
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

BotsBFUOD: Web Bot Detection using
Biometric Features and Unsupervised

Outlier Detection

Pedro C. Pereira

Mestrado em Engenharia Informática e Computação

FEUP Supervisor: Prof. Miguel Monteiro

Host Institution: Jscrambler S.A.

Jscrambler Supervisor: João Routar

October 17, 2022

BotsBFUOD: Web Bot Detection using Biometric
Features and Unsupervised Outlier Detection

Pedro C. Pereira

Mestrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Gil Gonçalves

External Examiner: Prof. Rolando Martins
Supervisor: Prof. Miguel Monteiro

October 17, 2022

Abstract

A bot is defined as a autonomous piece of software that wanders the application layer of the
Internet to perform a certain task they were designed to. These can be classified as either ”good” or
”bad” depending on the intent with which they request resources from applications, if they follow
the rules laid out for their activity, and what they do with the information they obtain. An example
of a good robot would be GoogleBot, one whose purpose is to better match user’s queries on
their platform. Examples of bad bot activity include but are not limited to: vulnerability scanning,
scraping (collecting proprietary data without the owners consent to use elsewhere), scalping, fraud,
denial of service attacks etc. Though the existence of these agents on the Web is not something
new, their numbers have been steadily increasing over the years, and have had an even larger
growth than before in this current Pandemic. As with most issues of cybersecurity, this is one
were there seems to be a never-ending battle between attackers and defenders. The role of the
defender in this conflict, and the motivation of this work is to advance the science of detecting
human and non-human or bot behaviour on the Web. This paper will present a proof of concept,
for a system of Bot Detection based on Biometric Features and Unsupervised Outlier Detection.
This system uses a combination of attributes found in literature and some novel ones to model
user behaviour at a certain point in time in a session. It then analyses if at that point, the session is
deemed anomalous, and assumed to be generated by a bot.

Keywords: Web Robot Detection, Biometric Patterns, Unsupervised Learning

i

ii

Acknowledgements

As the main author of this work, I would like to use this section to acknowledge everyone who,
directly or indirectly, assisted in the development of this thesis.

Firstly, as this work was only possible with their collaboration and cooperation, I would like to
thank Jscrambler. This organization and its collaborators were vital to this work. From providing
the necessary infrastructure, to volunteering your time and data, all your contributions supported
this project. A special thanks to the Web Engineering team for their help in the implementation of
necessary web resources. Namely, José Silva and Edgar Araújo. José for taking time-off from his
vacation to squash a bug. Edgar, for all the meetings, the help with Web Dev, and the after hours
casual talks.

Secondly, I would like to express my gratitude towards my friends and family. For every time
you had to listen to me talk about this thesis. For every afternoon of work spent alongside you.
For every time one of you gave me shelter, when I needed a change of scenery. And, for always
believing in me, and helping me deal with any anxiety that came in this process. Thank you!

Finally, to my co-authors. Professor Miguel Monteiro of University of Porto and João Routar,
Lead Research Data Scientist at Jscrambler. Thank you for your guidance and direction in this
venture. For all your feedback, for all the help with burocracy and for all the weekly meetings. All
your work was greatly appreciated!

Pedro C. Pereira

iii

iv

“Man is condemned to freedom”

Jean-Paul Sartre

v

vi

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Document Structure . 2

2 Web Bots 3
2.1 Overview . 3

2.1.1 Basic Concepts . 3
2.1.2 Development Technologies & Tools . 4

2.2 Detection State of the Art . 6
2.2.1 Navigational Patterns . 6
2.2.2 Biometric Patterns . 11
2.2.3 Browser Fingerprinting . 12
2.2.4 Other Approaches . 13
2.2.5 Summary . 14

3 Outlier Detection 19
3.1 Overview . 19

3.1.1 Local Outlier Factor . 20
3.1.2 Isolation Forest . 21
3.1.3 Autoencoder . 22

3.2 Data Preprocessing . 24
3.3 Performance Evaluation . 25

4 Detector Implementation 29
4.1 Detection Methodology . 29
4.2 Data Extraction . 29

4.2.1 Requirements . 30
4.2.2 Biometric Data Extracted . 30
4.2.3 Human Data . 33
4.2.4 Bot Data . 34

4.3 Data Processing . 36
4.3.1 Session Aggregator . 36
4.3.2 Data Preprocessing . 37

4.4 Resulting training data . 38
4.5 Classifiers Trained . 39
4.6 System Overview . 39

vii

viii CONTENTS

5 Experiments, Results and Discussion 41
5.1 Tuning Model Parameters . 41

5.1.1 Parameters: Isolation Forest . 42
5.1.2 Parameters: AutoEncoder . 42
5.1.3 Parameters: LOF . 43

5.2 Experiment 1: Packet-based Web Bot Detection 43
5.3 Experiment 2: Session-Based Web Bot Detection 51
5.4 Conclusions from Experiments . 52

6 Conclusions and Future Work 53

References 55

A Appendix 59
A.1 Biometric Data Collector: bc.js . 59
A.2 Detector Modules . 70
A.3 Bots Developed . 90

List of Figures

2.1 Works that utilize Nav. Features vs. Works that do not 7
2.2 Example Web Server Access Log Entry [Stevanovic et al., 2012] 8

3.1 Isolating an inlier (a/xi) vs. Isolating an outlier (b/xo) [Liu et al., 2009] 22
3.2 Examples of single (a) and multi-layer (b) ANNs [Aggarwal, 2016] 23
3.3 Example of autoencoder architecture [Aggarwal, 2016] 24
3.4 Confusion Matrix example . 26
3.5 Precision-Recall Curve Example Comparing Multiple Algorithms [Aggarwal, 2016]) 27
3.6 Example of Perfect Classifier and Random Classifier ROC [Alla and Adari, 2019] 28

4.1 Example Human Behaviour Diagram . 33
4.2 Crawler Behaviour Diagram . 35
4.3 Crawler Behaviour Diagram . 35
4.4 Proposed Solution System Overview . 40

5.1 Isolation Forest Confusion Matrix . 44
5.2 Isolation Forest ROC Curve . 45
5.3 Isolation Forest Precision-Recall Curve . 45
5.4 AutoEncoder Confusion Matrix . 46
5.5 AutoEncoder ROC Curve . 47
5.6 AutoEncoder Precision-Recall Curve . 48
5.7 LOF Confusion Matrix . 49
5.8 LOF ROC Curve . 49
5.9 LOF Precision-Recall Curve . 50
5.10 BAARZS . 51

ix

x LIST OF FIGURES

List of Tables

2.1 Total Downloads for Selenium Python and Puppeteer.js from 12-19th Sep. 2022 . 4
2.2 Papers that use Nav. Feats. and papers that do not 7
2.3 Common Navigational Features . 9
2.4 Summary of Learning Approaches . 14

4.1 Biometric Features Selected . 31
4.2 Data Set Properties . 39

5.1 IForest Performance Metrics . 44
5.2 AutoEncoder Performance Metrics . 46
5.3 LOF Performance Metrics . 48
5.4 Data Set Properties . 52

xi

xii LIST OF TABLES

Abbreviations

AI Artificial Intelligence
(A)NN (Artificial) Neural Network
CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DDoS Distributed Denial of Service
FN False Negatives
FP False Positives
HTTP Hypertext Transfer Protocol
IForest Isolation Forest
IP Internet Protocol
LOF Local Outlier Factor
OD Outlier Detection
OS Operating System
PoC Proof of Concept
ROC Receiver Operating Characteristic
SL Supervised Learning
SOM Self-Organizing Map
SVDD Support Vector Data Description
TN True Negatives
TP True Positives
UA User Agent
UL Unsupervised Learning

xiii

Chapter 1

Introduction

1.1 Context and Motivation

Since the early days of the World Wide Web, individuals and organizations have developed soft-

ware agents to automate different tasks. These agents that inhabit the Web are Web Robots or Web

Bots. In the early 90s, a series of incidents involving automated agents led to the development of

the Robot Exclusion Protocol/Standard. A file "/robots.txt" is the way for server administrators to

dictate what is accessible to what bots on their website. However, due to the Request-Response

nature of the Web, the standard is not enforceable [Koster, 2007].

A common classification for bots is distinguishing the "good" from the "bad". This system

considers the intentions behind the requests, if the agents follow the Exclusion Protocol and what

they do with the information obtained/accessed. Some applications of good bots are search engine

indexers who work to better their engine’s results, site monitoring bots who monitor performance

and availability, etc. Even though these generally aren’t harmful, detecting them may still be

advised as it may be beneficial to control their access during periods of higher bandwidth us-

age [DataDome, 2019]. Regarding bad bots and their use cases, [Watson and Zaw, 2018] lists

twenty-one events that include: vulnerability scanning, scalping, denial of service, and scraping

(collecting data without the author’s consent to use elsewhere) as reasons for wanting to detect

these unethical agents.

As the Web grew and evolved, bot traffic also grew and the trend seems to be for it to continue

to grow. A yearly industry report [Imperva, 2021] estimated 40.8% of all web traffic in 2020 was

by bots, with 25.6% of the total being bad bot traffic. This report also notes how the pandemic

situation boosted the growth of bot presence online, with a particular highlight on misinformation

spreading bots and scalper bots.

Finally, the idea that bots can interfere with Web Usage Analysis has also been used as moti-

vation for bot detection [Lagopoulos et al., 2018].

Regarding the motivation for the development of a solution based on Biometrics and Unsu-

pervised Outlier Detection; as Chapter 2 will display, machine learning systems for bot detection

have focused mainly on navigational characteristics of how a website is accessed (e.g. no. of

1

2 Introduction

requests, error rates, etc.). [Tan and Kumar, 2002] When considering Biometric Features, these

have been explored (often combined with navigational features) in supervised learning contexts,

where assumptions are made about the data. [Chu et al., 2013] In contrast to this, this project

will present a, proof of concept (PoC), purely biometric system that utilizes Unsupervised Outlier

Detection, where the only assumption is that in the data the system will be exposed to, Bots are

less prevalent. On that basis, outliers in this system will be considered bots.

1.2 Objectives

With the end goal of developing a Bot Detection system, the objectives of this work are threefold.

The first step is to analyse the State of the Art in Bot Detection. By studying Bot Detection, what

has been done and what can still be done will become more apparent. Current techniques and

approaches will be examined and possible gaps in literature identified.

Following that, bot development must also be considered to achieve a higher understanding

of the problem. By knowing how bots work, new, improved features can be designed for their

detection. Furthermore, bots will need to be developed to test the solution once implemented.

To conclude, based on the knowledge exposed in the SoA sections of this work, a Bot Detec-

tion System will be implemented, and experimented upon. The resulting system is expected to, at

least to some degree and with a reasonable error rate, be able to evaluate at some given points in a

user’s session, if this user is a Human or Web Robot.

The main contributions of this work are:

• the set of biometric features developed for detection;

• the study of how Biometric Features and Unsupervised Outlier Detection techniques can be

used for Bot Detection.

1.3 Document Structure

The rest of this document is structured as follows. Chapters 2 and 3 cover the state of the art in the

relevant fields for this project. The first, reviews literature on Bots. Be it detection and prevention,

or bot development. The second, on Unsupervised Outlier Detection, covering basic concepts,

evaluation methods and the algorithms picked for this project. Chapter 4 presents an overview of

the developed system - from the features selected and how they were collected, through session

rebuilding and data preprocessing. Following that, Chapter 5 describes the culmination of the

work exposed in previous chapters in two experiments. Finally, chapter 6 concludes and suggests

future work.

Chapter 2

Web Bots

To better understand the problem of Web Bot Detection, a literature review was conducted on the

topic. In the interest of better comprehension of the subject matter and even to develop tests for

the solution, literature on Bot Development, few as it may be, may not be neglected. As such, this

chapter is composed of sections including both topics. The first section will cover basic concepts

on Bots, use cases and development technologies and tools. The following section will narrow the

focus to the State of the Art in Bots Detection.

2.1 Overview

2.1.1 Basic Concepts

The first concept to define is Bot. What is a bot? A (Ro)bot, is a piece of software that automates

a given task. Web bots are bots that operate on the Web, performing tasks across any number of

domains [DataDome, 2019].

In [Doran and Gokhale, 2011], the authors classify bots as either Good or Bad. Good bots

explicitly follow the Robot Exclusion Protocol defined by the domain and don’t interfere with

other users’ experience with the platform. Bots can be bad, either because they were built with

ill-intent as automated attacks, or because they inadvertently affect other users’ sessions. In the

cited work, the authors give the example of a link verifying bot that sends GET requests instead of

HEAD requests, thus consuming more bandwidth than necessary and possibly impacting others.

Examples of purposefully bad bots will be discussed later in this section.

When discussing automated attacks, [Chu et al., 2013] categorizes bots by their behaviour or

mode of operation. The paper focuses on three types of bots: Form Injection, Human Mimics

and Replay bots. Form Injection bots directly send the HTTP request with the parameters filled to

the target page. These bots don’t interact through a browser. A step above in complexity, Human

Mimic bots, use browsers and basic mouse movements and keyboard presses to try to emulate

human behaviour. However, because human behaviour is often somewhat chaotic, these bots end

up following betraying patterns. Finally, the most complex bots to detect are replay bots. These

bots first record the actions of a human traversing the page and then replay the actions.

3

4 Web Bots

Bots have as many use cases as there are tasks that can be automated on the Web. Examples of

generally considered "Good" use cases can be: search engine indexers (that crawl the web to add

more relevant search results to their engines), site monitoring scripts, link checkers (that check

if a given link is available to access) [DataDome, 2019]. In [Watson and Zaw, 2018], OWASP

categorizes the possible automated attacks. These include: scraping, vulnerability scanning, denial

of service and scalping. During the Pandemic, [Imperva, 2021] reported a rise in bot activity across

the web. Scalping bots in particular were found to be the faster growing type of bot, due to the

supply chain constraints that the Pandemic brought about.

Most research into Web Bot Development focuses either on how to more efficiently scrape

information or how to train conversational bots (those that communicate with humans via a chat).

Under the assumption that bot developers plan to follow the Robot Exclusion Protocol, from a

scholarly point of view, there is little reason to try and mask a bot as a human. That’s not to

say there has been no research on this topic, however it has, mostly, been done in more informal

settings.

2.1.2 Development Technologies & Tools

This section will cover important technologies, evasion tactics and tools used in bot development.

Automation tools allow developers to build more complex bots, that interact with a page, rather

than just getting its content and processing it offline [Imperva, 2020]. The Web Browser Testing

Framework Selenium is mentioned in literature as a starting point for these bots [Khder, 2021]

[Zhao, 2017] [Amin Azad et al., 2020].

Another testing framework popular in the aforementioned informal settings is Puppeteer.js.

There is a substantial amount of debate on which one is better as can be seen in [Wickramasinghe,

2021] and [Singh, 2021]. Total downloads in the week of 12th September 2022, for each tool,

displayed in Table 2.1.

Tool Downloads from 12-19th Sep. 2022 Source

Selenium Python 3,468,021 [PyPIStats, 2022]

Puppeteer.js 3,899,231 [npmjs, 2022]
Table 2.1: Total Downloads for Selenium Python and Puppeteer.js from 12-19th Sep. 2022

It is worth noting that, while the Selenium total downloads only consider the most commonly

used language Python. The library itself is available in other languages like Java, Ruby, and others

[Selenium, 2022].

As most commercial bot detection solutions are based primarily on device fingerprinting, some

work has been done in simulating human device fingerprints. Often coupled with Selenium, there

is, for example, the Selenium Stealth Library, that promises results even against some of the most

well known bot detection solutions [Patra, 2020].

The field of mimicking human mouse movement has seen some research. Models that generate

human-like trajectories using machine learning (specifically GANs) and datasets of real human

2.1 Overview 5

mouse movements have been proposed as can be seen in [Acien et al., 2020]. However, for the

purpose of this project, developing such a solution was deemed unnecessary.

2.1.2.1 WindMouse Algorithm

This subsection will cover the WindMouse Algorithm. This algorithm was designed to create

simple, yet human-looking, mouse trajectories to evade Bot Detection Systems. Furthermore, as

performance was one of the author’s main concerns, it consumes minimal processing time. As

such, and given that it claims to have been used in production environments, [Land, 2021], it was

considered relevant to include in its own section.

An algorithm, as its author puts it: "inspired by high-school physics", WindMouse uses the

concepts of "gravity" and "wind" to create mouse paths not unlike those a human would create,

at least to the naked eye [Land, 2021]. This algorithm calculates the trajectory between 2 points

(x, y) in a two dimensional plane using 4 other inputs. The mouse cursor is treated as an object

being impacted by 2 external forces that move it, Wind and Gravity (inputs 1 and 2). Gravity pulls

the object towards its final destination, while Wind adds force in a random direction, smoothly

changing in power and direction with time. At any given point the total force on the object is the

sum of the wind at that point in time, with the gravity at that position. (The position of the object

will also depend on the time passed).

F⃗(t) = W⃗ (t)+ G⃗(⃗x(t)) (2.1)

F Total Force on Object
t Current Point in Time

W Wind Force
G Gravitational Force
x Current Position

The algorithm’s developer recalls Newton’s 2nd Law, as "the force on an object is the second

derivative of position". (F⃗ = ma⃗ = m ˙⃗x) As such, they formulate that to find the position one needs

to integrate the force to obtain the velocity over that period of time and after that integrate the

velocity to obtain the position.

x(t) =
∫ t

0

∫ t

0
F⃗(T)dT 2 (2.2)

So as to not make impossible movement, a parameter for maximum velocity can be set (input

3). Finally, a distance can be set for which the speed will be reduced so that when the cursor is

close to its target it is not thrown off route by the wind[Land, 2021].

6 Web Bots

2.2 Detection State of the Art

This section will review relevant current literature in bot detection technologies. The review of

papers mainly includes work that was conducted after 2004. The year when Selenium, one of the

most popular browser automation tools, was introduced. Tools like Selenium allow bot developers

to create bots that interact with websites in much the same way humans do, generating mouse

and keyboard events [Selenium, 2022]. In [Doran and Gokhale, 2011], the authors describe how

Web Bot Detection has evolved into two main categories of systems: Analytical Learning and

Turing Test Systems. As the name implies, in Analytical Learning systems, Artificial Intelligence

(AI) models learn to classify behavior on the Web as Human or Bot made, by analyzing different

features of it. Turing Test Systems challenge users to prove their humanity or trick bots into

signaling their presence. As this project will focus on the development of a Learning System,

this area will be analysed in more depth and will be the first subsection. Following that, and as it

is relevant to current industry practices, the topic of browser fingerprinting will be explored. As

it relates to the proposed solution, the learning of Biometric Patterns will have its own section.

Finally, this section will briefly present areas less relevant to this undertaking but nonetheless

important.

2.2.1 Navigational Patterns

The most prolific research area in Web Bot Detection is the learning of navigational features and

patterns to identify Human vs. Bot behavior. These features and patterns give information on

how the site was navigated in the course of a user’s session. Examples of these can be: session

duration, percentage of failed requests, types of requests and their ratios, etc. A more complete

list of these characteristics can be seen in Table 2.3. In [Chen et al., 2020], the authors explore

the three most active research areas in Bot Detection. Using the nomenclature from [Doran and

Gokhale, 2011], what the authors of [Chen et al., 2020] consider the three major fields of BD fall

in two categories: Turing Test Systems and Analytical Learning systems. The second category is

interpreted as two separate in regards to whether they act online or offline in [Chen et al., 2020],

yet in this section will be considered just the one. The initial claim is further supported by in

the papers used for this state of the art review. This review aimed at exploring as many relevant

approaches to Bot Detection as possible. To that end, the inclusion criteria requires either for an

approach to introduce novel concepts or models, or for the paper to be cited by over ten others.

In cases where multiple works analysed the very same approach, the most cited work, usually

the original, is used. Of the 17 unique solutions to Bot Detection included, 12 utilized some sort

of navigational attributes, the remaining 5 use either biometrics and/or Turing Tests. Figure 2.1

represents this ratio graphically. Table 2.2, names the papers in each category.

2.2 Detection State of the Art 7

Figure 2.1: Works that utilize Nav. Features vs. Works that do not

Table 2.2: Papers that use Nav. Feats. and papers that do not

Use Nav. Feats. Do not use Nav. Feats.
[Tan and Kumar, 2002] [Hayati et al., 2010]

[Stassopoulou and Dikaiakos, 2009] [Park et al., 2006]

[Suchacka and Sobkow, 2015] [Chu et al., 2013]

[Stevanovic et al., 2012] [Lagopoulos et al., 2018]

[Cabri et al., 2018] [Vikram et al., 2013]

[Stevanovic et al., 2013] [McKenna, 2016]

[Zabihimayvan et al., 2017]

[Zolotukhin et al., 2014]

[Jacob et al., 2012]

[Rahman and Tomar, 2020a]

[Iliou et al., 2021]

These attributes are often extracted either from Server Access Logs, or from the requests as

they come in[Chen et al., 2020]. Server Access Logs are files containing details on every web

request to a domain. Each line in a log file contains the following data: request source IP address,

a timestamp of the request, the HTTP method used, the requested file, the response code and

finally, the UA of the request source. An example entry for a web log was taken from [Stevanovic

et al., 2012] and can be seen in Figure 2.2.

8 Web Bots

Figure 2.2: Example Web Server Access Log Entry [Stevanovic et al., 2012]

Initially, papers on this field mainly analyzed data from Access Logs and so had to extract

session information after the fact. The process of session extraction is usually done with a timeout

value and some comparable characteristics. The most basic approach just groups requests in a

thirty-minute interval with the same IP address and UA (user agent) string. Other approaches

consider dynamic timeout values and/or more complex contiguity checks, such as [Stassopoulou

and Dikaiakos, 2009] and [Tan and Kumar, 2002].

