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A B S T R A C T

This article is focused on the automatic detection of the corrupted or inappropriate responses in questionnaire
data using unsupervised outliers detection. The questionnaire surveys are often used in psychology research
to collect self-report data and their preprocessing takes a lot of manual effort. Unlike with numerical data
where the distance-based outliers prevail, the records in questionnaires have to be assessed from various
perspectives that do not relate so much. We identify the most frequent types of errors in questionnaires. For
each of them, we suggest different outliers detection methods ranking the records with the usage of normalized
scores. Considering the similarity between pairs of outlier scores (some are highly uncorrelated), we propose
an ensemble based on the union of outliers detected by different methods. Our outlier detection framework
consists of some well-known algorithms but we also propose novel approaches addressing the typical issues
of questionnaires. The selected methods are based on distance, entropy, and probability. The experimental
section describes the process of assembling the methods and selecting their parameters for the final model
detecting significant outliers in the real-world HBSC dataset.
1. Introduction

The anomaly (or outlier) detection reveals observations that seem to
be inconsistent with the rest of the data. Hawkins (1980): “An outlier is
an observation which deviates so much from the other observations as
to arouse suspicious that it was generated by a different mechanism”.
An outlier may indicate corrupted data such as manual error, coding
error, low-quality measurements, system failure, etc. On the other
hand, suspicious data can also represent some unknown or infrequent
type of data that a dataset does not capture correctly. Outliers need to
be detected, assessed, excluded from the analysis, or fixed if possible.
They can negatively affect data distribution and weaken the reliability
and credibility of the statistical analysis and its results (Shao, Zheng,
Gu, Hu, & Qin, 2022; Wilcox, 2019; Yuan & Gomer, 2021).

The objective of this article is to assemble and test a robust frame-
work using an ensemble of unsupervised methods for outliers detection
in raw questionnaire data. The data usually comes from questionnaire
surveys (Saris & Gallhofer, 2014) that are typically used in social and
behavioral research, psychology, health, etc. They cover demographic
information, personal characteristics, or opinions of people. Unlike the
machine-acquired numerical data used in the industrial and security
areas, the questionnaire data has some specific issues coming from
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the human factors and the whole methodology designing the question-
naires to find out the required information. In questionnaire data, an
observation represents the answers of one person (respondent) in a
survey. It typically suffers from the following issues: many incomplete
questionnaires, empty and intentionally wrong answers (e.g., repetitive
patterns, self-contradictory responses), fast responses, questions are
discrete categorical un/ordered items with a various number of options,
normality or independence of items cannot be generally secured. We
specifically examine the data from the Health Behavior in School-aged
Children (HBSC) 2020 study (Inchley, Currie, Cosma, & Samdal, 2018;
Ng, Cosma, Svacina, Boniel-Nissim, & Badura, 2021) that focuses on
health and health behaviors of 11-, 13-, and 15-year-olds in the context
of their social environments. We do not have any training set or any
prior information about outliers.

Most of the existing approaches solve outlier detection in numerical
data, using some proximity-based methods (Agrawal & Agrawal, 2015;
Chandola, Banerjee, & Kumar, 2009; Zimek, Schubert, & Kriegel, 2012)
(e.g. 𝑘-nearest neighbors, local outlier factor). The results are usually
validated using supervised learning and labeled data. We aim at un-
supervised statistical and machine learning methods for multivariate
data with a special focus on the questionnaire-related issues. The goal
vailable online 13 June 2022
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is to maximally automate the data cleaning, validation, and outliers
detection. These activities are still often done manually (Waure, Poscia,
Virdis, Pietro, & Ricciardi, 2015) and they take a lot of time.

The main contributions of this article include:

1. A crucial automatic data cleaning and preprocessing procedure.
2. Selected outlier detection methods optimized for questionnaire

data that compute an outlier score reducing the data space onto
one final variable.

(a) Widespread methods (Mahalanobis distance, 𝑘-nearest
neighbors, local outlier factor).

(b) Innovated methods (the entropy-based scores dealing
with empty answers and repetitive patterns, the
correlation-based methods examining the significant de-
pendencies between variables and their corruption, the
probability score dealing with rare and improbable an-
swers).

3. A selection of the proper statistical method determining the
range of scores representing the finally removed outliers. The
scores are assessed according to the distribution of the outlier
score variable.

4. An ensemble outlier detection procedure that unites the out-
liers detected by selected methods assessing the outliers from
different perspectives.

5. The case study computed on the HBSC 2020 data evaluating the
proposed pipeline and the impact of outliers to data variance and
covariance of attributes (Cronbach’s alpha (Cronbach, 1951)).

The article is organized as follows. Section 2 summarizes the state-
of-the-art literature with a special focus on the categorical and ques-
tionnaire data. Section 3 defines our proposed pipeline for preprocess-
ing questionnaire data and ensemble outlier detection. In Section 4,
the types of outliers are listed, and the applied outliers detection
methods are described in detail. Section 5 tests the defined methods
with the HBSC 2020 data. The experiments prove that our framework
efficiently addresses the named problems and significantly improves
the distribution and the statistical properties of the HBSC 2020 data.

