 80 

manufacturing companies they surveyed in Sweden, 12 were using discrete-event simulation in an 

active way, so they concluded that awareness of this technology in the industry was on the rise. 

Four years later, another survey looked at the different application sectors for discrete-event 

simulation as proposed in 52 papers of the Winter Simulation Conference proceedings of the 

previous years (Semini, Fauske and Strandhagen, 2006). Their results show that discrete-event 

simulation was already used in the manufacturing sector in the previous 15 years, by several sub-

sectors, with a concentration in the semiconductor and automotive sectors. 

Table 2: Use of discrete-event simulation in the manufacturing industry, based onSemini, Fauske and Strandhagen (2006). 

 

In the last decades, several articles addressed the use of discrete-event simulation in the 

manufacturing industry. For example, Ferjani et al. (2017) proposed and compared different 

assignation heuristics with a simulation model when assigning human resources subject to fatigue 

in a manufacturing system. Lidberg, Pehrsson and Ng (2018) aimed at improving factory 

productivity with a discrete-event simulation model and multi-objective optimization. Allgeier et 

Industry Number

Semiconductor 13

Automotive 10

Other computer and electronics 4

Pharmaceutical 3

Primary metal 3

Fabricated metal product 3

Military 3

Aviation 2

Textile 2

Nonmetallic mineral product 1

Electrical equipment and appliances 1

Paper 1

Machinery 1

Printing and related support 1

Shipping 1

Miscellaneous 1

Total 50
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al. (2020) evaluated lot release policies in a power semiconductor facility, which is known to be 

one of the most complex manufacturing processes, by using discrete-event simulation. 

In this project, the sub-sector we are interested in is the fabricated metal product sector. To the 

best of our knowledge, only a few articles have directly tackled this sector in a study using discrete-

event simulation. 

 

1.1.3 Discrete-event simulation of operators’ tasks allocation 

While it is quite common to model a production system and its different products in a discrete-

event simulation model (Detty and Yingling, 2000; Zupan and Herakovic, 2015; Huynh, Akhtar 

and Li, 2020), we have a different approach in this project. Indeed, our need is to model the 

different operations or tasks performed by the machines and operators. 

This approach has been used in the past. For instance, Keller (2002) modeled the human operators 

workload with a discrete-event simulation model. Jung et al. (2020) modeled a garment production 

line with accurate task times in order to measure and help improve productivity. In the hydraulic 

excavator sector, Hughes and Jiang (2010) proposed a task-network system imbedded in a discrete-

event simulation model to help improve operator performances. In Nehme, Crandall and 

Cummings (2008), situational awareness (combination of perception of elements in the 

environment, the comprehension of their meaning, and the projection of their status in the future 

(Endsley, 1995)) of unmanned-vehicle operators was modeled using discrete-event simulation. 

Different operator strategies and their effect on situational awareness were tested. Authors 

suggested that situational awareness decreased with increased utilization rates of the operators, 

since they do not have the necessary time to assess their surroundings. Also, operator performance 

in a nuclear power-plant was predicted using discrete-event simulation to focus on operators’ tasks 

(Yow et al., 2005). Finally, the performance of a labour control strategy addressing the allocation 

of skilled and unskilled operators was tested with a discrete-event simulation-based manufacturing 

model (Le et al., 2013). It was proven to increase productivity and utilisation of the resources. 
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1.2 Optimization 

Optimization is a branch of mathematics that aims at finding the best possible solution to a problem 

using different techniques. Its foundation is based on two main articles, the Theory of Games and 

Economic Behavior (Deming, Neumann and Morgenstern, 1944) and the article presenting the 

discovery of the simplex algorithm (Dantzig and Wolfe, 1960). An optimization problem aims to 

find the best solution between all possible solutions. Optimization problems can be either discrete 

or continuous, with many sub-categories in each. A classification of the optimization problems is 

presented in Figure 2. In this thesis, the optimization was first formulated as a mixed-integer linear 

programming problem, which is a discrete optimization problem. Many problems can be written 

as mixed-integer linear programming problems with the use of different formulation techniques 

(Vielma, 2015).  

 

Figure 2: Optimization problem classification, based on Rohde (2019). 

Various software packages are available to solve linear-programming models, such as AMPL 

(Fourer, no date) and Lindo (Lin and Schrage, 2009).  
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Figure 3: Optimization problem classification, based on Gleixner (2018). 

In a broader sense, our optimization problem could also be formulated using constraint 

programming. 

 

1.2.1 Constraint programming 

Constraint programming is described in Rossi, van Beek and Walsh (2006) as a “powerful 

paradigm for solving combinatorial search problems”. More precisely, it consists of a user 

declaratively stating its constraints characterizing the feasible solutions of a given problem for a 

set of decision variables. Crucial concepts of constraint programming include backtrack search 

and constraint propagation which serve as a search strategy, which must be provided by the user. 

The first paper that provided a statistical and experimental evaluation of backtrack search was 

published in the Artificial Intelligence Journal in 1980 (Haralick and Elliott, 1980).  

Constraint programming can be used to solve satisfaction problems as well as optimization 

problems by using a search tree. A search tree consists of branches representing partial solutions 

to the problem. The root of the tree represents the initial partial solution where no variables have 

any value. Each node below the root represents a possible value for a given variable, which inherits 

from the precedent partial solution. Branching consists of choosing a value for a variable. 

Backtracking occurs when no further branching is possible or if an incoherence is detected that 

does not respect the constraints. In a satisfaction problem, as soon as a complete solution that 
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respects all constraints is found, the search with the tree is ended. In an optimization problem, it is 

possible that all nodes must be explored before the search ends. 

The advantages of constraint programming compared to integer programming are the use of global 

constraints, non-linear constraints, and constraint propagation (Walsh, 2001). A global constraint 

is a constraint that manages to encapsulate the relation between multiple variables (van Hoeve and 

Katriel, 2006). It is especially helpful to deal with constraints that are common between different 

problems since it can use a specialized routine to handle it. Non-linear constraints are not 

acceptable in integer programming, which can make the formulation of constraints a hard task and 

imply linear relaxation techniques. In constraint programming, constraints are very flexible and 

can be expressed more directly to better represent the real world. Finally, constraint propagation 

is defined by (Rossi, van Beek and Walsh, 2006) as a “form of reasoning in which, from a subset 

of the constraints and their domains, we can infer more restrictive domains or constraints.” It is 

considered to be one of the most important concepts in constraint programming since it is 

extremely helpful to finding solutions faster by examining a subset of all solutions. 

 

1.2.2 The (flexible) Job-Shop Scheduling Problem 

A common problem solved with optimization techniques is the job-shop problem, or its variant 

the flexible job-shop problem. In our project, the problem addressed shares many similarities with 

the flexible job-shop scheduling problem. This problem has been addressed by several authors 

(Fattahi, Jolai and Arkat, 2009; Ham and Cakici, 2016; Erming Zhou, Jin Zhu, and Ling Deng, 

2017). Additionally, Demir and Kürşat İşleyen (2013) present different mathematical models to 

solve this problem. Heuristic approaches were also used to solve the flexible job-shop scheduling 

problem (Fattahi, Saidi Mehrabad and Jolai, 2007). A review on the flexible job-shop scheduling 

problem was proposed by Xie et al. (2019). 

Scheduling using optimization techniques is a popular research subject in the manufacturing 

sector. Lan and Lan (2005) proposed a combinatorial manufacturing resource planning model 

applicable to the CNC machining industry. They attempted to schedule machines as well as human 

resources in order to optimize the production profit.  
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While a lot of research has been conducted on the job-shop scheduling problem and its variations 

for scheduling jobs in factories, we apply it in a different context, and focus on the allocation of 

real-time tasks to operators. 

 

1.3 Industry 4.0 

Industry 4.0 first was a German industrial program created in 2011 at the Hannover Fair in 

response to the changes occurring in the industry at the moment that led to believe we were 

experiencing a fourth industrial revolution (Devezas, Leitão and Sarygulov, 2017). Two years 

later, the Industry 4.0 Working Group presented the first report on Industry 4.0 at the Hannover 

Fair (Henning, 2013). In their report, they presented the fourth industrial revolution in a time scale. 

Figure 4 is taken from this report. 

 

Figure 4: The four industrial revolutions, based on Kagermann (2013). 
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While many technologies such as the internet-of-things, 3D printing, artificial intelligence, and 

cloud computing are part of this revolution, its defining characteristic is the interconnection and 

integration of systems and people in the entire value chain. Lasi et al. (2014) concluded that the 

term “Industry 4.0” described new IT advances primarily driven by changes in manufacturing 

systems with organizational implications. Popkova, Ragulina and Bogoviz (2019) suggested that 

this new revolution was driven in part by the economic crises of the early 2000s which led to an 

overproduction of industrial goods, suggesting that the current economic system was not 

compatible with the previous technological model. 

Figure 5 presents the technological trends and the design principles of Industry 4.0 as discovered 

in a review of 178 papers by Ghobakhloo (2018). The technological trends used in our project are 

bolded, as well as the design principles followed. 

 

Figure 5: Design principles and technology trends of Industry 4.0, based on Ghobakhloo (2018). 
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Different reviews on Industry 4.0 were published during the last decade to monitor its evolution 

in the industrial world. Wichmann, Eisenbart and Gericke (2019) identified the different benefits 

of Industry 4.0 proposed in the 50 most relevant papers on Industry 4.0 at the time of their review. 

As shown in Figure 6, the most recurrent benefits expected from Industry 4.0 are a dynamic 

manufacturing system, an increased connectivity, and decentralised autonomous production 

systems. 

 

Figure 6: Industry 4.0 manufacturing benefit propositions, as presented in Wichmann, Eisenbart and Gericke (2019). 

In our project, the main benefits targeted are a dynamic manufacturing system, increased efficiency 

and productivity, identification of optimization opportunities, as well as improved process decision 

making. 
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directions. An entire 300-page book was also written on Simulation in the Industry 4.0 (Gunal, 

2019). Their analysis of Google Scholar keyword search results for “simulation” and “Industry 4.0 

has been on the rise for the last ten years, with no articles written in 2011 and exceeding 6 000 

articles in 2018. A recent review (see Paula Ferreira et al. 2020) has also observed an increasing 

trend in simulation-based research in Industry 4.0 for the years 2016-2020. 

The concept of a digital twin is defined by Boschert and Rosen (2016) as a “comprehensive 

physical and functional description of a component, product or system, which includes more or 

less all information which could be useful in all—the current and subsequent—lifecycle phases”. 

This can easily refer to a simulation model that represents the production system. A digital twin is 

updated based on real-world data and can be used periodically to make decisions, by using 

simulation. As described by (Boschert, Heinrich and Rosen, 2018), a digital twin consists of a 

collection of digital artefacts that include engineering and operation data as well as behaviour 

descriptions represented with simulation model(s) and it is used to extract solutions relevant for 

the real system, as is the case in our project. 

 

1.3.1.1 Discrete-event simulation with real-time data 

Discrete-event simulation has also been used with real-time data. In Turker et al. (2019), the 

authors used real-time data in order to test different classic dispatching rules to solve the job-shop 

scheduling problem. Brik et al. (2019) tackled task rescheduling in a flexible flow-shop with an 

optimization problem, solved using a meta-heuristic (tabu search) with localization information 

based on the Internet-of-things (IoT). Garrido and Sáez (2019) proposed a framework for the 

automatic generation of simulation models using real-time data applied to industrial transportation 

and warehouse systems. 

 

1.3.2 Real-time or dynamic scheduling in manufacturing 

While real-time scheduling using real-time data has only recently been made possible with the 

technologies characterizing Industry 4.0, scheduling and planning in the manufacturing industry 

has been a popular subject of research in the last decades. 
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Scheduling tasks or jobs in real-time brings its own challenges, since we must deal with stochastic 

events that may happen during the execution of the production plan. Waschneck et al. (2016) 

addressed the complex job-shop scheduling problem from an Industry 4.0 perspective. They 

identified different challenges from the literature and pointed to future directions that could be 

taken by the job-shop scheduling problem under Industry 4.0. They point out that rescheduling 

strategies can be enhanced under Industry 4.0 in order to increase flexibility in job-shop 

environments. Zhang et al. (2019) also reviewed job-shop scheduling research and its new 

perspectives under Industry 4.0 and concluded that the future of the job-shop scheduling problem 

is decentralized scheduling using real-time information. Finally, Leusin et al. (2018) also agreed 

that real-time data exchange is key to solving the job-shop scheduling problem in the Industry 4.0 

era, based on tests using a simulation model of a real industrial case. 

While real-time scheduling at large is not a new research area and has been studied for the last 

decades, its first classification was proposed by Vieira, Herrmann and Lin (2003) and shown in 

Figure 7. The technological advances that characterize Industry 4.0 have brought new perspectives 

for the resolution of this problem.  

 

Figure 7: Rescheduling framework as proposed by Vieira, Herrmann and Lin (2003). 
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Taghipour (2020). Garrido and Sáez (2019) even proposed machine learning in order to determine 

the best when-to-reschedule policy in a flexible job-shop. 

 

Figure 8: Real-time scheduling classification as proposed by Ghaleb, Zolfagharinia and Taghipour (2020). 
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problems are common and have significant impacts on simulation projects in the manufacturing 

industry. Barlas and Heavey (2016) reviewed different papers on automated input data in discrete-

even simulation models. They believed automated data collection could help manage data 

collection challenges in this type of project. 

 

1.3.2.1 Mathematical optimization with real-time data 

With the technologies of Industry 4.0 such as smart monitoring, optimization can be executed in 

real-time. Ghaleb, Taghipour and Zolfagharinia (2020) developed a real-time integrated 

optimization model to schedule operations and maintenance in a manufacturing system. When 

used in a case study, they showed that their advanced method outperformed a simple right- shifting 

method currently used by the company. 

 

1.3.2.2 Robot-human collaboration 

In these dynamic environments under Industry 4.0, human operators may also be brought upon 

collaborating with robots. This type of environment is addressed in Evangelou et al. (2021), who 

proposed an approach for task planning using artificial intelligence and real-time rescheduling. 

Another review on human-robot interaction focusing on task planning was published by Tsarouchi, 

Makris and Chryssolouris (2016). Al-Behadili, Ouelhadj and Jones (2019) proposed a multi-

objective optimization model that considers different real-time events in order to produce a robust 

plan for the permutation flow shop scheduling problem. Stochastic and dynamic disruptions were 

addressed in a robust and stable flow shop scheduling proactive-reactive approach (Liu et al., 

2017). Human attention in a robot and human collaboration environment was also addressed in 

Yao and Zhang (2020) in which a human receives collaboration requests from many robots 

simultaneously. 

 

1.3.3 Implementation under Industry 4.0 

While the Industry 4.0 revolution promises new interesting benefits for the manufacturing sector, 

its implementation faces many challenges. Butt (2020) proposed a strategic roadmap for the 

manufacturing industry to implement Industry 4.0 based on the Lean Six Sigma framework. The 
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author justified this choice by stating that the manufacturing industry is already familiar with this 

framework. The different phases proposed in the framework, as presented in Figure 9, are to define 

the problem and to identify the existing limitations (1), to collect data (2) to clarify the 

requirements, to evaluate the Industry 4.0 tools already established in the company (3), to optimize 

the processes with different tools such as simulation and mathematical optimization (4), to develop 

a detailed plan by including more people (5), to validate the prototype created (6), and to 

implement a full-scale pilot (7). The implementation is executed following the DMAIC framework 

which consists of an iteration between the five phases: define, measure, analyze, improve, and 

control, which then leads to the final step which is the digitization. 

 

Figure 9: Strategic roadmap for Industry 4.0 implementation Butt (2020). 

 

1.3.4 Implementation under Industry 4.0 in SMEs 

Following an established framework is even more important in a small-and-medium enterprise 

(SME) since they face specific challenges related to the implementation of Industry 4.0 projects. 

As seen in Figure 10, Matt, Modrák and Zsifkovits (2020) stated that specific challenges faced by 

SMEs can be a “lack of employee acceptance of new operational processes and technologies, a 

lack of training and qualification of personnel for systems to encourage communication, flexibility, 

education of Industry 4.0 and soft skills”, etc.  
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Figure 10: : Limitations and barriers for the design of smart manufacturing systems in SMEs introducing Industry 4.0 projects as 

proposed by Matt, Modrák and Zsifkovits (2020). 