2.2.1.1 Supervised Learning Approaches

Starting with the Supervised Learning (SL) Techniques, one of the most widely cited papers on

the topic was [Tan and Kumar, 2002]. This work presented a classification approach based on

some variations of traits in Table 2.3 and the C4.5 decision tree algorithm. Besides that, it also

expanded the area of session identification, proposing a new scheme that could identify sessions

across different IP addresses and UA names. To test the solution, Server Access Logs for the month

of January, 2001, were collected. These counted 1.6 million entries belonging to an estimated,

180 thousand sessions. These were manually labeled to confirm detection results. At the time, the

accuracy of 90% was achieved, which was fairly high by the standards of the time. Contributing

to this was a new method for identifying mislabeled samples. By building multiple classifiers, the

ensemble of their evaluations of a piece of data could be used to tell if the data was mislabeled

in the first place. If a majority of the classifiers failed (either by false positive or negative) when

classifying the sample, said sample could be considered mislabeled.

Another influential approach was introduced in [Stassopoulou and Dikaiakos, 2009], and that

was the use of a Bayesian Network. This approach was also used with properties like the ones

in Table 2.3. As the data set used at the time was deemed imbalanced, the model had a risk of

growing a bias for the majority class. To fix this, the researchers employed several re-sampling

techniques with varying degrees of success. The most successful strategy was to over sample the

minority class to 50% of the data set volume in the training data. This achieved an F1-score of

0.903 on the testing data. The testing data was not submitted to sampling techniques, to preserve

the natural imbalance. The testing data was manually labeled, as was the training data, and con-

sidered 685 human sessions and 99 crawler ones. The performance metric, however, was based on

the initial manual labeling of sessions as human or bot made, and so may suffer from human error.

Further, this project disregarded session with less than 5 requests which compromised its ability

to deal with distributed attacks.

2.2 Detection State of the Art 9

Table 2.3: Common Navigational Features

Id Name Description
0 robots.txt A check to see if "robots.txt" was ac-

cessed
1 Pages Requested Number of pages requested
2 Click Rate Number of Requests in Session
3 Unassigned Referrer % or number of requests with and unas-

signed referrer field
4 Total Time Approximate, total session time
5 Request Type ratios HTML to: image ratio, PDF files, etc.
6 Request Method ratios % GETs, % HEADs etc.
7 Response Errors Ratios or number of responses with a

code >= 400
8 Page Depth Page Depth in URL Space
9 Time per Page Can be mean or associated to a certain

page
10 Consecutive Sequential HTTP Requests Sequential requests for pages with a

shared path and in the same session
11 Data Volume Size in Bytes/KBytes of data moved

Building upon the Bayesian Approach in [Suchacka and Sobkow, 2015], the authors aug-

mented the usual feature set with domain specific attributes. As their data set was collected from

an online bookstore, the researchers were able to extract more information on their users using

contextually valid measurements, for example: if a purchase was made, number of pages tra-

versed related to shipping information, number of attempts to register, etc. While these make for

good predictors in the context of an online store, it is apparent that they can’t be used in a general

solution for all types of websites.

In [Stevanovic et al., 2012], the authors compare several SL techniques using a set with vari-

ations of attributes [0, 1, 3, 5, 6, 7] from the Table 2.3. Furthermore, they introduced the basis

for the entries numbered 8 and 10. Their work relied on the WEKA software package implemen-

tation of the following algorithms: C.4.5, RIPPER, Naive Bayes, Bayesian Network, K-nearest

Neighbours, LibSVM and a Multilayer Perceptron Neural Network. In two experiments, first they

used only "borrowed" features in their models, and then compared them to models trained with

their added features. The results showed that their ideas improved classification outcomes and that

the best overall model was the Neural Network. The authors did express that they found room for

improvement in the C4.5 and RIPPER algorithms.

[Sisodia et al., 2015] compared Random Forests, C4.5 and Naive Bayes classifiers, using

traditional navigation characteristics, to their ensemble following techniques of Bagging, Boosting

and Voting. Though slightly better, the difference in performance between the ensembles and the

Random Forest and C4.5 algorithms was not all that noticeable. Compared to a Naive Bayes

approach however, the dissimilarity is more pronounced. In the original paper, the authors plot the

precision, recall and f1-score for all models. In the mentioned plot, these variables hold the same

10 Web Bots

values for all models except for the Naive Bayes Classifier. In this particular case, all metrics drop.

Diverging from the common characteristics, [Hayati et al., 2010] instead focused on the set of

web pages visited in a session to determine whether or not the traversal had been performed by

a human. Using a data set that had twice the amount of bot records than human records, and the

Support Vector Machine algorithm, the model reportedly reached a 96% accuracy. Using a metric

of binary classification, not used by any other paper in this review, achieve an MCC of 81%. This

metric varies from 1 to -1, a perfect classifier would be a 1, a random a 0 and an inverted one a -1.

The work up to this point was based on offline log analysis. [Cabri et al., 2018] introduced a

model that consumes requests as they come in to determine if a session is controlled by a human

or bot, before the session concludes. This method first and by looking at some major navigation

characteristics determines if a single request is bot or man-made using a neural network. This

request is added to the current set of requests being analyzed for a user. Then the current set of

requests as a whole is passed through Wald’s Sequential Probability Ratio Test to check if the set

itself and the associated probabilities of each request can give a conclusion on the identity of the

user. The most interesting result from this approach was the verification that human users were

rarely confused with bot users and so their experience wasn’t harmed by this system.

2.2.1.2 Unsupervised Learning Approaches

As SL techniques depend on the labeling of data by humans, the models will learn based on the

human expertise behind the labeling which can lead to misclassification. To deal with this issue, a

number of Unsupervised Learning (UL) and Optimization techniques, were also employed in Web

Bot Detection.

In [Stevanovic et al., 2011] and [Stevanovic et al., 2013], the authors test two UL neural

networks for web log analysis. Namely, the Self-Organizing Map (SOM) and a modified Adaptive

Resonance Theory 2 (ART2) network. The second work follows closely the first and expands upon

it refining the attributes selected. In both papers, the authors apply these algorithms to two subsets

of the common features in Table 2.3 and analyze their results. To verify the results (not to train

the models), the data set fed to the neural networks was preprocessed and each session was labeled

as: normal browser, well-behaved crawler, malicious crawler or unknown visitor. Taking this into

consideration, and looking at the results in the SOM mappings, particularly in the second paper,

the 4 labels form 4 mostly distinguishable clusters. There are instances however, where sessions

labeled as human appear in the same region on the map as the cluster of malicious crawlers. The

researchers suggest these may be more stealthy bots that evaded the first labeling. Further, when

originally labeled malicious crawlers are mapped to mainly human clusters the researches take

issue. These were well crafted bots that had their creators just masked their known UA could’ve

been mistaken for human browsers, which would defeat the detection scheme. As for unknown

users, while in the first paper these were harder to assign to one specific cluster, in the second one

they are more closely related to the human cluster. The results from the mART2 network help

strengthen the conclusions from the SOM experiments, but by themselves are not as informative.

2.2 Detection State of the Art 11

There are multiple overlaps in clusters from which little can be learnt if not backed by more

concrete discrimination.

Taking into consideration most common navigation features and introducing a few novel ones,

the SMART system presented in [Zabihimayvan et al., 2017] calculates the features that best char-

acterize a domains traffic by applying Fuzzy Rough Set Theory. With the features selected the

Markov Clustering algorithm is applied. The Clustering results are compared to a system mod-

eled after [Stevanovic et al., 2013] and another DBSCAN model. The difference in performance

between the SOM and mART system and SMART is not too noticeable, however SMART has a

slight edge. As these Bot detection models were based on clustering, the metrics used to compare

them stem from that field. In the paper they refer to Accuracy as Rand Index, and it is this that is

used to compare algorithms. In regards to DBSCAN both models outperform this one.

A paper on Web Application Intrusion Detection [Zolotukhin et al., 2014] uses and compares

several UL outlier detection techniques to process server log data. As the data set contained no

harmful users, the models were able to learn the expected normal behaviour, and any divergence

can trigger an alarm in the system. The models are trained to learn normal request parameters,

query strings (alphanumeric characters masked to be indistinguishable), and user-agents. After

training, the models classified attack data created by the authors to simulate anomalies in the

three categories. The models trained were: SVDD, K-means, DBSCAN, SOM and LOF. In web

resource anomalies all models had accuracy over 98%. In attribue values, the accuracy ranged

from 95% (LOF) to 100% K-means. Finally, in user-agents DBSCAN and LOF standout with and

accuracy of 97.5%, followed by SVDD and SOM with accuracies of 90 and 87.5% and finally

K-means performed the worst with 77.5% accuracy. Though not with the specific purpose of bot

detection, this paper and its results show how outlier detection techniques can be used to mine

data from server access logs to detect inadequate behaviour from users. It is also worth noting, the

system presented is meant to run online and could detect a series of crafted attacks in minutes.

A generalized web bot detection system, with features specific for detection of distributed

attacks was proposed in [Jacob et al., 2012]. This system was made of three primary components.

The simplest, was a set of heuristics matched against access logs to look for hints of bot behaviour.

The next step was an ensemble of supervised learning models trained to identify unusual traffic

patterns. Finally, a clustering model was used to check for synchronicity and possible distributed

attacks.

2.2.2 Biometric Patterns

The first approach to bot detection that had some relation to biometrics was proposed as early as

2006. Though now easily evaded, the system at the time proved to be effective against the bot

technologies of its time. [Park et al., 2006] This system used the presence of mouse clicks and key

presses to assert the identity of a user as human. As this was dependent on JavaScript and users

could be disinclined to run such technologies, a blank CSS file was added to the pages under the

assumption that bots would not request it as they had no need for it. This system has long been

12 Web Bots

surpassed by current browser automation technologies but it is worth mentioning as it was the start

of the study of biometric for web user classification.

A study focused on blocking spam bots in blogs developed a model based on more complex

biometric features in combination with learning algorithms. Before discussing the actual solution,

another interesting contribution of this paper is the classification for bots based on apparent be-

haviour. The same classification that is used in this paper. Using data sets containing hours of

human, mimic and replay bot interaction, a C4.5 decision tree was trained to classify users. The

results show that this tactic was fairly accurate even at detecting replay bots. To prove this, the au-

thors collected 239 hours of user data. 207 belonging to over 1000 human users and the remaining

to a human mimic and a replay bot. On this data their model achieved an accuracy of around 99%.

[Chu et al., 2013]

In [Rahman and Tomar, 2020a], hierarchical clustering was used to derive representative points

from an initial data set. Though it is unspecified how the initial labels are assigned, supervised

learning algorithms are then trained and tested on a data set containing bots programmed by the

researchers. It is worth noting however, the biostatistics approach, combining biometric data from

mouse and keyboard movement, with statistics such as session length and inter-request time. Re-

sults appear promising, reporting accuracies and f1-scores of over 90%, however, the lack of an

explanation for the labeling process of the training data raises concern.

[Iliou et al., 2021] used convolutional neural networks to determine if the trace of a mouse’s

movement on the screen belonged to a human or bot. In addition, common navigational features

and biostatistical features were used by SL classifiers. The data sets for training and testing the

model were composed of bots programmed by the researchers and the authors and 28 others pro-

viding the human data. Despite the small sample, the levels of precision, recall and f1-scores are

in the 93-99% range.

A framework for detecting bot behaviour by a multi-stage analysis is proposed in [Rahman and

Tomar, 2020b]. Analyzing timing parameters related to requests, mouse movement and keyboard

strikes, and error patterns. The last category being the most novel, works under the assumption

humans make mistakes on a keyboard and so will press keys like delete and backspace. Using

two data sets one of humans and another one of malicious bots, regression algorithms were run

and differences in bot and human behaviour analysed. The results do not evaluate a particular bot

detection practice, rather differences in the attributes measured.

2.2.3 Browser Fingerprinting

To understand how Browser Fingerprinting works, first it is necessary to define what is a User-

Agent, as it is a principal concept of this methodology. The UA is a string field in HTTP requests

usually containing information on the application, system and version of the user that sent the

request. Browsers, as interfaces to the Web, have their own User-Agents [MDN, 2022]. When

a user claims to be using a certain public browser, some supposed characteristics of this browser

are known.Others can be learnt after analyzing enough requests with the same UA. Browser au-

tomation tools, widely used in Bot Development, as the name implies, use a browser to automate

2.2 Detection State of the Art 13

a task. Often times, however, either by default or for some reason in the interest of developing the

bot, these users will have attributes not consistent with their public UA. Bellow an example UA:

Mozilla/5.0 (Windows NT x.y; rv:10.0) Gecko/20100101 Firefox/10.0

As can be read in the UA, the system it’s advertising is Windows. This could be a legitimate

user. On the other hand, it could also be a bot, running for example on Linux, that chose to hide

its real UA as Windows users are more common.

The practice of browser fingerprinting, often found in commercial bot detection solutions,

looks for this mismatch in what is expected from a UA versus what actually is. The idea is to take

in information that can betray the browser’s identity. Certain functionalities of different browser

automation tools are checked, information on hardware and OS is collected and much more. Al-

gorithms trained to look for inconsistencies in fingerprints can be used to classify new fingerprints

and by saving the results, a repeated fingerprint is automatically classified. This efficiency is in

part what makes it attractive for commercial use. However, as two recent papers conclude, it is

fairly easy to hide giveaways and inconsistencies [Amin Azad et al., 2020] [Vastel et al., 2020].

2.2.4 Other Approaches

For the domain of content-rich websites the semantic approach presented in [Lagopoulos et al.,

2018] shows promise. The system uses topic mapping to assign different topics to the content

pages of each website. The topics and the sequence they are traversed in along with common

navigational features are used as feature vectors for the classifiers. Several configurations of en-

semble classifiers are used and results seem appropriate. With f1-scores varying from 0.85 to

0.95. However, this technique relies on the domain being content-rich and as such could suffer in

a generalized setting.

The following strategies could be considered Turing Test Models as they either lure bots into

revealing themselves through creative HTML rendering or actively challenge users to prove their

"humanity".

NOMAD, presented in [Vikram et al., 2013], introduced the concept of moving target defence

against web bots. Moving target defense is the idea that defense systems should be complemented

by a component that changes the appearance of the target to protect. The idea was to block bots

that look for hints on targets through HTML tag ids and names. The authors created a symmetric

key encryption system - a middle-ware component that encrypted property names and ids in transit

to the client and then decrypted them before forwarding them to the server to handle the response.

This added to fake invisible elements, diluting the pool from which the bot had to pick, and made

for a harder traversal of the website for automated agents, while not bothering human users.

[McKenna, 2016] tried to use honeypots for bot detection. By creating appealing components,

the authors expected to catch most crawlers that follow links. However the challenge of making

these appealing to sophisticated bots and the narrow applicability of them make for reasons not to

pursue this area.

14 Web Bots

No review on web bot detection techniques would be complete without mentioning the in-

famous CAPTCHA. Several variations of this challenge have appeared over the years. The two

main issues with this technique are usability, to the extent where it can drive users away and even

be unfair to the visually and hearing impaired, and the fact that most schemes in use have been

broken [Banday and Shah, 2011].

Having reviewed possible solutions to the Bot Detection problem, and considering the nature

of a possible data-set, the Unsupervised Outlier Detection field was selected as the approach for

this project. As the data was to be collected from the company’s public website there was no guar-

antee it would be free of Bot Sessions. Furthermore, as the features selected for characterization

include some novel features and no expert was available, manual labelling was impossible. This

topic will have its own review in Chapter 3

2.2.5 Summary

This section will present a table comparing the different learning approaches analysed up to this

point. This table will describe the data used to train each model, the tests performed and the results

obtained.

Table 2.4: Summary of Learning Approaches

Paper Description Training Data Test Data Results
[Tan and Kumar,

2002]

SL, C4.5, Nav Feats &

Server Access Logs

Not available 1.6 M entries, es-

tim. 180k sessions

90% ACC,

90% PRE,

82% REC

[Stassopoulou and

Dikaiakos, 2009]

SL, Bayesian NW, Ac-

cess Logs

12k sessions, 10%

crawlers, oversam-

pled to 50%

685 Human ses-

sions, 99 crawlers

85-90% ACC,

80-93% PRE,

80-95% REC,

85-90% F1

[Suchacka and

Sobkow, 2015]

SL, Bayesian NW, Ac-

cess Logs, Nav + Do-

main Specific Feats.

12.5k Sessions 25-

33% crawlers

2, 13k Session Sets

same proportion of

bots

90% ACC,

6% Error Rate

(Missed Bots)

[Stevanovic et al.,

2012]

SL, 7 models: C.4.5,

RIPPER, Naive Bayes,

Bayesian NWs, kNNs,

LibSVM and NNs.

96k (human +

good bot) sessions

vs. 2.5 bad bot

sessions + unsepc.

oversampling of

minority class (bad

bots)

37k humans and

good bots vs 925

bad bots

Best model:

NN, 99%

ACC, 80%

PRE, 80%

REC, 99% F1

2.2 Detection State of the Art 15

Continuation of Table 2.4

Paper Description Training Data Test Data Results
[Sisodia et al.,

2015]

SL, Simple models of

C4.5, Random Forests

and Naive Bayes vs.

Bagging and Boosting

(C4.5) and Voting En-

semble (all 3)

5 Datatasets: 10-

30k humans and

10% of that in bots,

1-3k bots

Same logic as train-

ing data

Naive Bayes:

≈ 20% for all

metrics.

Other models:

80% PRE,

60% F1,

40% REC

[Hayati et al.,

2010]

SL: SVM, pages as

actions. 34 actions.

Total Data: 11k bot

records, 5.5k human

records, 4.2k sessions

2/3 of data set 1/3 95.5% ACC,

81% MCC

[Cabri et al., 2018] SL: Deep NNs, Nav.

feats., HTTP Request,

WSPRT sequence of re-

quests.

N/a 13k sessions, 6k

bots, 7k humans

96% ACC,

98% PRE,

94% REC,

96% F1

[Stevanovic et al.,

2013]

UL, SOM and mART2.

Clustered sessions and

used the testing data to

id the sessions and label

in each cluster.

53k humans, 7.6k

good bots, 287 bad

bots and 4042 un-

known.

N/a Clustering re-

sults not apli-

cable

[Zabihimayvan

et al., 2017]

UL, clustering, Nav.

feats. HTTP requests,

SMART, DBSCAN,

and SOM and mART2

from [Stevanovic et al.,

2013]

N/a D1:

2.5k sessions

139 good bots

241 bad bots

2k humans

D2:

2.6k sessions

916 good bots

680 bad bots

1k humans

DBSCAN D2:

52% ACC,

oherwise:

86-90% ACC

(as RI).

16 Web Bots

Continuation of Table 2.4

Paper Description Training Data Test Data Results
[Zolotukhin et al.,

2014]

UL Anomaly Detection,

intrusion detection (bots

as intruders)

N/a 5 attacking ses-

sions

LOF, 95%

ACC

Other Models:

98-99% ACC

All bots and

attacks were

eventually

detected.

[Jacob et al., 2012] Naive Bayes, SVM +

Association Rules, Nav.

feats, Time-series clus-

tering, distributed at-

tacks

73 million re-

quests, 813 IPs

62 million re-

quests, 763 IPs

Bot Detection:

ACC on Bots:

95-99%

ACC on Hu-

mans:

78-83%

Detection

of Distrib.

Attacks:

94% ACC,

99% PRE,

85% REC

[Park et al., 2006] SL ensemble learning of

nav features + heuristic

detection of human

proof, detecting mouse

and keyboard action,

honeypots.

Initial Data: 43k human,

125k bot sessions

50% data 50% data 91-95% ACC

[Chu et al., 2013] SL C4.5 decision trees,

biometric data as actions

Human data: 1078

signed in users at a

blog, multiple 2 hr

periods, 1 day

Mimic Bots: 30 hrs

Replay Bots: 2 hrs

4.5 million events,

200k actions,

207 hrs of humans

and 32 of Bots

99% ACC

2.2 Detection State of the Art 17

Continuation of Table 2.4

Paper Description Training Data Test Data Results
[Rahman and

Tomar, 2020a]

Clustering, Data Reduc-

tion, Naive Bayes, bio-

metric features.

D1: 16k human , 1.8k

bot requests;

D2: 9k humans, 11k

bots

1/10 of data 9/10 of data 91% ACC,

86% PRE,

83% REC,

84% F1,

78% MCC

[Iliou et al., 2021] Ensemble of CNNs,

mouse trace, SL models

and ensembles, Nav.

feats.

35 human

35 moderate bot

35 advanced bot

sessions

15 human

15 moderate bot

15 advanced bot

sessions

97% ACC

18 Web Bots

Chapter 3

Outlier Detection

As the proposed solution contemplates an Outlier Detection (OD) model for detecting bots, this

chapter will be dedicated to this field of study. First, a general review covering basic concepts,

some recent surveys and relevant algorithms will be presented. Then, the field of Data Processing

will be briefly discussed. This field though not unique to OD, is necessary for many applications

of Machine Learning, OD included. Finally, the used performance metrics will be covered. As

this project and the models included treat OD as a Binary Classification problem, there is some

overlap in the metrics used.

3.1 Overview

An outlier is a point in a set that differs significantly, by some measure, from the remaining. The

term is often used interchangeably with anomaly. A more precise definition, however, considers

that outliers are expected to be present to some extent in real and training data, whereas anomalies

are points that do not occur in the training data and appear completely new in real data. OD

learning models can be either SL, UL or semi-supervised. However, the need for labelling in a

field where one would want to find outliers not seen before often leads practitioners to focus on

UL based models. For this project, the same rationale was adopted, and as such this section will

focus on Unsupervised Outlier Detection (OD) [Boukerche et al., 2020].

Outliers are often categorized into point, local or collective outliers. Data points that are

anomalous compared to the entirety of the data set are point-based outliers. Local outliers are

points that deviate from their nearest neighbours. Sometimes, instead of local outliers, the related

concept of contextual outliers is introduced. Context-based outliers are points that in a different

environment (a variable set/unset, given time-frame, etc.) could be considered inliers. Finally,

collective outliers are sets of points, where individual points may not be considered anomalous but

their set is [Alla and Adari, 2019].