2. Related work

The questionnaires suffer from many errors and difficulties that
must be solved before any further analysis of the collected data is per-
formed. The procedure addressing these issues consists of data cleaning,
preprocessing, and outlier detection. The cleaning and preprocessing
need to be conducted before the outlier detection methods, and it
has been described in the literature many times (García, Luengo, &
Herrera, 2015; Van den Broeck, Argeseanu Cunningham, Eeckels, &
Herbst, 2005; Zhu, Hernandez, Mueller, Dong, & Forman, 2013). We
focus on this topic in Section 3.

The outlier detection algorithms can be basically divided into two
categories: supervised and unsupervised. The supervised algorithms
are based on training a classifier using the labeled training dataset
and they include e.g. Support Vector Machine (Utkin, 2014), Artificial
Neural Networks (Kieu, Yang, & Jensen, 2018; Naseer et al., 2018),
and Decision Tree (Ramachandran & Kishorebabu, 2019). As it is
very difficult to obtain labeled data, the unsupervised methods that
do not require labeled data are often used to compute a degree of
outlierness. They include e.g. statistical (Hubert & Vandervieren, 2008;
Tukey et al., 1977), proximity-based (Breunig, Kriegel, Ng, & Sander,
2000; Leys, Klein, Dominicy, & Ley, 2018; Shao et al., 2022), and
clustering-based methods (Jiang, Liu, Du, & Sui, 2016; Wang, Wang,
& Wilkes, 2012). We focus on the unsupervised methods applicable to
multivariate questionnaire data.

Most of the named approaches are designed for numerical data.
The questionnaire data usually contains categorical or ordinal discrete
2

variables with a small number of categories. Categorical data is also
common in areas such as network intrusion detection (Sari et al.,
2015), social networks (Aggarwal, Zhao, & Philip, 2011), industrial
processes (Zhu, Ge, Song, & Gao, 2018), sensor faults in sensor net-
works (Zhang, Meratnia, & Havinga, 2010), credit card fraud (Malini
& Pushpa, 2017), etc. The outlier detection methods are based on
different approaches of data processing (Akoglu, Tong, Vreeken, &
Faloutsos, 2012; Ienco, Pensa, & Meo, 2016). A survey of various outlier
detection methods for categorical data is presented by Taha and Hadi
(2019).

While the general categorical data has been widely investigated in
the literature, articles about outliers detection in questionnaire data are
rare (Sakurai et al., 2019; Zijlstra, van der Ark, & Sijtsma, 2011). The
selected methods applied to categorical data can be divided into several
categories:

• Probability-based: (Zijlstra et al., 2011; Zijlstra, Van Der Ark, &
Sijtsma, 2007) proposed a method detecting outliers in question-
naire data based on the frequency of answers. The answers are
sorted by frequencies so that the infrequent answers have a higher
index/rank. The final outlier score of one questionnaire is a sum
of the ranks of the contained answers. The greater the score is
the more improbable and suspicious answers are contained. This
approach is very simple but it can be highly biased if a specific
answer predominates.

• Proximity-based: This category includes methods based on dis-
tance (e.g. 𝑘-nearest neighbors Chandola, Banerjee, & Kumar,
2007) or density (e.g. local outlier factor Breunig et al., 2000).
The main problem of these methods is to determine the size of
neighborhood or estimate the number of samples expected within
the neighborhood depending on the distribution of data (Uher,
Gajdoš, & Snášel, 2018; Uher, Gajdoš, Snášel, Lai, & Radeckỳ,
2019). Another issue can be the usability of the Euclidean dis-
tance in high dimensions.
A common-neighbor-based distance function was developed by Li,
Lee, and Lang (2007) to measure the proximity of a pair of
data points in distance-based outlier detection method for high-
dimensional categorical data. A weighted density that takes into
account the density and uncertainty of each categorical variable
is defined by Zhao, Liang, and Cao (2014).
Multivariate outliers are often detected by variants of the Maha-
lanobis distance which represents the distance from the distribu-
tion of data (Ben-Gal, 2005; Cabana, Lillo, & Laniado, 2019; Leys
et al., 2018) and it is non-parametric.
The principal component analysis (PCA) is used for outliers de-
tection or outliers visualization (Har-Shemesh, Quax, Lansing, &
Sloot, 2020; Sakurai et al., 2019; Zhu et al., 2018). PCA is also
one of the methods used by Jebreel et al. (2020) to sanitize survey
data that relies on combining the classification outcomes of unsu-
pervised machine learning algorithms aimed at detecting wrong
answers. Deng and Wang (2018) proposed a modified kernel PCA
(KPCA) method with local outlier factor (LOF) to construct multi-
variate statistical process monitoring methods. Several variants of
LOF (Breunig et al., 2000) have been proposed to handle different
data types. A variant of LOF combined with information entropy
is applied by Xie, Li, Wu, and Zhang (2016) for detecting outliers
in medical insurance data. Yu, Qian, Lu, and Zhou (2006) used
a mutual-reinforcement-based local outlier detection 𝜅-LOF to
handle categorical attributes. The variants of 𝑘-nearest neighbors
are also often used for outliers detection (Chandola et al., 2007;
Chen, Miao, & Zhang, 2010). The outlier score can be computed
as a sum of distances between the query object 𝑞 and its 𝑘 nearest
neighbors. Some other types usually require parameters 𝑘 and
distance 𝜆 to assess if neighborhood with radius 𝜆 contains at least
𝑘 objects, or the 𝜆 is used as a distance threshold (Chandola et al.,
2007; Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002; Knorr & Ng,

1998).
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Fig. 1. Flow of data processing.