Focusing on these specific challenges, the authors proposed an implementation toolkit to support 

SMEs in the implementation of 4.0 technologies. This toolkit consists of four phases 

(organizational analysis, gap analysis, economical analysis, and implementation guideline) as 

shown in Figure 11. The proposed toolkit has many similarities with the DMEODVI framework 

proposed by Butt (2020).  
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Figure 11: Implementation toolkit for introducing Industry 4.0 projects as proposed by Matt, Modrák and Zsifkovits (2020). 

Several case studies exist in the literature as to the implementation of Industry 4.0 technologies in 

SMEs. Grieco et al. (2017) presented an application of Industry 4.0 technologies in an Italian 

luxury goods manufacturing company, with a focus on the production process throughout the 

supply chain. Bär, Herbert-Hansen and Khalid (2018) also focused on the supply chain in an SME 

while considering Industry 4.0 aspects. 

We reported preliminary concepts for carrying out the project as well as the research that has been 

carried out in these different research areas. In the rest of this thesis, we will propose a dynamic 

allocation paradigm in the industry 4.0 manufacturing sector that will combine all these different 

research areas.  
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Chapter 2: Objectives and methods 

The goal of this research is to propose and study new methods for the human resources allocation 

made possible through Industry 4.0 digitalization. This idea can be seen as a paradigm shift (Figure 

12) from a static allocation from one operator to Y machines (middle in Figure 12) to a dynamic 

allocation from X operators to Y machines (bottom of Figure 12). Indeed, before the arrival of 

automation in the manufacturing sectors, each machine required the presence of an operator 100% 

of the time (top of  Figure 12). However, this is not the case anymore. Currently, in the 

manufacturing industry, each operator is typically allocated to a set of machines (middle of Figure 

1). 

 

Figure 12: Paradigm shift 

This dynamic allocation requires real-time data and interconnection of systems, which was not 

possible before the arrival of technologies that characterize the Industry 4.0 revolution. In order to 

evaluate the possible benefits of this paradigm shift, we conducted a case study with an industrial 

partner, APN. We aimed at providing insights into what this shift from a static allocation to a 

dynamic allocation could provide in terms of productivity and the implications of such a shift. We 

also wanted to provide the manufacturing sector with results using real industrial data in order to 

motivate and inform them about this possible shift to a dynamic allocation of human resources. 
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2.1 Objectives 

The project’s objectives are defined as follows: 

1. Analyze a metal manufacturing system, focusing on the different tasks necessary for the 

production of metal parts 

2. Define scenarios allowing real-time allocation of operators for such a system  

3. Measure the impact of this form of allocation in terms of number of parts produced in a 

week and delays caused by operators in the production 

4. Facilitate the implementation of the dynamic allocation method in the real world  

 

2.2 Industrial case study presentation 

This project was realized in collaboration with the manufacturing company APN. APN is a high-

precision metal parts manufacturing company. Their principal sectors of sales are the aeronautical 

sector and the military sector. In Figure 13, we see different types of metal parts produced by APN. 

 

Figure 13: Metal parts produced by APN, our industrial partner 

APN employs some 135 employees located in their two factories in Québec City, as well as in 

their factory in California. As part of this project, we limited ourselves to the study of one of the 

factories in Québec City, located on Boulevard du Parc Technologique. 

Our industrial partner is considered a leader of Industry 4.0 in Québec City. During the last ten 

years, they developed a solution in the form of a Computer Integrated Manufacturing (CIM) 

software. This solution, shown in Figure 14 (left), is the central piece that allows for integration 

and interconnection of all their systems. Employees, administrative as well as operators, use this 

solution constantly to support their work (right). 
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Figure 14: Computer Integrated Manufacturing (CIM) solution (left) and CIM in use by an operator (right) 

 

APN also has high degrees of automation in the factory. For example, in Figure 15, we see a 

collaborative robot transporting a metal part (left) and a mechanical arm moving a metal part 

(right) when it exits a machine. 

    

Figure 15: Robots in use in the factory 

 

2.2.1 Metal production with CNC machines 

The metal production line can include different steps, such as polishing and assembly. The main 

step, required for every single metal part, is to be machined on a Computer Numerical Control 

(CNC) machine. This step is the most important and central part in metal production since it allows 

for the parts to be produced. While all parts require to be processed on CNC machines, the other 

steps are all optional. CNC machines possess rotating tools that cut and shape the raw metal fed in 

order to produce a part according to its computer program. 
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The processing of parts on the CNC machine is the main focus of our project. In Figure 16, we see 

how this step is carried out. Raw material is provided to a CNC machine, which then automatically, 

with a computer program, produces a number of metal parts. 

 

Figure 16: Metal parts production 

 

2.2.2 Production sectors 

Our industrial partner currently has 25 CNC machines in their factory located in Quebec City. 

While the production on each of these machines is similar to what is shown in Figure 6, there are 

some distinctions to be made and the CNC machines are divided into three sectors: the lathes, the 

milling machines, and the combitec machines. In Table 3, we show a complete inventory of the 

CNC machines at the beginning of the project. Italicized numbers account for available CNC 

machines including acquisitions by APN during the project. The simulation model experiments 

were performed on the initial number of CNC machines while the optimization model experiments 

were performed on the updated number of CNC machines. 

Table 3: CNC machines inventory by production sector 

 

Total: 22 (25 )

Lathes Milling machines Combitec

Total: 12 (14 ) Total: 6 (7 ) Total: 4

NAK-3 GROB-1 COMBITEC-1

NAK-4 GROB-2 COMBITEC-2

NAK-5 GROB-3 COMBITEC-3

NAK-6 GROB-4 COMBITEC-4

NAK-7 GROB-5

NAK-8 GROB-6

NAK-9 GROB-7

NAK-10

INDEX-1

INDEX-2

INDEX-3

INDEX-4

TRAUB-1

TRAUB-2

CNC machines inventory
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There are some distinctions between the machines present in the different production sectors. In 

Figure 17: Different types of CNC machines in each sector – lathe (left), milling machine (center) 

and combitec (right), we see an example of all three types of machines that are located in each 

production sector of the factory. 

 

Figure 17: Different types of CNC machines in each sector – lathe (left), milling machine (center) and combitec (right) 

 

2.2.2.1 Lathes 

The biggest sector in the factory is the lathes sector, in number of machines, floor surface, and 

typical number of operators. CNC machines in this sector have a 4-foot bar feeder, except for the 

TRAUB-1, INDEX-1, and INDEX-2 machines which have an extra long 12-foot feeder. A 

mechanical arm is located at the exit of all the CNC machines in the lathes sector, in order to grab 

the machined metal part, clean it, and insert it in a plastic tray. This sector is the one with the 

highest degree of automatization. 

 

2.2.2.2 Milling machines 

The milling machines possess a palletizer and they do not have a bar feeder nor a mechanical arm. 

The palletizer in the CNC machine means that while a part is being produced, an operator can 

install the metal raw material for the next part. Indeed, in this sector, machines require a metal 

puck for each machined part since they do not have a bar feeder. This sector has a production 

process that is also a bit different. Parts may need to go through the machine multiple times in 

order to be completed. For example, a given part may need to be processed in three different steps. 

In order to model the machines in this sector, many hypotheses were required, such as limiting 
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each part processing to a single step. Because of this particularity, production scheduling is 

typically the most difficult for this sector. 

 

2.2.2.3 Combitec 

Finally, the combitec sector is composed of small precision machines that require a metal puck for 

each part, but they do not possess a palletizer, contrary to the milling machines. This means that 

between each part, the machine needs to be opened to remove the machined part and install the 

next metal puck. Machines in this sector are also the oldest in the factory, which require 

experienced operators to work them. 

 

2.3 Methods 

The four phases of the project’s methodology are presented in Figure 18. 

 

Figure 18: Methodology followed 
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2.4 Literature review, objectives and methods 

At the beginning of the project, different meetings with the industrial partner and a visit of the 

factory led to the definition of the problem to investigate during the research.  

Once the problem was defined, a set of keywords was established in order to conduct an exhaustive 

literature review. The literature surrounding the problem and the different methods used to solve 

it were explored and reviewed. Different scientific databases (Scopus, IEEE Xplore, 

ScienceDirect, Google Scholar, ResearchGate) were used, as well as popular conferences 

proceedings (Winter Simulation Conference, Manufacturing Modelling, Management and Control 

Conference). Abstracts of the articles corresponding to the keywords were read in a first iteration. 

If the abstract seemed relevant to our study, the article was read in a second iteration with a focus 

on the introduction and the conclusion sections. The articles that proved to be especially relevant 

to our study were read entirely during a third iteration. 

With a definition of the problem and a review of the literature, we were able to define the objectives 

of the project, that were presented above. The objectives were established in order to advance 

scientific and industrial knowledge as well as help our industrial partner. 

The different available methods to tackle the problem were then explored. Since the literature had 

been reviewed, we knew what methods were available to us. We decided to first simulate the 

factory processes. The second method chosen was to establish an optimization model. We knew 

that with a system as complex as ours, a discrete-event simulation technique could be an interesting 

way to study it thoroughly. We also figured that the allocation and scheduling problem could be 

tackled with an optimization model.  

In order to better understand the environment and processes at our industrial partner’s site, many 

meetings were held with different resources, such as engineers, operators, directors, etc. During 

each meeting, the comprehension of the case study increased. Multiple observation periods with 

operators also took place during different working hours in the factory. This way, we were able to 

directly observe the different processes and refine the case study to investigate. The results are 

reported in chapter 3. 



28 

 

2.5 Evaluating the effects of dynamic allocation with discrete-event simulation 

Once we had a good comprehension of the system and its processes, we began modeling the system 

in terms of simulation. Having worked with simulation before, we knew how to define the different 

aspects of the case study in order to include them in a simulation model.  

The simulation model was presented to the R&D director at APN’s, which helped clarify which 

data could be used for the project. Then, meetings with developers were held in order to access 

these data. Data were collected in a JSON format and validated in multiple iterations. Once data 

were reliable and validated, several transformations were required in order to use the data as an 

input in the simulation model (in CSV). 

After collecting the available data, we were able to clarify and formulate modeling hypotheses. 

These hypotheses were all validated with the R&D director and the project team to have the most 

reliable representation of the system possible. Collaboration with a project engineer in charge of 

collecting processing times for the different operations was also required.  

Then, the model was implemented in Simio. Simio was chosen for its interesting visual 

representation that would allow us to show the model to the industrial partner. Implementation in 

Simio was coupled with the validation of the model. The model was validated by presentations 

and interviews with different process engineers and the R&D director of the company. 

When errors or imprecisions were detected in the validation phase, we reviewed and modified the 

data with developers. These multiple iterations of validation and detailed data collection led to a 

precise model that represented closely the system of production under study. Then, a final detailed 

data collection was executed, ready for the different experiments. 

In order to reach our objectives, three scenarios were defined for the simulation: one representing 

the current situation in the factory (the status quo), another one allowing for operators to be 

dynamically allocated to tasks based on their current skill levels, and a third one with dynamic 

allocation and perfectly polyvalent operators. 

Once we had our data and scenarios, we were able to run different experiments in Simio. 

Experiments represented a challenge since they were resource-intensive for the computer. We had 
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to proceed to a change of computer in order to be able to run all the experiments and replications 

required. 

The results obtained in the experiments were analyzed individually and then additional 

experiments were executed, in order to push the analysis further and provide different performance 

indicators. 

 

2.6 Proposing an optimization model for the real-time allocation of tasks to operators 

Having already collected data as part of the simulation phase of the project, we had a starting point 

for the optimization model. Different and more specific data were nonetheless required for certain 

parts of the optimization model. 

Two models were developed, one using mixed-integer programming (MIP) and another one using 

constraint programming (CP). Lindo was the tool employed for the MIP model and MiniZinc was 

the one exploited for the CP model. The models were validated by interviews with the industrial 

partner, similarly as with the simulation model. 

Experiments were conducted in order to compare the performance of the two models. The 

conclusion was that the CP model outperformed the MIP model. 

Once the model had been chosen, further data were necessary in order to execute a real-time 

optimization model. We collected data from additional data sources (e.g., the CNC machines) with 

the support of the APN’s development team.  

Iteratively, the CP model was adjusted to fit the additional input data received. Every time the 

model was modified, further validation was necessary. Once we knew the collected data and the 

CP model were valid and accurate, an official data collection was executed for the experiments. 

Experiments were conducted to test and compare the same scenarios defined for the simulation 

phase of the project. 

Once the results were analyzed, an additional experiment was put in place in order to provide 

further analysis concerning the different scenarios investigated. 
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Finally, the implementation of the real-time task allocation system began. An implementation 

roadmap was put in place and presented to the industrial partner. Different aspects of the 

implementation were discussed. A first artefact was provided to the industrial partner. 

While this thesis in being written, tests on the production floor are about to begin. The next steps 

have already been defined by our project team. 
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Chapter 3: Evaluating the effects of dynamic allocation with discrete-

event simulation 

In order to analyze the impact the proposed paradigm shift might have on the manufacturing job-

shop, we developed a discrete-event simulation model. It represents the production floor of our 

industrial partner. Firstly, we needed to model the different tasks and processes (Section 3.1). This 

allowed us to request the necessary input data in order to run experiments with the simulation 

model. The model was verified with experts in the shop. Then, the model was implemented using 

Simio simulation software (Section 3.2). A validation phase was also conducted based on some 

guided hypotheses. Following the validation, we were given access to additional data regarding 

the scheduled jobs as well as the production floor layout. These new data were used in a simulation 

experiment. In the experiment, three different scenarios are compared regarding how they affect 

the number of parts that can be produced in a week. The first scenario uses static allocation (1), 

the second uses dynamic allocation with their current set of skills (2), and the third one uses 

dynamic allocation with polyvalent operators (3). These aspects will be presented in Section 3.3. 

 

3.1 Model 

While most simulation models focus on product flow, our need was to model sequences of tasks: 

some performed by operators, some by operators and machines, others simply by machines. A 

classic simulation model approach is to have entities representing the physical products/items 

moving from one machine to another. Since our aim was heavily reliant on the tasks surrounding 

these parts, this type of modeling would have required a lot of workarounds to correctly model the 

various behaviours of interest throughout the production process. Instead, we opted for an 

alternative modeling approach. In our model, an entity represents a single task. This task might 

need to be performed by an operator, by a machine, by a coordinates measurement machine 

(CMM) or by an optical comparator (CO). Combinations are also possible, where an operator is 

needed in addition to another type of resource. 

A conceptual representation of the model is given in Figure 19: Simplified conceptual 

representation of the simulation model. The plant currently has 22 CNC machines (e), 31 operators 
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with different sets of skills (d), four measurement machines (f) including two coordinates 

measurement machines (CMM), one automatic optic comparator, and one manual optic 

comparator. 

From the APN production schedule (a), we could extrapolate a predictable sequence of tasks to 

perform: parts machining (blue), measurement (red), and others (yellow). Parts machining is 

executed on CNCs. Simultaneously, other tasks may be accomplished by an operator on a 

worktable (b), although some require the CNC to be inactive. After leaving the workcenter (e), 

some parts need to be measured for quality control. This is a complex process that may involve 

different measuring instruments and measurement machines. If a measure is outside the 

specification limits, we begin a non-conformity process and a corrective action task (e.g., tool 

change) might be created and inserted in first place into the waiting queue of tasks. 

 

 

Figure 19: Simplified conceptual representation of the simulation model 

 

3.1.1 Task types 

Because the main focus of the model is on the different tasks at hand, this subsection summarizes 

the main types of tasks that may occur in the workcenter (e). 
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Table 4: Task types and their predictability and required resources. *The tasks requiring an operator may also require 

measurement machines. 

 

We will first describe the predictable tasks such as parts machining, tool changes, raw material 

addition, setup, and parts machining. Then, the non-predictable tasks which occur in the non-

conformities process will be presented. 

 

3.1.1.1 Parts machining 

Parts machining is considered the most important task since it has the most direct impact on the 

company’s productivity. Nevertheless, in the context of this study, we are more interested in the 

surrounding tasks since parts machining does not need an operator to be performed. Indeed, once 

their setup is over, CNC machines may machine parts on automatic mode. Parts machining tasks 

require a certain processing time, depending on the complexity of the product being produced. The 

product’s specifications are directly linked to the job in progress on the CNC machine. Parts 

machining is included in the simulation model in order to pace the other tasks requiring operators. 

It is also useful in order to extract performance indicators. 