The original motive for OD was data cleansing. Deleting rare values so statistical models could

better fit data. Currently, however, the focus of this field is on the rare values as they can provide

interesting and unexpected information. With this target in mind, OD models have been applied to

19

20 Outlier Detection

fraud and intrusion detection systems, defect detection and many other fields. This project hopes

to aim OD at biometric descriptions of a user’s behaviour on a website, By analyzing how the user

interacts with the computer’s peripherals (pointing devices and keyboard), assuming the majority

of the users of a website are human, bots may be found in the outlier pool. In [Boukerche et al.,

2020], the authors categorize UL methods of OD into Proximity or Projection-based approaches.

• Proximity based approaches are those that use some type of measure of distance between

a point and its closest peers. If a point has under a set number of neighbours in a given

distance, it may be classified as an outlier. Examples of proximity based approaches are

LOF and Nearest Neighbours.

• Projection-based approaches are ones that convert data to an almost equivalent, if less

complex and complete, space. Deep Auto-encoders and Isolation Forests are considered

projection-based.

The survey in [Domingues et al., 2017] submitted popular UL OD models (including LOF,

SOM and Isolation Forest) to test them in terms of performance, time and space consumption and

scalability. In total, 14 algorithms were tested, on 12 publicly available data sets and 3 proprietary

ones. These data sets differed in size from a few hundred, to twenty thousand entries, and from

6 to 107 features. Model performance is compared using the area under the ROC and precision-

recall curves. The overall best performer in most categories was the Isolation Forest Algorithm.

The worst performers identified were: LOF, SOM and ABOD (angle-based OD).

3.1.1 Local Outlier Factor

This historical algorithm has seen multiple improvements and inspired many variations across

the years, such as COF and LoOP [Boukerche et al., 2020]. Though more recent solutions have

perform better in regards to both temporal and spatial complexity and even accuracy, it is still

worth reviewing a paper that introduced the concepts of an Outlier Score and local outliers.

In the original paper, [Breunig et al., 2000], the authors list the approaches for OD at the

time and argue that all have their issues that LOF wants to improve upon. The authors start by

dissecting the Distribution-based solutions. These attempted to fit a standard distribution to the

data. This strategy had two major drawbacks as most distributions were univariate (considering

only one variable) and required a priori knowledge of the data distribution, which for real-world

applications was often unfeasible. Following that, the early depth-based approaches are criticized,

as they struggled heavily in large, multidimensional data sets (starting with 4 dimensions). Clus-

tering approaches, the authors argued, focused on clustering so were not optimized for OD, and

lacked a way to calculate an Outlier Score. Finally, the contemporary distance-based approaches

were shown to fail on examples of data sets with clusters of different density.

3.1 Overview 21

The algorithm only takes one parameter k, the minimum number of points necessary to be

present in a neighborhood. Following that, points are classified as outliers based on how close it

is to its k-neighbors, and how dense its neighbours are in their own neighborhoods.

The k-distance of an object o is defined as the distance between o and another object p such

that:

For at least k objects q, other than p and o it’s true that:

d(o,q)<= d(o, p) (3.1)

For at most k−1 objects q, other than p and o it’s true that:

d(o,q)< d(o, p) (3.2)

The k-distance neighborhood of an object contains all the objects that are only as far from the

object as the k-distance.

The reachability distance of an object o in regards to another p is defined in Equation 3.3:

reachability = max(kd istance(o),d(p,o) (3.3)

With that, the localreachabilitydensity(lrd) of a point can be calculated, which can essentially

measure a points neighborhood density. Finally, the local outlier score of a point p is calculated

with regards to its o-nearest neighbours. The higher the LOFscore the more likely a point is an

outlier. This score is proportional to the sum of the lrd of the point p over the lrd of all its O

nearest neighbours. Considering NN p the set of the o-nearest neighbours to p.

LOF(p) ∝ ∑
o∈NN p

lrd(p)
lrd(o)

(3.4)

As can be seen from Equation 3.4, as the neighbors neighborhood density increases, so too

must the point’s neighborhood’s or the LOFscore will increase. It’s from this concept of LOFscore

that originates the idea for Outlier Scores. Furthermore, by comparing each point to its neighbors,

the concept of Local Outlier was born.

Tests at the time showed that the relationship between the number picked k and performance

was not entirely straightforward. Still the authors proposed heuristics to help selecting an adequate

k value [Breunig et al., 2000].

3.1.2 Isolation Forest

Introduced in 2008, yet still comparable if not better than more recent models [Domingues et al.,

2017], the Isolation Forest Algorithm was the first to use the concept of isolation for OD. To isolate

an object in a data set, is to partition the data so that one partition only contains the point we want

to isolate. To partition the data the algorithm randomly picks an attribute to base the partition on,

then randomly selects an existing value between that attribute’s maximum and minimum. Finally,

22 Outlier Detection

the data is divided between points with that value being bigger than the selected and points with

that attribute being smaller. The idea behind using isolation is that, as inliers are closer to each

other, if random partitions are used, more cuts will be needed to isolate an inlier versus an outlier.

This idea is graphically demonstrated in the original paper [Liu et al., 2009] and in Figure 3.1.

Figure 3.1: Isolating an inlier (a/xi) vs. Isolating an outlier (b/xo) [Liu et al., 2009]

The partitions of a data set over one feature can be represented by a Binary Tree Structure. The

number of partitions to isolate a point, will be roughly equivalent to the path length to reach that

point’s node. Building a tree to partition the data over each feature (and possibly combinations of

features), one gets an Isolation Forest. Calculating the average path across all trees the expected

path length to a point is achieved. If the final path is smaller than the expected, the point can be

considered an outlier. Its Outlier Score will be the path size[Liu et al., 2009].

This model was demonstrated to work well in high-dimensional spaces and in problems with

a substantial amount of irrelevant attributes. Furthermore, and contrary to most methods of OD

where the more data the better, iForest works best with relatively small sample sizes, as large

sample sizes reduce the model’s ability to isolate outliers. There are two parameters to tune for

this model. First is the sub-sampling size, that controls how many instances will be used to build

the trees, and therefore, the maximum tree depth. Secondly, one must consider the number of trees

to be built. If the number of trees is greater than the number of features, combinations of features

can be used[Liu et al., 2009].

3.1.3 Autoencoder

An area of Machine Learning that has seen ever increased interest from the community is Deep

Learning. As such, an algorithm from this class was chosen to be evaluated in this project. Deep

Learning Neural Networks (NNs) are those that have more than one hidden processing layer. Au-

toencoders are a type of Deep Learning Neural Networks focused on Dimensionality Reduction.

3.1 Overview 23

Before diving into what is an Autoencoder, it is first mandatory to understand the underlying

technologies.

Previous to Autoencoders, Dimensionality Reduction had already been used for OD. (e.g.

Principal Component Analysis). The general idea behind OD through Dimensionality reduction is

if data attributes are correlated, which they usually are for real-world applications, we can predict

some values based on others. With that, we can create a compact representation of the parameters

that can then be used to reconstruct the original object. Once reconstructed, the resulting object can

be compared to the original and the reconstruction error calculated. As models train to reconstruct

inliers and how their values relate, outliers will be reconstructed in a "lossier" manner, the higher

the reconstruction error, the more likely something is an Outlier[Aggarwal, 2016].

Figure 3.2: Examples of single (a) and multi-layer (b) ANNs [Aggarwal, 2016]

As can be seen in Figure 3.2, NNs are graph-based machine learning data structures. The

name derives from the inspiration it takes from the model of human neurons and how information

courses through the brain. To our neurons, information is picked up on the dendrites - the entry

point to the cell. Following that, and under certain conditions, a neuron can "fire" a synapse and

output a signal to the dendrites of the next neuron. An A(rtificial)NN is a layered graph, consisting

of at least one input and one output layer and zero (perceptron) or more hidden (multilayer),

intermediate layers. Nodes in the graph are called neurons. Neurons on the input layer receive

raw data, usually a feature of the training data [Aggarwal, 2016]. As data enters the network,

when passing from one layer to the other, nodes are connected through weighted edges that alter

the data. When the weighted data reaches a neuron, an activation function further manipulates

the value before passing the result along through another weighted edge to the following layer.

All nodes in the hidden layer use the same activation function. The final layer is the output layer,

uses its own activation function that depends on the problem to solve. As input data is processed to

output, the output is tested for accuracy, and through a process called backpropagation. The output

will be passed down each layer in reverse to recalculate weights at each node. A cost function is

used to estimate how the training is progressing by calculating how off a result was [Alla and

Adari, 2019]. NNs can be interpreted as function approximators that learn the weights to turn an

input to an output through the various layers. If a non-linear hidden activation function is used the

model can train to reproduce a non-linear function. [Aggarwal, 2016]

24 Outlier Detection

Autoencoder networks can be seen as two symmetrical, connected NNs. The idea is that,

one half learns a dimension reduction function while the other learns how to expand the reduced

dimension. As data flows inward, first the number of nodes per layer decreases, forcing data

compression. At the middle section of the network, the deepest compression is attained and the

number of nodes per layer starts to increase so that the data is reconstructed. Comparing the

decoded version to the input the reconstruction error can be estimated. As was the case for gen-

eral dimensional reduction for OD, the reconstruction error here can also be used as a measure

of Outlier Score [Alla and Adari, 2019]. See Figure 3.3 for a graphical representations of an

autoencoder.

Figure 3.3: Example of autoencoder architecture [Aggarwal, 2016]

3.2 Data Preprocessing

Data preprocessing is a field that aims to improve results in AI models by refining the data, as these

benefit from better quality data. This quality increase is achieved by encoding, transforming, and

manipulating information in 4 different areas [Baheti, 2021].

Data Cleaning focuses on fixing missing values and squashing noise/removing outliers. In

real world data, attribute values are often lost due to unforeseeable circumstances. When simply

discarding those values is not an option, techniques have been developed to approximate the lost

value. For some applications, though not OD, noise and outliers are simply not beneficial for the

models. For that reason, noise and outlier removal are sometimes employed.

Data Integration is necessary when there can be multiple sources for data in different for-

mats.[Baheti, 2021]

Data Transformation prepares data to be consumed by the model to be trained. A critical

step of this process is Feature Selection. In this process, compound attributes can be created

from existing ones, and irrelevant attributes are dropped. Most models deal only with numerical

values, as such, when categorical variables are used, these need to be encoded. Another usage

for Encoding variables is when it is required to discretize continuous variables[GeeksForGeeks,

2021a]. Additionally, AI models are usually expected to predict a value based on inputs. However,

3.3 Performance Evaluation 25

if these inputs are not in the same order of magnitude, larger values may be considered more

important[Scikit-Learn, 2022b]. To solve this issue, features can be scaled to better represent their

variation over their absolute value.

When the volume of data is too large, Data Reduction techniques may be needed [Baheti,

2021].

3.3 Performance Evaluation

Most Learning Systems for Bot Detection, as those discussed in Chapter 2, identify users as be-

longing to one of two classes: Bot or Human. This falls into the category of a Binary Classifica-

tion, as such the metrics used in accessing the performance in problems of that broader category

are used. Furthermore, Outlier Detection models also tend to classify inputs as either in-lying or

outlying. Though some give an outlier score between zero and one, a threshold for that can be

set so that a continuous score is discretized. Doing so, allows for the evaluation of OD systems

using Binary Classification metrics. In this work, OD was used for the purpose of Web Bot De-

tection under the assumption that outliers were to be considered Bots, and inliers, Humans. As

such, the results in Chapter ?? will be interpreted using Binary Classification metrics, which will

be explained in this section.

The standard in Binary Classification is to label one class as a Positive and the other a Negative.

When testing a classifier’s performance, 4 variables will be used to derive all metrics. First, the

numbers of predicted positives and negatives are taken in consideration: "how many tested points

fall into each category?". Then these are compared to the correctly and incorrectly predicted

classes, to calculate the initial variables: True Positives (TP), True Negatives (TN), False Positives

(FP), False Negatives (FP).

Often times, the previous values will be displayed in a graphic format dubbed Confusion

Matrix. An example of this structure can be seen in Figure 3.5. On the horizontal axis one can see

the result of the classification process in the number of predicted labels. On the vertical axis the

actual label of the point is referenced. As such, the first quadrant on the top left corner corresponds

to TNs. The second quadrant on the top right corner to FNs. Bellow that the TPs, and finally, on

the bottom left quadrant the FPs. Furthermore, the darker the color of the quadrant the more points

in it [Scikit-Learn, 2022a].

The first metric to be derived from the Confusion Matrix is Accuracy. Measures how many

predictions were correct. Whether True Positives or True Negatives over the total number of points

[Alla and Adari, 2019].

Accuracy =
T P+T N

T P+T N +FP+FN
(3.5)

In [Stassopoulou and Dikaiakos, 2009], the authors give this illustrative example on the need

for other metrics other than accuracy: "assume a dataset with 100 cases out of which 90 cases

26 Outlier Detection

Figure 3.4: Confusion Matrix example

belong to the majority class and 10 cases belong to the minority class. Then a classifier that clas-

sifies every case as a majority class will have 90% accuracy, even though it failed to detect every

single target of the minority class." Furthermore, for the purpose of OD wherein identifying out-

liers, usually the positive class, is of particular interest these other metrics are also used. Precision

evaluates how many predicted true positives are actual positives. Recall measures how many of

the total positives were identified. Finally, the F1-score combines Precision and Recall into a met-

ric that highlights identification of the positive class and penalizes miss-classifications of any type

[Alla and Adari, 2019].

Precision =
T P

T P+FP
(3.6)

Recall =
T P

T P+FN
(3.7)

F1 =
2∗Precision∗Recall

Precision+Recall
=

2∗T P
2∗T P+FP+FN

(3.8)

While Precision and Recall can be metrics by which to evaluate a model, they can be defined

in relation to another variable. OD models most often output outlier scores, of those scores only a

threshold of them will be classified as actual outliers. This can be tweaked, setting it too low will

cause outliers to go undetected. On the other hand, a high contamination value, as this threshold is

usually defined by estimated volume of outliers (contamination) in the training data, may lead to

3.3 Performance Evaluation 27

high rates of false positives. This trade-off can be studied by plotting a precision-recall curve by

varying the threshold value. As precision and recall are connected through this threshold variable,

and since the variation of this value is not necessarily monotonic it is worth exploring these curves.

From there we can extract how each algorithm behaves at a given threshold and get more insight

on their performance [Aggarwal, 2016].

Figure 3.5: Precision-Recall Curve Example Comparing Multiple Algorithms [Aggarwal, 2016])

Now reconsidering recall as a performance variable. Recall can also be referred to as True

Positive Rate (TPR). If compared to the False Positive Rate the results can also be interpreted as a

measure of performance.

FPR =
FP

FP+T N
(3.9)

As its name implies, FPR is the rate at which points that should be classified as negative,

are classified as positive. In the context of outlier detection, what percentage of inliers are being

considered outliers. Plotting how one rate impacts the other one gets a Receiver Operating Char-

acteristic Curve (ROC). As in OD, identifying the positives is what is most desired, this graph

displays how by making the model more sensitive, and thus incurring in a higher FPR, can also

raise the TPR. However, for the purpose of OD it is also not ideal to have a high FPR as it would

pollute the outlier pool with inlying points [Alla and Adari, 2019]. The area under the ROC (AU-

ROC) can be interpreted as the probability of a randomly picked outlier or of a randomly picked

inlier to be correctly classified [Aggarwal, 2016]. In that sense, a perfect classifier would have a

fixed TPR of 1 and regardless of FPR this would remain, and so the AUROC would be equal to

28 Outlier Detection

1. In the case of a Binary Classification, where the system randomly picks the category, the TPR

would rise with the FPR, resulting in an AUROC of 0.5. In the case of OD, if the AUROC is

under 0.5, it is assumed that the system is learning, just the labels are switched. From 0.5 to 1, the

higher the AUROC the better, as it reflects how correct the models predictions are. Authors advise,

however, to be careful of an abnormally high AUROC (over 0.99) as it can be a sign of overfitting.

When models overfit to training data they may have hindered performance against new, unseen

data [Alla and Adari, 2019].

(a) Perfect Classifier (b) Random Classifier

Figure 3.6: Example of Perfect Classifier and Random Classifier ROC [Alla and Adari, 2019]

Chapter 4

Detector Implementation

This chapter will cover all aspects of the Solution Implementation. From data gathering and

processing, to the classifiers trained. It will conclude with a walk-through of the end system.

4.1 Detection Methodology

The proposed solution will use unsupervised Outlier Detection on a set of biometric features to

identify outliers as bots. The usage of an unsupervised approach stems from the characteristics of

available data. Data was collected through a public access website, for that reason contamination

(by bots) is expected. The usage of biometrics forces bots to invest considerable time into mimick-

ing human interactions. If bots are effectively forced into becoming as slow as humans then a key

advantage in their usage is removed. Furthermore, if at a point in time all users behave following

the same biometric patterns, then detection won’t have to focus on the bot aspect but rather on

the actions automated by the bots. User access control can focus on specific interactions to ban,

instead of focusing on the nature of the user. User actions can, for example, be checked to see if

they follow a pattern of vulnerability scanning.

The detection process starts with a script embedded in a website. This script captures biosta-

tistical data, mainly in regards to movements performed on the human interface devices (mouse,

keyboard, touch, pointer and screen). Now as this script will reload at every page, the session

must be rebuilt from the event logs. That is handled by the Session Aggregator Module. After

that, the data preprocessing module fixes missing values and, if need be, scales the data. Finally,

the OD classifier is trained to determine if a session and its recent interactions are inliers (humans)

or outliers (robots).

4.2 Data Extraction

This section will demonstrate the multiple steps in the process of gathering data to train the Detec-

tion Models. The first section will outline some requirements of the data collecting tool. Following

29

30 Detector Implementation

that, the data itself will be described. Finally, the systems used to gather verified human and bot

data will be described in their respective sections.

4.2.1 Requirements

As previously mentioned, the data used in this project was collected from the partner company’s

public website, Jscrambler. Since this constitutes a production environment some requirements

were mandated to minimize the impact of data collection on user experience.

As was noted in [Amin Azad et al., 2020], ease of implementation is often considered key

by developers of commercial bot detection solutions. This requirement was further enforced so

as to minimize the workload of the Web Engineering team at Jscrambler that assisted with the

implementation of the collection script.

A critical requirement to assure user experience would not be hindered by running the collec-

tion tool, is bandwidth it consumes. To that end, the Web Engineering team ran performance tests

to ensure the tool does not impact the end user of the website. Further, data is only sent on specific

events, to avoid server overload:

• When page loads or unloads.

• On "touchend" event (only available for the touch peripheral). When a the user lifts their

finger from the touch screen.

• When keyboard, mouse or scroll are idle for 500ms after movement.

More than ever, anonymity is taken into consideration when dealing with people’s data. Fol-

lowing that trend, this system only uses data for the purpose of detection. Identifying data is used

to reconstruct sessions but is discarded after this is done, to ensure confidentiality. Furthermore,

communications with the collecting server are encrypted through HTTPS.

4.2.2 Biometric Data Extracted

A full listing of the features collected client-side can be seen in Table 4.1. These features are not

necessarily the final version of the data to be analyzed. As the script reloads on navigation, when

the data reaches the server the session it belongs to needs to be reconstructed, more on this in the

Section 4.3.

The captured attributes model the user’s behaviour in terms of their interactions with the page.

These attributes can be thought of as movement, pressure, time and typing-based along with a

miscellaneous of others. For movement-based features, two-dimensional (x and y) data is captured

for the mouse, touch screen and page scroll. Those are displacement, speed, acceleration which

are common movement description values. A not so common movement variable also used in this

work is the acceleration derivative, that can be used as a measure of the smoothness of movement,

"jerk" [Roren et al., 2022]. Pressure statistics are measured for devices that allow it (mouse,

pointer and touch) using the Pressure.js library [Yamartino, 2016]. Time-based metrics include

4.2 Data Extraction 31

time elapsed since script was loaded, average time holding a touch, a mouse button or a key.

For typing statistics characters are split into alphanumeric, correction (Delete and Backspace) and

others, then the standard deviation of the type of character, as well as the entropy for that set of

data is calculated. Strike speed and acceleration is also calculated. Finally, variables like whether

the script was loaded on a mobile, how many times the page gained focus, and number of cuts,

copies and pastes fit the miscellaneous category. To determine if a browser is mobile, a UA check

is performed using the REGEX from [Smith, 2014]. If that fails, the maximum screen width is

queried, if it’s smaller than 1024 pixels, the user is considered to be on mobile.

Table 4.1: Biometric Features Selected

ID Name Description Compound
0 Time Elapsed Since script was loaded True

1 No. of Packets Number of packets in a session True

2 Mobile Boolean to check if user is on mobile False

3 No. of Reloads Humans often reload a page waiting for

resources to arrive. Bots won’t.

True

4 No. of Back Forward Humans will go back and forth through

their cached pages as they may not get

all the information they wanted at first

glance.