• Entropy-based: Algorithms based on the entropy were inves-
tigated in the area of outlier mining for categorical data (He,
Deng, Xu, & Huang, 2006; Pacheco, Ali, & Trappenberg, 2019;
Yuan, Zhang, & Feng, 2018). The Shannon entropy is often used
to search for a set of observations that minimize the Shannon
entropy of the observations remaining after the outliers elimi-
nation (He et al., 2006). An extension of Shannon information
entropy in rough sets is the approximation accuracy entropy
(AAE) introduced by Jiang, Zhao, Du, Xue, and Peng (2019). This
approach addresses the limits of the proximity-based methods.

Finally, the evaluation of the detected outliers is an important task.
ut it is difficult to determine the extent to which newly proposed
ethods are improving compared to established methods in unlabeled
ata. Campos et al. (2016) conduct an extensive experimental study on
he performance of a representative set of methods for unsupervised
utlier detection, across a wide variety of datasets prepared for this
urpose. As the methods differ and have various distributions of scores,
ach of them returns slightly different outliers. The ensemble learning
enerally combines multiple weak classifiers to obtain better overall
erformance but it mostly aims at supervised methods on labeled data.
everal papers (Kriegel, Kroger, Schubert, & Zimek, 2011; Schubert,
ojdanowski, Zimek, & Kriegel, 2012) analyze the rank similarities,

orrelation of scores, regularization and normalization of scores to
ake them comparable, and weights estimation for ensemble design.
he class labels are helpful for performance evaluation and optimal
arameters selection. Most of the named papers rely on the algorithms
ased on 𝑘NN and LOF. There are also unsupervised approaches that
ompute ensemble outlier score to detect the outliers from multiple
erspectives without any knowledge of data. They include e.g. average
coring, maximum scoring, or threshold sum (Aggarwal & Sathe, 2015;
andanaarachchi, 2021). The main weakness of these ensembles is that

hey usually lead to average results that blur the outliers specific for
tandalone methods. The parameters optimization is insecure because
he outlier labels are unknown. We overcome this problem with the us-
ge of separate score distribution analysis and unification of identified
utliers.

For detailed survey of outliers or anomaly detection methods in
arious application fields, we refer to articles (Agrawal & Agrawal,
015; Chandola et al., 2007, 2009; Das, Schneider, & Neill, 2008;
odge & Austin, 2004; Wang, Bah, & Hammad, 2019).

. Proposed procedure

The specific issues related to questionnaire data and the design
f the final ensembles are discussed here. We present our proposed
rocedure which starts with raw data, then continues with the specific
teps of cleaning and preprocessing of data, sets the requirements for
utliers detection, and defines the ensemble method combining the
esults of multiple algorithms. The pipeline is illustrated in Fig. 1.

.1. Cleaning and preprocessing of questionnaires

A dataset generally forms a table where columns represent the
sked questions (attributes) and rows represent the answers of re-
3

pondents (individual questionnaires). Our algorithms aim only at the
multiple-choice questions (predetermined list of options) with a sin-
gle answer including rating scales, Likert scales, or matrix questions
(batteries) (Harpe, 2015). They can be seen as categorical variables
with a small number of options (mostly up to 10). Other types of
questions have to be assessed separately and are omitted before the
outliers detection methods are applied. We do not set any other a priori
conditions for data.

The preserved data has to be validated and cleaned. There are
several widely-used approaches for cleaning the questionnaire data
(García et al., 2015; Van den Broeck et al., 2005; Zhu et al., 2013)
that generally lead to three common issues: Unrealistic answers
(e.g. wrong type, value out of range), Incomplete questionnaires
(many missing values), Response time (very short times indicate
untrustworthy answers). The unrealistic answers can be detected with
the utilization of the questionnaire codebook defining unambiguous
attribute details. The exclusion of incomplete questionnaires or the
fastest respondents can be simply done automatically by setting rea-
sonable thresholds. Our tested preprocessing procedure goes through
the following steps:

1. Selection of questions with a predetermined list of options
- the omission of irrelevant variables such as strings, dates,
personal information (birth date, weight, height, etc.), system
and browser information (response times, device information,
software version, etc.)

2. ‘‘Other’’ answers — any open-ended responses in questions
with predetermined options are said to be missing (empty).

3. Elimination of questions with bad distribution — the omis-
sion of dichotomous variables and strongly unilateral variables
with more than 80% of answers choosing the same option. Such
questions bring a strong bias and undesirably strong correlation
between attributes.

4. Missing values — all values representing empty answers are
replaced by zeros.

5. Renumbering of option indices — makes a continuous se-
quence indexing the options of a question in the original order.
The indices start with zero for missing values and continue with
other natural numbers. This unifies the indexing and annuls
prioritization of any option.

6. Normalization — as each question may have a different number
of options, their indices recorded as answers in questionnaire
data are normalized by variable onto the interval ⟨0, 1⟩. The zero
still represents a missing answer.

7. Fast response times — we eliminate all the questionnaires with
almost zero response time (if available). Some small threshold
has to be chosen.

8. Questionnaires with many missing values — we eliminate all
the questionnaires with more than 70% of missing values. This
step usually also eliminates the records with zero time as the
rapid respondents do not fill anything.