 

3.1.1.2 Tool change 

Tool changes consist of removing one of the tools placed inside the CNC machine with a new one. 

Each CNC machine uses different tools to machine the metal. Since tools are used to remove metal 

matter on the metal parts, they can only be used for a certain number of parts before they are worn 

out and lose their initial shape, which would result in parts outside the specification range. 

Therefore, the tool changes occur according to a certain part frequency depending on the current 

job on a given workcenter. For example, a certain tool may require to be changed after every 10 

parts machined on the CNC machine. The part frequencies are determined by the quality control 

department and are known in advance when a job begins.  

Non-predictable

With schedules With frequencies With probabilities

Offset (corrective action)

Parts measuring (backtracking/forwardtracking)

Tool changes

Raw material addition

Predictable

Operators*

Operators + CNC machines

CNC machines

Setups

Parts measuring

Tool changes (corrective action)

Parts machining
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Tool changes may also occur after an unexpected event occurs. For example, if a tool breaks during 

production, it needs to be changed immediately, before resuming the machining process. 

When a tool change occurs, the CNC machine must be stopped so it can be opened for the old tool 

to be removed and the new one to be added. 

 

3.1.1.3 Raw material addition 

Metal must be provided to the CNC machines in order to produce parts. Our industrial partner 

possesses two different types of machines for raw material addition: one that uses a metal bar with 

a feeder to produce many parts per bar, and another that needs a metal puck for each part. For the 

first type of machine, the length of the machined part is known, as well as the length of the metal 

bar. There is also a certain quantity of metal lost, which we call the cut-off, and its length is also 

known. With this information, we are able to calculate the part frequencies at which a new metal 

bar must be provided to a CNC machine. For the second type of machine, we simply use a 

frequency of one, since after every part, a metal puck must be provided to the machine. When raw 

material addition occurs, the CNC machine must be stopped so it can be opened for the material 

to be added. However, there is an exception to this rule. A certain type of machine, the milling 

machines, possesses a pallet system that allows for a raw material puck to be added while the 

machine is working. Table 5 shows the characteristics of the raw material addition for each of the 

three types of CNC machines. 

Table 5: Raw material addition characteristics for the different CNC machine types 

 

 

3.1.1.4 Setup 

The setups are the longest tasks. Although in practice they are composed of multiple subtasks, they 

were modeled as one long task since their total processing time is known by our industrial partner 

and typically allocated to a single operator. Alternatively, the multiple subtasks could also be 

modeled separately if more data were available for each one. A setup consists of preparing a 

CNC type Metal feeder Parts frequency Requires CNC to be inactive

Lathes Bar Variable Yes

Milling machines Puck One No

Combitec Puck One Yes
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machine for a new job. It occurs between different jobs. Setups often last many hours. In a setup, 

tools must be prepared and changed, computer programs must be loaded in the machine, and then 

the first parts produced need to be controlled at 100% before letting the machine run on automatic 

mode. Setups are always the first task to occur when a new job arrives. The order of the jobs to 

arrive is known, as the priorities are determined by the scheduling team, which directly gives us 

the setup task. 

 

3.1.1.5 Parts measuring 

Parts measuring is the most complex task to model, and also the most critical one from the point 

of view of the industrial partner. Indeed, since their parts are used in the aeronautical sector, an 

elaborate quality control system is used with many processes, machines, and instruments. Every 

type of part is characterized by many defining characteristics, for example the diameter of a 

cylindrical part. Every characteristic of a machined part must be measured with frequencies 

determined in advance by the quality control team. For example, a given part might have up to a 

hundred different characteristics that each need to be measured at certain frequencies. The quality 

control team normally tries to determine frequencies that have a common multiple, so that when a 

given part is being controlled, many of its characteristics are measured, minimizing the number of 

distinct parts that need to be controlled for different characteristics. Some characteristics might 

need to be measured every 6 parts, while others need measuring every 12 or 24 parts. Some parts 

even have extremely critical characteristics that must be measured on every single part (so with a 

frequency of one). 

Adding to the complexity of the system is the fact that different characteristics need to be measured 

using different instruments, or machines. Many characteristics are measured manually using 

instruments such as a caliper, while others are measured on CMMs or optical comparators. Manual 

measures are taken directly at the workcenter, on a table next to the CNC machine. Every table 

possesses the necessary instruments to measure the parts on the current job. A given parts 

measuring task may then include multiple different characteristics, meaning that it may need to be 

processed at up to three different places (the worktable, an optical comparator, and a CMM). 

The two following tables show how the quality control is planned for a given job producing a 

certain part. In Table 3, we see all the characteristics (A through E) that need to be controlled 
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(measured) on this part number (A7D2J4), their measuring frequency in terms of number of parts, 

as well as the tool required to conduct the measure. In Table 4, we see how this quality system is 

translated into tasks for a job producing 10 of those parts. Since D has a measuring frequency of 

one in this example, we need to measure certain characteristics for every part. Typically, not every 

part needs to be measured, although, a critical characteristic that needs to be controlled for every 

part may occur in real life. MOC stands for Manual Optical Comparator and AOC for Automatic 

Optical Comparator. Manual represents all manual tools that operators may use on the worktable. 

Table 6 data, provided by our industrial partner, is converted to Table 7 data when generating the 

list of predictable tasks, before the simulation begins. 

Table 6: Characteristics measured on a given part with their measuring frequency (in number of parts) and the required tool to 

take the measurement. 

 

Table 7: Example of a sequence of machined parts on a given job with their characteristics that require to be measured as well 

as the list of tools required to take the measurements. 

 

The processing times for the characteristics measured on the CMM comes from the company’s 

database. The data needed to be adjusted since the processing times recorded by the CMM were 

from a set of characteristics and not for a specific characteristic. We needed to match the sets of 

measures from the tasks in the simulation with a set of measures recorded in the CMM database. 

When no match was found in the database (meaning that this particular set of characteristics was 

measured for the first time), processing times were extrapolated from similar sets of characteristics.  

Characteristics Measuring frequency Tool

A 2 CMM

B 4 MOC

C 2 AOC

D 1 Manual

E 3 Manual

Part number Characteristics measured Tools required

1 D Manual

2 A, C, D CMM, AOC, Manual

3 D, E Manual

4 A, B, C, D CMM, MOC, AOC, Manual

5 D Manual

6 A, C, D, E CMM, AOC, Manual

7 D Manual

8 A, B, C, D CMM, MOC, AOC, Manual

9 D, E Manual

10 A, C, D CMM, AOC, Manual

Part A7D2J4

Job A7D2J4-1

Characteristics Measuring frequency Tool

A 2 CMM

B 4 MOC

C 2 AOC

D 1 Manual

E 3 Manual

Part number Characteristics measured Tools required

1 D Manual

2 A, C, D CMM, AOC, Manual

3 D, E Manual

4 A, B, C, D CMM, MOC, AOC, Manual

5 D Manual

6 A, C, D, E CMM, AOC, Manual

7 D Manual

8 A, B, C, D CMM, MOC, AOC, Manual

9 D, E Manual

10 A, C, D CMM, AOC, Manual

Part A7D2J4

Job A7D2J4-1
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The processing time for the characteristics measured on the optical comparator as well as with 

manual instruments were obtained from a previous project regarding the automatization of the 

measuring process in which the individual time to measure a characteristic with each of the 

different instruments was approximated by the engineering team. 

The handling of parts between stations (transport) is included in the measuring process. While the 

worktable is directly next to the CNC machine as part of a single workcenter, the measuring 

machines are shared between all CNC machines in the factory and are located remotely from the 

CNC machines. Table 8 shows the resources required for the processing and the transport of the 

different tasks.  

Table 8: Resources required for the different types of parts measuring machines/instruments. *Collaborative robot. 

 

The manual optical comparator needs to be reached on foot by the operator wanting to measure its 

part. Since the measure is taken manually with this machine, the operator must move to the optical 

comparator with the part, wait in line if the optical comparator is not currently available, measure 

the part with the optical comparator, and return to the original workcenter with the measured part. 

The automatic optical comparator also needs to be reached on foot, but once the measuring step 

starts, the operator may leave the station to do something else in the factory. The operator must 

return to pick up the part once the measuring process is over and bring it back to the original 

workcenter. 

The parts measured at the CMM need to be transported with a special collaborative robot (cobot). 

When a part is ready to be measured, the operator places it in a vice in a special location next to 

its machine, and the cobot comes and picks it up, transports it to the CMM machine, and brings it 

back once it is measured. The operator must then remove the measured part from the vice and 

place it with the other completed parts. Every machine has its own pickup location, except for the 

Combitecs. The Combitecs only have one common location where the vice with the part must be 

installed before being picked up by the cobot. The operator must then move the part from the 

Processing Transport

Manual optical comparator (MOC) MOC + Operator Operator

Automatic optical comparator (AOC) AOC Operator

CMM CMM Cobot*

Manual instruments Operator -

Resources required
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workcenter to the pickup location and move it back to the workcenter from the pickup location 

once it is back from the CMM. 

 

3.1.1.6 Tasks generated by the non-conformities management process 

Simulation to analyze processes that has some stochastic effects. In our case, stochasticity comes 

directly from the fact that parts measured may be outside the specification range. When we 

determined a value is out of specifications, we start a process dealing non-conformities, which 

may generate additional tasks for the operators. 

Figure 20 presents the non-conformity management process. A non-conformity occurs when a 

given characteristic is out of the specified range. The quality system of the company has two 

different triggers, warning (yellow) and critical (red). A non-conformity may issue only a warning 

(yellow), meaning that the machined part will still be accepted by the client, but a corrective action 

needs to be taken to bring the next parts back to the accepted range (green). A non-conformity 

may also be critical (red), meaning that the machined part needs to be discarded. In this case, 

previous machined parts must also be measured to ensure that they are acceptable with a process 

called backtracking. In backtracking, the problematic characteristic must be measured on some 

previous parts, given that they were not previously measured, until the characteristic is yellow or 

green. Following the backtracking (if the characteristic was in the red zone), or immediately after 

the characteristic is measured (if it was in the yellow zone), a corrective action must be taken. 

Different corrective actions exist, the two most frequent being a premature tool change or an offset, 

which are the ones modeled in the simulation model. Following this action, the given characteristic 

must be measured on the next machined part under a process called forward tracking. If the 

machined part’s characteristic is in the green zone, the non-conformity is considered dealt with, 

and the automatic production may resume. If the machined part’s characteristic is either in the 

yellow or red zones, it means that the corrective action was not successful, and we must correct 

the machine once again. We execute this process until we are able to produce a part with its 

characteristic in the green zone. 
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Figure 20: Non-conformity management process 

 

3.2 Implementation in Simio simulation software 

In our project, Simio was chosen for its visualization capabilities. It has been used in other 

publications such as in Munasingha and Adikariwattage (2020) to model passenger processing at 

an airport and in Costigliola et al. (2017) to model quality control laboratories in the 

pharmaceutical industry. 

In order to understand the implementation of a model in Simio, some basic concepts are defined 

in Table 9. 

Table 9: Basic concepts of Simio simulation software as defined by Pegden (2009). 

 

Figure 21 shows the entire factory represented in the simulation model as implemented in Simio. 

Scheduling (a) is the source where all the initial entities are created. They are created following an 

exhaustive data table, that is imported in Simio at the beginning of the simulation run. The data 

table will be presented in detail in the section Input data. They are routed to the corresponding 

workcenter (e) depending on their properties. Workers are included in the model with their full 

Name Definition

Entity Base object.

Source Creates entities that arrive to the system.

Sink Destroys entities and records statistics.

Server Fixed object that models a service process with input and output queues.

Node Entry and exit point of a server.

Resource Models a resource that can be used by other objects.

Vehicle Carries entities between fixed objects.

Connector A zero-time connection between two nodes.

Path A pathway between two nodes where entities travel based on speed.

Add-on process Set of user-defined actions that take place over time that may change the state of the system.
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name, schedules, and skills. Task entities are routed to the appropriate measurement machine 

depending on their initial data, following some add-on processes. As stated, the different entities 

created in Simio represented the different tasks (g) of interest that could occur during production. 

The four measurement machines (f) are also included in the simulation model. Finally, the cobot 

(h) is represented by a transporter that can transport parts from their pickup to the CMMs and back. 

Entities may only move in the simulation model when transported either by a cobot or an operator, 

with the exception of when they are initially created by the source and routed to their workcenter. 

In the model, operators act as resources, as well as vehicles. 

 

Figure 21: Illustration of the complete factory simulation model as represented in Simio 

The factory simulation model includes multiple workcenters that behave in a similar way. 

Workcenters (e) were created as sub-models that is then duplicated. An illustration of a single 

workcenter is presented in Figure 22. The workcenter model has two servers; one (SrvMachine) 

representing the CNC machine (c), and another (SrvPoste) representing the worktable (b) where 

manual measures may be taken. For the rest of this section, the SrvPoste will be referred to as the 

worktable. 

Task entities enter the workcenter model and are directly routed to the input node of the CNC 

machine. Depending on their data, they are next routed either directly to the sink, to the worktable 

server, or to an external server in the complete simulation model that corresponds to a measuring 

machine. 
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Figure 22: Illustration of the workcenter simulation model as represented in Simio. 

Since the simulation model was intended to be used by higher management, it was designed to be 

as representative of the factory as possible. An appealing 3D model view was developed. In Figure 

23, we can see the view of workcenters that possess a worktable and a CNC machine on top, as 

well as the different measuring machines and even the cobot. Since tasks are an abstract concept, 

it was decided to leave them as triangles icons so as not to mix up the users of the model into 

thinking that they represent metal parts. 

 

Figure 23: Illustration of the complete 3D factory simulation model as represented in Simio 
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3.2.1 Modeling assumptions 

Some assumptions needed to be made in order to simulate the production floor. Different 

parameters chosen in Simio are also listed here. 

• The walking speed of all operators was set to 1.4 meters per second. 

• Operators select the next available task located at the smallest distance from their current 

position once they become available or a task is released. 

• When off shift, operators in the simulation “wait” at a given node, common for all 

operators. 

• When idle, operators wait where they were located when their last task ended. 

• The cobot moves at a speed of 0.5 meter per second, corresponding to its real speed. 

• The cobot may only transport one entity at a time.  

• The cobot selects the task that is the first in queue. In reality, the cobot uses a complex 

algorithm to decide which part should be measured next, but that was not implemented in 

the simulation model. 

• If an operator is measuring a part on the optical comparator when its shift finishes or he 

begins his break, it must first complete the task started. 

• If an operator is processing a task on one of the workcenters’ servers (the worktable or the 

CNC machine) when its shift finishes or he begins his break, the task can be allocated to 

another operator (switch resources if possible). 

• The worktable server has an infinite capacity, meaning that many operators may execute 

tasks at the same time on this server. 

 

3.2.2 Input data 

Task entities generated by the source are created following an input data table. This table contains 

all the required properties for each task entity. All the properties of the input table are as follows: 

• Row: An incremental ID in order to reference a task when needed in the model. 

• Job: The job number associated to a task. 

• Workcenter: The workcenter on which the task must be processed. 
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• ArrivalTime: All tasks arrive at the beginning of the simulation and are placed in order 

following their priority, so that a given CNC machine never runs out of tasks to process. 

• TypeEntity: Represents the type of tasks. Multiple types of tasks are implemented in the 

simulation model but only some are created for the current experiments. 

• Qty: The source of the Simio model produces the entities following the table, with a 

quantity determined in the Qty column. The quantity is either 1 or 0 and represents the 

initial quantity that the source must produce. For every deterministic task, the quantity is 

of 1. For tasks that may occur depending on a stochastic process, the quantity is 0. 

• IDEntity: Tasks all relate to a given part number. The IDEntity corresponds to the part 

number. Many tasks have the same IDEntity when they relate to the same part. 

• Priority: Some task types have higher priorities than others. For example, a tool change 

has a higher priority than a part measuring. 

• TimeCNC: Processing time of the task on the CNC machines. Can be 0 if the task does not 

require the CNC machine. 

• TimeWorktable: Processing time of the task on the worktable. Can be 0 if the task does not 

require the worktable. 

• TimeCMM: Processing time of the task on the CMM. Can be 0 if the task does not require 

the CMM. 

• TimeACO: Processing time of the task on the automatic optical comparator. Can be 0 if the 

task does not require the automatic optical comparator. 