True

5 Focus Shifts Number of times a windows gains fo-

cus

True

6 Mouse Displacement X Amount of mouse movement in hori-

zontal direction

True

7 Mouse Displacement Y Amount of mouse movement in verti-

cal direction

True

8 Mouse Speed X (Mouse Displacement X)/Time False

9 Mouse Speed Y (Mouse Displacement Y)/Time False

10 Mouse Acceleration X (Mouse Speed X)/Time False

11 Mouse Acceleration Y (Mouse Speed Y)/Time False

12 Mouse Jerk X (Mouse Acceleration X)/Time False

13 Mouse Jerk Y (Mouse Acceleration Y)/Time False

14 Touch Displacement X Amount of touch movement in hori-

zontal direction

True

15 Touch Displacement Y Amount of touch movement in vertical

direction

True

16 Touch Speed X (Touch Displacement X)/Time False

17 Touch Speed Y (Touch Displacement Y)/Time False

18 Touch Acceleration X (Touch Speed X)/Time False

32 Detector Implementation

Continuation of Table 4.1

ID Name Description Compound
19 Touch Acceleration Y (Touch Speed Y)/Time False

20 Touch Jerk X (Touch Acceleration X)/Time False

21 Touch Jerk Y (Touch Acceleration Y)/Time False

22 Scroll Displacement X Amount of touch movement in hori-

zontal direction

True

23 Scroll Displacement Y Amount of touch movement in vertical

direction

True

24 Scroll Speed X (Scroll Displacement X)/Time False

25 Scroll Speed Y (Scroll Displacement Y)/Time False

26 Scroll Acceleration X (Scroll Speed X)/Time False

27 Scroll Acceleration Y (Scroll Speed Y)/Time False

28 Scroll Jerk X (Scroll Acceleration X)/Time False

29 Scroll Jerk Y (Scroll Acceleration Y)/Time False

30 Average Mouse Click Pressure Measured with Pressure.js False

31 Average Touch Pressure See 29 False

32 Average Pointer Pressure See 29 False

33 Mouse Button 0 Click Number Number of times mouse button 0 was

clicked

True

34 Average Mouse Button 0 Click Time Average time spent between clicking

and releasing mouse button 0

False

35 Mouse Button 1 Click Number Number of times mouse button 1 was

clicked

True

36 Average Mouse Button 1 Click Time Average time spent between clicking

and releasing mouse button 1

False

37 Mouse Button 2 Click Number Number of times mouse button 2 was

clicked

True

38 Average Mouse Button 2 Click Time Average time spent between clicking

and releasing mouse button 2

False

39 Mouse Button 3 Click Number Number of times mouse button 3 was

clicked

True

40 Average Mouse Button 3 Click Time Average time spent between clicking

and releasing mouse button 3

False

41 Mouse Button 4 Click Number Number of times mouse button 4 was

clicked

True

42 Average Mouse Button 4 Click Time Average time spent between clicking

and releasing mouse button 4

False

43 Number of Touches In name True

4.2 Data Extraction 33

Continuation of Table 4.1

ID Name Description Compound
44 Average Touch Press Time In name False

45 Strikes Number of key downs True

46 Presses Number of key ups True

47 No. Alphanumeric Keys Number of alphanumeric characters in-

put

True

48 No. of Delete and Backspace Keys In name True

49 No. of Other Keys Non-alphanumeric characters and spe-

cial keys

True

50 Ratio of Alphanumeric Keys to all others (alphanumeric count)/total True

51 Ratio of Correction Keys to all others (correction count)/total True

52 Ratio of Other Keys to all others (other count)/total True

53 Standard Deviation of Strike Type Considering the 3 types the ones in

rows 42, 43, 50

False

54 Entropy of Strike Type See 45 False

55 Average Key Hold Average time holding a key False

56 Strike Speed Strikes/Time False

57 Strike Acceleration Strike Speed/Time False

58 Average Flight Time Time between releasing a key and

pressing another

False

59 No. of Cuts In name True

60 No. of Copies In name True

61 No. of Pastes In name True

4.2.3 Human Data

To identify human data, the existing Google id cookie was leveraged. This id is unique for each

user that is logged in to their Jscrambler account and has cookies enabled. As most employees

of the company have such an account and in general accept cookies, a collaboration request was

put forth. An endpoint only accessible to logged in Jscrambler collaborators was put online. By

navigating to this endpoint, the id cookie was stored in an anonymous fashion to protect employees

identity. 44 (forty-four) employees voluntarily registered their ids at the endpoint, resulting in 569

(five-hundred sixty-nine) sessions collected from July 2022, to the 10th of August of the same

year. Figure 4.1 represents graphically, a random (human’s) behaviour for a random session.

Figure 4.1: Example Human Behaviour Diagram

34 Detector Implementation

4.2.4 Bot Data

To acquire labeled bot data, without resorting to manual labeling or proprietary tools, Web Bots

were developed with Selenium Python; and aimed at Jscrambler’s website. Later, their sessions

were retrieved through their unique UAs. Two common bot attack scenarios were implemented

in two levels of complexity: data scrapers and password crackers. The most basic bots used

Selenium’s basic methods to move the mouse on screen and instantly inject text into inputs. The

more advanced bots implement the WindMouse algorithm to generate mouse trajectories, resulting

in movements harder to distinguish from human. Furthermore, typing and scroll speed is slowed

down to something that appears human-like, to the naked eye.

• When typing, characters in the input string are cycled through, being input one at the time.

In between inputting characters the bot waits between .01 and 1 second.

• When scrolling, the distance to the element to scroll to is taken into consideration.

– If this distance is greater than 400 pixels, the next scroll distance will be randomly

picked from 150 to 400 pixels

– Otherwise, scroll distance range is from 2 to 20 pixels

• In between scrolls, the bot waits from .01 to .2 seconds.

As stealthy bots often do, the ones developed for this project accept cookies when first arriving

at the website. To ensure the creation of bots that follow a common interaction flow an interaction

extractor was develop to compile the recurrent interactions. These can be moving a mouse on a

page, navigating to a page, typing and clicking mouse buttons, etc. Having extracted the com-

mon interaction flows, it was determined these behaviours to already be implemented in the more

advanced scrapers.

4.2.4.1 Scraper

After reaching the landing page and accepting cookies, the crawlers scrape the areas of the website

accessible through the navigation bar (excluding the ’Documentation’ section as the data collecting

script was not available on that subdomain). Whenever a new page is loaded, the window is

scrolled to the footer to simulate a human reading. Figure 4.2 represents graphically, the scraper

bots’ behaviour.

4.2 Data Extraction 35

Figure 4.2: Crawler Behaviour Diagram

4.2.4.2 Cracker

Entering through the landing page, these bots navigate to the login page. There, a fake email is

input and semi-random strings are passed as password values. These string consist of 10 plus how-

ever many passwords have been input, alphabetical characters, selected using Python’s "random"

library, specifically the "choice" function. When both fields are filled, the bot attempts to login.

Once it fails, it deletes the contents of the password field input and tries again. As the idea is to

detect bots in as few packet as possible, this bot only attempts 5 passwords.Figure 4.3 represents

graphically, the scraper bots’ behaviour.

Figure 4.3: Crawler Behaviour Diagram

36 Detector Implementation

4.2.4.3 Interaction Flow Extraction

As previously stated, this tool was created to ensure bots covered normal interactions with the

website. The idea was to reinforce the notion that detection is based on biometric anomalies rather

than the pages visited. To extract common behaviours, sequential packets belonging to sessions

in the training data were compared. When a page first got into focus, a navigation was assumed.

When the mouse statistics varied in consecutive packets, a mouse movement was detected. The

same logic was applied for scrolling, typing and clicking on the mouse. Once these behaviours

were extracted, their occurrences were counted, in the hopes of finding something new that real

users were doing and that the developed bots weren’t. However, after analysing said behaviours, it

was concluded that those that repeated a substantial amount, were also emulated by the bots. The

most common being moving the mouse in between scrolls of a page, something that was done by

the more advanced scraper.

4.3 Data Processing

Data preprocessing, in the context of this project, is dependent on the session a piece of data

belongs to, as there are variables that compound throughout the session. As such, this section will

first describe the Session Aggregator module before addressing data preprocessing.

4.3.1 Session Aggregator

As data packets come in they need to be associated with the session that produced them. The

most common method for rebuilding sessions considers two packets to belong to the same session

if they have the same IP, UA combination and are within a thirty minute interval of each other

[Doran and Gokhale, 2011]. As such, this was the method used in this work with a modification to

track sessions across proxies. For sessions that accept cookies a Google Analytics id is assigned to

them. When available, if there exist two packets with the same id in a 30 minute timeout, they are

considered to belong to the same session. Sessions are kept in a dictionary, indexed by a key that

is either the IP, UA combo or just the Google id. Some variables are of immediate interest, these

are calculated client-side, and when they reach the server they update their values on the session

variable. These are: all variables of speed, acceleration and jerk; click/pointer/touch pressures;

click/touch/key hold time and standard deviation and entropy of strike type. Other variables are

compounded to describe the session up to that point. (e.g. total time, number of clicks, total

mouse displacement, etc.). That last column in Table 4.1 refers to if that variable is immediate

or compound. To calculate variations in compound variables, each session keeps a dictionary of

the last packet of each page it has already visited. When a packet comes in, the variations in

compound attributes can be calculated based on the values of the last packet for that page.

4.3 Data Processing 37

4.3.2 Data Preprocessing

This section will analyse if and how the four areas of Data Preprocessing were applied in the

context of this project.

As the data set for this project is not free from missing values, this step of Data Cleaning had

to be implemented. As for noise reduction and outlier removal, since the objective of the system is

to identify outliers and contamination of the data is to be expected, it would change the philosophy

of detection if outliers were removed beforehand.

In this project data, was collected in a single, centralized server. For that reason, the activity

of Data Integration was deemed unnecessary.

Data Transformation processes, whether implicit or explicitly were applied throughout this

project. Feature selection work was done in an informal fashion when originally determining the

features to characterize biometric behaviour. As the attributes selected had no categorical values to

encode, and the continuous ones did not require discretization, encoding was not implemented. Of

the three models used in this project, only one did not require some Normalization, the Isolation

Forest[Liu et al., 2009].

The volume of data in this project did not require Data Reduction techniques.

The following subsections will cover how the necessary steps of Data Preprocessing were

implemented in this project.

4.3.2.1 Handling Missing Values

Analysing the data, features that were found to contain missing values were identified and when

possible so were the causes for their disappearance.

• In pages where it is not possible to scroll horizontally, some browsers assumed Null values

for the scroll’s horizontal displacement. In this case, fixing the missing value was simply

setting it to zero.

• A similar case occurs in browsers that do not support mouse buttons 3 and 4. Values for

clicks and other statistics may be excluded, the fix is simply setting these values to zero.

• A value that was excluded seemingly at random was the page value. It is based on the ’win-

dow.location’ property of the DOM which should be implemented on all browsers [MDN,

2021]. While this attribute is not directly used to classify a Session, it is based on it that

accumulated statistics will be calculated during reconstruction. As such, 4 strategies were

experimented with, with three achieving similar results and one trailing in performance.

– The simplest strategy, which led to the worse results, was dropping rows of data with

that feature missing.

– The next two experiments consisted in assigning a value for that feature and consider-

ing all packets missing this to be from the same page. As was often the case, though

the page value was missing, the packets could be seen as sequential and coming from

38 Detector Implementation

the same pages as their accumulated values were seen to follow a logical flow of navi-

gation in one page (e.g. time elapsed kept increasing, number of clicks kept increasing

smoothly, etc.).

– The value assigned was first a new fixed value " ", so as to not interfere with other

packets that may be from pages reporting their actual page.

– After that, the strategy of using the mode value was tested. That meant that when a

packet came in with no page it was assumed to be the landing page of the website.

This had no impact when compared to the previous test.

– The final experiment while also not improving the detection performance, made the

most semantic sense. If the first packet in a session had no page it is assumed it is the

landing page. For all subsequent packets, if the page attribute is missing it is assumed

to be the last one reported.

4.3.2.2 Data Scaling

Data scaling has two main branches: standardization and normalization. Standardization fits each

column to a normal distribution of mean zero and variance one. Though it works best for data

already normally distributed, if the actual distribution is not too far off from the normal, it can suc-

cessfully scale data. All the while preserving negative values and being robust to outlier presence.

Normalization, on the other hand, does not assume the data to follow any distribution. Instead, the

strategy employed is to scale every feature between its minimum and maximum values [Baheti,

2021]. In [GeeksForGeeks, 2021b] the author claims, normalization may be hindered if the data

contains outliers. Seeing as it takes the minimum and maximum of each feature as bounds, the

claim seems reasonable. After experimenting with both Autoencoders and LOF models, Standard-

ization was the chosen method of scaling as it provided better results.

4.4 Resulting training data

Training data was captured by embedding the collecting script (bc.js) into the Jscrambler’s public

website and storing it on their server. From there, all interactions with the website in June 2022

were recorded. As the website could be exposed to stealthy web bots it is assumed they contam-

inate the data set. As previously mentioned, it is for this reason that the strategy of unsupervised

outlier detection was picked. After processing the training data, the resulting data set contained a

total of 113 603 (one-hundred and thirteen thousand six-hundred and three) sessions; of varying

lengths. Studied data set properties are presented in Table 4.2

4.5 Classifiers Trained 39

Table 4.2: Data Set Properties

Total Sessions 113 603

No. of Mobile Sessions 26429 (23%)

No. of Computer Sessions 87174 (77%)

Avg. Time Spent (s) 1281 (21.3 mins)

Avg. No. of Packets 2.8

Interesting results from the exploration of the data set:

• Percentages of Mobile and PC users (23/77%)

• Avg. Time Spent (21 mins) vs. Avg. Number of Packets (approx. 3 packets)

– It may be worth exploring further how the average session duration is 21 minutes,

while the average number of packets is "only" 3. This may be due to the fact that a

section of the website is not (namely the Documentation) is not covered by the collect-

ing script.

4.5 Classifiers Trained

The classifiers trained for this project are the ones covered in Chapter 3, these are: LOF, Isolation

Forest and an AutoEncoder. LOF was included due to its historical significance for the field of OD.

Isolation Forest because of its ability to learn from sparse data, and performance when compared

to other OD models [Domingues et al., 2017]. Finally, AutoEncoders are included to represent the

increasingly researched area of Deep Learning. The tuning process for the model parameters, and

experiments on the classifiers is covered in Chapter 5.

4.6 System Overview

This section will follow the data from its creation to its input into the OD module. Figure 4.4

describes the system’s architecture.

As a user is browsing the protected website, on the aforementioned events, their biometric

data will be sent to the server. There, if previous information on the session is available, that

information will be updated. If not, a new session will be considered. From there, the data

preprocessing routines will fix any issue in the data. Finally, the point containing both immediate

and aggregate session information will be analyzed by the OD module and the session labeled as

belonging to a Human or Bot.

The code for the AI models used in this project comes from the PyOD, (Python Outlier Dec-

tion), and Scikit-Learn packages, two Python based frameworks. The first aggregates OD models

from several other libraries, including the second. For these reasons, and for consistency’s sake, all

implementations are fetched from PyOD. Scikit-Learn is an older, established package, includes

40 Detector Implementation

Figure 4.4: Proposed Solution System Overview

less models than PyOD. That being said, it includes other necessary components for OD and other

machine learning applications, such as Scaling and Normalization functions, and Performance

Evaluators [Zhao et al., 2019] [Pedregosa et al., 2011].

Chapter 5

Experiments, Results and Discussion

In this chapter, various experiments on the system will be discussed. The first set will focus on the

tuning and training process of the different OD models. Following that, PoC experiments. Exper-

iment 1 will analyze system performance according to standard metrics for evaluating OD models

using random points proportionally picked from the test data. Experiment 2 will run through all

testing instances and test the conceptualized system end-to-end, considering the context of a ses-

sion. That is, as points come in, processing them, associating them to a session, and considering

if the whole session is classified as a Bot.Furthermore, this experiment was also conducted to de-

termine how many points were needed to classify the user. An unforeseen but valuable result was

extracted from this experiment, that allowed to better the system’s performance.

5.1 Tuning Model Parameters

A parameter that affects all models, and so was the first to be fixated, is the contamination percent-

age. The systems employed for OD require a parameter of contamination. This value estimates

how many points in the original, unsupervised, data set are outliers. It is used to determine how

outputs are interpreted as either outliers or inliers. (i.e. what range of outlier scores is considered

a true outlier). During the initial training phase, small, earlier versions of crawlers developed,

both simple and more advanced were run. Then the data they generated added to what was at

the time, training data. Finally, the models were run on their default parameters and the results

checked. The small crawlers acted as "canaries in a coal mine", the contamination parameter was

gradually increased until the crawlers were identified as outliers. In the final training data set, the

initial crawlers were removed so as to not further pollute the data. During this time, the detection

seemed to achieve adequate performance, at least by detecting the "canaries", at 25% contami-

nation. Seeing as some reports place Total Internet Traffic at around 40% being bot generated

[Imperva, 2021], 25% was deemed not unreasonable as the data was collected from a public com-

pany website. After this parameter was temporarily set, the tuning specific to each model began.

When that was concluded, testing while varying both contamination and other parameters was

done, yet the best results were given at the original 25% value.

41

42 Experiments, Results and Discussion

5.1.1 Parameters: Isolation Forest

As mentioned in Chapter 3 the Isolation Forest Algorithm has two parameters to tune. The sim-

plest to understand is the number of trees to be built. Unless otherwise specified, every time a tree

is built, it will select one feature from all the available and recursively insert up to a maximum

number of samples in a binary tree. At each step picking random values in between the minimum

and maximum for that partition over that attribute. As the authors mentioned in the original article,

the number of trees, even for large complex data sets, is usually optimal with less than 100 (one-

hundred) trees. [Liu et al., 2009] With that in mind, the first value estimated was that of at least as

many trees as there are features, so that all features at least get some chance of being represented.

So that was 62 trees. Through testing, from 62 to 70 estimators the performance did not drop.

Using less than 62 trees however, did if ever so slightly worsen performance. As such, the number

was fixed at 65 trees. Parallel to this tuning, the number of samples to create each tree was also

tuned. Behaviour of this parameter, was more predictable then the number of trees. It defaulted to

512 points, which was fairly minuscule compared to the data set of 110 thousand entries. Further,

at that point, not many crawler packets were being found in proportion to their prevalence. Dou-

bling the number of entries to 1024, there was a performance upgrade across different numbers of

estimators. Again doubling that to 2048 points achieved the best performance. After much testing,

the number of entries from 1500 to 2500 do not impact much the performance, so 2048 samples

was the number fixed.

5.1.2 Parameters: AutoEncoder

The default parameters for the AutoEncoder showed promise. The first tweaks were performed

on the structure of the hidden layers. Having tested many layouts, the better performing provided

similar results to the default. That being said, of all architectures, the one that was more in line

with the characteristics of the data was one with 7 hidden layers, where:

• Layers 1 and 7 have 50 neurons

• Layers 2 and 6 have 38 neurons

• Layers 3 and 5 have 26 neurons

• Layer 4, the central one, has 14 neurons

As different architectures were tested, the number of epochs was also explored. However, it

was evident that the model converged after around 60 epochs, and so 65 was the number selected.

Finally, across multiple architectures, the batch size was tweaked, this controls the number of

points judged before re-weighting the nodes. This parameter proved to mainly speed up or down

the learning process over the same number of epochs. A value was chosen to maximize speed

while not interfering with detection results of 2048 points.

5.2 Experiment 1: Packet-based Web Bot Detection 43

5.1.3 Parameters: LOF

The one parameter of LOF that can be tweaked, the number of neighbours considered, altered per-

formance in a rather unpredictable way. As the authors themselves acknowledge in their original

work [Breunig et al., 2000]. After several runs, the default value of 20 neighbours was kept as the

best performer.

5.2 Experiment 1: Packet-based Web Bot Detection

As the contamination parameter was set to 25%, the testing data should follow the same principle

to accurately measure performance. As such the training data consists of 522 randomly selected

packets originating from humans and Jscrambler collaborators, and the remaining 174 existing

bot packets. (Originating from the bots created). As there are more sessions than the number of

human packets selected, this experiment was run several times to confirm its results. In reshuffling

the human data set to cover all packets, the performance metrics did not deviate markedly from

one run to another, so the results are presented from one random run.

IForest

Starting with the model that achieved the best performance, the Isolation Forest. As can be seen

in Figure 5.1, the Confusion Matrix, the model predicted:

• True Negatives, or actual humans: 397 points

• True Positives, or actual bots: 120 points

• False Positives, or humans mistaken for bots: 125 points

• False Negatives, or bots mistaken for humans: 54 points

In Table 5.1 the numerical performance metrics, accuracy, precision, recall and f1-score are

displayed for the Isolation Forest Model. On one side, metrics are calculated for the purpose

of OD. Wherein, metrics are calculated in relation to the positive class. For the purpose of this

project, the identification of bots. However, a a system for bot detection may not trigger many

false alarms. As such it is interesting to analyze the same metrics considering the classification of

both classes. For the purpose of OD, an accuracy of 0.74 and f1-score of 0.57 may not be optimal,

but indicate that the model is at least somewhat capable of identifying bots vs. humans.

Figure 5.2 displays the ROC for the current model. Its Area Under Curve can be interpreted

as the probability, of given a packet of unknown origin, the classifier may correctly classify it. It’s

interesting to note, if not obvious at first, that this value is closely related to the balanced accuracy

that can be seen in Table 5.1. (AUROC = 0.73, Balanced Accuracy = 0.73)

Analysing the PR curve in Figure 5.3, does not yield much information and precision remains

constant as recall reaches its true value, after which it drops off. Nonetheless the AUC for the PR

curve can also be used as a metric for model performance.

44 Experiments, Results and Discussion

Figure 5.1: Isolation Forest Confusion Matrix

Table 5.1: IForest Performance Metrics

Based on Confusion Matrix Adjusted for class imbalance
Accuracy 0.74 Balanced Accuracy 0.73
Precision 0.49 Balanced Precision 0.68
Recall 0.69 Balanced Recall 0.72
F1-score 0.57 Balanced F1-score 0.69

As will be demonstrated in the following sections, performances of the other models tested

were inferior to that of the Isolation Forest across all metrics.

AutoEncoder

The second best model was the AutoEncoder. As can be seen in Figure 5.4, the Confusion Matrix,

the model predicted:

• True Negatives, or actual humans: 395 points

• True Positives, or actual bots: 104 points

• False Positives, or humans mistaken for bots: 127 points

• False Negatives, or bots mistaken for humans: 70 points

In Table 5.1 the numerical performance are displayed for the AutoEncoder Model. For the

purpose of OD, an accuracy of 0.72 and f1-score of 0.51 may not be optimal. In fact, as previously

5.2 Experiment 1: Packet-based Web Bot Detection 45

Figure 5.2: Isolation Forest ROC Curve

Figure 5.3: Isolation Forest Precision-Recall Curve

stated, they’re clearly worse than the previous model, yet it remains that the model is at least

somewhat capable at the task of identifying bots.