The restrictions listed above do not mean that those variables,
values, or questionnaires are completely wrong. They can carry some
useful information but they are undesirable for automatic outlier de-
tection methods that are used in this paper. Moreover, the questions
with a predetermined list of options usually form a major part of
questionnaires that takes most of the manual effort.

The incomplete questionnaires often form a huge part of data and
their elimination is crucial to get any reasonable perspective on out-
liers. We generally work with two datasets that are used for compari-
son:

• Unfiltered data — the original dataset after the whole prepro-
cessing except to the points (7. and 8.)

• Filtered data — it is the unfiltered data after the elimination of
questionnaires with zero times (7.) and more than 70% of missing

values (8.)
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The preprocessed data can be represented by a matrix 𝐀 =
[

𝑎𝑖𝑗
]

∈
𝑛×𝑚 =

[

𝐚1,… , 𝐚𝑚
]

of questionnaires, where 𝑚 is the number of
uestions, 𝑛 is the number of respondents and 𝐚𝑗 ∈ R𝑛×1 is a column
f matrix 𝐀 (single variable). For some outliers detection methods, the
atrix 𝐀 needs to be normalized by columns to the range ⟨0, 1⟩. Let
𝑖𝑛(𝐚𝑗 ) and 𝑚𝑎𝑥(𝐚𝑗 ) be the minimum and maximum value of a column
𝑗 , the matrix normalized by columns �̃� =

[

�̃�𝑖𝑗
]

∈ R𝑛×𝑚 is computed as

̃ =
[ 𝐚1−𝑚𝑖𝑛(𝐚1)
𝑚𝑎𝑥(𝐚1)−𝑚𝑖𝑛(𝐚1)

, … , 𝐚𝑚−𝑚𝑖𝑛(𝐚𝑚)
𝑚𝑎𝑥(𝐚𝑚)−𝑚𝑖𝑛(𝐚𝑚)

]

. (1)

3.2. Unsupervised outlier scores

Once the questionnaires are preprocessed, the outlier detection algo-
rithms are applied. We identified several common issues that should be
detected in questionnaire data and can increase suspicion of outlierness.
The issues include predictable patterns of responses, self-contradictory
responses, or inconsistency with data distribution. As these defects
cannot be revealed by a single approach, multiple outlier detection
algorithms are performed, namely, time score, the 𝑘th order empiri-
cal entropy, correlation-based methods, probability score, Mahalanobis
distance, local outlier factor (LOF), and the 𝑘-nearest neighbors (𝑘NN).

Each method assigns an outlier score 𝜔𝑖 ∈ ⟨0, 1⟩ to each 𝑖th
questionnaire of the data matrix 𝐀 such that 𝜔𝑖 = 1 means the maximal
outlier score and 𝜔𝑖 = 0 means a maximally standard questionnaire.
Despite the dimension of the problem (number of questions), each
outlier score is represented by one variable. If an outlier score is within
a different range of values it has to be normalized. All the methods
are unsupervised and work without any a priori knowledge. They can
process questionnaires with an arbitrary number of questions and a
various number of available options per question.

The tested methods are described in detail in Section 4.

3.3. Ensemble outliers detection

Given the outlier scores computed by selected methods, the final set
of outliers has to be detected by combining all of them. The standard
approaches define an ensemble based on a collective outlier score such
as average scoring, or maximum scoring (Aggarwal & Sathe, 2015)
which are also tested in the experimental section. These ensembles
mostly expect a positive correlation between outlier scores which is
typical for methods based on the distance and the nearest neighbors.
In our case, the methods are based on different principles and scores
do not always correlate positively. The distributions of scores are highly
unbalanced and they have positive skewness. Despite the unified scores,
it happens that a questionnaire with a very high entropy score has
a very low correlation score. The entropy assesses the predictable
patterns while correlation-based methods assess if the responses are
consistent with detected dependence between questions. This problem
will be discussed in detail in Section 5. Using any sum of scores leads
to a very average distribution of ensemble score where it is difficult to
detect reasonable outliers. Therefore, we avoid computing an ensemble
score and we propose a method based on the union of outliers detected
by individual algorithms.

The crucial task is to define a procedure that decides which ques-
tionnaires will be selected as outliers. Traditional algorithms usually
choose 𝐾-worst observations or those having scores over some thresh-
old (Aggarwal & Sathe, 2015; Kriegel et al., 2011; Schubert et al.,
2012). Both methods are tricky in unsupervised outlier detection as
the parameters are user-defined (estimated) and they do not represent
the score distribution well. A standard statistical method for outliers
identification is the box-plot method (Grubbs, 1969; Tukey et al.,
1977). It uses the interquartile range (𝐼𝑄𝑅) which is the difference
between the 75th percentile (𝑄3) and the 25th percentile (𝑄1) of the
outlier score. The correct data are expected between the lower and
upper whiskers of the box-plot which are computed as 𝑙𝑜𝑤 = 𝑄1 −
4