• TimeMCO: Processing time of the task on the manual optical comparator. Can be 0 if the 

task does not require the manual optical comparator. 

• NeedOperator: If the task is fully automated, this field has the value 0 since it does not 

require an operator. If the task requires an operator, this field has the value 1. 

• IsMeasure: If the task is a measuring type task, this field has the value 1, and it has the 

value 0 otherwise. This field exists since many subtypes of measuring tasks exist (e.g. a 

measuring task in the backtrack context) and we need to distinguish all the measuring tasks. 

• NeedProcessingWorktable: If the task has a processing time on the worktable that is not 

null, this field has a value of 1, it has a value of 0 otherwise. This field helps in routing the 

entities to the correct server in the simulation. 
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• ProbGenToolChange: This field contains the probability of an entity generating a tool 

change task once it is completed. It is used in the context of the non-conformity process 

when a corrective action is required. 

• ProbGenOffset: This field contains the probability of an entity generating an offset task 

once it is completed. It is used in the context of the non-conformity process when a 

corrective action is required. 

• ProbGenBacktrack: This field contains the probability of an entity generating a backtrack 

measuring task once it is completed. It is used in the context of the non-conformity process 

when a corrective action is required. 

• InputMachine: This field has a reference to the input node of the corresponding 

workcenter’s machine server. It is useful in routing the entities. 

• InputSink: This field has a reference to the input node of the corresponding workcenter’s 

sink. It is useful in routing the entities correctly. 

• PickupCMM: This field has a reference to the input node of the correct pickup location. 

The pickup location is modeled with a server. All workcenters possess their own pickup 

locations with the exception of the Combitecs who all have the same common pickup 

location. 

• SrvCMM: When there are two CMM available, parts may only be measured on one of them 

depending on the available probes (measuring tools) currently installed on the CMMs. This 

field has a reference to the CMM where the part must be routed. 

• InputCMM: This field has a reference to the input node of the corresponding CMM server. 

It is useful in routing the entities correctly. 

• CMMInputBuffer: This field has a reference to the input buffer of the corresponding CMM 

server. 

• CMMOutputBuffer: This field has a reference to the output buffer of the corresponding 

CMM server. 

• ListOperatorsTransporter: This field lists the operators that may transport the entity. The 

list of operators in this field will change depending on the experimental scenario. 

• ListOperatorsObject: This field lists the operators that may process the entity. The list of 

operators in this field will change depending on the experimental scenario.  
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• WCMachine: This field has a reference to the CNC machine server of the corresponding 

workcenter. 

Data validity was ensured by screening the collected data with experts of the company. 

 

3.2.3 Modeling system behaviours with add-on processes 

Different Simio add-on processes were developed to model particular model behaviours, as 

described below. 

 

3.2.3.1 Routing tasks 

One complex aspect of the simulation model is to route the task entities correctly. While some 

simple tasks such as parts machining only need to be processed on the CNC machine server before 

ending up in the sink, other tasks need to go directly to the worktable while some need to travel in 

the factory to be processed on different measurement machines (those tasks represent a part 

moving in the factory). 

A simple method is used inside the workcenter to route the entity depending on whether it needs 

to be processed on the worktable or not. The connector towards the worktable server uses the 

binary value of the NeedProcessingWorktable field. Entities move towards the worktable if the 

binary value is equal to one. 

A Simio add-on process named DecidingDestination was implemented in order to route the 

entities correctly once they exit the workcenter (Figure 24). This process is triggered each time an 

entity enters the output node of the workcenter. Many different Simio objects may enter this node: 

an entity that exits the process, as well as a vehicle (i.e., an operator or a cobot) coming to pick up 

the entity. The process verifies whether what just triggered the process is a vehicle, in which case 

it is ignored. Otherwise, if the object is an entity, then it enters into the decisional part of the 

process. Depending on which server the entity needs to visit, which corresponds to processing 

times on these servers that are not null, the entity will be routed to the next server it has not yet 

visited. Entities hold a variable that keeps track if a server has been visited or not (see previous 

section Assigning values to tasks). If an entity is not a measuring task or once all servers that 
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needed to be visited have been visited, it can then be routed to the sink and disappear from the 

simulation model. 

 

Figure 24: DecidingDestination for the workcenter add-on process. This process is triggered when the output node of the 

workcenter is entered and routes the entities to the correct server. 

Finally, the pickup stations use a similar process in order to correctly route the entities to and from 

the CMM machine. If the CMM machine has not yet been visited, it is routed there, otherwise, the 

entity is routed to the sink, riding the cobot. Figure 25 shows the implementation of this process in 

Simio. 

 

Figure 25: DecidingDestination for the pickup station add-on process. This process in triggered when the output node of the 

pickup station is entered and routes the entities to the correct server. 
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3.2.3.2 Generating additional tasks 

The probabilities (ProbGenToolChange, ProbGenOffset, ProbGenBacktrack in 3.2.2 Input Data) 

of a part being outside the specification range comes directly from APN historical data. In Simio, 

the non-conformity process is triggered when an entity reaches the input node of the sink in its 

workcenter sub-model. This process randomly decides if a machined part meets criteria or not. 

The process to create tasks is crucial to appropriately represent the stochastic aspect of unexpected 

tasks happening at stochastic moments. The different types of tasks that may be created are the 

forward tracking parts measuring, the backtracking parts measuring, as well as two types of 

corrective actions: an offset and a tool change. In Figure 26, we see what this add-on process looks 

like in Simio. 
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Figure 26: Task creation add-on process. This process creates entities that represent the random tasks that need to be executed 

during the production and is triggered every time a task entity enters the wokrcenter’s sink. 
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The task entities linked to the non-conformity process are created inside the workcenter sub model. 

Based on the value of the parameters (ProbGenToolChange, ProbGenOffset, ProbGenBacktrack) 

of the entity triggering the process, this process will generate new entities. Once an entity is created, 

we must look at the data table to find the line that corresponds to the entity that needs to enter the 

model so as to associate the created entity to its correct parameter values. Every entity in the 

simulation model must refer to a line in the input data table since it is this table that holds many 

important parameters (e.g., the processing time of the entities). Those entities exist in the input 

table but were not created at the beginning of the simulation since they have 0 as their quantity. 

Once the correct row has been found, the entity is created based on this row. We assign the highest 

priority to this new task entity, so it is inserted at the beginning of the workcenter queue. Finally, 

it is transferred to the input buffer queue of the appropriate server, that is, the CNC machine or the 

worktable. 

 

3.2.4 Resource schedules 

Operators work under different schedules. They also have pre-determined lunch breaks and 

throughout their shift. Each operator modeled in Simio was given its regular schedule as a 

parameter. The data must be provided in a standard table in Simio (Figure 27). 

 

Figure 27: Work schedules of the operators in Simio 

As for the workcenters, they may run 24/7, provided that an operator in present to process its tasks. 

Otherwise, workcenters will naturally stop processing parts when they are waiting for an operator. 

With the parameters of the simulation determined by hypotheses and input data, as well as the 

different behaviours modeled with add-on processes, the simulation model was ready to run 

experiments. 
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3.2.5 Verification 

The simulation model was verified using a combination of techniques, as proposed by (Sargent, 

2004). Sargent (2004) defines model verification as “ensuring that the computer program of the 

computerized model and its implementation are correct”. Firstly, the technique of face validity was 

used, which consisted of asking experts in the company whether the modeled system behave 

correctly. A test of internal validity was also run, which consisted of experiments of several 

replications that helped to verify how the stochastic variability affected the results obtained based 

on the confidence intervals of different performance indicators. With the animation of the 

simulation model, we were also able to verify the system behaviour by observing the different 

moving parts under different circumstances. A sensitivity analysis was furthermore performed. 

With different values of probability, we looked at the stochastic variability in the model to ensure 

that it concorded with our expectations of how it should behave. At many stages in the 

development of the simulation model, the trace, which details each step executed in the simulation 

model by each entity, was examined step by step to ensure the accuracy of the model’s logic. 

Finally, different events were compared between the simulation model and the real system to verify 

if they were comparable under a technique called event validity. For example, we looked at the 

number of machined parts and the number of setups executed in a week. 

 

3.3 Experiments  

In this section, we will present two experiments. The first experiment aimed at validating the 

simulation model as well as giving first results on the comparison of the different scenarios. 

(Schlesinger, et al. 1979) defined model validation as “substantiation that a computerized model 

within its domain of applicability possesses a satisfactory range of accuracy consistent with the 

intended application of the model”. The second experiment compares dynamic and static allocation 

on the basis of a week of production to analyze different performance indicators such as the total 

number of machined parts. 

Three different scenarios were compared to see how they affect the productivity of the production 

system (total time needed to carry out a production schedule) and the total distance traveled by 
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operators. Each scenario is defined by an allocation policy and a set of operators skill levels. The 

scenarios are summarized in Table 10. 

Table 10:  Scenarios presented 

 

The base case scenario is called StaticAllocation. One operator is allocated to one CNC. Once the 

shift is over, another operator takes over. This scenario represents the way the tasks are currently 

allocated. Under the DynamicAllocationCurrentSkills scenario, we dynamically allocate it to the 

closest free and compatible operator that has the skills for the task. As an upper bound, we also 

simulated the utopic DynamicAllocationAllSkills scenario, where each operator would be trained 

for all machines and tasks. In Figure 28, the two different allocation policies are represented. 

 

Figure 28: Allocation policies. One Operator <-> X machines (top) and X Operators <-> Y Machines (bottom). 

 

3.3.1 First experiment: Model validation 

The first experiment helped validate the simulation model when looking at the results for the 

StaticAllocation scenario, which represents the real system in its current state. It consisted of 

providing a finite number of parts as part of different jobs to machines. The same quantity of jobs 

was scheduled on each workcenter. Jobs may vary in number of parts. Then, the experiment ran 

for as long as it took to complete all tasks related to the machining parts tasks. In this experiment, 

there was no time limit imposed since our principal interest was to determine the time required to 

produce a given number of jobs on the CNC machines in the production system. A single dataset 

Name of the scenario Allocation policy Skills

StaticAllocation One operator ↔ X machines Current

DynamicAllocationCurrentSkills X operators ↔ Y machines Current

DynamicAllocationAllSkills X operators ↔ Y machines All
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was collected as explained in previous section. Once the simulation model had processed all of the 

entities, we considered the production over and we analyzed the results. 

 

3.3.1.1 Results 

The following are the average results from 100 replications (95 % confidence intervals) of a given 

production schedule. Figure 29 shows the total production time in hours it took for the simulation 

model to process all entities (that is, the makespan). 

 

Figure 29: Production time in hours required to produce a finite number of parts represented by parts machining tasks. 

Results obtained for the StaticAllocation scenario were consistent with what was expected of the 

real system based on different performance indicators such as the production time it takes to 

produce the number of jobs given as input. Results also show that on average, dynamic allocation 

(DynamicAllocationCurrentSkills) reduced total production time by 40.4 %. The 

DynamicAllocationAllSkills scenario led to some additional improvements, but it involved 

important training costs. The reduction of the confidence interval comes from the fact that under 

the DynamicAllocationCurrentSkills scenario we are much less affected by the stochastic nature 

of the processing times. Since jobs are scheduled on CNC machines in advance and cannot be 

processed by another machine, makespan may be greatly impacted by a delay on a single machine, 

while other CNC machines may be done with all their tasks. 

In Figure 30, we present the results for the total distance traveled by operators in order to complete 

all tasks. 
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Figure 30: Total distance walked by the operators depending on the scenario. 

We notice that results are very similar for StaticAllocation and DynamicAllocationCurrentSkills. 

This may be explained by the fact that operators are currently skilled for a subset of machines that 

are physically close to one another. DynamicAllocationAllSkills greatly impacts walking distance 

since multi-skilled operators may be called upon to travel between the different departments to 

deal with tasks instead of mostly staying in the same one. 

This validation phase led to interesting results, although many hypotheses were required to 

produce all necessary input data. After seeing the promising results from this phase, our industrial 

partner was much more inclined to provide necessary data to simulate a week of production using 

the simulation model. 

 

3.3.2 Simulation of a full week of production 

In this experiment, an entire week of production was simulated. We want to compare the proposed 

scenarios on the basis of a full week of production, all while using the same performance indicators 

as those with which the company is comfortable in order to motivate the implementation of the 

task system on the production floor. The production team relies on weekly indicators indicating 

the number of parts produced during the week as well as the utilization time of machines, that is, 

the time spent machining parts on CNC machines. Additionally, the number of parts produced 

during a week may give better indications on the overall productivity of the factory.  

The simulation model was kept identical with a few exceptions following the validation made in 

the previous experiment. Firstly, the partner provided the layout of the factory so we were able to 
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place the different objects in the Simio simulation model in a manner that would better represent 

the actual production floor. The four different sectors were represented, that is: the Combitec 

sector, the lathes sector, the measurement machines sector, and the milling machines sector. Figure 

31 shows the different production sectors in the simulation model. 

 

Figure 31: Modifications to the simulation model – Illustration of the realistic floor layout with the different production sectors 

in Simio. 

 

3.3.2.1 Results 

The following are the average results from 100 replications (95 % confidence intervals) of a given 

production week. Figure 32 presents the number of parts machined in a 168-hour week of 

production. 

 

 

Figure 32: Number of machined parts during a 168-hour work week under the different scenarios 

Dynamic allocation under the DynamicAllocationCurrentSkills scenario allowed part production 

to increase by more than 30% in a week of production. Supposing completely versatile operators 
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increased the number of parts produced by an additional 17%. Interval confidences were very 

small compared to the validation phase. This can be explained by the fact that a single machine 

could cause an important bottleneck and delay the end of the production for all parts. In this 

experiment, we only consider a week of production, which is more replicable in terms of 

production output. 

Table 11 gives further information on how the workload is divided between CNC machines. This 

indicator is extremely relevant since the number of parts produced depends on the cycle time of 

the parts on the scheduled job. It is important to note that even if an operator attends a machine 

100% of the time, it would not be able to produce parts for 168 hours since some tasks require the 

machine to be inactive. The aim is then to minimize the time where a machine is waiting for an 

operator to resume producing parts. Most machines are also not in production for 168 hours per 

week, some being turned off during the night or the weekend, for example. 

Table 11: Average utilization time of CNC machines in a 168-hour work week. 

 

The average time spent by CNC machines machining metal parts is shown in Table 11. CNC 

machines spent on average 8% more-time machining parts in the DynamicAllocationCurrentSkills 

scenario compared to the StaticAllocation scenario. Average utilization time was almost the same 

in both scenarios representing the new paradigm. While the maximum utilization time was similar 

in all scenarios, it is extremely interesting to compare the minimum utilization rate. In the 

StaticAllocation, some machines may be neglected when their allocated operator is too busy 

dealing with tasks coming from its other machines. The DynamicAllocationAllSkills scenario 

proposes the higher minimum, supposing that all machines are producing parts for at least 75 hours 

in the week. The standard deviation between machines was similar in all three scenarios. 

Avg 105.23 ± 0.46 113.79 ± 0.63 114.83 ± 0.60

Max 155.35 ± 1.28 157.14 ± 1.53 155.58 ± 2.12

Min 45.60 ± 0.03 67.28 ± 0.06 75.36 ± 0.02

Std.-dev. 25.34 ± 0.37 21.27 ± 0.40 22.49 ± 0.51

StaticAllocation
DynamicAllocation 

CurrentSkills

DynamicAllocation 

AllSkills
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3.4 Conclusion 

A discrete-event simulation was developed in order to simulate task allocation in a high precision 

metal parts machining workshop. The main goal was to measure how productivity varies when 

more operators are allowed to process a given task. Different skill levels were also taken into 

consideration. Results showed that important productivity gains can be obtained when allowing a 

dynamic allocation of the tasks to the operators instead of having a single operator dealing with all 

tasks associated with a given CNC machine. We simulated a week of production in the factory, 

providing performance indicators followed by the company’s management team. These results 

were motivating to pursue this dynamic task allocation project. We have also shown that higher 

skill levels led to further improvement. With dynamic allocation, training employees could have a 

very interesting impact in terms of productivity. 
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Chapter 4: Dynamic allocation of human resources: Case study in the 

metal 4.0 manufacturing industry 

The article named « Dynamic allocation of human resources: Case study in the metal 4.0 

manufacturing industry » is inserted in this thesis section. It was submitted to the Industrial 

Journal of Production Research. The version submitted is identical to the version presented in this 

thesis. 
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Résumé 

Les concepts de l'industrie 4.0 nous emmènent à repenser l'allocation des ressources 

humaines en usine, même dans des environnements plus traditionnels comme l'usinage des 

métaux. Bien que l'usinage de pièces sur des machines à commande numérique soit automatisé, 

certaines tâches manuelles doivent encore être exécutées par des opérateurs. L'approche actuelle 

consiste généralement à affecter de manière statique les opérateurs à une ou plusieurs machines. 