46 Experiments, Results and Discussion

Figure 5.4: AutoEncoder Confusion Matrix

Table 5.2: AutoEncoder Performance Metrics

Based on Confusion Matrix Adjusted for class imbalance
Accuracy 0.72 Balanced Accuracy 0.68
Precision 0.45 Balanced Precision 0.65
Recall 0.60 Balanced Recall 0.68
F1-score 0.51 Balanced F1-score 0.66

The ROC curve for the AutoEncoder model is presented in Figure 5.5. Once again, the AU-

ROC is equal to the model’s balanced accuracy. (0.68 = 0.68)

5.2 Experiment 1: Packet-based Web Bot Detection 47

Figure 5.5: AutoEncoder ROC Curve

As was the case for the previous model, not much can be taken from the PR curve, Figure 5.6.

Only that in comparison this models PR AUC is lower than the Isolation Forest Model. (0.37 vs.

0.42)

48 Experiments, Results and Discussion

Figure 5.6: AutoEncoder Precision-Recall Curve

Though performance of the AutoEncoder is markedly worse than the Isolation Forest model

in terms of metrics. Comparing both confusion matrices, one can see how the difference in the

actual numbers is not that significant. Furthermore, these differences may be exacerbated by the

smaller than desirable sample size.

LOF

The last model trained, was also the worse performing. The previous models, though there was

a clear "winner", are still close enough to compare. The LOF, however, demonstrates a dip in

performance, that coupled with a large amount of time spent training the model, make it the worst

by far. For comparison purposes, the results are nonetheless included. Figure 5.7, presents the

following predictions:

Table 5.3: LOF Performance Metrics

Based on Confusion Matrix Adjusted for class imbalance
Accuracy 0.65 Balanced Accuracy 0.63
Precision 0.38 Balanced Precision 0.60
Recall 0.58 Balanced Recall 0.63
F1-score 0.45 Balanced F1-score 0.60

An accuracy of 0.65 and an 0.45 F1-score, highlight how this model is not learning at the same

pace as its more recent peers.

5.2 Experiment 1: Packet-based Web Bot Detection 49

Figure 5.7: LOF Confusion Matrix

Figure 5.8: LOF ROC Curve

Figures 5.8 and 5.9 give more insight on how this model is worse than the previous across all

major metrics.

50 Experiments, Results and Discussion

Figure 5.9: LOF Precision-Recall Curve

Model Comparison

Though many metrics can be calculated as can be seen in the above sections, as their interpretations

often overlap, one can compare models using only a subset of these evaluators. In Figure 5.10 the

metrics of Precision, Recall and F1-score are graphed. It is clear just by looking at the graph, the

order of performance when comparing the three models.

5.3 Experiment 2: Session-Based Web Bot Detection 51

Figure 5.10: BAARZS

5.3 Experiment 2: Session-Based Web Bot Detection

Though the results in the first experiment were not the most exciting, the ones from this one may

be more so. This experimented placed the system into a simulation of its real-world application.

The testing data was read from in its original, unprocessed, JSON state. As sessions were rebuilt,

they were classified on their current state. If at one point a session was considered anomalous, the

packet count, for that session, at which this occurred and the session key were recorded. During

a first round of experimentation, many humans were being flagged as robots on their first packet.

To counteract this, the first packet of every session was not considered for classification. With

that, the number of missclassified human session dropped. All the while, bot sessions kept getting

detect a few packets in.

This experimented demonstrated that:

• All bots can be identified in the first 4 packets by both models.

• Out of 569 human sessions:

– The IForest only regarded 89 as anomalous, or 16% of the sessions

52 Experiments, Results and Discussion

– The AutoEncoder model was slightly less accurate, regarding 95 sessions as outlying,

or 17%.

This experiment raises an interesting question. How can the model have a worse performance

when analyzing individual packets vs. when analyzing sessions as a whole. A possible explanation

is that once a session becomes outlying, it will remain so. Furthermore, considering that sessions,

and particularly human sessions vary greatly in number of packets, it would not be unreasonable

to conclude that these anomalous sessions are longer than their normal counterparts. As in that

case, the human data will have a higher proportion of these abnormal human sessions and so throw

off the balance in the testing data for the first experiment.

It is worth describing certain properties of the data set used in these experiments. Table 5.4,

analyses the same properties as Table 4.2 did for the training data.

Table 5.4: Data Set Properties

Total Sessions 573 (569 human)

No. of Mobile Sessions 0 (0%)

No. of Computer Sessions 573 (100%)

Avg. Time Spent (s) 380 (6.3 mins)

Avg. No. of Packets 3

As the data was collected passively from consenting Jscrambler collaborators, no restrictions

were enforced on the data. As such, the testing sample did not include mobile users, which is

something to consider and test for in the future.

5.4 Conclusions from Experiments

From the first experiment, two things are worth noting. First, from analysis of the ROC curves

and accuracy related metrics, though there is room for improvement, the models are able, to some

extent, to infer the identity of a user based on a random snapshot of their session. Where the

need for improvement is most felt is in the variable of Precision, where the False Positives are

considered. However, this variable may also be impacted by the difference in the number of

sessions in the testing data when compared to training data.

This is more understandable when taking into consideration results from the second experi-

ment. In this, the context of session was added, and in only 16% of the sessions did Isolation

Forest misclassify the user. This means, though a lot of points were deemed anomalous when

picked at random, they belonged to the same 16% of sessions that may have been longer and so

had more points to use in the first experiment.

Though not completely clear from the results of the first experiment, when considering both,

the results seem to indicate there is something of value in the approach of bot detection using

biometric features and unsupervised outlier detection.

Chapter 6

Conclusions and Future Work

As bot detection evolves, so do bots. As such, it is necessary to keep improving their detection and

containment. This paper presents a project that tried to do just that. Though the resulting models

and the underlying feature set still have a lot of room for improvement, this project can be seen as

a proof of concept for a biometric based, unsupervised, bot detection system.

Experiments in this project demonstrated a few interesting results. Though results in the first

experiment show a higher than desirable number of false positives, this is influenced by the size

of the data set. From the second experiment, where all sessions in their entirety are considered,

the number of false positives drops, so we can conclude, detection considering all packets in a

session is more accurate than if based on just 1 random packet. Furthermore, in both experiments

the model with the best classifying performance was the Isolation Forest. Not only that, it is also

the fastest to train and the one that requires the least amount of data. For these reasons, and for

this feature set, the Isolation Forest was deemed the best model.

Some future work could include calculating how relevant each feature is for detection. With

that not only could more variables be derived, obsolete variables could be dropped. Unlike the

Isolation Forest [Liu et al., 2009], the other models used in this project were negatively impacted

by features that did not offer much relevant information.

Furthermore, from the creation of this data set new features can be explored. A prime example

of this would be the entropy of some continuous variables like mouse displacement in a move-

ment. To calculate the entropy of a continuous variable one must first calculate its probability

distribution. From the data collected in this project, the required distributions could be calculated.

The existence of a human verified data set, and of a mechanism to expand it being in place,

opens a sub-field of OD to explore this feature set with. Namely, Anomaly Detection, in which

models are trained by looking at only normal points, to then predict new unseen points.

As this project was developed with cooperation from a company, it is also important to look

at it from a product point of view. If this solution was to be packaged as an anti-bot one, it would

be interesting to include a module to detect synchronicity of requests and the possibility of a

distributed attack as is done in [Jacob et al., 2012]. Furthermore, it might still be worth expanding

the feature set by including more navigational attributes. As Chapter 2 reviewed, a lot of quality

53

54 Conclusions and Future Work

work has been done in this field and could only improve the overall solution. The attributes

required could also be extracted from requests and make the system less reliant on JavaScript.

While in the field of Bot Detection, the main goal of this system isn’t necessarily to stop bots,

but to try to guide their evolution towards being more human in behaviour, particularly speed. If

bots are as slow as humans, then their existence isn’t an issue, malicious usage by any actor is, but

to detect malicious usage of a website, different, more specialized, tactics can be employed.

References

[Acien et al., 2020] Acien, A., Morales, A., Fierrez, J., and Vera-Rodriguez, R. (2020).
Becaptcha-mouse: Synthetic mouse trajectories and improved bot detection. Pattern Recog-
nition, 127.

[Aggarwal, 2016] Aggarwal, C. C. (2016). Outlier Analysis, chapter 3. Springer Publishing
Company, Incorporated, 2nd edition.

[Alla and Adari, 2019] Alla, S. and Adari, S. K. (2019). Beginning Anomaly Detection Using
Python-Based Deep Learning. Apress Berkeley, CA.

[Amin Azad et al., 2020] Amin Azad, B., Starov, O., Laperdrix, P., and Nikiforakis, N. (2020).
Web runner 2049: Evaluating third-party anti-bot services. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 17th International Conference, DIMVA 2020, Lisbon,
Portugal, June 24–26, 2020, Proceedings, page 135–159, Berlin, Heidelberg. Springer-Verlag.

[Baheti, 2021] Baheti, P. (2021). A simple guide to data preprocessing in machine learning. Avail-
able at https://www.v7labs.com/blog/data-preprocessing-guide.

[Banday and Shah, 2011] Banday, M. T. and Shah, N. (2011). A study of captchas for securing
web services.

[Boukerche et al., 2020] Boukerche, A., Zheng, L., and Alfandi, O. (2020). Outlier detection:
Methods, models, and classification. ACM Computing Surveys, 53:1–37.

[Breunig et al., 2000] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof:
Identifying density-based local outliers. SIGMOD Rec., 29(2):93–104.

[Cabri et al., 2018] Cabri, A., Suchacka, G., Rovetta, S., and Masulli, F. (2018). Online web bot
detection using a sequential classification approach. In 2018 IEEE 20th International Confer-
ence on High Performance Computing and Communications; IEEE 16th International Confer-
ence on Smart City; IEEE 4th International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), pages 1536–1540.

[Chen et al., 2020] Chen, H., He, H., and Starr, A. (2020). An overview of web robots detection
techniques. In 2020 International Conference on Cyber Security and Protection of Digital
Services (Cyber Security), pages 1–6.

[Chu et al., 2013] Chu, Z., Gianvecchio, S., Koehl, A., Wang, H., and Jajodia, S. (2013). Blog or
block: Detecting blog bots through behavioral biometrics. Computer Networks, 57(3):634–646.

[DataDome, 2019] DataDome (2019). Good bots vs. bad bots and when you should
block them. Available at https://datadome.co/bot-management-protection/
good-bots-vs-bad-bots-and-when-you-should-block-them/.

55

https://www.v7labs.com/blog/data-preprocessing-guide
https://datadome.co/bot-management-protection/good-bots-vs-bad-bots-and-when-you-should-block-them/
https://datadome.co/bot-management-protection/good-bots-vs-bad-bots-and-when-you-should-block-them/

56 REFERENCES

[Domingues et al., 2017] Domingues, R., Filippone, M., and Zouaoui, J. (2017). A comparative
evaluation of outlier detection algorithms: Experiments and analyses. Pattern Recognition, 74.

[Doran and Gokhale, 2011] Doran and Gokhale (2011). Web robot detection techniques:
overview and limitations. Data Mining and Knowledge Discovery.

[GeeksForGeeks, 2021a] GeeksForGeeks (2021a). Data preprocessing in
data mining. Available at https://www.geeksforgeeks.org/
data-preprocessing-in-data-mining/.

[GeeksForGeeks, 2021b] GeeksForGeeks (2021b). Normalization vs standardization. Available
at https://www.geeksforgeeks.org/normalization-vs-standardization/.

[Hayati et al., 2010] Hayati, P., Potdar, V., Chai, K., and Talevski, A. (2010). Web spambot de-
tection based on web navigation behaviour. pages 797–803.

[Iliou et al., 2021] Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., and Kompat-
siaris, I. (2021). Detection of advanced web bots by combining web logs with mouse be-
havioural biometrics. Digital Threats: Research and Practice, 2(3).

[Imperva, 2020] Imperva (2020). Thirteen questions you should ask your bot mitigation vendor -
whitepaper. Technical report, Imperva.

[Imperva, 2021] Imperva (2021). Bad bot report. Technical report, Imperva.

[Jacob et al., 2012] Jacob, G., Kirda, E., Kruegel, C., and Vigna, G. (2012). Pubcrawl: protecting
users and businesses from crawlers. pages 25–25.

[Khder, 2021] Khder, M. (2021). Web scraping or web crawling: State of art, techniques, ap-
proaches and application. International Journal of Advances in Soft Computing and its Appli-
cations, 13:145–168.

[Koster, 2007] Koster, M. (2007). The web robots pages. Available at http://www.
robotstxt.org/.

[Lagopoulos et al., 2018] Lagopoulos, A., Tsoumakas, G., and Papadopoulos, G. (2018). Web
robot detection: A semantic approach. In 2018 IEEE 30th International Conference on Tools
with Artificial Intelligence (ICTAI), pages 968–974.

[Land, 2021] Land, B. J. (2021). Windmouse, an algorithm for generating human-
like mouse motion. Available at https://ben.land/post/2021/04/25/
windmouse-human-mouse-movement/.

[Liu et al., 2009] Liu, F. T., Ting, K., and Zhou, Z.-H. (2009). Isolation forest. pages 413 – 422.

[McKenna, 2016] McKenna, S. F. (2016). Detection and classification of web robots with honey-
pots.

[MDN, 2021] MDN, W. D. (2021). Window.location. Available at https://developer.
mozilla.org/en-US/docs/Web/API/Window/location.

[MDN, 2022] MDN, W. D. (2022). User-agent. Available at https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/User-Agent.

https://www.geeksforgeeks.org/data-preprocessing-in-data-mining/
https://www.geeksforgeeks.org/data-preprocessing-in-data-mining/
https://www.geeksforgeeks.org/normalization-vs-standardization/
http://www.robotstxt.org/
http://www.robotstxt.org/
https://ben.land/post/2021/04/25/windmouse-human-mouse-movement/
https://ben.land/post/2021/04/25/windmouse-human-mouse-movement/
https://developer.mozilla.org/en-US/docs/Web/API/Window/location
https://developer.mozilla.org/en-US/docs/Web/API/Window/location
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

REFERENCES 57

[npmjs, 2022] npmjs (2022). puppeteer. Available at https://www.npmjs.com/package/
puppeteer.

[Park et al., 2006] Park, K., Pai, V., Lee, K.-W., and Calo, S. (2006). Securing web service by
automatic robot detection. pages 255–260.

[Patra, 2020] Patra, D. (2020). selenium-stealth. Available at https://github.com/
diprajpatra/selenium-stealth.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[PyPIStats, 2022] PyPIStats (2022). selenium. Available at https://pypistats.org/
packages/selenium.

[Rahman and Tomar, 2020a] Rahman, R. U. and Tomar, D. S. (2020a). New biostatistics features
for detecting web bot activity on web applications. Computers Security, 97:102001.

[Rahman and Tomar, 2020b] Rahman, R. U. and Tomar, D. S. (2020b). A new web forensic
framework for bot crime investigation. Forensic Science International: Digital Investigation,
33:300943.

[Roren et al., 2022] Roren, A., Mazarguil, A., Vaquero-Ramos, D., Deloose, J.-B., Vidal, P.-P.,
Nguyen, C., Rannou, F., Wang, D., Oudre, L., and lefevre colau, m.-m. (2022). Assessing
smoothness of arm movements with jerk: A comparison of laterality, contraction mode and
plane of elevation. a pilot study. Frontiers in Bioengineering and Biotechnology, 9.

[Scikit-Learn, 2022a] Scikit-Learn (2022a). Metrics and scoring: quantifying the quality of
predictions. Available at https://scikit-learn.org/stable/modules/model_
evaluation.html.

[Scikit-Learn, 2022b] Scikit-Learn (2022b). Preprocessing data. Available at https://
scikit-learn.org/stable/modules/preprocessing.html#preprocessing.

[Selenium, 2022] Selenium (2022). Selenium. Available at https://www.selenium.dev/.

[Singh, 2021] Singh, P. (2021). Is puppeteer better than selenium ?? Available at https://
chatbotslife.com/is-puppeteer-better-than-selenium-d348576787a8.

[Sisodia et al., 2015] Sisodia, D., Verma, S., and Vyas, O. (2015). Agglomerative approach for
identification and elimination of web robots from web server logs to extract knowledge about
actual visitors. Journal of Data Analysis and Information Processing, 03:1–10.

[Smith, 2014] Smith, C. (2014). Detect mobile browsers. Available at http://
detectmobilebrowsers.com.

[Stassopoulou and Dikaiakos, 2009] Stassopoulou, A. and Dikaiakos, M. (2009). Web robot de-
tection: A probabilistic reasoning approach. Computer Networks, 53:265–278.

[Stevanovic et al., 2012] Stevanovic, D., An, A., and Vlajic, N. (2012). Feature evaluation
for web crawler detection with data mining techniques. Expert Systems with Applications,
39:8707–8717.

https://www.npmjs.com/package/puppeteer
https://www.npmjs.com/package/puppeteer
https://github.com/diprajpatra/selenium-stealth
https://github.com/diprajpatra/selenium-stealth
https://pypistats.org/packages/selenium
https://pypistats.org/packages/selenium
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
https://www.selenium.dev/
https://chatbotslife.com/is-puppeteer-better-than-selenium-d348576787a8
https://chatbotslife.com/is-puppeteer-better-than-selenium-d348576787a8
http://detectmobilebrowsers.com
http://detectmobilebrowsers.com

58 REFERENCES

[Stevanovic et al., 2011] Stevanovic, D., Vlajic, N., and An, A. (2011). Unsupervised clustering
of web sessions to detect malicious and non-malicious website users. Procedia CS, 5:123–131.

[Stevanovic et al., 2013] Stevanovic, D., Vlajic, N., and An, A. (2013). Detection of malicious
and non-malicious website visitors using unsupervised neural network learning. Applied Soft
Computing, 13:698–708.

[Suchacka and Sobkow, 2015] Suchacka, G. and Sobkow, M. (2015). Detection of internet robots
using a bayesian approach. pages 365–370.

[Tan and Kumar, 2002] Tan, P.-N. and Kumar, V. (2002). Discovery of web robot sessions based
on their navigational patterns. Data Min. Knowl. Discov., 6:9–35.

[Vastel et al., 2020] Vastel, A., Rudametkin, W., Rouvoy, R., and Blanc, X. (2020). Fp-crawlers:
Studying the resilience of browser fingerprinting to block crawlers.

[Vikram et al., 2013] Vikram, S., Yang, C., and Gu, G. (2013). Nomad: Towards non-intrusive
moving-target defense against web bots. pages 55–63.

[Watson and Zaw, 2018] Watson, C. and Zaw, T. (2018). OWASP automated threat handbook:
Web applications, version 1.2. Technical report, OWASP.

[Wickramasinghe, 2021] Wickramasinghe, S. (2021). Selenium vs puppeteer: Which is better?
Available at https://www.blazemeter.com/blog/selenium-vs-puppeteer.

[Yamartino, 2016] Yamartino, S. (2016). Pressure.js. Available at https://pressurejs.
com/.

[Zabihimayvan et al., 2017] Zabihimayvan, M., Sadeghi, R., Rude, H. N., and Doran, D. (2017).
A soft computing approach for benign and malicious web robot detection. Expert Systems with
Applications, 87:129–140.

[Zhao, 2017] Zhao, B. (2017). Web Scraping, pages 1–3.

[Zhao et al., 2019] Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable
outlier detection. Journal of Machine Learning Research, 20(96):1–7.

[Zolotukhin et al., 2014] Zolotukhin, M., Hamalainen, T., Kokkonen, T., and Siltanen, J. (2014).
Analysis of http requests for anomaly detection of web attacks. pages 406–411.

https://www.blazemeter.com/blog/selenium-vs-puppeteer
https://pressurejs.com/
https://pressurejs.com/

Appendix A

Appendix

Code Listings for every component of this Project.

A.1 Biometric Data Collector: bc.js

The collection tool is split into three scripts. Two auxiliary classes and one main file. The base

class is Move (move.js), representing the movement of either the Mouse, Touch or Scroll. That

class is used to create the Stats class that compiles the features to send to the server. Finally, the

script that joins everything and defines the triggers to send data to the server is bc.js.

move.js

1 //Describes a movement in terms of displacement, speed, aceleration and their

standard deviations

2 class Move {

3 constructor() {

4 this.timestamp = 0;

5 (this.x = 0), (this.y = 0);

6 (this.totalX = 0), (this.totalY = 0);

7 (this.speedX = 0), (this.speedY = 0);

8 (this.acelX = 0), (this.acelY = 0);

9 (this.jerkX = 0), (this.jerkY = 0);

10 }

11

12 move(x, y, debug) {

13 let now = Date.now();

14 let dt = now - this.timestamp;

15 let distanceX, distanceY;

16 distanceX = Math.abs(this.x - x);

17 distanceY = Math.abs(this.y - y);

18 this.totalX += distanceX;

19 this.totalY += distanceY;

59

60 Appendix

20 this.x = x;

21 this.y = y;

22 this.timestamp = now;

23

24 let lastSX = this.speedX;

25 let lastSY = this.speedY;

26

27 this.speedX = distanceX / dt;

28 this.speedY = distanceY / dt;

29

30 let lastAX = this.acelX;

31 let lastAY = this.acelY;

32

33 this.acelX = (this.speedX - lastSX) / dt;

34 this.acelY = (this.speedY - lastSY) / dt;

35

36 this.jerkX = (this.acelX - lastAX) / dt;

37 this.jerkY = (this.acelY - lastAY) / dt;

38

39 if (debug) console.log(this);

40 }

41 }

42

43 module.exports = Move;

stats.js

1 let Move = require("./move");

2

3 const start = Date.now();

4

5 class Stats {

6 constructor() {

7 // Since script loaded

8 this.timeElapsed = 0;

9 // Is script running on mobile device?