1.5 ⋅ 𝐼𝑄𝑅 and 𝑢𝑝 = 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅. Everything outside this range is
said to be an outlier. The box-plot is applicable for univariate data with
approximately normal distribution. The outlier score computed by any
of our methods is a single variable; however, its distribution is hardly
normal. Our experiments showed that practically all the scores tested
in this article have a distribution with positive skewness. Therefore,
the adjusted box-plot (ABP) method (Hubert & Vandervieren, 2008)
is preferred here which is the box-plot method modified for skewed
distributions. It was optimized to simulate distributions such as 𝛤 ,
𝜒2, 𝐹 , Parento, or Lognormal distributions by properly parameterized
exponential function based on skewness. The adjusted box-plot rule and
its lower and upper whiskers ⟨𝑙𝑜𝑤, 𝑢𝑝⟩ are defined as follows:

𝐢𝐟 𝑀𝐶 ≥ 0 𝐭𝐡𝐞𝐧 ⟨𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅 ⋅ 𝑒−4𝑀𝐶 , 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅 ⋅ 𝑒3𝑀𝐶
⟩

𝐢𝐟 𝑀𝐶 < 0 𝐭𝐡𝐞𝐧 ⟨𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅 ⋅ 𝑒−3𝑀𝐶 , 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅 ⋅ 𝑒4𝑀𝐶
⟩

𝐰𝐡𝐞𝐫𝐞

𝑀𝐶 = 𝑚𝑒𝑑𝑥𝑖≤𝑄2≤𝑥𝑗ℎ(𝑥𝑖, 𝑥𝑗 ) 𝐚𝐧𝐝 ℎ(𝑥𝑖, 𝑥𝑗 ) =
(𝑥𝑗 −𝑄2) − (𝑄2 − 𝑥𝑖)

𝑥𝑗 − 𝑥𝑖
.

(2)

The 𝑀𝐶 represents the medcouple of the distribution which is used
for skewness computation. The non-negative 𝑀𝐶 means the right pos-
itive skewness and the negative one means the left negative skewness.
The 𝑄2 represents a median of the outlier score. The right skewness
means that the distribution has the right tail longer with most of the
data concentrated to the left. As the right tail represents the highest
outlier scores of the most suspicious entries, we apply only the upper
limit 𝑢𝑝 to cut off the worst outliers. The lower limit 𝑙𝑜𝑤 is not applied
because the low outlier scores represent the standard entries. Therefore,
the adjusted box-plot rule allows us to identify the outliers much more
precisely in the right tail than the standard box-plot rule.

This rule is applied to all outlier scores computed by selected outlier
detection methods. The only exception is the LOF where we use its own
methodology based on the outlier factor. It means that each method
identifies its own set of outliers. To incorporate multiple methods into
a robust ensemble model, a union of individual sets of outliers is
computed:

𝑂 =
𝑙

⋃

𝑚=1
{𝑖 ∈ {1,… , 𝑛}, |𝜔𝑚,𝑖 > 𝑢𝑝𝑚}, (3)

where 𝑂 is a set of outliers indices, 𝑙 is the number of computed outlier
scores (methods), 𝑛 is the number of questionnaires, 𝜔𝑚,𝑖 is the score of
the 𝑚th method and the 𝑖th questionnaire and 𝑢𝑝𝑚 is the upper limit of
the 𝑚th method for outlier detection identified by the adjusted box-plot
rule.

4. Outliers detection methods

There are several common perspectives on how to define an outlier
in questionnaire data:

(1) Predictable patterns: Some cheating respondents often fill the
questionnaires using the same answer choice over and over again
or they use some repetitive pattern of answers, such as ‘‘a,b,c,d’’.
These answers are also worthless for further exploration.

(2) Self-contradictory responses: Some questions can be related or
logically dependent. Questionnaire designers even place several
similar questions into questionnaire forms to check if a respon-
dent understands the formulation of questions. Self-
contradictory answers reveal a lack of understanding or cheat-
ing.

(3) Other inconsistent responses: Although the data is filtered
using all the previous approaches, some inconsistent respondents
can persist. These questionnaires have to be assessed by a data
analyst. They can be wrong from the perspective of the dataset
distribution, or some can represent unusual but accurate replies.
Nevertheless, the detection of outlying observations is generally
desired.
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(4) Response time: Although the fastest respondents are excluded
at the beginning, the response time can be also used as an outlier
score.

(5) Graphic visualization: A graphic interpretation of numerical
or categorical attributes can reveal some outlying observations
that do not fit the data distribution. This is good for visual
verification of the data cleaning process.

The methods were selected and designed to be unsupervised, i.e.
hey are functional without any a priori knowledge of data. Some of
hem are well-known methods and we modified some others to better
dapt them for questionnaire data. A method assigns an outlier score
𝑖 ∈ ⟨0, 1⟩ to each 𝑖th questionnaire of the data matrix 𝐀 such that
𝑖 = 1 means the maximal outlier score and 𝜔𝑖 = 0 means a maximally
tandard questionnaire. If a method naturally returns a different range
f values, the scores have to be normalized. The following subsec-
ions define the methods in detail. They aim to different aspects of
ata to provide various perspectives on outliers. We combine methods
ater in Section 5 to achieve a robust model for searching outliers in
uestionnaire data.

.1. Proposed methods addressing issues in questionnaires

This section describes our unsupervised outlier detection methods
or questionnaire data based on entropy, correlation of attributes, and
robability of answers.