Cette stratégie provoque des goulots d'étranglement qui pourraient être évitables. Nous proposons 

donc un modèle d'optimisation pour assigner dynamiquement les tâches aux opérateurs dans le but 

de minimiser les délais de production. Trois scénarios différents sont comparés; l'un représentant 

la méthode d'allocation statique présentement largement utilisée dans l’industrie et deux autres qui 

permettent une plus grande flexibilité dans l'allocation des opérateurs. Le problème d’allocation 

dynamique des tâches est résolu à l'aide d'un modèle d’optimisation développé avec la 

programmation par contraintes. Le modèle a été appliqué à une étude de cas d'un atelier d’usinage 

de métaux de haute précision. Les résultats expérimentaux montrent que le passage d'une 

allocation statique opérateur-machine à une allocation dynamique réduit de 76% les retards 

moyens de production causés par les opérateurs. En augmentant la polyvalence des opérateurs dans 

un contexte d’allocation dynamique, on diminue encore d’avantage les retards de production. 
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Abstract 

Industry 4.0 concepts makes it possible to rethink human resources allocation, even for 

more traditional environments like metal machining. While parts machining on Computer 

Numerical Control (CNC) machines is automated, some manual tasks must still be executed by 

operators. The current approach is typically that operators are statically allocated to one or many 

machines. This causes avoidable bottlenecks. We propose an optimization model to dynamically 

assign the tasks to the operators with the objective of minimizing production delays. Three 

different scenarios are compared; one representing the current widely used static allocation method 

and two others that allow for more flexibility in the operators’ allocation. The dynamic task 

assignment problem is solved using a constraint programming model. The model was applied to a 

case study from a high-precision metal manufacturing job shop. Experimental results show that 

switching from a static operator-to-machine allocation to a dynamic one reduces by 76% the 

average production delays caused by human operators. Supposing more versatile operators under 

the dynamic allocation leads to further improvements. 

 

 

 

 

 

 

 



60 

 

Introduction 

The relationship between humans and machines has been constantly evolving since the first 

industrial revolution. The manufacturing sector has seen many major changes, and the advent of 

new technologies is modifying the way humans are involved in the production process.  When the 

first metal milling machine was invented in the early 1800s, it required a full-time operator to 

operate it. With the advent of computers, automation made its way during the third industrial 

revolution. The metal parts machining industry has shifted from mechanical machining to 

automated machining, using Computer Numerical Control (CNC) machines (Ivanov et al., 2019). 

Indeed, parts could now be produced in an automated manner, removing the need for a human to 

mechanically operate the machines to produce metal parts. CNC machines can lead to many 

financial benefits when used to their full potential. To do so, the production flow organization must 

be coordinated, since human operators are now required to execute supporting tasks (Hamrol et 

al., 2018). It therefore remains crucial to schedule and allocate these resources properly. Industry 

4.0 is characterized by integration, interactivity and interconnexion of all production processes of 

an industrial company, made possible by emerging new technologies (Idrisov et al., 2018). 

A typical machining workshop is composed of multiple CNC machines. Even with parts 

machining being automated, supporting tasks such as parts measuring, or raw material addition 

still require human intervention. These tasks occur on a periodic basis during the job production. 

Jobs consist of a pre-determined quantity of identical parts processed on a CNC machine. Some 

tasks, such as dealing with non-conformities or changing a broken tool, may also occur in a 

stochastic manner. Conventionally, every operator is allocated to one or more CNC machines. This 

operator assists with production by handling all of the machine’s various tasks. Task-to-operator 

allocation is static and follows the machine-to-operator allocation, e.g., a tool changing task on a 
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machine will be automatically allocated to the only operator in charge of this given machine. This 

method is simple and requires few decisions that can be taken by production floor managers at the 

beginning of every work shift. However, this static allocation is sub-optimal since certain machines 

might happen to have tasks to perform at the same time. In the event where machines allocated to 

the same operator have simultaneous tasks, a bottleneck forms around the operator. Failure to 

provide instant human support may lead to a machine shutdown, delaying production, and inducing 

delays in orders deliveries. Simultaneously, other operators might be available for extended 

periods of time while their allocated machine(s) run on automatic mode.  

Operator allocation policies were shown to have a significant reduction effect on due date 

performance when considering job tardiness in a dual-resource constrained job-shop system 

(DRC) in Kher and Fry (2001). Dynamic allocation approaches have also proven to be beneficial 

in terms of productivity in Greis et al. (2019) and Beauchemin et al. (2020).  

However, such a dynamic task-operator allocation requires making decisions constantly 

(i.e., several decisions per minute), based on real-time information. With the collection of actual 

data, tasks can now be allocated to operators in a dynamic and optimal manner. Moreover, it also 

requires an intelligent agent for the real-time decision-making. While in Greis et al. (2019) and 

Beauchemin et al. (2020), simple heuristics were used, this research aims to propose a new way 

for allocating tasks to operators in a job-shop context, taking into account the skills of the different 

operators.  

To achieve this goal, industrial data was first collected. The company is a high-precision 

metal parts factory located in Québec City, Canada. It uses built-in systems interconnecting and 

collecting data on different aspects of the job-shop production, while collaborative robots move 

the parts from one machine to another.  
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We then developed an optimization model based on the flexible job-shop problem adapted 

to the task allocation of human resources. Different scenarios were then tested, and the results 

analysed so as to measure the effect of a dynamic allocation on the system. Results showed how 

the dynamic allocation of operators could improve the overall tardiness of production in the 

factory.  

Assigning operators to tasks and scheduling their different tasks is an NP-hard problem 

(Bouajaja and Dridi, 2017), but with current qualified labour shortages, we believe a change of 

paradigm is necessary since a production manager can no longer be expected to make all the 

decisions regarding task allocation in a real-time context. Our article thus brings a scientific 

contribution by proposing a new optimization method to dynamically allocate real-time tasks to 

operators in a 4.0 metal machining industry. While one can reasonably expect an upgrade in 

performance when using dynamic allocation, this article quantifies this performance upgrade while 

proposing a new dynamic allocation system that can be implemented in the industry. Indeed, by 

using industrial data, the results obtained are practical and can be extended to the manufacturing 

sector under similar conditions. 

The article is divided as follows: Section 1 presents the preliminary concepts for the article. 

In section 2, the methodology implemented is detailed as well and the model developed. Section 

3 describes the experimentation results and their analysis while section 4 concludes the paper. 

 

Preliminary concepts 

A job consists of a number of identical parts that must be produced on a machine. During 

a job, many tasks devoted to human operators need to be completed at different frequencies (e.g., 

measuring every 10th part). Scheduling for a metal machining factory is a two-step process. The 
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first step (job scheduling) is to assign/schedule the jobs to CNC machines (Figure 33: Scheduling 

horizons for job scheduling and task scheduling.). Orders/jobs are typically promised to customers 

months in advance and scheduling the jobs on the machines is done far in advance given a planning 

horizon that lasts many weeks. Scheduling the jobs on the CNC machines falls in the flexible job-

shop scheduling category and is NP-hard (Özkul et al., 2021).  

 

Figure 33: Scheduling horizons for job scheduling and task scheduling. 

The second step (task scheduling) is to schedule and allocate the tasks to the operators in 

real time, which is our main concern in this study. The different types of tasks are parts measuring 

(M), raw material addition (A), tool changes (C), machine setups (S), and management of non-

conformities (N). Machining the parts on the CNC machines were not explicitly included in the 

model since they are de facto already scheduled (see Figure 1). 

Coordinates Measuring Machines (CMM) are used in the industry since they are precise 

and highly automated (Zheng et al., 2018). Robots can even transport the part from the CNC 

machine to the CMM and vice-versa, to completely automate the parts measuring task. However, 

not all characteristics of a part can be measured automatically with the CMM, and operators still 

need to take manual measurements. Parts measuring on CMM machines must then be allocated 

and scheduled, at the same time as the other supporting tasks executed by operators. 
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Allocating jobs, shifts and/or tasks to human resources is a domain area that has been 

greatly studied in the last few years, although in different contexts than the one in this article. 

A problem that shares similarities with ours is the staff scheduling (Caprara, Monaci and 

Toth, 2003) or employee timetabling problem (Meisels and Schaerf, 2003). In this type of problem, 

the goal is to assign each employee to a work shift. This problem can also mean to assign workers 

to tasks/jobs (Sicong, Weng and Shigeru, 2009). Bouajaja and Dridi (2017) proposed a review in 

which human resource allocation problems were investigated. They found that the different 

methods used to deal with the human resources allocation problem are exact methods (such as 

linear programming), heuristic algorithms, meta-heuristics, as well as any hybridization of those 

methods. An area in which this problem is very important is in hospital systems. Indeed, many 

articles (Bourdais, Galinier and Pesant, 2003; Eiselt and Marianov, 2008; Lanzarone and Matta, 

2014; Ho et al., 2018) were published tackling the Nurse Rostering Problem, which basically aims 

at creating the schedule for the nurses in a hospital or health-care establishment. Ho et al. (2018) 

proposed a platform for dynamic nurse scheduling based on integer linear programming. While 

integer linear programming has been often used to solve the Nurse Rostering Problems in the last 

few years, many articles proposed constraint programming (CP) models (Bourdais, Galinier and 

Pesant, 2003). CP consists of representing a problem with its constraints and then finding a solution 

that satisfies these constraints or optimizes an objective (Apt, 2003). It has been used (Alade and 

Amusat, 2019) as well as compared with integer linear programming (Trilling, Guinet and Magny, 

2006) to solve the nurse rostering problem. Lanzarone and Matta (2014) proposed different 

heuristics to solve this problem with the objective of minimizing the overtime of the nurses, while 

trying to make their solution robust to unpredictable changes in the demand. In the same vein, 
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Eiselt and Marianov (2008) aimed at assigning tasks to minimize the overtime of their skilled 

employees and make the schedule as fair as possible by mapping their skills in a skill-space.  

One important aspect of assigning jobs, shifts and/or tasks to employees is to make sure 

the employee is appropriately skilled to perform the operation. The multi-skilling research domain 

focusses on assignment problems for which the employees have different sets of skills that must 

be considered. A 2021 review considered 160 publications on the subject (Afshar-Nadjafi, 2021).  

In this review, articles on production planning (Costa, Cappadonna and Fichera, 2014) and shift 

scheduling (Bhulai, Koole and Pot, 2008) were discussed in relation to the multi-skilling domain. 

In her thesis, Eriksson (2020) aimed at scheduling the workforce in a contact center by using three 

different Mixed-Integer linear Programming (MIP) models. Edi and Duquenne (2009) also used a 

multi-skill optimization model to assign tasks to workers. 

Human resources allocation has also been considered of great interest in the Resource 

Constrained Project Scheduling problem (RCPSP) since the 1950s (Kelley, James E. and Walker, 

Morgan R., 1959). This project approach is concerned with longer, more complex tasks that may 

require many workers. Zammori and Bertolini (2015) proposed an interesting framework to 

allocate multi-skilled resources. Their model applies to long project tasks that can be chosen and 

then shared between multiple resources. 

While all these papers aim at assigning resources to jobs, tasks or shifts, they all suppose 

that activities are previously scheduled. Scheduling problems like the job-shop scheduling problem 

(JSP) aims at ordering the jobs (or the tasks) in a way to optimize a certain objective, such as the 

makespan (Manne, 1960). The JSP is NP-hard with three jobs to schedule on three machines 

(Sotskov and Shakhlevich, 1995). Constraint programming (CP) has gained in popularity in the 

last few years because of its flexibility and overall good performance to solve this problem 
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(Oliveira, Smith and Jt, 2000). Many recent articles concluded that the CP approach outperforms 

the MIP when it comes to the resolution of the JSP (Kress and Müller, 2019; Meng et al., 2020; 

Ham, Park and Kim, 2021). CP can also be used in hybridization with other techniques, such as 

local-search (Watson and Beck, 2008). While most formulations of the JSP consider the last 

completion times, Bülbül and Kaminsky (2013) included tasks’ individual completion times in 

their objective function. Agnetis et al.  (2014) tackled the job-shop scheduling problems with two 

resources; machines and operators. In their paper, each task must be allocated to both an operator 

and a machine. They solved the problem with two heuristics. When jobs or tasks need to be 

scheduled in addition to being allocated to resources, the JSP is extended and becomes the flexible 

job-shop scheduling problem (FJSP). The problem can be divided in two sub-problems: scheduling 

and assignment. It is also considered NP-hard (Garey, Johnson and Sethi, 1976). This is the 

problem that best characterizes ours. This problem has been solved using a hybrid of particle 

swarm optimization and simulated annealing (Xia and Wu, 2005).  

When operators are included in the job-shop scheduling problem, they are always 

considered as a secondary resource in the dual-resource job-shop scheduling problem and its many 

variants and are often considered the restraining resource (Xu, Xu and Xie, 2011). Cunha et al. 

(2019) tackled the dual-resource problem considering that jobs may require an operator’s 

assistance at specific times during the process, in the context of quality control laboratories. Their 

method cannot be applied in a real-time scheduling context since their MIP approach is not solved 

to optimality in less than one hour. In the aeronautical industry, the cyclic flexible job-shop 

scheduling problem with operators was solved with a MIP (Borreguero-Sanchidrián et al., 2018). 

(Sierra, Mencía and Varela, 2015) proposed an optimal schedule generation scheme in the case of 

the dual-resource job-shop scheduling problem. Artigues et al. (2009) even integrated the 
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employee timetabling problem and the job-shop scheduling problem with CP hybridized with a 

linear programming relaxation. 

While these articles address resource allocation and scheduling, to the best of our 

knowledge, none address the scheduling and allocation of periodic/stochastic tasks to human 

resources in a real-time context under Industry 4.0. Some articles scheduled human resources at 

the same time as machines based on an integrated method (dual-resource job-shop scheduling). 

However, this integrated approach is not conceivable in a context where production scheduling 

aims at scheduling long jobs that last many hours, even days, while shorter tasks of a few minutes 

with greater uncertainty levels need to be allocated to human operators. Integrating these two types 

of scheduling is not appropriate in this context. 

Both Beauchemin, et al. (2020) and Greis et al. (2019) simulated operators dynamic 

allocation in an environment highly based on IoT in which machines are aware and operators are 

tracked on the factory floor. In their proposition, operators would be allocated by an intelligent 

cognitive engine that can learn the dynamic patterns of part production in the factory. However, 

the allocation engine has not been developed and their simulation uses heuristics for assignation 

(e.g. assigning the closest available operator to the task). In the next sections, an optimization 

model is proposed in order to carry on with allocation in an optimal way. 

 

Methodology 

The methodology followed during the research is illustrated in Figure 34. 
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Figure 34: Methodology followed during the research. 

In order to investigate the profitability of using a dynamic allocation policy for resources, 

an initial set of data from a high-precision metal parts factory were first collected and explored. 

As a preliminary study, the allocation problem was next encoded in both a Mixed-Integer 

Programming (MIP) model and a Constraint Programming (CP) model. The models were solved 

and the obtained results were compared. This comparison was performed based on an experiment 

encompassing 30 instances of different sizes, aiming at scheduling between 14 and 57 tasks. The 

time-limit was set to 10 minutes. It was observed that the CP model managed to find the optimal 

solution for 25 instances while the MIP model only found the optimal solution for 10 instances. In 

addition, the MIP model did not manage to find a first feasible solution for 6 instances under the 

time-limit selected. In only one instance out of the 30 did the MIP model outperform the CP model 
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by managing to find a better (but still non-optimal) solution during the time limit (this was one of 

the 5 instances for which the CP did not manage to find the optimal solution). While this 

preliminary comparison showed that the CP model outperformed the MIP in terms of solution 

performance, it also showed that the CP model was faster to solve. Indeed, for the ten instances 

where an optimal solution was found, the CP model was on average 82% faster at obtaining the 

optimal solution, which is critical when considering solving instances in a real-time production 

system. These results are aligned with the experiments presented in (Ham, Park and Kim, 2021) 

which demonstrated that  “CP is quick to generate efficient (or optimal) solutions”. Their problem 

shares many similarities to ours, taking place in a flexible job shop environment with 

heterogeneous machines in which each operation must be processed on a qualified machine (or 

resource). In addition, (Kress and Müller, 2019) also compared MIP and CP in a flexible job-shop 

scheduling context with machines and human operators and concluded that “the CP solver clearly 

outperforms the MIP solver for the considered modeling approaches. The CP solver tends to 

provide high quality solutions within reasonable time”. The conclusion of these articles is 

consistent with our findings and convinced us to pursue the project using the constraint 

programming model. 