10 this.mobile = false;

11 // Booleans to see if page was reloaded or loaded from cache through the

arrows in the browser window

12 (this.reload = false), (this.bckFwd = false);

13 // Focus Shift counter: counter for how many times the window has lost and

gained focus

14 this.fs = 0;

15 // Movement Statistics

16 this.mouseM = new Move();

17 this.touchM = new Move();

A.1 Biometric Data Collector: bc.js 61

18 this.scrollM = new Move();

19

20 // Click Pressure Statistics not currently used

21 this.currClickPresh = 0;

22 this.avgClickPresh = 0;

23 this.noClickP = 0;

24 this.currTouchPresh = 0;

25 this.avgTouchPresh = 0;

26 this.noTouchesP = 0;

27 this.currPointerPresh = 0;

28 this.avgPointerPresh = 0;

29 this.noPointerP = 0;

30

31 // One for each button, 0 is Left, 1 is Middle/Wheel and 2 is Right

32 this.buttons = [

33 { clickTimestamp: 0, clicks: 0, avgClickHold: 0 },

34 { clickTimestamp: 0, clicks: 0, avgClickHold: 0 },

35 { clickTimestamp: 0, clicks: 0, avgClickHold: 0 },

36 { clickTimestamp: 0, clicks: 0, avgClickHold: 0 },

37 { clickTimestamp: 0, clicks: 0, avgClickHold: 0 },

38];

39

40 // Obj to keep track of touch data

41 this.touch = { touchTimestamp: 0, touches: 0, avgTouchHold: 0 };

42

43 this.delKeys = 0; // Number of times delete or backspace key was pressed

44 this.alphanumKeys = 0; // Number of [a-zA-Z0-1] characters hit

45 this.otherKeys = 0; // Other characters

46 this.strikeStdDev = 0;

47 this.strikeEntropy = 0;

48

49 (this.cuts = 0), (this.cpys = 0), (this.pastes = 0);

50

51 // Map with the key and the time holding it n vars to calculate avg key

hold and typing speeds

52 this.keys = new Map();

53 (this.avgKeyHold = 0),

54 (this.keyPresses = 0),

55 (this.strikes = 0),

56 (this.lastStrike = 0),

57 (this.strikeSpeed = 0),

58 (this.strikeAcel = 0);

59

60 // Vars to help calculate key flight time

61 (this.avgFlightTime = 0),

62 (this.flights = 0),

63 (this.flightTimestamp = 0);

64 }

65

62 Appendix

66 static mean(arr) {

67 return (

68 arr.reduce((acc, curr) => {

69 return acc + curr;

70 }, 0) / arr.length

71);

72 }

73

74 static standardDeviation(arr) {

75 let mean = this.mean(arr);

76

77 let squareRay = arr.map((el) => {

78 return (el - mean) ** 2;

79 });

80

81 let sum = squareRay.reduce((acc, curr) => acc + curr, 0);

82

83 return Math.sqrt(sum / arr.length);

84 }

85

86 setTime() {

87 this.timeElapsed = Date.now() - start;

88 }

89 }

90

91 module.exports = Stats;

bc.js

1 "use strict";

2

3 // Pressure.js library needed to read mouse and touch pressure

4 const Pressure = require("pressure");

5 const Stats = require("./stats");

6

7 let statistics = new Stats();

8

9 function statCleaner(key, value) {

10 if (

11 key == "keys" ||

12 key == "flights" ||

13 key == "flightTimestamp" ||

14 key == "lastStrike" ||

15 key == "currClickPresh" ||

16 key == "currTouchPresh" ||

17 key == "currPointerPresh" ||

A.1 Biometric Data Collector: bc.js 63

18 key == "noClickP" ||

19 key == "noTouchesP" ||

20 key == "noPointerP"

21)

22 return undefined;

23 if (key == "mouseM" || key == "scrollM" || key == "touchM") {

24 let newVal = { ...value };

25 delete newVal.x;

26 delete newVal.y;

27 delete newVal.timestamp;

28 return newVal;

29 }

30

31 if (key == "touch") {

32 let newVal = { ...value };

33 delete newVal.touchTimestamp;

34 return newVal;

35 }

36

37 if (key == "buttons") {

38 let newVal = { ...value };

39 delete newVal[0].clickTimestamp;

40 delete newVal[1].clickTimestamp;

41 delete newVal[2].clickTimestamp;

42 delete newVal[3].clickTimestamp;

43 delete newVal[4].clickTimestamp;

44 return newVal;

45 } else return value;

46 }

47

48 function sendStats() {

49 statistics.page = document.location.href;

50 let data = new FormData();

51 data.append("obj", JSON.stringify(statistics, statCleaner));

52 navigator.sendBeacon(

53 "http://localhost/capazpsicologia/testLog.php",

54 JSON.stringify(statistics, statCleaner)

55);

56 }

57

58 function checkForMobile(){

59

60 ((a) => {

61 if ((

62 /(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|

elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|

midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm(os)?|phone|

p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(

browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(

64 Appendix

63 a

64) ||

65 /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai

(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|

attw|au(di|\-m|r |s)|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)

w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|

nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)

|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly

(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd

\-(m|p|t)|hei\-|hi(pt|ta)|hp(i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp

)|hu(aw|tc)|i\-(20|go|ma)|i230|iac(|\-|\/)|ibro|idea|ig01|ikom|

im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt(|\/)|

klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg(g|\/(k|l|u)|50|54|\-[a-w])|

libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri

)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v)|

mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c

|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|

pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|

rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|

r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h

\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk

\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v)|sy(01|

mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-

mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|

veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx

(52|53|60|61|70|80|81|83|85|98)|w3c(\-|)|webc|whit|wi(g |nc|nw)|

wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(

66 a.substr(0, 4)

67)

68)) {

69 statistics.mobile = true;

70 }

71 })(

72 navigator.userAgent || navigator.vendor || window.opera,

73);

74

75 if (window.matchMedia("only screen and (max-width: 1024px)").matches)

statistics.mobile = true;

76

77 }

78

79 // To measure average click/touch/pointer pressure

80 Pressure.set(

81 "*",

82 {

83 change: (force, _) => {

84 statistics.currClickPresh = force;

85 statistics.setTime();

86 },

A.1 Biometric Data Collector: bc.js 65

87 end: function () {

88 statistics.avgClickPresh =

89 (statistics.avgClickPresh * statistics.noClickP +

90 statistics.currClickPresh) /

91 (statistics.noClickP + 1);

92 statistics.noClickP++;

93 statistics.setTime();

94 },

95 },

96 { only: "mouse", preventSelect: false, polyfil:false }

97);

98

99 Pressure.set(

100 "*",

101 {

102 change: (force, _) => {

103 statistics.currTouchPresh = force;

104 statistics.setTime();

105 },

106 end: function () {

107 statistics.avgTouchPresh =

108 (statistics.avgTouchPresh * statistics.noTouchesP +

109 statistics.currTouchPresh) /

110 (statistics.noTouchesP + 1);

111 statistics.noTouchesP++;

112 statistics.setTime();

113 },

114 },

115 { only: "touch", preventSelect: false, polyfil:false }

116);

117

118 Pressure.set(

119 "*",

120 {

121 change: (force, _) => {

122 statistics.currPointerPresh = force;

123 statistics.setTime();

124 },

125 end: function () {

126 statistics.avgPointerPresh =

127 (statistics.avgPointerPresh * statistics.noPointerP +

128 statistics.currPointerPresh) /

129 (statistics.noPointerP + 1);

130 statistics.noPointerP++;

131 statistics.setTime();

132 },

133 },

134 { only: "pointer", preventSelect: false, polyfil:false }

135);

66 Appendix

136

137 // Counting Focus Shifts

138 window.addEventListener("focus", () => {

139 statistics.fs++;

140 statistics.setTime();

141 });

142

143 // Keeping track of cuts, copys and pastes

144 window.addEventListener("cut", () => statistics.cuts++);

145 window.addEventListener("copy", () => statistics.cpys++);

146 window.addEventListener("paste", () => statistics.pastes++);

147

148 // Keydown Events

149 window.addEventListener("keydown", (event) => {

150 statistics.strikes++;

151 const re = /^[a-zA-Z0-9]$/;

152

153 if (event.key === "Backspace" || event.key === "Delete")

154 statistics.delKeys++;

155 else if (re.test(event.key)) statistics.alphanumKeys++;

156 else {

157 statistics.otherKeys++;

158 console.log("got key: " + event.key);

159 }

160

161 statistics.strikeStdDev = Stats.standardDeviation([

162 statistics.alphanumKeys,

163 statistics.delKeys,

164 statistics.otherKeys,

165]);

166

167 let entA = isNaN(

168 (statistics.alphanumKeys / statistics.strikes) *

169 Math.log2(statistics.alphanumKeys / statistics.strikes)

170)

171 ? 0

172 : (statistics.alphanumKeys / statistics.strikes) *

173 Math.log2(statistics.alphanumKeys / statistics.strikes);

174 let entD = isNaN(

175 (statistics.delKeys / statistics.strikes) *

176 Math.log2(statistics.delKeys / statistics.strikes)

177)

178 ? 0

179 : (statistics.delKeys / statistics.strikes) *

180 Math.log2(statistics.delKeys / statistics.strikes);

181 let entO = isNaN(

182 (statistics.otherKeys / statistics.strikes) *

183 Math.log2(statistics.otherKeys / statistics.strikes)

184)

A.1 Biometric Data Collector: bc.js 67

185 ? 0

186 : (statistics.otherKeys / statistics.strikes) *

187 Math.log2(statistics.otherKeys / statistics.strikes);

188

189 statistics.strikeEntropy = 0 - entA - entD - entO;

190

191 if (statistics.strikeEntropy == null) statistics.strikeEntropy = 0;

192

193 if (!statistics.keys.has(event.key)) {

194 statistics.keys.set(event.key, Date.now());

195 }

196 });

197

198 let kbSendData = setTimeout(sendStats, 500);

199 // Keyup Events

200 window.addEventListener("keyup", (event) => {

201 statistics.setTime();

202 clearTimeout(kbSendData);

203 if (statistics.flightTimestamp === 0)

204 statistics.flightTimestamp = Date.now();

205 // To calculate avg time holding key

206 if (statistics.keys.has(event.key)) {

207 statistics.keyPresses++;

208 let dt = Date.now() - statistics.keys.get(event.key);

209 statistics.avgKeyHold =

210 ((statistics.keyPresses - 1) * statistics.avgKeyHold + dt) /

211 statistics.keyPresses;

212

213 if (statistics.avgKeyHold == null) statistics.avgKeyHold = 0;

214 statistics.keys.delete(event.key);

215

216 dt = Date.now() - statistics.lastStrike;

217 let lastSS = statistics.strikeSpeed;

218 statistics.strikeSpeed = statistics.keyPresses / dt;

219 statistics.strikeAcel = (lastSS - statistics.strikeSpeed) / dt;

220 statistics.lastStrike = Date.now();

221 }

222

223 // To calculate key flight time

224 let ft = Date.now() - statistics.flightTimestamp;

225 statistics.flights++;

226 statistics.avgFlightTime =

227 (statistics.flights * statistics.avgFlightTime + ft) /

228 (statistics.flights + 1);

229 statistics.flightTimestamp = Date.now();

230

231 kbSendData = setTimeout(sendStats, 500);

232 });

233

68 Appendix

234 // Touch Screen movement event

235 window.addEventListener("touchmove", (event) => {

236 statistics.touchM.move(

237 event.touches[0].pageX,

238 event.touches[0].pageY,

239 false

240);

241 });

242

243 // Touch Start event

244 window.addEventListener("touchstart", () => {

245 statistics.touch.touchTimestamp = Date.now();

246 statistics.touch.touches++;

247 });

248

249 // Touch End event

250 window.addEventListener("touchend", () => {

251 statistics.setTime();

252 let dt = Date.now() - statistics.touch.touchTimestamp;

253 statistics.touch.avgTouchHold =

254 (statistics.touch.touches * statistics.touch.avgTouchHold + dt) /

255 (statistics.touch.touches + 1);

256 statistics.touch.touchTimestamp = Date.now();

257 sendStats();

258 });

259

260 let mouseSendData = setTimeout(sendStats, 500);

261

262 // Mouse movement event

263 window.addEventListener("mousemove", (event) => {

264 statistics.setTime();

265 clearTimeout(mouseSendData);

266 statistics.mouseM.move(event.pageX, event.pageY, false);

267 mouseSendData = setTimeout(sendStats, 500);

268 });

269

270 // Mousedown Events

271 window.addEventListener("mousedown", (event) => {

272 let i = event.button;

273 statistics.buttons[i].clickTimestamp = Date.now();

274 statistics.buttons[i].clicks++;

275 });

276

277 // Mouseup Events

278 window.addEventListener("mouseup", (event) => {

279 let i = event.button;

280 let ct = Date.now() - statistics.buttons[i].clickTimestamp;

281 statistics.buttons[i].avgClickHold =

282 (statistics.buttons[i].avgClickHold * statistics.buttons[i].clicks +

A.1 Biometric Data Collector: bc.js 69

283 ct) /

284 (statistics.buttons[i].clicks + 1);

285 statistics.buttons[i].clickTimestamp = Date.now();

286 });

287

288 // Page Load Events

289 window.addEventListener("load", () => {

290 statistics.setTime();

291

292 checkForMobile();

293

294 if (window.performance.navigation) {

295 if (window.performance.navigation === 1) {

296 statistics.reload = true;

297 }

298

299 if (window.performance.navigation === 2) {

300 statistics.bckFwd = true;

301 }

302 }

303

304 if (window.performance.getEntriesByType("navigation")) {

305 let navType = window.performance.getEntriesByType("navigation")[0].type;

306

307 if (navType == "reload") {

308 statistics.reload = true;

309 }

310

311 if (navType == "back_forward") {

312 statistics.bckFwd = true;

313 }

314 }

315

316 sendStats();

317 });

318

319 let scrollSendData = setTimeout(sendStats, 500);

320 //Scroll Events

321 window.addEventListener("scroll", () => {

322 statistics.setTime();

323 clearTimeout(scrollSendData);

324 statistics.scrollM.move(window.scollX, window.scrollY, false);

325 scrollSendData = setTimeout(sendStats, 500);

326 });

327

328 //Unload event, plain AJAX won’t work here, but sendBeacon will

329 window.addEventListener("unload", () => {

330 statistics.setTime();

331 sendStats();

70 Appendix

332 });

A.2 Detector Modules

The first listing is for a set of helper functions to load data from a directory with multiple JSON

files, according to a naming convention set by the Web Engineering team.

dataloader.py

1

2 import os

3 import json

4

5 def sortDir(lof):

6 sof = []

7 for filo in lof:

8 if not (".json" in filo):

9 continue

10 if len(sof) == 0:

11 sof.append(filo)

12 elif len(sof) == 1:

13 date = filo.split(’-’)[1]

14 date = date.split(’_’)

15 day = int(date[0])

16 mon = int(date[1])

17 d2 = sof[0].split(’-’)[1]

18 d2 = d2.split(’_’)

19 dd2 = int(d2[0])

20 md2 = int(d2[1])

21

22 if md2 < mon or (mon == md2 and dd2 > day):

23 sof.insert(0, filo)

24 else:

25 sof.append(filo)

26 else:

27 date = filo.split(’-’)[1]

28 date = date.split(’_’)

29 day = int(date[0])

30 mon = int(date[1])

31 i = 0

32 for i in range(0, len(sof)):

33 d2 = sof[i].split(’-’)[1]

34 d2 = d2.split(’_’)

35 dd2 = int(d2[0])

36 md2 = int(d2[1])

A.2 Detector Modules 71

37 if md2 > mon or (md2 == mon and dd2 > day):

38 break

39 sof.insert(i, filo)

40 return sof

41

42 def loadJSONFromDirS(dir):

43 data = []

44 lof = os.listdir(dir)

45 sof = sortDir(lof)

46

47 for filo in sof:

48 if ".json" in filo:

49 f = open(dir + filo, "r")

50 data += json.loads(f.read())

51

52 return data

53

54 def loadJSONFromDir(dir):

55 data = []

56 lof = os.listdir(dir)

57 for filo in lof:

58 if ".json" in filo:

59 f = open(dir + filo, "r")

60 data += json.loads(f.read())

61

62 return data

The next listings are for the session class, that defines how a session is reconstructed, and for

the associated preprocessing module.

session.py

1 import time

2

3 import numpy as np

4

5 from dateutil import parser

6

7 # Maybe Session should keep track of no. of events

8

9 class Session:

10

11 def __init__(self, point):

12

13 if "sid" in point:

14 self.key = point["sid"]

15 else:

72 Appendix

16 self.key = point["ip"] + point["ua"]

17

18 if point["page"] == "":

19 point["page"] = "https://jscrambler.com"

20

21 self.lp = point["page"]

22 self.pc = 1

23

24 # Total Time Script has been running

25 self.totalTime = point["timeElapsed"]

26 # Total no. of focus shifts

27 self.totalFS = point["fs"]

28 # Total no. of Alphanumeric Characters

29 self.totalAlphas = point["alphanumKeys"]

30 # Total no. of Deletes

31 self.totalDels = point["delKeys"]

32 # Other keys

33 self.totalOthers = point["otherKeys"]

34

35 self.totalKeyDowns = point["strikes"]

36

37 rat = self.totalAlphas + self.totalDels + self.totalOthers

38 if (rat < 1):

39 rat = 1

40

41 self.alphaRat = self.totalAlphas/rat

42 self.delRat = self.totalDels/rat

43 self.otherRat = self.totalOthers/rat

44

45 self.totalKeyUps = point["keyPresses"]

46

47 self.strikeStdDev = point["strikeStdDev"]

48 self.strikeEntropy = point["strikeEntropy"]

49 self.strikeSpeed = point["strikeSpeed"]

50 self.strikeAcel = point["strikeAcel"]

51 self.avgFlightTime = point["avgFlightTime"]

52 self.avgKeyHold = point["avgKeyHold"]

53

54 self.totalCuts = point["cuts"]

55 self.totalCpys = point["cpys"]

56 self.totalPastes = point["pastes"]

57

58 self.totalTouches = point["touch"]["touches"]

59 self.totalClick0 = point["buttons"]["0"]["clicks"]

60 self.totalClick1 = point["buttons"]["1"]["clicks"]

61 self.totalClick2 = point["buttons"]["2"]["clicks"]

62

63 try:

64 self.totalClick3 = point["buttons"]["3"]["clicks"]

A.2 Detector Modules 73

65 self.totalClick4 = point["buttons"]["4"]["clicks"]

66 except KeyError:

67 self.totalClick3 = 0

68 self.totalClick4 = 0

69

70

71 self.lastDate = point["date"]

72

73 self.lastMouseX = point["mouseM"]["totalX"]

74 self.lastMouseY = point["mouseM"]["totalY"]

75 self.lastMouseSX = point["mouseM"]["speedX"]

76 self.lastMouseSY = point["mouseM"]["speedY"]

77 self.lastMouseAX = point["mouseM"]["acelX"]

78 self.lastMouseAY = point["mouseM"]["acelY"]

79 self.lastMouseJX = point["mouseM"]["jerkX"]

80 self.lastMouseJY = point["mouseM"]["jerkY"]

81 self.lastC0Hold = point["buttons"]["0"]["avgClickHold"]

82 self.lastC1Hold = point["buttons"]["1"]["avgClickHold"]

83 self.lastC2Hold = point["buttons"]["2"]["avgClickHold"]

84 try:

85 self.lastC3Hold = point["buttons"]["3"]["avgClickHold"]

86 self.lastC4Hold = point["buttons"]["4"]["avgClickHold"]

87 except KeyError:

88 self.lastC3Hold = 0

89 self.lastC4Hold = 0

90

91 self.lastTouchX = point["touchM"]["totalX"]

92 self.lastTouchY = point["touchM"]["totalY"]

93 self.lastTouchSX = point["touchM"]["speedX"]

94 self.lastTouchSY = point["touchM"]["speedY"]

95 self.lastTouchAX = point["touchM"]["acelX"]

96 self.lastTouchAY = point["touchM"]["acelY"]

97 self.lastTouchJX = point["touchM"]["jerkX"]

98 self.lastTouchJY = point["touchM"]["jerkY"]

99 self.lastTouchHold = point["touch"]["avgTouchHold"]

100

101 self.lastScrollX = point["scrollM"]["totalX"]

102 self.lastScrollY = point["scrollM"]["totalY"]

103 self.lastScrollSX = point["scrollM"]["speedX"]

104 self.lastScrollSY = point["scrollM"]["speedY"]

105 self.lastScrollAX = point["scrollM"]["acelX"]

106 self.lastScrollAY = point["scrollM"]["acelY"]

107 self.lastScrollJX = point["scrollM"]["jerkX"]

108 self.lastScrollJY = point["scrollM"]["jerkY"]

109

110

111 self.lastClickPresh = point["avgClickPresh"]

112 self.lastTouchPresh = point["avgTouchPresh"]

113 self.lastPointerPresh = point["avgPointerPresh"]

74 Appendix

114

115 self.mobile = point["mobile"]

116 self.reload = point["reload"]

117 self.bckFwd = point["bckFwd"]

118

119

120

121

122 self.lastPackts = {point["page"]:point}

123

124 def isInTimeOut(self, point):

125 dt1 = parser.parse(self.lastDate)

126 dt2 = parser.parse(point["date"])

127

128 dt1_ts = time.mktime(dt1.timetuple())

129 dt2_ts = time.mktime(dt2.timetuple())

130

131 return (dt2_ts > dt1_ts and (int(dt2_ts - dt1_ts)/60) <= 30)

132

133 def isSameSession(self, point):

134 if "sid" in point:

135 key = point["sid"]

136 else:

137 key = point["ip"] + point["ua"]

138

139 return (key == self.key and self.isInTimeOut(point))

140

141 def addPoint(self, point):

142 #Need to update vars... not gonna mess with advanced stats rn -> entropy ans

movement variables

143 lastTime = 0

144 lastFs = 0

145 lastAlphas = 0

146 lastDels = 0

147 lastOthers = 0

148 lastCuts = 0

149 lastCpys = 0

150 lastPastes = 0

151 lastKUs = 0

152 lastKDs = 0

153 lastMobile = False

154 lastReload = False

155 lastBckFwd = False

156 lastTouches = 0

157 lastC0 = 0

158 lastC1 = 0

159 lastC2 = 0

160 lastC3 = 0

161 lastC4 = 0

A.2 Detector Modules 75

162

163 self.pc += 1

164 if point["page"] == "":