.1.1. The 𝑘th order empirical entropy
Roughly speaking, entropy is a measure of uncertainty and it is often

sed in text compression algorithms. It shows whether the text contains
ome repetitive patterns of symbols and this states the lower limit of the
ompressed representation of data. We propose to compute the entropy
o find outliers within a set of questionnaires. As the questionnaire
ata mostly consists of categorical data, each questionnaire can be
ransformed into a sequence of answers. It is supposed that cheating
espondents try to fill the questionnaires with some predictable patterns
uch as ‘‘a, a, a’’, ‘‘b, b, b’’, ‘‘a, b, c’’ etc. These patterns lead to very low
ntropy of the sequence, and thus, it is utilized to detect the suspicious
nswers for outliers detection. It also detects the questionnaires with
any empty answers.

The empirical entropy (Beirlant, Dudewicz, Györfi, & Van der
eulen, 1997; Shannon, 1948) was defined for a discrete variable
with possible outcomes 𝑥1,… , 𝑥𝑙 representing the symbols with

ccurrence probabilities 𝑃 (𝑥1),… , 𝑃 (𝑥𝑙). This is also called the zeroth-
order empirical entropy and it is based only on the distribution of
symbols in a finite string 𝑠. The 𝑘th order empirical entropy (Manzini,
1999) extends this principle to higher orders. The 𝑘th order empirical
entropy 𝐻𝑘(𝑠) is a conditional entropy, where the random variable
represents all strings of length 𝑘 and it is computed as

𝐻𝑘(𝑠) = −
∑

𝑤∈𝛴𝑘

∑

𝑥∈𝛴
𝑃 (𝑤𝑥) log𝑃 (𝑥|𝑤) = −

∑

𝑤∈𝛴𝑘

∑

𝑥∈𝛴

𝑛𝑤𝑥
|𝑠|

log
𝑛𝑤𝑥
𝑛𝑤

, (4)

where 𝑤 is a word consisting of 𝑘 symbols, 𝑃 (𝑤𝑥) is occurrence proba-
ility of a word 𝑤𝑥 and 𝑃 (𝑥|𝑤) is conditional probability that a symbol
follows a word 𝑤 in a string 𝑠. The right side of Eq. (4) represents the

alculation of entropy using frequencies 𝑛𝑤𝑥 of the word 𝑤𝑥 and 𝑛𝑤 of
he word 𝑤 in the string 𝑠 having length |𝑠|.

In the questionnaire data, the string 𝑠𝑖 is a sequence 𝑠𝑖 = (𝑎𝑖1,… , 𝑎𝑖𝑚)
of numbers representing the answers to questions of the 𝑖th respondent
in the matrix 𝐴. Each question represented by answer 𝑎𝑖𝑗 ∈ {0, 1,… , 𝑙𝑗}
for 𝑗 = 1,… , 𝑚 allows only a small finite set of 𝑙𝑗 numerical values
xtended by 0 for empty answers, where it is possible that 𝑙𝑗 ≠ 𝑙𝑦 for
≠ 𝑦 and 𝑗, 𝑦 ∈ ⟨0, 𝑚⟩.

The implementation of 𝐻𝑘(𝑠) is based on the dictionary of unique
subsequences of 𝑘 answers 𝑠𝑝 = (𝑎𝑝,… , 𝑎𝑝+𝑘−1) for 𝑝 = 1,… , 𝑚 − 𝑘 + 1
5

and their frequencies in the sequence 𝑠𝑖. A subsequence 𝑠𝑝 represents
a word 𝑤 in (4) with frequency 𝑛𝑤. The same approach can be used to
find subsequences of length 𝑘 + 1 for a word 𝑤𝑥 and frequency 𝑛𝑤𝑥.

In this article, 𝑘th order empirical entropy is used to compute the
𝑘th order empirical entropy of answers for each questionnaire. The
lower the entropy is the more predictable and suspicious answers are
contained. The questionnaires with low entropy should be excluded
from the dataset or detected as outliers, therefore the outlier score is
𝜔𝑖 = 1−𝐻𝑘(𝑠𝑖). This is a row-based method which means that the outlier
score 𝜔𝑖 is computed using just answers of one respondent.

Partial entropy of batteries of questions A typical type of ques-
tion is a battery of questions that contains a block of questions having
the same number of answers. It usually consists of related questions or
measures some quality (e.g. 1 — best, 5 — worst), etc. As the battery
questions are consolidated together, they usually bring respondents to
cheat more often than other types of questions. Therefore, we created
another type of entropy-based outliers detection which uses only the
batteries. As a dataset consists of many answered questionnaires, it is
possible to detect the specific set of options for each question. Then
the consolidated ranges of questions with the same possible answers
are supposed to belong to the same battery of questions (part).

Given a sequence of answers 𝑠𝑖 = (𝑎𝑖1,… , 𝑎𝑖𝑚) and a set of all the
𝑡 battery intervals 𝐵 = {𝑏1,… , 𝑏𝑡}, where 𝑏𝑗 = (𝑙𝑗 , 𝑟𝑗 ), 𝑙𝑗 < 𝑟𝑗 and
𝑙𝑗 , 𝑟𝑗 ∈ ⟨1, 𝑚⟩, then 𝑒𝑗 = 𝐻𝑘((𝑎𝑖𝑙𝑗 ,… , 𝑎𝑖𝑟𝑗 )) is the 𝑘th order entropy (4) of
the battery interval 𝑏𝑗 . The entropies of 𝑡 battery intervals (parts) form a
vector 𝐞𝑖 = (𝑒𝑖1,… , 𝑒𝑖𝑡), whose Euclidean norm ‖𝐞𝑖‖ sets the final outlier
score 𝜔𝑖 = 1 − ‖𝐞𝑖‖ of the given sequence 𝑠𝑖.

