765 research outputs found

    HoloDetect: Few-Shot Learning for Error Detection

    Full text link
    We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.Comment: 18 pages

    DataVinci: Learning Syntactic and Semantic String Repairs

    Full text link
    String data is common in real-world datasets: 67.6% of values in a sample of 1.8 million real Excel spreadsheets from the web were represented as text. Systems that successfully clean such string data can have a significant impact on real users. While prior work has explored errors in string data, proposed approaches have often been limited to error detection or require that the user provide annotations, examples, or constraints to fix the errors. Furthermore, these systems have focused independently on syntactic errors or semantic errors in strings, but ignore that strings often contain both syntactic and semantic substrings. We introduce DataVinci, a fully unsupervised string data error detection and repair system. DataVinci learns regular-expression-based patterns that cover a majority of values in a column and reports values that do not satisfy such patterns as data errors. DataVinci can automatically derive edits to the data error based on the majority patterns and constraints learned over other columns without the need for further user interaction. To handle strings with both syntactic and semantic substrings, DataVinci uses an LLM to abstract (and re-concretize) portions of strings that are semantic prior to learning majority patterns and deriving edits. Because not all data can result in majority patterns, DataVinci leverages execution information from an existing program (which reads the target data) to identify and correct data repairs that would not otherwise be identified. DataVinci outperforms 7 baselines on both error detection and repair when evaluated on 4 existing and new benchmarks.Comment: 13 page

    Automation of cleaning and ensembles for outliers detection in questionnaire data

    Get PDF
    This article is focused on the automatic detection of the corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection. The questionnaire surveys are often used in psychology research to collect self-report data and their preprocessing takes a lot of manual effort. Unlike with numerical data where the distance-based outliers prevail, the records in questionnaires have to be assessed from various perspectives that do not relate so much. We identify the most frequent types of errors in questionnaires. For each of them, we suggest different outliers detection methods ranking the records with the usage of normalized scores. Considering the similarity between pairs of outlier scores (some are highly uncorrelated), we propose an ensemble based on the union of outliers detected by different methods. Our outlier detection framework consists of some well-known algorithms but we also propose novel approaches addressing the typical issues of questionnaires. The selected methods are based on distance, entropy, and probability. The experimental section describes the process of assembling the methods and selecting their parameters for the final model detecting significant outliers in the real-world HBSC dataset.Web of Science206art. no. 11780