165 point["page"] = self.lp

166

167 if point["page"] in self.lastPackts:

168 self.lp = point["page"]

169 lastTime = self.lastPackts[point["page"]]["timeElapsed"]

170 lastFs = self.lastPackts[point["page"]]["fs"]

171 lastAlphas = self.lastPackts[point["page"]]["alphanumKeys"]

172 lastDels = self.lastPackts[point["page"]]["delKeys"]

173 lastOthers = self.lastPackts[point["page"]]["otherKeys"]

174 lastCuts = self.lastPackts[point["page"]]["cuts"]

175 lastCpys = self.lastPackts[point["page"]]["cpys"]

176 lastPastes = self.lastPackts[point["page"]]["pastes"]

177 lastKUs = self.lastPackts[point["page"]]["keyPresses"]

178 lastKDs = self.lastPackts[point["page"]]["strikes"]

179 lastMobile = self.lastPackts[point["page"]]["mobile"]

180 lastReload = self.lastPackts[point["page"]]["reload"]

181 lastBckFwd = self.lastPackts[point["page"]]["bckFwd"]

182 lastTouches = self.lastPackts[point["page"]]["touch"]["touches"]

183 lastC0 = self.lastPackts[point["page"]]["buttons"]["0"]["clicks"]

184 lastC1 = self.lastPackts[point["page"]]["buttons"]["1"]["clicks"]

185 lastC2 = self.lastPackts[point["page"]]["buttons"]["2"]["clicks"]

186 try:

187 lastC3 = point["buttons"]["3"]["clicks"]

188 lastC4 = point["buttons"]["4"]["clicks"]

189 except KeyError:

190 lastC3 = 0

191 lastC4 = 0

192

193 # Accummulated vars

194

195 # Total Time Script has been running

196 self.totalTime += point["timeElapsed"] - lastTime

197 # Total no. of focus shifts

198 self.totalFS += point["fs"] - lastFs

199 # Total no. of Alphanumeric Characters

200 self.totalAlphas += point["alphanumKeys"] - lastAlphas

201 # Total no. of Deletes

202 self.totalDels += point["delKeys"] - lastDels

203 # Other keys

204 self.totalOthers += point["otherKeys"] - lastOthers

205

206 rat = self.totalAlphas + self.totalDels + self.totalOthers

207 if (rat < 1):

208 rat = 1

209

210 self.alphaRat = self.totalAlphas/rat

76 Appendix

211 self.delRat = self.totalDels/rat

212 self.otherRat = self.totalOthers/rat

213

214

215 self.totalCuts += point["cuts"] - lastCuts

216 self.totalCpys += point["cpys"] - lastCpys

217 self.totalPastes += point["pastes"] - lastPastes

218 self.totalKeyDowns += point["strikes"] - lastKDs

219 self.totalKeyUps += point["keyPresses"] - lastKUs

220

221 self.totalTouches += point["touch"]["touches"] - lastTouches

222

223 self.totalClick0 += point["buttons"]["0"]["clicks"] - lastC0

224 self.totalClick1 += point["buttons"]["1"]["clicks"] - lastC1

225 self.totalClick2 += point["buttons"]["2"]["clicks"] - lastC2

226 try:

227 self.totalClick3 += point["buttons"]["3"]["clicks"] - lastC3

228 self.totalClick4 += point["buttons"]["4"]["clicks"] - lastC4

229 except KeyError:

230 self.totalClick3 += 0

231 self.totalClick4 += 0

232

233

234 # Need to mess w/ these stats still maybe...

235 self.strikeStdDev = point["strikeStdDev"]

236 self.strikeEntropy = point["strikeEntropy"]

237 self.avgFlightTime = point["avgFlightTime"]

238 self.avgKeyHold = point["avgKeyHold"]

239

240 # Instant Vars

241 self.lastDate = point["date"]

242 # self.lastMouseMove = point["mouseM"]

243 # self.lastTouchMove = point["touchM"]

244 # self.lastScrollMove = point["scrollM"]

245

246 self.lastMouseX = point["mouseM"]["totalX"]

247 self.lastMouseY = point["mouseM"]["totalY"]

248 self.lastMouseSX = point["mouseM"]["speedX"]

249 self.lastMouseSY = point["mouseM"]["speedY"]

250 self.lastMouseAX = point["mouseM"]["acelX"]

251 self.lastMouseAY = point["mouseM"]["acelY"]

252 self.lastMouseJX = point["mouseM"]["jerkX"]

253 self.lastMouseJY = point["mouseM"]["jerkY"]

254

255 self.lastTouchX = point["touchM"]["totalX"]

256 self.lastTouchY = point["touchM"]["totalY"]

257 self.lastTouchSX = point["touchM"]["speedX"]

258 self.lastTouchSY = point["touchM"]["speedY"]

259 self.lastTouchAX = point["touchM"]["acelX"]

A.2 Detector Modules 77

260 self.lastTouchAY = point["touchM"]["acelY"]

261 self.lastTouchJX = point["touchM"]["jerkX"]

262 self.lastTouchJY = point["touchM"]["jerkY"]

263 self.lastTouchHold = point["touch"]["avgTouchHold"]

264

265 self.lastScrollX = point["scrollM"]["totalX"]

266 self.lastScrollY = point["scrollM"]["totalY"]

267 self.lastScrollSX = point["scrollM"]["speedX"]

268 self.lastScrollSY = point["scrollM"]["speedY"]

269 self.lastScrollAX = point["scrollM"]["acelX"]

270 self.lastScrollAY = point["scrollM"]["acelY"]

271 self.lastScrollJX = point["scrollM"]["jerkX"]

272 self.lastScrollJY = point["scrollM"]["jerkY"]

273

274 self.lastC0Hold = point["buttons"]["0"]["avgClickHold"]

275 self.lastC1Hold = point["buttons"]["1"]["avgClickHold"]

276 self.lastC2Hold = point["buttons"]["2"]["avgClickHold"]

277 try:

278 self.lastC3Hold = point["buttons"]["3"]["avgClickHold"]

279 self.lastC4Hold = point["buttons"]["4"]["avgClickHold"]

280 except KeyError:

281 self.lastC3Hold = 0

282 self.lastC4Hold = 0

283

284

285 self.lastClickPresh = point["avgClickPresh"]

286 self.lastTouchPresh = point["avgTouchPresh"]

287 self.lastPointerPresh = point["avgPointerPresh"]

288 self.strikeSpeed = point["strikeSpeed"]

289 self.strikeAcel = point["strikeAcel"]

290

291 # Boolean Vars

292 self.mobile |= point["mobile"]

293 self.reload |= point["reload"]

294 self.bckFwd |= point["bckFwd"]

295

296 self.lastPackts[point["page"]] = point

297

298 def toNumpyArray(self):

299 #arr = np.array([self.totalTime, self.totalFS])

300 a = []

301 for key in self.__dict__.keys():

302 if key == "mobile" or key == "reload" or key == "bckFwd":

303 a.append(int(self.__dict__[key]))

304 elif key != "key" and key != "lastDate" and key != "lastPackts" and key != "

lp":

305 a.append(self.__dict__[key])

306

307 b = np.array(a, dtype=float)

78 Appendix

308 b[np.isnan(b)] = 0

309 return b

310

311 #When we save data to file we gon convert it to numpy arrays and store them in a

csv file for l8r retrieval

preprocessor.py

1 import sys

2 import time

3 import joblib

4

5 import numpy as np

6

7 from dateutil import parser

8 from session import Session

9 from dataloader import loadJSONFromDirS, loadJSONFromDir

10

11 c = {}

12

13

14 datasetDir = "crawlers/"#"d0/"

15

16 datacsv = "crawlers/crawlers.csv"

17

18 data = loadJSONFromDir(datasetDir)

19

20

21 createDataSet = False

22 if ("create" in sys.argv):

23 createDataSet = True

24

25 if createDataSet == True:

26 seshCount = 0

27 npArray = []

28 for point in data:

29 key = ""

30 if "page" not in point:

31 point["page"] = ""

32 if "sid" in point:

33 key = point["sid"]

34 else:

35 key = point["ip"] + point["ua"]

36

37 if not (key in c):

38 c[key] = Session(point)

A.2 Detector Modules 79

39 npArray.append(c[key].toNumpyArray())

40 seshCount += 1

41

42 else:

43 if (c[key].isSameSession(point)):

44 c[key].addPoint(point)

45 npArray.append(c[key].toNumpyArray())

46

47 else:

48 sesh = Session(point)

49 seshCount += 1

50 c[key] = sesh

51 npArray.append(c[key].toNumpyArray())

52

53 np.random.shuffle(npArray)

54 np.savetxt(datacsv, npArray, delimiter=", ")

55

56 print("Session count: " + str(seshCount))

57 print(len(npArray))

58

59 else:

60 contents = np.loadtxt(datacsv, delimiter=", ")

61 print(contents)

The code for training the detectors can be seen below:

detector.py

1

2 import re

3 import sys

4 import joblib

5 import time

6 import numpy as np

7

8

9 from session import Session

10 from dataloader import loadJSONFromDir

11 from pyod.models.auto_encoder import AutoEncoder

12 from pyod.models.iforest import IForest

13 from pyod.models.lof import LOF

14 from sklearn.preprocessing import StandardScaler

15

16 reStr = ".*Bot.*"

17

18 reStr2 = "LinguineBot"

19

80 Appendix

20 rng = np.random.RandomState(42)

21

22 X_humans = np.loadtxt("humans/humans.csv", delimiter=", ")

23 np.random.shuffle(X_humans)

24

25 X_humans = X_humans[0:522]

26 X_bots = np.loadtxt("crawlers/crawlers.csv", delimiter=", ")

27

28 # scaler = joblib.load("Standard.scaler")

29 # X_train = scaler.transform(X_train)

30 # X_humans = scaler.transform(X_humans)

31 # X_bots = scaler.transform(X_bots)

32

33 #joblib.dump(scaler, "Standard.scaler")

34

35 test = False

36

37 if ("test" in sys.argv and not "train" in sys.argv):

38 test = True

39

40 train = False

41 if ("train" in sys.argv and not "test" in sys.argv):

42 train = True

43

44 if train:

45

46 print("Training")

47 # Generate data

48 X_train = np.loadtxt("d0/d0train.csv", delimiter=", ")

49 # fit the model 69 estims got better as of n w/ max_samples = 2048 IsoForest

50 # , loss=’binary_crossentropy’

51 # for AE the best model so far has hidden_neurons=[29, 14, 14, 29]

52 #clf = AutoEncoder(contamination=0.25, batch_size=2048, epochs=65, random_state=

rng).fit(X_train)

53 clf = IForest(max_samples=256, verbose=1, random_state=rng, n_estimators=75,

n_jobs=-1, contamination=0.1).fit(X_train)

54 #clf = LOF(contamination=0.25, n_jobs=-1).fit(X_train)

55 joblib.dump(clf, "detectorIFTest3.pkl")

56 print("Training Complete")

57 print("Testing")

58 total = 0

59 pp = 0

60 pn = 0

61 tp = 0

62 tn = 0

63 fp = 0

64 fn = 0

65

66 y_pred_test = clf.predict(X_humans)

A.2 Detector Modules 81

67 for i in range(0, len(y_pred_test)):

68 total += 1

69 if y_pred_test[i] == 1:

70 fp += 1

71 pp += 1

72 else:

73 tn += 1

74 pn += 1

75

76 y_pred_test = clf.predict(X_bots)

77 for i in range(0, len(y_pred_test)):

78 total += 1

79 if y_pred_test[i] == 1:

80 tp += 1

81 pp += 1

82 else:

83 fn += 1

84 pn += 1

85

86

87 print("Total: " + str(total))

88 print("PP: " + str(pp))

89 print("TP: " + str(tp))

90 print("FP: " + str(fp))

91 print("PN: " + str(pn))

92 print("TN: " + str(tn))

93 print("FN: " + str(fn))

94 print("ACC: " + str((tp + tn)/total))

95 print("F1: " + str((tp*2)/(2*tp + fp + fn)))

96

97

98 elif test:

99 clf = joblib.load("detectorIFTest2.pkl")

100

101 total = 0

102 pp = 0

103 pn = 0

104 tp = 0

105 tn = 0

106 fp = 0

107 fn = 0

108

109 y_pred_test = clf.predict(X_humans)

110 for i in range(0, len(y_pred_test)):

111 total += 1

112 if y_pred_test[i] == 1:

113 fp += 1

114 pp += 1

115 else:

82 Appendix

116 tn += 1

117 pn += 1

118

119 y_pred_test = clf.predict(X_bots)

120 for i in range(0, len(y_pred_test)):

121 total += 1

122 if y_pred_test[i] == 1:

123 tp += 1

124 pp += 1

125 else:

126 fn += 1

127 pn += 1

128

129

130 print("Total: " + str(total))

131 print("PP: " + str(pp))

132 print("TP: " + str(tp))

133 print("FP: " + str(fp))

134 print("PN: " + str(pn))

135 print("TN: " + str(tn))

136 print("FN: " + str(fn))

137 print("ACC: " + str((tp + tn)/total))

138 print("F1: " + str((tp*2)/(2*tp + fp + fn)))

extractor.py

This file is responsible for extracting either Bots marked by a predetermined UA, or Humans of a

given GID cookie value.

1 import re

2 import sys

3 import json

4 from dataloader import loadJSONFromDirS

5

6 uaRe = "^(SpagetBot|RavioliFunghiBot|PizzaBot|RavioliPestoBot|InterBot|InterBot2)$

"

7 datasetDir = "dtest/"

8

9

10 lf = ""

11

12 if ("crawlers" in sys.argv):

13 lf = "crawlers"

14 elif ("humans" in sys.argv):

15 lf = "humans"

16

17

A.2 Detector Modules 83

18 data = loadJSONFromDirS(datasetDir)

19 if lf == "crawlers":

20 botData = []

21

22 for point in data:

23 if re.search(uaRe, point["ua"]):

24 botData.append(point)

25

26 df = open(datasetDir + "crawlers.json", "w")

27 json.dump(botData, df, indent=4)

28

29 elif lf == "humans":

30 idFile = open("ids.csv", "r")

31 ids = idFile.read().split(",")

32 idFile.close()

33 usedIds = []

34 hoomandata = []

35 for point in data:

36 if "sid" in point:

37 for gid in ids:

38 if point["sid"] == gid:

39 hoomandata.append(point)

40 if not gid in usedIds:

41 usedIds.append(gid)

42 print(usedIds)

43 df = open(datasetDir + "humans.json", "w")

44 json.dump(hoomandata, df, indent=4)

Interaction Flow Extractor

The process of extracting interaction flows was split in two scripts. These must be run in order, as

the first extracts interactions from all sessions, and the second counts the occurrences of a set of

interactions in all other sets.

interactionExtractor.py

1 import re

2 import sys

3 import json

4

5 from itertools import groupby

6 from session import Session

7 from dataloader import loadJSONFromDir

8

9 reStr = "((C|c)rawler|(P|p)asser|Bot).*"

10 datasetDir = "d0/"

84 Appendix

11 data = loadJSONFromDir(datasetDir)

12

13 c = {}

14 seshCount = 0

15

16 interSeqs = {}

17

18 sequenceFile = open("seq2.txt", "w")

19

20 for point in data:

21 if re.search(reStr, point["ua"]):

22 continue

23 key = ""

24 if "page" not in point:

25 continue

26 if "sid" in point:

27 key = point["sid"]

28 else:

29 key = point["ip"] + point["ua"]

30

31 if not (key in c):

32 c[key] = Session(point)

33 interSeqs[key] = "Nav:" + point["page"] + ", "

34 seshCount += 1

35

36 else:

37 if (c[key].isSameSession(point)):

38 actions = ""

39 if (point["page"] != c[key].lp):

40 actions += "Nav:" + point["page"] + " "

41 else:

42 if (point["mouseM"]["totalX"] != c[key].lastMouseX or point["mouseM"]["

totalY"] != c[key].lastMouseY):

43 actions += "MoveMouse "

44 if (point["scrollM"]["totalX"] != c[key].lastScrollX or point["scrollM"]["

totalY"] != c[key].lastScrollY):

45 actions += "MoveScroll "

46 if (point["touchM"]["totalX"] != c[key].lastTouchX or point["touchM"]["

totalY"] != c[key].lastTouchY):

47 actions += "MoveTouch "

48

49 lAs = c[key].totalAlphas

50

51 lDs = c[key].totalDels

52

53 lc0 = c[key].totalClick0

54 lc1 = c[key].totalClick1

55 lc2 = c[key].totalClick2

56 c[key].addPoint(point)

A.2 Detector Modules 85

57

58 if (c[key].totalAlphas > lAs):

59 actions += "Type "

60 if (c[key].totalDels > lDs):

61 actions += "DEL "

62

63 if (lc0 > c[key].totalClick0):

64 actions += "Click0 "

65 if (lc1 > c[key].totalClick1):

66 actions += "Click1 "

67 if (lc2 > c[key].totalClick2):

68 actions += "Click2 "

69

70 if not (not actions) and actions != " ":

71 actions += point["page"]

72 al = actions.split(’,’)

73 finalActs = [i[0] for i in groupby(al)]

74 actions = ",".join(finalActs)

75 interSeqs[key] += ", " + actions

76

77 else:

78 sesh = Session(point)

79 seshCount += 1

80 c[key] = sesh

81 # pagesB4 = interSeqs[key].split(",")

82 # pagesAft = []

83 # for i in range(0, len(pagesB4) - 1):

84 # if pagesB4[i] != pagesB4[i + 1]:

85 # pagesAft.append(pagesB4[i])

86

87 # pages = " -> ".join(pagesAft)

88

89 #if not (not pages):

90 tw = interSeqs[key].replace(", ,", ",")

91 sequenceFile.write(tw + "\n")

92

93 interSeqs[key] = "Nav:" + point["page"] + ", "

interactionCounter.py

1 import json

2

3 flows = []

4

5 fcFile = open("seqcount1.json", "w")

6

86 Appendix

7 flowFile = open("seq2.txt", "r")

8 flows = flowFile.readlines()

9

10 flowCounter = {}

11

12 for i in range(0, len(flows)):

13 flow = flows[i].strip()

14 if flow in flowCounter:

15 continue

16 else:

17 count = 0

18 for j in range(i, len(flows)):

19 if flow in flows[j]:

20 count += 1

21

22 if count > 99:

23 flowCounter[flow] = count

24

25 json.dump(flowCounter, fcFile)

The code listing for the experiments ran can be seen in these next sections.

exp1.py

1 # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.RocCurveDisplay

.html#sklearn.metrics.RocCurveDisplay.from_predictions

2

3 import joblib

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 from session import Session

8 from dataloader import loadJSONFromDir

9

10 from sklearn.metrics import f1_score

11 from sklearn.metrics import recall_score

12 from sklearn.metrics import accuracy_score

13 from sklearn.metrics import precision_score

14 from sklearn.metrics import balanced_accuracy_score

15

16 from sklearn.metrics import RocCurveDisplay

17 from sklearn.metrics import ConfusionMatrixDisplay

18 from sklearn.metrics import PrecisionRecallDisplay

19

20 X_humans = np.loadtxt("humans/humans.csv", delimiter=", ")

21 np.random.shuffle(X_humans)

22 X_humans = X_humans[0:522]

A.2 Detector Modules 87

23

24 X_bots = np.loadtxt("crawlers/crawlers.csv", delimiter=", ")

25

26 Y_humans = np.zeros(522)

27 Y_bots = np.ones(174)

28

29 X_total = np.concatenate((X_humans, X_bots))

30 Y_total = np.concatenate((Y_humans, Y_bots))

31

32 #scaler = joblib.load("Standard.scaler")

33 #X_total = scaler.transform(X_total)

34

35 #https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix

.html#sklearn.metrics.confusion_matrix

36

37 clf = joblib.load("detectorAE.pkl")

38

39 Y_test = clf.predict(X_total)

40 #print(Y_test[0:250])

41

42 print("Not accounting for class imbalance")

43 print("A:" + str(accuracy_score(Y_total, Y_test)))

44 print("P:" + str(precision_score(Y_total, Y_test)))

45 print("R:" + str(recall_score(Y_total, Y_test)))

46 print("F:" + str(f1_score(Y_total, Y_test)))

47

48 print("Accounting for class imbalance w/ minority of 25%")

49 print("B:" + str(balanced_accuracy_score(Y_total, Y_test)))

50 print("P:" + str(precision_score(Y_total, Y_test, average="macro")))

51 print("R:" + str(recall_score(Y_total, Y_test, average="macro")))

52 print("F:" + str(f1_score(Y_total, Y_test, average="macro")))

53

54

55 #Apresentar dados com e sem macro

56 #ConfusionMatrixDisplay.from_predictions([0, 1, 1, 0], [1, 0, 0, 1], cmap="binary")

57 RocCurveDisplay.from_predictions(Y_total, Y_test, name="AE")

58 ConfusionMatrixDisplay.from_predictions(Y_total, Y_test, cmap="binary")

59 PrecisionRecallDisplay.from_predictions(Y_total, Y_test, name="AE")

60 plt.show()

exp2.py

1 import sys

2 import time

3 import joblib

4

88 Appendix

5 import numpy as np

6

7 from dateutil import parser

8 from session import Session

9 from dataloader import loadJSONFromDirS, loadJSONFromDir

10

11 c = {}

12 d = {}

13 crawlerKS = []

14 found = []

15

16 clf = joblib.load("detectorIF.pkl")

17

18 datasetDir = "crawlers/"

19

20 data = loadJSONFromDir(datasetDir)

21

22 sc = 0

23 for point in data:

24 key = ""

25 if "page" not in point:

26 point["page"] = ""

27 if "sid" in point:

28 key = point["sid"]

29 else:

30 key = point["ip"] + point["ua"]

31

32 if not (key in c):

33 crawlerKS.append(key)

34 c[key] = Session(point)

35 if clf.predict(c[key].toNumpyArray().reshape(1, -1)) == 1 and c[key].pc > 1:

36 d[key] = c[key].pc

37 found.append(point[’ua’] + "PACKET COUNT: " + str(c[key].pc))

38

39 else:

40 if (c[key].isSameSession(point)):

41 c[key].addPoint(point)

42 if clf.predict(c[key].toNumpyArray().reshape(1, -1)) == 1 and not (key in d)

and c[key].pc > 1:

43 d[key] = c[key].pc

44 found.append(point[’ua’] + "PACKET COUNT: " + str(c[key].pc))

45

46 else:

47 sesh = Session(point)

48 c[key] = sesh

49 if clf.predict(c[key].toNumpyArray().reshape(1, -1)) == 1 and c[key].pc > 1:

50 d[key] = c[key].pc

51 found.append(point[’ua’] + "PACKET COUNT: " + str(c[key].pc))

52

A.2 Detector Modules 89

53 #print("Crawler Keys")

54 #print(c)

55

56 missed = []

57 for k in crawlerKS:

58 if not (k in d):

59 missed.append(k)

60

61

62 c = {}

63 d = {}

64 crawlerKS = []

65

66 datasetDir = "humans/"

67

68 data = loadJSONFromDir(datasetDir)

69

70 for point in data:

71 key = ""

72 if "page" not in point:

73 point["page"] = ""

74 if "sid" in point:

75 key = point["sid"]

76 else:

77 key = point["ip"] + point["ua"]

78

79 if not (key in c):

80 crawlerKS.append(key)

81 c[key] = Session(point)

82 if clf.predict(c[key].toNumpyArray().reshape(1, -1)) == 1 and c[key].pc > 1:

83 d[key] = c[key].pc

84 found.append(key + "PACKET COUNT: " + str(c[key].pc))

85

86 else:

87 if (c[key].isSameSession(point)):

88 c[key].addPoint(point)

89 if clf.predict(c[key].toNumpyArray().reshape(1, -1)) == 1 and (not (key in d

)) and c[key].pc > 1:

90 d[key] = c[key].pc

91 found.append(key + "PACKET COUNT: " + str(c[key].pc))

92

93 else:

94 sesh = Session(point)

95 if (key in d):

96 d.pop(key)

97 c[key] = sesh

98 if clf.predict(c[key].toNumpyArray().reshape(1, -1)) == 1 and c[key].pc > 1:

99 d[key] = c[key].pc

100 found.append(key + "PACKET COUNT: " + str(c[key].pc))

90 Appendix

101

102 correct = []

103 for k in crawlerKS:

104 if not (k in d):

105 correct.append(k)

106

107

108 print(found)

A.3 Bots Developed

rawFocusedCrawler.py

A crawler that uses the basic Selenium functions to scrape the web page. Can move mouse, but

trajectory is defined by Selenium internally.