This score is computed for all questionnaires and used to detect the
outliers. The 𝑘 should be set to a reasonably small number (𝑘 = 1 or
𝑘 = 2) because the size of batteries is relatively small.

4.1.2. Correlations
Another family of methods we propose is based on the assumption

that there are some dependencies between questions. Outliers are
detected by answers that do not suit the dependencies.

Given the normalized matrix �̃� (1), its correlation matrix 𝐑 =
𝑐𝑜𝑟𝑟(�̃�) is computed, where the function 𝑐𝑜𝑟𝑟 computes the correlation
matrix using the Spearman’s correlation coefficient (Sahoo, 2015). Note
that the missing answers are omitted for the correlation computation
to avoid fake dependencies between questions with many missing
answers. The vacancies are filled with zeros for further computing. The
matrix 𝐑 captures the linear dependencies between all attributes rep-
resented by answers to questions. The correlation matrix 𝐑 is utilized
to detect the significant correlations that reveal some related questions.
It is supposed that a strong violation of correlations is suspicious and
such questionnaires should be detected as outliers.

Let an 𝐑 =
[

𝑟𝑘𝑙
]

∈ R𝑚×𝑚 be a correlation matrix of �̃� =
[

�̃�𝑖𝑗
]

∈ R𝑛×𝑚.
Let a 𝑐𝑜𝑟𝑟𝑀𝑖𝑛 be a threshold of minimal significant correlation and
𝑑𝑖𝑠𝑡(�̃�𝑖𝑘, �̃�𝑖𝑙) be a distance for values of two attributes. A 𝜏 is a number
of the greatest distances that are used to calculate a score for each
questionnaire. The basic algorithm can be written as follows:

(1) Set 𝑐𝑜𝑟𝑟𝑀𝑖𝑛, 𝜏 and define function 𝑑𝑖𝑠𝑡 ∶ R2 → R.
(2) Find all significant correlations: 𝑆 = {(𝑘, 𝑙) ; 𝑎𝑏𝑠(𝑟𝑘𝑙) ≥ 𝑐𝑜𝑟𝑟𝑀𝑖𝑛

for 𝑘 < 𝑙}.
(3) For each questionnaire 𝑖 from �̃� compute a set of distances

between correlated attributes: 𝐷𝑖 = {𝑑; ∀(𝑘, 𝑙) ∈ 𝑆 ∶ 𝑑 =
𝑑𝑖𝑠𝑡(�̃�𝑖𝑘, �̃�𝑖𝑙) 𝐢𝐟 �̃�𝑖𝑘 ≠ 0 ∧ �̃�𝑖𝑙 ≠ 0 𝐞𝐥𝐬𝐞 0}.

(4) Sort each set 𝐷𝑖 in descending order.
(5) Compute the score 𝜔𝑖 of a questionnaire 𝑖 as average of the first

𝜏 distances: 𝜔𝑖 =
∑𝜏

𝑗=1 𝐷𝑖𝑗∕𝜏.
(6) Normalize the scores 𝜔𝑖 for 𝑖 = 1,… , 𝑛 to the range ⟨0, 1⟩ if

necessary.

The score 𝜔𝑖 of the 𝑖th questionnaire is represented by its 𝜏 worst
violations of the assumed dependencies of attributes. The distance

function 𝑑𝑖𝑠𝑡 can be defined by different types of metrics. The metrics
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can be expressed as a distance between a pair of values of the correlated
attributes or as a distance between the values and the distribution of
the correlated attributes. We tested two basic methods: linear regres-
sion (Sahoo, 2015; Witten & Frank, 2002; Zaki, Meira Jr, & Meira,
2014) and difference as they are defined in the following subsections.

Linear regression As the correlation reveals a linear dependency
between attributes, it is supposed that its course can be expressed by
linear function estimated by linear regression (Sahoo, 2015; Witten
& Frank, 2002). The metric is computed as an orthogonal distance
between point and line. Given the two correlated columns �̃�𝑘 and �̃�𝑙 of
he normalized matrix �̃�, the linear regression computes the intercept
0 and the slope 𝑏1 parameters for the slope-intercept form of the linear
quation 𝑦 = 𝑏0 + 𝑏1𝑥 which can be expressed in the implicit form as
0 + 𝑏1𝑥 − 𝑦 = 0. The distance from the line for the columns 𝑘 and 𝑙 is
omputed

𝑒𝑔𝑟𝑒𝑠𝑠(�̃�𝑖𝑘, �̃�𝑖𝑙) =
|𝑏0 + 𝑏1�̃�𝑖𝑘 − �̃�𝑖𝑙|

√

𝑏21 + 1
. (5)

Difference The simplest distance can be computed by the difference
of attributes values. Given the correlation matrix 𝐑 of the normalized
matrix �̃�, the distance between the columns 𝑘 and 𝑙 for the 𝑖th row of
�̃� is computed as

𝐷𝑖𝑓𝑓 (�̃�𝑖𝑘, �̃�𝑖𝑙) =
{

𝑎𝑏𝑠(1 − �̃�𝑖𝑘 − �̃�𝑖𝑙) ∶ 𝑟𝑘𝑙 < 0
𝑎𝑏𝑠(�̃�𝑖𝑘 − �̃�𝑖𝑙) ∶ 𝑟𝑘𝑙 ≥ 0

(6)

he difference in Eq. (6) reflects both a positive and negative correla-
ion coefficient. It is a cheaper estimate of linear regression.