Following this comparison, more data were rendered available and collected under an 

extended data collection. A solving procedure that consisted of a two-stage approach as well as 

search strategies was also developed to conduct the different experimentations. The constraint 

programming model was then solved using the detailed data set so as to compare the current 

scenario which is a static allocation of tasks to operators with two other ones, a first considering a 

dynamic allocation in which the operators are fully polyvalent and a second in which the operators 
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possess only certain skills. An additional experiment was performed in order to consider the impact 

of increasing the machine/operator ratio. 

While a problem analysis has been provided in the introduction and the preliminary 

concepts, we will now detail the greyed-out steps in Figure 2, starting with the detailed data 

collection. 

Data 

For the metal machining job shop under study, jobs take at least one entire day to complete, 

but often more than one day. Numerous information is available regarding the jobs at hand, such 

as the cycle time of the machined parts, the frequencies at which the different tasks must be 

accomplished, the estimated setup time a job should take, the number of parts that need to be 

machined on the job, and the priority of this job. The priorities represent the order in which the 

jobs will be executed on a CNC machine. Each CNC machine has its next ten jobs planned at any 

given time, which covers minimally the next week of production. This number of jobs is more than 

enough to cover a rolling horizon of one hour. Table 12 presents some of the job-related data useful 

for the planning algorithm. 

Table 12: Available data relating to jobs. 

 

The data available regarding the factory state concerned current non-conformities that need 

to be dealt with, remaining processing time and number of the current part on a CNC machine, 

completed tasks, operators currently working, as well as current machine-operator allocations. 

Data Description
Number of parts Number of parts total that are planned to be produced in this job
Cycle time Processing time required by the CNC machine to produce one part
Frequencies Number of parts between the different measuring tasks and tool changes tasks
Estimated setup time Estimated time required to execute a setup task between two jobs
Priority Priority of a job - Priority 1 is processed first, up until priority 10
Part length Length of a part (to determine the frequency of the raw material addition tasks)
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We extracted this data every hour (tasks, states of the resources, etc.) over the course of a 

week which led to a total of 168 datasets. From this number, 60 datasets were taken during hours 

in which the factory was offline, so they were not considered. Table 13 shows various statistics 

concerning these datasets. The average number of tasks to schedule in a dataset is 63.10, and the 

average task processing time is 15.28 minutes. These tasks need to be allocated to 9.95 operators 

on average and 2 CMMs. It is assumed that the transfer time required to move from one CNC 

machine to another is negligible (which is the case). The CNC machines are denoted as 

workcenters for clarity purposes. 

Table 13: Summary of the 108 datasets. 

 

 

Constraint programming optimization model 

The CP model developed to solve the allocation problem goes as follows: 

 

Sets 

T (tasks): Set of tasks, released in the upcoming hour, that need to be scheduled. 

TR (type resource): Set of possible types of resources {Operator, CMM}. 

R (resources): Set of resources available in the upcoming hour. 

TA (type_action): Set of different types of tasks {M (measuring parts), C (tool changes), A (raw 

material addition), N (non-conformities management), S (setups)}. 

W (workcenters): Set of workcenters {CNC1, CNC2, …}. 

TS (timespan): Set of minutes in the planning horizon. 

 

Average Median Maximum Minimum
Number of tasks 63.10 57.00 108.00 16.00
Processing time of tasks (minutes) 15.28 15.87 33.92 5.03
Number of operators 9.95 8.50 19.00 2.00
Number of CMM 2.00 2.00 2.00 2.00
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Parameters 

RTt: Release time of task t. First minute at which a given task t ∈ T can start. 

DTt: Due time of task t. Last minute at which a given task can be processed. 

PTt:  Processing time. Number of minutes required to complete task t. 

PAt: Part number linked to task t. 

TREt: Type of resource required to process task t. 

TACt: Type of action of task t. 

Wt: Workcenter on which task t occurs. 

RESr: Type of resource r. 

SKt,r: 1 if a resource r is skilled to execute a task t, 0 if not. 

AVr: First minute at which a resource r may start processing a task. 

 

Variables 

st ∈ 𝑇𝑆  : Start time. Minute at which task t starts. 

at ∈ 𝑅: Allocation. Resource allocated to task t. 

pt,r ∈ 𝑇𝑆: Processing time in minutes resource r spends on task t. 

tat ∈ 𝑇𝑆: Tardiness in minutes of a task t. 

 

Objective function 

Minimize 

∑ 𝑡𝑎𝑡

𝑡 ∈ 𝑇

 
 (1) 
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Constraints 

𝑠𝑡 ≥ 𝑅𝑇𝑡 ∀ 𝑡 ∈ 𝑇 (2) 

𝑠𝑡2 ≥ 𝑅𝑇𝑡2
+ max(0, min(60 − 𝑅𝑇𝑡1

, 𝑠𝑡1
+ 𝑃𝑇𝑡1

− 𝐷𝑇𝑡1
)) 

∀ 𝑡1, 𝑡2 ∈  𝑇 where 𝑊𝑡1

= 𝑊𝑡2
 ∧ 𝑃𝐴𝑡1

< 𝑃𝐴𝑡2
 ∧ 𝑇𝐴𝐶𝑡1

 

≠ M 

(3) 

𝑝𝑡,𝑟 = {
𝑃𝑇𝑡

0
   

if 𝑎𝑡 = 𝑟  

otherwise
 

∀  𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4) 

disjunctive([𝑠𝑡|𝑡 ∈ 𝑇], [𝑝𝑡,𝑟|𝑡 ∈ 𝑇]) ∀  𝑟 ∈ 𝑅 (5) 

𝑠𝑡1
> 𝑠𝑡2

+ 𝑃𝑇𝑡2
− 1 ∨ 𝑠𝑡1

+ 𝑃𝑇𝑡1
− 1 < 𝑠𝑡2

 ∀ 𝑡1, 𝑡2 ∈ 𝑇 where 𝑡1  ≠ 𝑡2  

                                   ∧ 𝑃𝐴𝑡1

= 𝑃𝐴𝑡2
 

                                   ∧  𝑇𝐴𝐶𝑡1

= M 

                                   ∧ 𝑇𝐴𝐶𝑡2

= M   

                                   ∧ 𝑊𝑡1
= 𝑊𝑡2

 

(6) 

𝑇𝑅𝐸𝑡 = 𝑅𝐸𝑆𝑎𝑡
 ∀  𝑡 ∈ 𝑇 (7) 

𝑆𝐾𝑡,𝑟 = 0 ⟹  𝑎𝑡 ≠ 𝑟  ∀  𝑡 ∈ T, 𝑟 ∈ 𝑅 (8) 

if 𝑎𝑡 = 𝑟 then 𝑠𝑡 ≥ 𝐴𝑉𝑟 endif ∀ 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 (9) 
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𝑡𝑎𝑡2
= max(0, 𝐴𝑡2

) − min(max(0, 𝐴𝑡2
) , 𝐵𝑡1,𝑡2

) 

𝐴𝑡2
= min(60 − 𝑅𝑇𝑡2

, 𝑠𝑡2
+ 𝑃𝑇𝑡2

− 𝐷𝑇𝑡2
) 

𝐵𝑡1,𝑡2
= ∑ 𝑡𝑎𝑡1

𝑡1 ∈ 𝑇
 𝑊𝑡1

=𝑊𝑡2
𝑃𝐴𝑡1

<𝑃𝐴𝑡2
𝑇𝐴𝐶𝑡1

≠M 

  

∀  𝑡2 ∈ 𝑇 (10) 

 

Constraint (2) ensures that tasks do not begin before their release time. Constraint (3) adds 

a delay to the release time of a given task if the previous task on the CNC machine was started 

late. Since parts machining tasks are not included in the model, this constraint ensures that we 

account for their delayed start following a delay in a critical task that leads to a machine shutdown. 

Constraint (4) populates the resources pt,r variable with the processing time of its allocated tasks. 

Constraint (5) uses the disjunctive constraint (Carlier, 1982) to ensure that tasks allocated to the 

same resource do not overlap. To ensure that only the tasks allocated to the same resource are 

considered, we use the processing time variable pt,r  populated in Constraint (4) which is null when 

a task is not associated to the resource considered. Constraint (6) ensures that parts measuring tasks 

related to the same part do not overlap. It is intended for parts that need to have characteristics 

measured both with the CMM and manually by an operator. Constraint (7) ensures that the tasks 

are being allocated to the appropriate type of resource (CMM or operator). Constraint (8) imposes 

that an operator cannot be allocated to a task for which s/he is not skilled. Constraint (9) considers 

the availability of the resources at the beginning of the timespan, so as not to allocate a resource 

to a task scheduled to start before the resource is available. Constraint (10) serves to ignore the 

tardiness in a task linked to a previous delayed task. Indeed, tasks that have a delay in their release 

time because of Constraint (3) should not be penalized for their tardiness. 
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Solving procedure 

Two-stage approach 

Since the problem investigated here deals with tasks in two different categories (i.e., critical 

tasks and non-critical tasks), the model was solved using a two-stage approach. The non-critical 

tasks were first removed from the original dataset and the proposed model solved in order to 

minimize the tardiness on critical tasks. In a second stage, the non-critical tasks were added back 

and the model solved considering the complete set of tasks (i.e., critical and non-critical). The 

tardiness obtained in first phase for the critical tasks had to be respected in the second phase, since 

we do not want to allow additional tardiness to be planned on critical tasks in favor of non-critical 

tasks. The total tardiness was then minimized with the additional constraint (11) of reproducing 

the tardiness obtained in phase one for the critical tasks. Constraint (11) makes use of an additional 

parameter: 

TP: Tardiness in minutes obtained in phase 1. 

 

∑ 𝑡𝑎𝑡𝑡∈𝑇 
 𝑇𝐴𝐶𝑡≠M

≤ 𝑇𝑃                                                                                                                                                          (11) 

Using this two-stage approach, it became possible to make sure that tardiness on all critical 

tasks was minimized before minimizing tardiness on non-critical tasks, which is consistent with 

what is needed in the industrial context considered. 

 

Search strategies 

 One of the advantages of constraint solvers is that they easily allow fine-tuning the search 

strategy (variables and values selection priority) (Apt, 2003). The first variables to be assigned are 

the critical tasks’ starting time variables, followed by the parts measuring tasks’ starting time 



76 

 

variables. The branching heuristic chooses the task that can start the earliest and assign its starting 

time to its earliest. Once the starting times are assigned, the branching heuristic selects variable at, 

in lexicographical order, and assign the smallest value in its domain. 

For the second phase of the optimization model, the search strategy was modified slightly 

in order to branch first on the tasks that are present in phase 1, that is, the critical tasks. Then, the 

model branches on the new tasks added in phase 2. 

Experiments 

Three different scenarios were tested and compared. The first scenario, StaticAllocation, 

represents the status quo. While the factory does not currently use such a model to allocate its 

resources, this first scenario was created in order to emulate the current manual method used in 

the factory. We did so by constraining the operators to only process tasks related to one (or more) 

given CNC machines, as is currently the case in the factory. The machine(s)-operator assignations 

are those obtained from the industrial partner. In this scenario, the only decisions being made by 

the optimization model are to prioritize between tasks on a given resource if they arrive at the same 

time. 

In the second scenario, DynamicAllocationCurrentSkills, operators are allocated to tasks 

given their different sets of skills. The skills matrix was created according to the partner’s data. In 

this scenario, operators may be dynamically allocated to any tasks for which they are appropriately 

skilled. 

Finally, an optimistic scenario, DynamicAllocationAllSkills, was studied to show the 

impact on production if all operators have the skills to process every task. In this scenario, each 

task may be allocated to any operator. This will be used to put an upper bound to measure the 

additional gain the company could reach if investing in training. 
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The model was implemented in MiniZinc 2.5.5 (Nethercote et al., 2007) and solved with 

the Chuffed 0.10.4 solver. All experiments were performed on a Microsoft Windows 10 Pro 

machine with 16.0 GB of RAM memory and an Intel Core i7-4790K (4.00GHz) processor.  

Results 

For each scenario, the computation time, tardiness, and occupation rates were examined. 

The tardiness of the critical tasks was also computed separately. Indeed, some tasks such as raw 

material addition and tool changes have a direct 1:1 impact on production delays, while parts 

measuring does not have a direct impact but may have consequences such as an increased number 

of non-conformities. How each resource type affected the tardiness of the solution was also 

studied. The indicator for resource utilization was the average amount of time worked for each 

type of resource. The fairness of the solution was then evaluated by comparing the occupation rate 

distributions. 

 Table 14 presents the computation time for each scenario. The total column represents the 

sum of the resolution time for both phases in a given instance. With an average sum of under 3 

seconds and a median of around 1 second in every scenario, the model is performant enough to be 

used in real life instances and be implemented in real-time. Framinan, Fernandez-Viagas and 

Perez-Gonzalez (2019) proposed a 45-second time limit in order to get nearly real-time reactions, 

while  Harmonosky and Robohn (1991) mentioned that depending on processing times, a 

resolution in under five minutes might still be acceptable in a real-time system. Since the maximum 

resolution time of the model for all instances is a little over two minutes, this model can easily be 

used in real-time and is therefore considered as acceptable. Phase 2 instances are always longer to 

solve than phase 1 since the tasks contained in phase 1 are a subset of the tasks contained in phase 

2. 
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Table 14: Computation time (in seconds) for the 108 datasets. Results are presented for phase 1, phase 2, and the total of both 

phases. 

 

Table 15 presents the average tardiness obtained per CNC machine, for each type of tasks 

and each scenario. For example, the non-conformity management task had an average tardiness of 

0.15 minutes in the StaticAllocation scenario. 

Table 15: Average tardiness in minutes per task type for the 108 datasets for each scenario. Each dataset represents an hour of 

production. 

 

 

For the scenario DynamicAllocationAllSkills, the total average tardiness (bottom line in 

Table 15) is extremely low with about one minute of tardiness per instance. This represents a 

diminution of 96.3% from the StaticAllocation scenario This scenario clearly yields an optimal 

solution in which human operators are not responsible for delays in the production.  

The scenario DynamicAllocationCurrentSkills manages to generate 76.1% less tardiness 

than the scenario StaticAllocation. Distributed over the 25 CNC machines, we obtain an average 

total tardiness of almost 5 minutes per machine over the 108 instances yielded by the scenario 

StaticAllocation, compared to 1.2 minutes per machine in the DynamicAllocationCurrentSkills 

scenario (we recall each instance represents an hour of production). 

Also, Table 15 highlights that the improvement obtained with the scenario 

DynamicAllocationCurrentSkills is distributed over every task type. While raw material addition 

Scenario
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

(Critical tasks) (All tasks) (Critical tasks) (All tasks) (Critical tasks) (All tasks)
Average 0.32 2.03 2.36 0.38 1.95 2.33 0.39 1.48 1.87
Median 0.29 0.64 0.93 0.33 0.86 1.19 0.34 0.68 1.01
Maximum 0.58 131.68 131.98 0.76 110.01 110.35 0.77 71.56 71.90
Minimum 0.21 0.24 0.45 0.21 0.25 0.46 0.22 0.25 0.47

Computation time (seconds)

Total Total Total

StaticAllocation DynamicAllocationCurrentSkills DynamicAllocationAllSkills

Average Std. Dev. Average Std. Dev. Average Std. Dev.
Critical tasks 21.13 24.55 2.94 8.32 0.23 1.74
   Non-conformity management 0.15 0.49 0.03 0.29 0.00 0.00
   Raw material addition 5.86 10.25 1.60 5.70 0.23 1.74
   Set up 10.64 18.09 1.00 5.19 0.00 0.00
   Tool change 4.48 8.93 0.31 1.36 0.00 0.00
Parts measuring 101.28 78.41 26.30 59.92 0.85 2.34
Total 122.41 83.82 29.24 62.40 1.08 2.85

Task type

StaticAllocation DynamicAllocationCurrentSkills DynamicAllocationAllSkills
Tardiness (minutes)
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tasks are the ones that get the smallest improvement with a diminution of 73% in tardiness, this 

scenario manages to reduce tardiness in tool changes tasks by 93%. Every task type gets an 

improvement when going from the StaticAllocation to the DynamicAllocationCurrentSkills 

scenario. Finally, critical tasks benefit from almost twice as much improvement as non-critical 

tasks (parts measuring) in scenario DynamicAllocationCurrentSkills. 