1 import time

2 from selenium import webdriver

3

4 from selenium.webdriver.support.ui import WebDriverWait

5 from selenium.webdriver.common.by import By

6 from selenium.webdriver import ActionChains

7 from selenium.webdriver.common.keys import Keys

8

9 url = "https://jscrambler.pt"

10

11

12 options = webdriver.FirefoxOptions()

13 options.set_preference("general.useragent.override", "RavioliFunghiBot")

14

15 driver = webdriver.Firefox(options=options)

16 driver.get(url)

17

18 actions = ActionChains(driver)

19

20 cookies = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "

CybotCookiebotDialogBodyLevelButtonLevelOptinAllowAll"))

21 products = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "products

"))

22

23 productsToView = []

24

25

26 actions.move_to_element(cookies)

27 actions.click()

28 actions.perform()

A.3 Bots Developed 91

29 actions.reset_actions()

30

31 actions.move_to_element(products)

32 actions.perform()

33 actions.reset_actions()

34

35

36 productLinks = WebDriverWait(driver, 3).until(lambda d: d.find_elements(By.

CLASS_NAME, "linkWrapper--7sh4o"))

37 for p in productLinks:

38 span = WebDriverWait(driver, 3).until(lambda d: p.find_element(By.TAG_NAME, "span

"))

39 productsToView.append(span.text)

40

41 for p in productsToView:

42 link = WebDriverWait(driver, 10).until(lambda d: d.find_element(By.XPATH, "//*[

contains(text(),’" + p + "’)]"))

43 actions.move_to_element(link)

44 actions.click()

45 actions.perform()

46 actions.reset_actions()

47 time.sleep(1)

48 footer = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.TAG_NAME, "

footer"))

49 driver.execute_script("arguments[0].scrollIntoView()", footer)

50

51 driver.back()

52 products = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "

products"))

53 actions.move_to_element(products)

54 actions.perform()

55 actions.reset_actions()

56 time.sleep(1)

57

58 res = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "resources"))

59 actions.move_to_element(res)

60 actions.click()

61 actions.perform()

62 actions.reset_actions()

63 footer = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.TAG_NAME, "

footer"))

64 driver.execute_script("arguments[0].scrollIntoView()", footer)

65 time.sleep(1)

66

67 par = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "partners"))

68 actions.move_to_element(par)

69 actions.click()

70 actions.perform()

71 actions.reset_actions()

92 Appendix

72 footer = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.TAG_NAME, "

footer"))

73 driver.execute_script("arguments[0].scrollIntoView()", footer)

74 time.sleep(1)

75

76 time.sleep(3)

77 driver.quit()

rawPasswordTryer.py

A bot that simulates a password cracker using only basic Selenium functionality.

1 import time

2

3 from selenium import webdriver

4

5 from selenium.webdriver.support.ui import WebDriverWait

6 from selenium.webdriver.common.by import By

7 from selenium.webdriver import ActionChains

8 from selenium.webdriver.common.keys import Keys

9

10 import random, string

11

12 def randomword(length):

13 letters = string.ascii_lowercase

14 return ’’.join(random.choice(letters) for i in range(length))

15

16

17

18 url = "https://jscrambler.com/login"

19

20

21 options = webdriver.FirefoxOptions()

22 options.set_preference("general.useragent.override", "RavioliPestoBot")

23

24 driver = webdriver.Firefox(options=options)

25 driver.get(url)

26

27 cookies = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "

CybotCookiebotDialogBodyLevelButtonLevelOptinAllowAll"))

28 cookies.click()

29

30 uname = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "username"))

31 passwd = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "password")

)

32

33 unameStr = "fake@email.com"

A.3 Bots Developed 93

34 uname.send_keys(unameStr)

35

36 for i in range(10):

37 passwdStr = randomword(10)

38 passwd.clear()

39 passwd.send_keys(passwdStr)

40 WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "formSubmitButton"

)).click()

41 time.sleep(2)

42

43

44

45 driver.quit()

windmouse.py

Code adapted from [Land, 2021], to be integrated with Selenium to generate human like, mouse

trajectories.

1 import numpy as np

2 sqrt3 = np.sqrt(3)

3 sqrt5 = np.sqrt(5)

4

5 def windmouse(start_x, start_y, dest_x, dest_y, G_0=9, W_0=3, M_0=15, D_0=12,

move_mouse=lambda x,y: None):

6 ’’’

7 WindMouse algorithm. Calls the move_mouse kwarg with each new step.

8 Released under the terms of the GPLv3 license.

9 G_0 - magnitude of the gravitational fornce

10 W_0 - magnitude of the wind force fluctuations

11 M_0 - maximum step size (velocity clip threshold)

12 D_0 - distance where wind behavior changes from random to damped

13 ’’’

14 current_x,current_y = start_x,start_y

15 v_x = v_y = W_x = W_y = 0

16 while (dist:=np.hypot(dest_x-start_x,dest_y-start_y)) >= 1:

17 W_mag = min(W_0, dist)

18 if dist >= D_0:

19 W_x = W_x/sqrt3 + (2*np.random.random()-1)*W_mag/sqrt5

20 W_y = W_y/sqrt3 + (2*np.random.random()-1)*W_mag/sqrt5

21 else:

22 W_x /= sqrt3

23 W_y /= sqrt3

24 if M_0 < 3:

25 M_0 = np.random.random()*3 + 3

26 else:

27 M_0 /= sqrt5

94 Appendix

28 v_x += W_x + G_0*(dest_x-start_x)/dist

29 v_y += W_y + G_0*(dest_y-start_y)/dist

30 v_mag = np.hypot(v_x, v_y)

31 if v_mag > M_0:

32 v_clip = M_0/2 + np.random.random()*M_0/2

33 v_x = (v_x/v_mag) * v_clip

34 v_y = (v_y/v_mag) * v_clip

35 start_x += v_x

36 start_y += v_y

37 move_x = int(np.round(start_x))

38 move_y = int(np.round(start_y))

39 if current_x != move_x or current_y != move_y:

40 #This should wait for the mouse polling interval

41 move_mouse(current_x:=move_x,current_y:=move_y)

42 return current_x,current_y

three.py

Module containing the functions to simulate human behaviour on a web page.

1 import time

2 import random

3

4 import windmouse

5

6 from selenium import webdriver

7 from selenium.webdriver.support.ui import WebDriverWait

8 from selenium.webdriver.common.by import By

9 from selenium.webdriver import ActionChains

10 from selenium.webdriver.common.keys import Keys

11

12 options = webdriver.FirefoxOptions()

13 options.set_preference("general.useragent.override", "InterBot2")

14

15 driver = webdriver.Firefox(options=options)

16

17 path = []

18 mouse = 0

19 scroll = 0

20 actions = ActionChains(driver, duration=5)

21

22 def mimicHumanType(chain, str):

23 for char in str:

24 ttw = random.randrange(1, 100)/100 #need to tune this probably

25 chain.pause(ttw)

26 chain.send_keys(char)

27

A.3 Bots Developed 95

28 def mimicHumanPath(xoffset, yoffset):

29 if xoffset < 0: xoffset = 0

30

31 if xoffset > int(driver.get_window_size().get("width")): xoffset = int(driver.

get_window_size().get("width")) - 1

32

33 if yoffset < 0: yoffset = 0

34

35 if yoffset > int(driver.get_window_size().get("height")): yoffset = int(driver.

get_window_size().get("height")) - 1

36

37 path.append([xoffset, yoffset])

38

39 def mimicHumanMouseMove(chain, x_to, y_to):

40 path.clear()

41 mouX = 0

42 mouY = 0

43 try:

44 (mouX, mouY) = getMouse()

45 except Exception:

46 injectMouse()

47 (mouX, mouY) = getMouse()

48 windmouse.windmouse(mouX, mouY, x_to, y_to, move_mouse=mimicHumanPath)

49 # print(mouX)

50 # print(mouY)

51 for point in path:

52 #print("In loop")

53 offX = point[0] - mouX

54 if mouX + offX < 0:

55 offX = 0

56 offY = point[1] - mouY

57 if mouY + offY < 0:

58 offY = 0

59 # print(str(mouX) + ":" + str(mouY))

60 # print(str(offX) + ":" + str(offY))

61 chain.move_by_offset(offX, offY)

62 (mouX, mouY) = point

63

64 def mimicHumanMouseMoveToElem(element):

65 path.clear()

66 x_to = int(element.location.get("x"))

67 y_to = int(element.location.get("y"))

68

69 # if x_to == 0: x_to = 20

70 # if x_to >= int(driver.get_window_size().get("width")): x_to = int(driver.

get_window_size().get("width")) - 20

71

72 # if y_to == 0: y_to = 20

96 Appendix

73 # if y_to >= int(driver.get_window_size().get("height")): y_to = int(driver.

get_window_size().get("height")) - 20

74 print(element.rect)

75 print("Where to: " + str(x_to) + ":" + str(y_to))

76 mimicHumanMouseMove(actions, x_to, y_to)

77 actions.move_to_element(element)

78

79 # def setMouse(x, y):

80 # driver.execute_script("""

81 # const element = document.getElementById()

82 # """)

83

84 # To use the windmouse code, we need the current mouse position, so we inject this

hacky div to keep it

85 # https://stackoverflow.com/questions/15510882/selenium-get-coordinates-or-

dimensions-of-element-with-python -Z this gets the coords to where we wanna go

86 def injectMouse():

87 driver.execute_script("""

88 const element = document.createElement(’div’);

89 element.id = "mymouse"

90 document.body.appendChild(element);

91 onmousemove = (e) => {

92 element.innerHTML = "" + e.clientX + ":" + e.clientY;

93 console.log(element.innerHTML);

94 };

95 onclick = (e) => {

96 console.log("AAAA" + e.clientX + ":" + e.clientY);

97 };

98 """)

99 act = ActionChains(driver)

100 act.move_by_offset(driver.get_window_size().get("width")/2, driver.

get_window_size().get("height")/2)

101 act.perform()

102 del act

103

104 def getMouse():

105 mouse = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "mymouse")

)

106 return (int(mouse.text.split(":")[0]), int(mouse.text.split(":")[1]))

107

108 def injectScroll():

109 driver.execute_script("""

110 const scrollElem = document.createElement(’div’);

111 scrollElem.id = "myscroll";

112 scrollElem.innerHTML = "" + document.body.scrollTop + ":" + document.body.

scrollLeft;

113 document.body.appendChild(scrollElem);

114 onscroll = (e) => { scrollElem.innerHTML = "" + document.body.scrollTop + ":" +

document.body.scrollLeft;}

A.3 Bots Developed 97

115 """)

116

117 def getScroll():

118 scroll = WebDriverWait(driver, 3).until(lambda d: d.find_element(By.ID, "myscroll

"))

119 return (int(scroll.text.split(":")[0]), int(scroll.text.split(":")[1]))

120

121 def microScroll(x, y):

122 driver.execute_script("""scrollTo({

123 top:""" + str(y) + """,

124 left:""" + str(x) + """,

125 behavior: ’smooth’

126 })""")

127

128 def mimicHumanScroll(element):

129 x_to = int(element.location.get("x"))

130 y_to = int(element.location.get("y"))

131 x = 0

132 y = 0

133 try:

134 (x, y) = getScroll()

135 except Exception:

136 injectScroll()

137 (x, y) = getScroll()

138

139 while x != x_to or y != y_to:

140 mult_x = 0

141 mult_y = 0

142 add_x = 0

143 add_y = 0

144 if abs(x_to - x) > 400:

145 add_x = random.randrange(150, 400)

146 else:

147 add_x = random.randrange(2, 20)

148

149 if abs(y_to - y) > 400:

150 add_y = random.randrange(150, 400)

151 else:

152 add_y = random.randrange(2, 20)

153 if x < x_to:

154 mult_x = 1

155 if x > x_to:

156 mult_x = -1

157 if y < y_to:

158 mult_y = 1

159 if y > y_to:

160 mult_y = -1

161

162 if abs(x_to - x) < add_x:

98 Appendix

163 add_x = abs(x_to - x)

164

165 if abs(y_to - y) < add_y:

166 add_y = abs(y_to - y)

167

168 x = x + (mult_x*add_x)

169 y = y + (mult_y*add_y)

170 microScroll(x, y)

171 time.sleep(random.randrange(0, 3)/15)

cookedFocusedCrawler.py

Advanced, stealthier scraper that uses the three.py module.

1 import three

2 from selenium.common.exceptions import MoveTargetOutOfBoundsException

3 from selenium.webdriver.support.ui import WebDriverWait

4 from selenium.webdriver.common.by import By

5 from selenium.webdriver.common.keys import Keys

6

7 from selenium.webdriver import ActionChains

8

9 import time

10

11 url = "https://jscrambler.pt"

12

13 three.driver.get(url)

14

15 print("Accepting cookies")

16 cookies = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

CybotCookiebotDialogBodyLevelButtonLevelOptinAllowAll"))

17 three.mimicHumanMouseMoveToElem(cookies)

18 three.actions.click()

19 three.actions.perform()

20 three.actions.reset_actions()

21

22

23 print("Move to Products, hover")

24 products = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

products"))

25

26 (mX, mY) = three.getMouse()

27 three.actions.move_by_offset(mX, mY)

28 three.mimicHumanMouseMoveToElem(products)

29 three.actions.perform()

30 time.sleep(3)

31 three.actions.reset_actions()

A.3 Bots Developed 99

32

33 print("Go to resources")

34 (mX, mY) = three.getMouse()

35 three.actions.move_by_offset(mX, mY)

36

37 res = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

resources"))

38 three.mimicHumanMouseMoveToElem(res)

39 three.actions.click()

40 three.actions.perform()

41 three.actions.reset_actions()

42 footer = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.TAG_NAME,

"footer"))

43 three.mimicHumanScroll(footer)

44 (mX, mY) = three.getMouse()

45 print((mX, mY))

46 three.actions.reset_actions()

47 three.actions.move_by_offset(mX, mY)

48 three.actions.reset_actions()

49 time.sleep(2)

50

51 print("Go to partners")

52 print(three.actions)

53 three.driver.back()

54 three.actions.reset_actions()

55 par = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

partners"))

56

57 print("Set up mouse")

58 three.injectMouse()

59 (mX, mY) = three.getMouse()

60 print((mX, mY))

61 three.actions.reset_actions()

62 three.actions.move_by_offset(mX, mY)

63

64 print(three.actions)

65 print(par.location)

66 three.mimicHumanMouseMoveToElem(par)

67 three.actions.click()

68 three.actions.perform()

69 three.actions.reset_actions()

70 footer = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.TAG_NAME,

"footer"))

71 three.mimicHumanScroll(footer)

72 three.actions.reset_actions()

73 time.sleep(1)

74

75

76 time.sleep(3)

100 Appendix

77 three.driver.quit()

cookedPasswordTryer.py

Password cracker using the advanced mimicking functions of three.py.

1 import three

2 from selenium.webdriver.support.ui import WebDriverWait

3 from selenium.webdriver.common.by import By

4 from selenium.webdriver.common.keys import Keys

5

6 import time

7

8 import random, string

9

10 def randomword(length):

11 letters = string.ascii_lowercase

12 return ’’.join(random.choice(letters) for i in range(length))

13

14 url = "https://jscrambler.pt"

15

16 three.driver.get(url)

17

18 print("Accepting Cookies")

19 cookies = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

CybotCookiebotDialogBodyLevelButtonLevelOptinAllowAll"))

20 three.mimicHumanMouseMoveToElem(cookies)

21 three.actions.click()

22 three.actions.perform()

23 three.actions.reset_actions()

24 time.sleep(3)

25

26 (mX, mY) = three.getMouse()

27 three.actions.move_by_offset(mX, mY)

28 print("Clicking Login")

29 login = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.LINK_TEXT,

"Login"))

30 three.mimicHumanMouseMoveToElem(login)

31 three.actions.click()

32 three.actions.perform()

33 three.actions.reset_actions()

34 time.sleep(2)

35

36 uname = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

username"))

37 passwd = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

password"))

A.3 Bots Developed 101

38

39 btn = WebDriverWait(three.driver, 3).until(lambda d: d.find_element(By.ID, "

formSubmitButton"))

40

41 (mX, mY) = three.getMouse()

42 three.actions.move_by_offset(mX, mY)

43 print("Typing Uname")

44 unameStr = "fake@email.com"

45 three.mimicHumanMouseMoveToElem(uname)

46 three.actions.click()

47 three.mimicHumanType(three.actions, unameStr)

48 three.actions.perform()

49 three.actions.reset_actions()

50

51 for i in range(5):

52

53 (mX, mY) = three.getMouse()

54 three.actions.move_by_offset(mX, mY)

55

56 passwdStr = randomword(i+10)

57 three.mimicHumanMouseMoveToElem(passwd)

58 three.actions.click()

59 three.mimicHumanType(three.actions, passwdStr)

60 three.actions.perform()

61 three.actions.reset_actions()

62

63 (mX, mY) = three.getMouse()

64 three.actions.move_by_offset(mX, mY)

65 three.mimicHumanMouseMoveToElem(btn)

66 three.actions.click()

67 three.actions.perform()

68 three.actions.reset_actions()

69

70 (mX, mY) = three.getMouse()

71 three.actions.move_by_offset(mX, mY)

72 three.mimicHumanMouseMoveToElem(passwd)

73 three.actions.click()

74 three.actions.perform()

75 three.actions.reset_actions()

76

77 while passwd.get_attribute("value") != "":

78 passwd.send_keys(Keys.BACK_SPACE)

79 j = random.randrange(1, 5)/100

80 time.sleep(j)

81

82 three.actions.reset_actions()

83

84 time.sleep(15)

85 three.driver.quit()

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Document Structure

	2 Web Bots
	2.1 Overview
	2.1.1 Basic Concepts
	2.1.2 Development Technologies & Tools

	2.2 Detection State of the Art
	2.2.1 Navigational Patterns
	2.2.2 Biometric Patterns
	2.2.3 Browser Fingerprinting
	2.2.4 Other Approaches
	2.2.5 Summary

	3 Outlier Detection
	3.1 Overview
	3.1.1 Local Outlier Factor
	3.1.2 Isolation Forest
	3.1.3 Autoencoder

	3.2 Data Preprocessing
	3.3 Performance Evaluation

	4 Detector Implementation
	4.1 Detection Methodology
	4.2 Data Extraction
	4.2.1 Requirements
	4.2.2 Biometric Data Extracted
	4.2.3 Human Data
	4.2.4 Bot Data

	4.3 Data Processing
	4.3.1 Session Aggregator
	4.3.2 Data Preprocessing

	4.4 Resulting training data
	4.5 Classifiers Trained
	4.6 System Overview

	5 Experiments, Results and Discussion
	5.1 Tuning Model Parameters
	5.1.1 Parameters: Isolation Forest
	5.1.2 Parameters: AutoEncoder
	5.1.3 Parameters: LOF

	5.2 Experiment 1: Packet-based Web Bot Detection
	5.3 Experiment 2: Session-Based Web Bot Detection
	5.4 Conclusions from Experiments

	6 Conclusions and Future Work
	References
	A Appendix
	A.1 Biometric Data Collector: bc.js
	A.2 Detector Modules
	A.3 Bots Developed