    Vermeidung von Repräsentationsheterogenitäten in realweltlichen Wissensgraphen

    Get PDF
    Knowledge graphs are repositories providing factual knowledge about entities. They are a great source of knowledge to support modern AI applications for Web search, question answering, digital assistants, and online shopping. The advantages of machine learning techniques and the Web's growth have led to colossal knowledge graphs with billions of facts about hundreds of millions of entities collected from a large variety of sources. While integrating independent knowledge sources promises rich information, it inherently leads to heterogeneities in representation due to a large variety of different conceptualizations. Thus, real-world knowledge graphs are threatened in their overall utility. Due to their sheer size, they are hardly manually curatable anymore. Automatic and semi-automatic methods are needed to cope with these vast knowledge repositories. We first address the general topic of representation heterogeneity by surveying the problem throughout various data-intensive fields: databases, ontologies, and knowledge graphs. Different techniques for automatically resolving heterogeneity issues are presented and discussed, while several open problems are identified. Next, we focus on entity heterogeneity. We show that automatic matching techniques may run into quality problems when working in a multi-knowledge graph scenario due to incorrect transitive identity links. We present four techniques that can be used to improve the quality of arbitrary entity matching tools significantly. Concerning relation heterogeneity, we show that synonymous relations in knowledge graphs pose several difficulties in querying. Therefore, we resolve these heterogeneities with knowledge graph embeddings and by Horn rule mining. All methods detect synonymous relations in knowledge graphs with high quality. Furthermore, we present a novel technique for avoiding heterogeneity issues at query time using implicit knowledge storage. We show that large neural language models are a valuable source of knowledge that is queried similarly to knowledge graphs already solving several heterogeneity issues internally.Wissensgraphen sind eine wichtige Datenquelle von Entitätswissen. Sie unterstützen viele moderne KI-Anwendungen. Dazu gehören unter anderem Websuche, die automatische Beantwortung von Fragen, digitale Assistenten und Online-Shopping. Neue Errungenschaften im maschinellen Lernen und das außerordentliche Wachstum des Internets haben zu riesigen Wissensgraphen geführt. Diese umfassen häufig Milliarden von Fakten über Hunderte von Millionen von Entitäten; häufig aus vielen verschiedenen Quellen. Während die Integration unabhängiger Wissensquellen zu einer großen Informationsvielfalt führen kann, führt sie inhärent zu Heterogenitäten in der Wissensrepräsentation. Diese Heterogenität in den Daten gefährdet den praktischen Nutzen der Wissensgraphen. Durch ihre Größe lassen sich die Wissensgraphen allerdings nicht mehr manuell bereinigen. Dafür werden heutzutage häufig automatische und halbautomatische Methoden benötigt. In dieser Arbeit befassen wir uns mit dem Thema Repräsentationsheterogenität. Wir klassifizieren Heterogenität entlang verschiedener Dimensionen und erläutern Heterogenitätsprobleme in Datenbanken, Ontologien und Wissensgraphen. Weiterhin geben wir einen knappen Überblick über verschiedene Techniken zur automatischen Lösung von Heterogenitätsproblemen. Im nächsten Kapitel beschäftigen wir uns mit Entitätsheterogenität. Wir zeigen Probleme auf, die in einem Multi-Wissensgraphen-Szenario aufgrund von fehlerhaften transitiven Links entstehen. Um diese Probleme zu lösen stellen wir vier Techniken vor, mit denen sich die Qualität beliebiger Entity-Alignment-Tools deutlich verbessern lässt. Wir zeigen, dass Relationsheterogenität in Wissensgraphen zu Problemen bei der Anfragenbeantwortung führen kann. Daher entwickeln wir verschiedene Methoden um synonyme Relationen zu finden. Eine der Methoden arbeitet mit hochdimensionalen Wissensgrapheinbettungen, die andere mit einem Rule Mining Ansatz. Beide Methoden können synonyme Relationen in Wissensgraphen mit hoher Qualität erkennen. Darüber hinaus stellen wir eine neuartige Technik zur Vermeidung von Heterogenitätsproblemen vor, bei der wir eine implizite Wissensrepräsentation verwenden. Wir zeigen, dass große neuronale Sprachmodelle eine wertvolle Wissensquelle sind, die ähnlich wie Wissensgraphen angefragt werden können. Im Sprachmodell selbst werden bereits viele der Heterogenitätsprobleme aufgelöst, so dass eine Anfrage heterogener Wissensgraphen möglich wird

    Can language models automate data wrangling?

    Full text link
    [EN] The automation of data science and other data manipulation processes depend on the integration and formatting of 'messy' data. Data wrangling is an umbrella term for these tedious and time-consuming tasks. Tasks such as transforming dates, units or names expressed in different formats have been challenging for machine learning because (1) users expect to solve them with short cues or few examples, and (2) the problems depend heavily on domain knowledge. Interestingly, large language models today (1) can infer from very few examples or even a short clue in natural language, and (2) can integrate vast amounts of domain knowledge. It is then an important research question to analyse whether language models are a promising approach for data wrangling, especially as their capabilities continue growing. In this paper we apply different variants of the language model Generative Pre-trained Transformer (GPT) to five batteries covering a wide range of data wrangling problems. We compare the effect of prompts and few-shot regimes on their results and how they compare with specialised data wrangling systems and other tools. Our major finding is that they appear as a powerful tool for a wide range of data wrangling tasks. We provide some guidelines about how they can be integrated into data processing pipelines, provided the users can take advantage of their flexibility and the diversity of tasks to be addressed. However, reliability is still an important issue to overcome.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was funded by the Future of Life Institute, FLI, under grant RFP2-152, the MIT-Spain - INDITEX Sustainability Seed Fund under project COST-OMIZE, the EU (FEDER) and Spanish MINECO under RTI2018-094403-B-C32 and PID2021-122830OB-C42, Generalitat Valenciana under PROMETEO/2019/098 and INNEST/2021/317, EU's Horizon 2020 research and innovation programme under grant agreement No. 952215 (TAILOR) and US DARPA HR00112120007 ReCOG-AI. AcknowledgementsWe thank Lidia Contreras for her help with the Data Wrangling Dataset Repository. We thank the anonymous reviewers from ECMLPKDD Workshop on Automating Data Science (ADS2021) and the anonymous reviewers of this special issue for their comments.Jaimovitch-López, G.; Ferri Ramírez, C.; Hernández-Orallo, J.; Martínez-Plumed, F.; Ramírez Quintana, MJ. (2023). Can language models automate data wrangling?. Machine Learning. 112(6):2053-2082. https://doi.org/10.1007/s10994-022-06259-920532082112
    corecore