Having workers dynamically allocated to tasks coming from different CNC machines 

during their work shift leads to less overall tardiness for most instances in a typical week of 

production. While current skill levels at the industrial partner site allowed to decrease human 

caused tardiness by almost four times, completely versatile operators would lead to a (theoretical) 

complete removal of human induced delays in production. 

Given the important standard-deviation reported in Table 15, we analysed thoroughly the 

comparison between the solutions obtained in each instance. The StaticAllocation scenario is 

outperformed by the DynamicAllocationCurrentSkills scenario for 89 instances. The 

DynamicAllocationCurrentSkills is only outperformed in 45 instances by the 

DynamicAllocationAllSkills scenario. Furthermore, 103 instances have less tardiness in the 

DynamicAllocationAllSkills than in the StaticAllocation. This means that in five instances, the 

three scenarios obtained solutions yielding the same amount of tardiness. The transition from the 

current scenario to the dynamic allocation with the current skills of operators allows an 

improvement in twice as many instances as the training of all operators does. No instance obtained 

a better solution in a scenario Y than in a scenario X, at best they obtained equivalent solutions. 

Table 16 reports tardiness aggregated per resource type. 
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Table 16: Average tardiness by resource type. Each dataset represents an hour of production. 

 

 In both the StaticAllocation and DynamicAllocationCurrentSkills scenarios, human 

operators are responsible for 99% of tardiness on average. In the DynamicAllocationAllSkills 

scenario, CMMs take on 30% of the responsibility. 

 While operators represent a clear bottleneck in all scenarios, Figure 35 shows that their 

average occupation rate is quite low. In the StaticAllocation scenario, operators process tasks for 

less than 40% of their work shift, while CMMs are used 85% of the time. The operators average 

occupation rate rises over 50% in the DynamicAllocationCurrentSkills and 

DynamicAllocationAllSkills scenarios. The CMM average occupation rate diminishes slightly. 

 

Figure 35: Average occupation rates (%) for the different types of resource under the proposed scenarios. 

Because of the nature of the tasks at hand with precise and spread-out release times, 

operators have important idle time. This observation is in line with the ones made in the production 

factory. While idle time diminishes in both improving scenarios, resources are still not used to 

their full potential, with too many operators to handle the machines. This suggests the 

Average Std. Dev. Average Std. Dev. Average Std. Dev.
Operators 122.16 83.82 28.95 62.48 0.77 2.80
CMM 0.25 0.74 0.29 0.75 0.31 0.73
Total 122.41 83.82 29.24 62.40 1.08 2.85

Resource 

type

Tardiness (minutes)
StaticAllocation DynamicAllocationCurrentSkills DynamicAllocationAllSkills
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machine/operator ratio could increase in order to diminish operators’ idle time. However, since 

CMM idle time is significantly lower than the operators’, increasing the number of CNC machines 

in the factory could result in CMMs becoming the limiting resource and causing tardiness. Figure 

3 also illustrates that CMM occupation rate diminishes in the dynamic allocation scenarios since 

they do not need to process as many tasks in the production plan to compensate for the lack of 

operator resources and mitigate the tardiness. 

Figure 36 shows the distribution of the occupation rates throughout the work week in each 

scenario. For example, in the StaticAllocation, 22% of the hours worked had an occupation rate of 

[0%,10%]. We can see that more than 20% of worked hours are only productive for less than 10% 

of the time, while another 20% is productive for more than 90% of the time. We notice that when 

operators can process a higher number of tasks (that is, going from scenario StaticAllocation to 

scenarios DynamicAllocationCurrentSkills and then DynamicAllocationAllSkills), productive 

work hours with an occupation rate ranging between 40% and 90% are more frequent. Extremely 

productive hours of over 90% occupation rates are higher than 20% in all three scenarios. 
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Figure 36: Distribution of the occupation rates (%) for the hours worked (%) under the different scenarios. 

An important factor of a resource allocation plan is its fairness between operators. For 

every work hour, tasks should be distributed evenly between operators so as not to have 

overworked operators while others are underworked. The distribution of the utilization time during 

an hour for every operator gives more information on the distribution of the workload amongst 

employees. The phenomenon in which work hours are very unproductive (less than 10% 

occupation rate) happens for different reasons in each scenario. In the StaticAllocation scenario, 

operators allocated to CNC machine(s) processing jobs with small task processing times and long 

parts cycle times have a low occupation rate. While production managers try to even out the 

schedule when allocating operators to CNC machines, this situation may still arise. 

While non-urgent tasks, such as preventive maintenance or cleaning, can be allocated to 

these underused resources, this poor allocation still leads to more important tasks being late. In the 

DynamicAllocationCurrentSkills scenario, operators that are very versatile may be over allocated 

to tasks while new operators with less skills are underused. In the DynamicAllocationAllSkills 
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scenario, which assumes that every operator is completely versatile, the task is allocated to the first 

operator at the top of the list, leading to an underutilization of operators at the bottom of the list. 

In the StaticAllocation scenario, production managers that allocate CNC machines to operators try 

to allocate CNC machines fairly between them, but this task is hard given the limited amount of 

information they have to make this decision. 

Effect of the staffing level 

To observe the relationship between the tardiness generated and the staffing level, an 

additional experiment was conducted. With the DynamicAllocationAllSkills as the base scenario, 

the number of available operators was reduced by 10%, 20%, 30% and 50% to observe how a 

reduction of human resources would affect tardiness. The DynamicAllocationAllSkills scenario 

was used as a basis since all operators have the same skill set, so there would be no difference 

between removing one operator or another. The number of CNC machines was not modified from 

the base scenario (DynamicAllocationAllSkills).1 

Table 17 presents the results obtained in Experiment 2. Results for the original 

DynamicAllocationAllSkills scenario are presented again as a baseline.  

Table 17: Computation time (seconds) for the 108 datasets for Experiment 2. The results are provided for the original 

DynamicAllocationAllSkills scenario, as well as scenarios for which workforce is reduced by 10 % to 50 %. 

 

 
1 With the reduction of available resources, instances became increasingly difficult to solve and we set the time limit 

for the optimization model to fifteen minutes for each phase. 

Scenario
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

(Critical tasks) (All tasks) (Critical tasks) (All tasks) (Critical tasks) (All tasks)
Average 0.39 1.48 1.01 0.42 2.75 3.17 0.41 2.91 3.32
Median 0.34 0.68 1.87 0.38 0.74 1.16 0.37 0.78 1.17
Maximum 0.77 71.56 71.90 0.75 194.96 195.35 0.70 171.92 172.30
Minimum 0.22 0.25 0.47 0.27 0.30 0.57 0.27 0.30 0.57

Scenario
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

(Critical tasks) (All tasks) (Critical tasks) (All tasks) (Critical tasks) (All tasks)
Average 0.39 4.91 5.31 1.19 7.05 8.24 4.07 48.61 52.68
Median 0.36 0.86 1.25 0.35 0.92 1.36 0.35 1.08 1.54
Maximum 0.63 214.77 215.19 86.87 212.85 213.34 230.30 898.98 906.89
Minimum 0.27 0.29 0.56 0.26 0.29 0.56 0.26 0.29 0.56

DynamicAllocationAllSkills DynamicAllocationAllSkills(0.9) DynamicAllocationAllSkills(0.8)

Total

Computation time (seconds)

Total

TotalTotal

Total Total

DynamicAllocationAllSkills(0.7) DynamicAllocationAllSkills(0.6) DynamicAllocationAllSkills(0.5)
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As the number of operators decreases, the average time to solve phase 2 of the optimization 

model increases. The scenario with DynamicAllocationAllSkills(0.5) operators represents a 

challenge to solve for the current optimization model, with its average of around one minute to 

solve both phases and a maximum reaching the time limit in phase 2. Apart from this harder 

scenario, all other scenarios have resolution times that may be considered real-time. 

 Figure 37 shows the relationship between tardiness and workforce for critical and non-

critical tasks. Tardiness increases exponentially with the reduction of operators, reaching an 

average tardiness of over 25 minutes when half the operators are removed. Critical tasks are less 

affected by the changes of scenario than the parts measuring tasks. Indeed, parts measuring tasks 

are 25 times more delayed in the scenario DynamicAllocationAllSkills(0.5) than in the base 

scenario while critical tasks are only 16 times more delayed. 

 

Figure 37: Average tardiness (min) according to workforce for critical and non-critical tasks. 

Removing 10% of the operators every hour would not impact the tardiness. This means 

that with their current 9.9 operators on average (Table 6), if operators were completely versatile 

as supposed in the DynamicAllocationAllSkills scenario, the industrial partner could operate on 
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average 18.3 machines instead of their current 15.9, without creating order delays. Average 

tardiness over the 108 instances increases exponentially as the number of operators is reduced. 

Figure 38 shows how the occupation rate of the operators rises with the gradual reduction 

of operators available. It goes from 56% to 82%, steadily rising in each scenario where less 

operators are present to manage the tasks. It is interesting to notice that CMM average occupation 

rate rises as well, although less drastically than for the operators. 

 

Figure 38: Average occupation rate according to workforce. 

Figure 39 illustrates that the distributions are more and more decentralized to the right 

(increase occupation rate, less non-productive work hours) as workforce is reduced. Indeed, 

removing operators almost completely eliminates non-productive [0,10] work hours while those 

with a ]90,100] occupation rate rise steadily, representing a larger proportion of total occurrences. 

Overworked human resources might lead to the undesirable effects of worker fatigue (Li, Xu and 

Fu, 2020) and would not be sustainable. 
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Figure 39: Distribution of the operators occupation rate according to manpower. 

Figure 40 is presented in order to compare the DynamicAllocationCurrentSkills scenario 

from the first experiment with the DynamicAllocationAllSkills(0.5) scenario. 

 

 

Figure 40: Comparison between the DynamicAllocationCurrentSkills and the DynamicAllocationAllSkills(0.5) scenarios. 
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The DynamicAllocationCurrentSkills scenario with the current level of skills the operators 

have is almost equivalent to having half the number of the operators in the 

DynamicAllocationAllSkills(0.5) scenario, when they are considered fully skilled. This leads us to 

conclude that in a dynamic allocation system, the more the operators receive appropriate training, 

the less the number of operators are needed in the factory to operate the same amount of CNC 

machines. The firm may then decrease the staffing level given that the operators are optimally 

allocated and appropriately skilled. 

Managerial insights 

As the results showed, implementing a dynamic allocation of operators in the metal 

manufacturing job-shop factory considered could be profitable. It becomes therefore interesting to 

think about the different steps to follow to make possible such an implementation. First, data on 

the upcoming jobs (on a longer time span of about a week) would need to be extracted in order to 

create a list of the upcoming tasks that would need to be allocated. In addition, data concerning 

the processing times for task as well as employee schedules would have to be obtained. This data 

collection can be a hard task for a company since it is not typically readily available for collection. 

Then, real-time data would need to be collected, which would serve to make more precise the list 

of upcoming tasks for the next hour to come. Real-time data would encompass data coming directly 

from the CNC machines, making precise the part number in process at the time of the extraction, 

as well as data concerning stochastic events such as non-conformities. A user interface dashboard 

could be used to show the operators the upcoming tasks in real-time. The list of tasks would then 

serve as an input in the optimization model proposed in this article. A plan of operator-task 

allocation would then be proposed for the next hour and displayed on the dashboard. We propose 

regenerating a new plan every five minutes, or at any frequency determined optimal, in order to 
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take into account stochastic events and make sure that the list of tasks to allocate is always up-to-

date.  

 

Conclusion 

We proposed and showed the advantages of dynamic human resources allocation in the 

metal manufacturing sector in an Industry 4.0 context. This is achieved through an optimization 

model that could serve as a task manager in the factory in lieu of the current production manager. 

The optimization model succeeded in solving instances quickly enough to be used in a real-time 

system directly in the factory. Results showed that the proposed dynamic allocation, under its 

simpler form (using the skills that the operators already have), could lead to an average reduction 

of 76% in tardiness on the CNC machines. When considering only critical tasks, that is, tasks that 

directly delay parts production, their tardiness could decrease by 86%. The scenario supposing 

perfectly multi-skilled operators practically eliminated human caused tardiness in every instance. 

An additional experiment helped characterize the relationship between the staffing level, 

that is, the number of employees per CNC machine in the factory and the tardiness. We showed 

that it would be possible to operate on average 2.4 additional machines with the same quantity of 

operators in a scenario where operators are dynamically allocated and completely versatile, 

without a significant impact on the overall tardiness. 

The results obtained with these experiments indicate that the current policies on task 

allocation and training used by the industrial partner should be revised. Given the recurrent global 

labour shortage (Gruzauskas, 2016), we believe our model could help them in optimizing the use 

of their available human resources and increase the productivity of their automated equipment.  

Such a model could also be useful for systems where tasks are released in a periodic and stochastic 
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manner. This type of task assignment has gained popularity in crowd-sourcing type applications, 

such as Uber (Song et al., 2020). 

It is important to mention that predicting the occurrence of tasks in real-time required a lot 

of data transformation, since the data were not available in this exact format. With various 

information extracted from the company, our team was able to extract a prediction of when the 

next tasks would occur for each instance. Implementation of a dashboard with the upcoming tasks 

to execute is currently in progress in the factory, with promising results.  

For future research, it would be interesting to see which skills lead to the biggest 

improvements in terms of productivity of the factory to help guide workforce training strategies. 

We also suggest working on the fairness of the generated task allocation plan, as well as limiting 

the occupation rate of operators so as to not overwork the most versatile operators. 
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Chapter 5: Industrial project: realization and implementation 

The bridge between scientific research and industrial applications may sometimes be difficult to 

cross. While providing new scientific results, our project also aims at proposing a functional 

implementation of the new system, that is, dynamic allocation of operators in a metal 

manufacturing job-shop. 

In this chapter, we will detail the realization and implementation of our industrial project executed 

in a small or medium enterprise (SME) under Industry 4.0. In Figure 41, we present the workflow 

diagram describing the planned implementation of the system proposed in the form of an UML 

activity diagram. Every step required to implement this system will be detailed in this chapter, as 

well as the different data sources used. 

 

Figure 41: Workflow diagram describing the planned implementation of the system 
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5.1 Extract jobsdata (1) and transpose it in CSV format (2) 

The first steps (1, 2) are to extract an embedded JSON file named jobsdata (b) from our industrial 

partner’s databases (a) and transpose it in CSV formats (c). The systems contain data regarding 

the planification and scheduling of the 10 next jobs on each CNC machine ordered by priority 

number (1 to 10). For each prioritized job, data is extracted (1) coming from the computer-

integrated manufacturing (CIM) database and the enterprise resource planning (ERP) database. 

These two databases contain exhaustive data regarding each job in the schedule.  

The structure of the jobsdata JSON file (b) presented in Figure 42 then needs to be transposed (2). 

The different colors in Figure 2 present how the JSON file is transposed in four different CSV files 

compiled in a single jobsdata.xslx (c) under different tabs. The grey fields are placed in a 

MasterJobData tab, the green fields are placed in a Characteristics tab, the blue fields are placed 

in a Tools tab, and the yellow fields are placed in a CMMMeasurements tab. This step is useful in 

terms of validation of the input data, since the different CSV files produced (c) can easily be 

validated by a human, as compared to the extracted JSON jobsdata file (b). 

These first two steps are executed every 24 hours. Since a single jobsdata JSON file contains data 

regarding the next 10 priorities in the factory, the timespan covers more than enough tasks to be 

extracted only once a day. 
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Figure 42: Data structure of the extracted jobsdata JSON file (b). Each color represents a different CSV file placed in a different 

tab in the jobsdata Excel file (c). 

 

5.2 Extract jobcontext for each CNC machine (3) 

More data is required in addition to the contents of the jobsdata file (b) since it concerns 

medium/long term events. The horizon covered by the data in this file is a few weeks. We also 

need extremely precise data with a much smaller horizon, regarding the real-time events in the 

factory. To this end, data coming directly from the CNC machines (d) is extracted and is aggregated 

to data from the APN systems (a). A new file named jobcontext (e) for each CNC machine is built. 

The extracted file contains more fields than the data structure presented in Figure 43, only the 

pertinent ones are shown.  

JobNumber

CycleTime

CycleType

Priority

EstimatedSetupHrs

ActualSetupHrs

PartsPerBar

PartLength

Cutoff

Facing

Bar_End

Bar_Length

TotalParts

CurrentPart

EfficiencyPercentage

WorkCenter

OperationName

CharacteristicId

CharacteristicName

MeasurementFrequency

InspectionTools Name

ToolAssemblyLogicalName

Name

PartsPerEdge

IsExact

Duration

CMM

CharacteristicId

CharacteristicName

NCPerPartPercentage

NCPerMeasurePercentage

Operations

Characteristics

Cuttings

CharacteristicsMeasured

CMMMeasurements

Tools
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Figure 43 : Data structure of the extracted jobcontext   files (e) in which data coming from APN systems (a) and CNC machines 

(d) is aggregated. 

The timestamp field is used to log the time for each extraction. This extraction corresponds to what 

is going on in the factory at the time on the timestamp. The job and jobOperation fields are used 

in order to find the correct tasks in the transformed jobsdata CSV. Normally, the number_Parts 

field should correspond to the TotalParts field of the jobsdata. Every time a value is different in 

both extractions, the jobcontext was considered more accurate. 

The field toolChangeTask contains useful updated information regarding the tool change tasks, 

initially determined from the jobsdata file. 

In the same way, the charStatus field is useful to update the parts measuring tasks. It also provided 

crucial information regarding the non-conformity tasks and the backtracked parts measuring tasks, 

since this data is exclusively real-time data and cannot be planned out in advance with the jobsdata 

file.  

Finally, the last two fields, maxParts and allParts contain similar information. The allParts field 

contains a list of all the machined parts on this given job and acts as historical data in order to 

estimate the cycle time extracted from the jobsdata more accurately. With a more accurate cycle 

timestamp

job_Number

started_Datetime

number_Parts

job_Operation_Id

job_Id

started_Datetime

started_Work_Center

first_NC_Free_Part_Count

jobOperationId

task_Id
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part_Number

job

operation
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lastMeasure

nextMeasure
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id

create_DateTime

last_Cycle_End_DateTime
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create_DateTime
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changeTool
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time, the next tasks can be planned out more precisely. Similarly, maxParts only contains the data 

for the last machined part. It gives important information as to the progress of the ongoing job (i.e., 

which part number was last machined and when it was completed). 

 

5.3 Transform collected data in a list of tasks (4) 

Once all the data is collected, we are ready to apply a transformation in order to obtain a list of 

tasks ready to allocate to operators. In this step, we then use the jobsdata file (b), the last extracted 

jobcontext files for each CNC machine (e), as well as an additional file named DataBible.xslx (f). 

This file was previously created to contain all the important information that is not a part of the 

extracted files. The data compiled in the DataBible file (f) was located in eight tabs, listed, and 

described in Table 18. This data comes from observations in the factory, interviews with experts 

in the company as well as previous project conducted by the industrial partner. This step leads to 

the creation of a tasks list (g) that contains ordered data on upcoming tasks. 

Table 18: Tabs content in the Data Bible (f) file. 

 

 

5.4 User interface dashboard (5) 

We then create a user interface dashboard named the Tasks Dashboard following arrow 1 in Figure 

41. The purpose of this dashboard is to display the upcoming tasks to the operators on a screen in 

the factory. In order to keep this dashboard up to date, a refresh frequency is determined and every 

X minutes we extract the jobcontext files again for every CNC machine. 

We now have a fully functioning dashboard that is currently being implemented on the production 

floor. In Figure 44, we present a screenshot of the Tasks Dashboard as it is following step 4. This 

dashboard’s purpose is to show the upcoming tasks and their planned release time in minutes. Each 

Tab Description

WorkCenter ID List of all workcenter IDs with their name

Raw Material For each CNC machine: Length of the bar, processing time to add a bar

Manual Measures For each manual measuring tool category: A description, processing time to measure one characteristic

Manual OC Measures Processing time formula to measure a metal part

Tool Changes For each CNC machine: Processing time to change a tool

Offset Processing time to add an offset on a CNC machine

NC Types Probability of an NC leading to a certain task type (Offset, Tool Change, etc.)

Process Logic For each type of task: Process logic data (e.g. If the task needs an operator or not)
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line in the dashboard represents a task. The columns (from left to right) display the type of task 

(e.g. a tool change), the workcenter on which the task occurs, the number of remaining minutes 

until the task is ready to be executed, the timestamp at which the task will be ready to be executed, 

the number of the part related to the task, and the resource type required to tackle the task. The 

user can choose which resource type must be displayed (some tasks require the CMM, others a 

human operator) and which workcenters are included in the lot. 

 

Figure 44: Tasks Dashboard illustration showing the upcoming tasks to the user. 

While the Tasks Dashboard is useful for the user to see which tasks are coming in the next minutes, 

it does not provide an allocation plan. The user must decide by him or herself which tasks he or 

she will do first when multiple tasks occur at the same time. We can continue to add functions to 

this dashboard to aim at displaying to the user an allocation plan based on the optimization model 

presented in Chapter 4 of this thesis. 

 

5.5 Create input file for optimization (6) 

The next step creating an input file to use in the optimization model. In order to produce this file, 

additional information is required. First, a file named SkillsMatrix (h) which provides in detail the 

different skills that each operator possess is required. We require the skills that each operator has 

on each CNC machine, for each type of tasks, and if the operator is certified. A certified operator 

means that they can tackle tasks on jobs for a particular client that requires special training. For 

this project, we manually produced this file based on human resource’s documentations and 

meetings with resources at our industrial partner’s. 



107 

 

Additionally, we require information on the pool of operators (i) that must be considered in the 

production plan as well as the pool of CNC machines (j). This can be provided in many different 

manners to the system. For example, when realizing experiments with the optimization model, a 

complete operator schedule of the upcoming week was used as well as the schedule for the CNC 

machines. When the system will be used in real-time, operators could manually “punch in” the 

system if they want to be considered in the pool of operators. Similarly, production managers could 

choose the pool of CNC machines which tasks need to be allocated. 

This step produces an input file for the optimization model. The planning horizon is currently set 

to one hour, so all tasks included in the input file are planned to be released in the next hour. In 

this project, the file is called DataOpti.dzn (k) since this is the format required for our optimization 

model that is built in MiniZinc programming language. 

 

5.6 Solve the optimization model (7) 

Once we have a data file in the right format, we can solve the optimization model. We use the 

model called Opti.mzn (k) which has been tested in experiments presented in Chapter 4 and 

produces a plan in AllocationPlan.csv (m). All details on the optimization model can be found in 

Chapter 4. 

 

5.7 Display the solution on the user interface dashboard (5) 

The tasks allocation plan created can then be displayed on the Tasks Dashboard (5), following 

arrow 2 in Figure 41. Using the solution of the optimization model in the AllocationPlan.csv file, 

we produce an improved dashboard which shows the allocation plan proposed. In Figure 45, we 

see an illustration of the new user interface dashboard (5).  

Each line in the dashboard represents a task. On the main tab, the columns (left to right) show the 

type of task, the workcenter on which the task occurs, the job from which the task occurs, the 

remaining minutes before the task is ready to be executed, the timestamp of the release of the task, 

the part number related to the task, the resource required to tackle the task and finally the employee 

number of the operator to whom the task is allocated in the plan. 
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This dashboard also has three additional tabs. The second tab provide the same function than in 

the initial Tasks Dashboard, which is for the user to select which workcenter must be included in 

the plan. In the third tab, the user may now also select which operators (by checking their employee 

number) must be included in the allocation plan. Finally, the last tab can be used by the user to 

quickly modify the SkillsMatrix (g) if it is outdated. 

Additionally, tasks which release date is further than the chosen planning horizon (one hour) are 

not allocated in the current plan (as shown in the last two lines in Figure 5). Once they are included 

in the planning horizon, an operator’s employee number will appear in the last column on the right 

which represents the allocation. 

While this plan may not be feasible (see future developments section), this dashboard is a new way 

to start implementing the project on the factory floor and further validate the data as well as the 

plan proposed by the optimization module. 

 

Figure 45: Tasks Allocation Plan dashboard ’s illustration showing the allocation plan for the next hour of production. 

 

5.8 Create task-operator allocation based on production plan and algorithm (8) 

Following the creation of a task allocation plan, we need to verify if the plan is feasible each time 

a task is released, or an operator becomes available in order to create final allocations and deliver 

the Tasks System. Because of the nature of the problem solved by the optimization model, the 

generated plan may quickly become unfeasible. When a task’s start time is reached, if the allocated 
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operator from the plan is unavailable due to some unforeseen event, the task should be allocated 

to another free operator immediately. 

We first need to determine which operators are currently available (n). While we know the pool of 

operators from the previous phase, some of these operators may be unavailable for different 

reasons. For example, an operator may already be processing a task, but he can also be currently 

on a small break to go to the restroom or talking with a supervisor. Different methods may be used 

to determine which operators are available, from a manual input to a tracker based on the internet 

of things. 

In a similar way, we need to determine at the same time which tasks are currently released but 

have not been allocated to and started by an operator (o). While the previous steps in the system, 

such as the extraction of the jobcontext files (e) provide useful real-time data that gets more and 

more precise as the planned release time of a task approaches, we need to be absolutely certain 

that a certain task is released before allocating it to an operator. There needs to be a certain module 

that confirms which tasks are now released and ready to be started by an operator. 

Using the information on which operator is available as well as which tasks is released, we are 

finally ready to create pairs of released task with available operator. In order to produce these pairs, 

when a task is confirmed to be released, first we will look at the production plan produced in the 

previous phase (AllocationPlan.csv). Real-time allocation model will then be used to either seal 

the pairs proposed by the plan, if feasible. If not, the model will propose an alternative solution to 

allocate the released task (n) to an available operator (n). This operator-task allocation (p) pair will 

also be used to confirm that this task is now started and does not require to be allocated anymore 

(back in step 9). 

Finally, once a pair has been created, the available operator will be notified of its new current task 

with an updated dashboard (5). Since operators are mobile in the factory, we need a way to tell the 

operator that a new task has been allocated to them and is ready to be processed. Many methods 

can be used to accomplish this, from individual devices carried by operators to a big screen 

displayed in the factory. 
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5.9 Future developments 

This project’s implementation is currently ongoing in the factory. The Tasks Dashboard produced 

following step (4) is being deployed with a super-user in the factory and a feedback template has 

been provided to help validate and improve the accuracy of the tasks predicted. The Tasks 

Allocation Plan following step (7) is currently being developed and validated with the research 

and development team from APN. The last step (8) of the project has not yet officially begun. 

Additionally, two future developments are proposed by our team. First, we propose analyzing the 

rescheduling strategy. While currently, the system loops at step 3 with a chosen frequency (every 

X minutes), Ghaleb, Zolfagharinia and Taghipour (2020) suggest that triggering the rescheduling 

upon certain pre-selected events might prove to be optimal. We suggest examining this 

proposition, and if re-optimizing the schedule upon event is chosen, an event observation module 

would need to be integrated (12), as shown in the greyed out step in phase 1. Second, as seen in 

box (13), we highly suggest that a system be implemented in order to keep the skills of the 

operators updated since the entire system is based upon them. A tab in the Tasks Allocation Plan 

dashboard has been put in place by our team to do last minute changes to the skills matrix, but a 

systematic management of the workforce skills would be optimal. 
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Conclusion 

The integration and interconnexion of systems make it possible to rethink different paradigms 

under Industry 4.0. In the manufacturing industry, real-time data is becoming more available, 

which yields an opportunity to change the current methods of allocating resources. The paradigm 

shift studied in this master thesis is the change from a static to a dynamic allocation of human 

resources to machines in the metal manufacturing industry. The goal was to determine and quantify 

the benefits associated to human resources allocation in an Industry 4.0 context, in collaboration 

with an industrial partner willing to implement this new paradigm. The main methods used to reach 

this objective were discrete-event simulation and optimization. 

As part of this study, three scenarios were defined and tested throughout the project. The first 

scenario represented the current paradigm, that is, the static allocation of resources. Both other 

scenarios consisted of dynamic allocation, one considering the actual skills of the workforce while 

the other supposed perfectly versatile operators in the factory. 

In Chapter 3, a discrete-event simulation model was built based on the case study of our industrial 

partner’s factory, using Simio. Once validated, the simulation model allowed us to perform two 

different experiments in order to compare the different scenarios on the basis of different criteria 

such as the time required to produce a certain number of parts in the factory, the total distance 

walked by the operators during production, the total number of parts produced during a week of 

production and the productive utilization rate of the machines during the production (i.e., the time 

spent machining parts). The experiments showed that the most important productivity gain was 

moving from the static allocation scenario to the dynamic allocation scenario with the current 

skills. While the assumption that the operators are completely versatile suggests further 

improvements, this would also require important training costs. 

While the simulation experiments considered a simple allocation method of “closest free and 

available resource”, we believe implementing a dynamic task allocation system in a factory would 

require a more sophisticated method, making use of the available real-time information from the 

systems. A real-time optimization model was built and presented as part of the article in Chapter 

4. In a preliminary exploration, both a mixed-integer programming (MIP) model and a constraint 

programming (CP) model were built. Experiments comparing the three scenarios with industrial 
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data on these models showed that the CP model outperformed the MIP model in all instances, so 

the project was pursued using the CP model. Using real-time data, an exhaustive experiment was 

conducted using the data extracted every hour for an entire week of production. These results 

agreed with the ones from the simulation experiments. Both dynamic allocation scenarios proposed 

production plans for the next hour of production that yielded extremely low amounts of tardiness 

when compared to plans produced with the static allocation. The performance of the CP 

optimization model lets us believe that it could be used in a real-time setting, to allocate the 

operators to the tasks on the production floor since it can be solved quite rapidly (few seconds at 

most). Finally, a second experiment with the optimization model suggested that it would be 

possible to reduce the number of operators in the factory and still manage to yield low levels of 

tardiness under a dynamic scenario with completely versatile operators. 

Given the interesting results obtained, the industrial partner is currently moving forward with the 

implementation of this project that they have named the tasks system. In Chapter 5, we proposed 

an implementation system for the project in an industrial context. The chapter provided industrial 

insights into the realization and the implementation of an Industry 4.0 project for a manufacturing 

company. 

While this new paradigm has been shown to have many interesting productivity benefits in a metal 

manufacturing job-shop, we must state a few precautions that must be taken. First, experiments 

with the plans yielded with the optimization model tend to allocate more tasks to highly-skilled 

operators while keeping the operators with few skills idle for extended periods of time. Obviously, 

this strategy is not recommended since operators need to develop skills and keeping them 

unoccupied does not achieve this goal. Additionally, overworking highly-skilled operators may 

lead to frustration linked to the unfairness of the workload distribution as well as possible burnout. 

The project will continue with the intent of maximizing the productivity gains it can bring to an 

organization while minimizing its possible inconveniences. Various future developments can be 

explored in this sense, starting by using allocation rules which favor a fair allocation plan between 

operators. Additionally, operator-training decisions could be guided by to the possible productivity 

gains identified by the simulation model or the optimization model. The optimization model could 

also be connected to the simulation model in order to analyze additional aspects of the dynamic 

allocation strategy. Finally, other aspects of the dynamic allocation paradigm proposed could be 
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studied, for example, the effect on part quality. Since an operator is not responsible for the 

execution of a job from beginning to end, the constant change of context could make the machining 

process harder to control.  

In this project, we analyzed and proved the relevance of embracing a new paradigm in the 

manufacturing sector under Industry 4.0. This new paradigm consists of dynamically allocating 

human resources to the different tasks requiring human intervention during the production. 

Dynamic allocation was proven to help improve different performance indicator such as the total 

number of parts produced in a week of production in a metal manufacturing job-shop. Furthermore, 

using real-time data, we proposed an allocation algorithm in the form of a constraint programming 

optimization model that yielded a good performance and managed to allocate the tasks in the next 

production hour in real time. Finally, we proposed an implementation framework for this type of 

project in a 4.0 context. 
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