.1.3. Probability score
Another approach is a question-based outlier score presented by Zi-

lstra et al. (2007) which counts an individual’s frequency of unpopular
nswers. The point is that the frequent answers are not suspicious while
any improbable answers per a questionnaire are more suspicious. This
ethod is called 𝑂+ and it judges the improbable answers by each

uestion/attribute separately.
In short, the probabilities of existing options within a question are

omputed so that the most probable option has the lowest score 𝑂𝑖𝑗 = 0
and the least probable one has the highest score 𝑂𝑖𝑗 = 𝑜𝑗 −1 for the 𝑖th
espondent and the 𝑗th question having 𝑜𝑗 existing options. The final
utlier score of one questionnaire is a sum of the ranks of the contained
nswers. The greater the score is, the more improbable answers are
ncluded.

Formally, given the matrix of questionnaires 𝐀 and a probability
unction 𝑃 (𝑋𝑗 ) for 𝑗 = 1,… , 𝑚 representing the relative frequency of
ach option of the 𝑗th attribute, then the outlier score 𝑂𝑖𝑗 is determined
sing the rank number of 𝑃 (𝑋𝑗 = 𝑎𝑖𝑗 ) denoted 𝑟𝑎𝑛𝑘

[

𝑃 (𝑋𝑗 = 𝑎𝑖𝑗 )
]

∈
1,… , 𝑜𝑗}, such that

𝑖𝑗 = 𝑜𝑗 − 𝑟𝑎𝑛𝑘
[

𝑃 (𝑋𝑗 = 𝑎𝑖𝑗 )
]

, (7)

here 𝑜𝑗 is the number of options of the 𝑗th question. The total outlier
core 𝑂𝑖+ of the 𝑖th questionnaire is

𝑖+ =
𝑚
∑

𝑗=1
𝑂𝑖𝑗 . (8)

Zijlstra et al. (2007) assumes that all the 𝑚 questions have the same
umber of existing options. However, this condition is not met very
ften. Thus, we expect various 𝑜𝑗 for different 𝑗 which means that
he ranking has to be normalized to get the ranks to the comparable
evel. Otherwise, the questions with more options would have a greater
eight in the total score. The sum in (8) is reformulated as

𝑖+ =
𝑚
∑

𝑗=1
𝑂𝑖𝑗∕(𝑜𝑗 − 1). (9)

lthough there is some bias due to different 𝑜𝑗 , all the 𝑚 questions are
ontained in every questionnaire of 𝐀, and therefore, the total outlier
6

cores 𝜔𝑖 = 𝑂𝑖+ should be comparable.
Note that the empty answers should be skipped by 𝑂+ method
s they can easily become the most frequent in some questions. This
ould make the empty answers the most probable and the rest highly

uspicious.

.2. Widespread methods

The selected general outliers detection methods based on response
ime and distance are briefly summarized here:

• Time: The simplest method is to compute a total time (if avail-
able) to reveal how much attention a respondent paid to ques-
tions. A very short time probably indicates fake or incomplete
answers. The normalized time is used as an outlier score.

• Mahalanobis distance (Leys et al., 2018; Mahalanobis, 1936) is
a non-parametric method that measures the distance of a point
to the center of the dataset using the covariance structure of the
data in the multidimensional space.

• Local outlier factor (LOF) (Breunig et al., 2000) is a density-
based method using a single parameter 𝑀𝑖𝑛𝑃 𝑡𝑠, which is the
number of the nearest neighbors used to define the local neigh-
borhood. Unlike global methods that define a fixed neighborhood
for all points, the LOF is able to judge the outliers from the local
perspective. The basic idea is that the density around a point is
compared with the density around its neighbors. The assumption
is that the density around an outlier is considerably different
than the density around its neighbors. The outlier factor around
1 means a similar density as neighborhood, a factor smaller than
1 represents an inlier, and a factor greater than 1 is an outlier.
Unlike in other methods, we do not provide the outlier score as
a single random variable but we apply this LOF rule. The LOF is
stable for 𝑀𝑖𝑛𝑃 𝑡𝑠 between 10 and several hundred (Breunig et al.,
2000) depending on the data and the size of clusters. The 𝑀𝑖𝑛𝑃 𝑡𝑠
should not be greater than the size of the smallest distinguishable
cluster. As the LOF uses a spherical neighborhood based on the
Euclidean distance, it is inaccurate in high dimensions (curse of
dimensionality Zaki et al., 2014). Moreover, the dimensionality
increases the time complexity. Therefore, we apply the Principal
component analysis (PCA) (Witten & Frank, 2002; Zaki et al.,
2014) to reduce the dimension before the LOF application.

• 𝑘-Nearest Neighbors (𝑘NN) (Chandola et al., 2007; Chen et al.,
2010) The 𝑘NN simply computes the distances to the 𝑘 closest
objects and uses their mean directly as an outlier score. Unlike
in LOF, the outliers are identified globally as the scores are
compared across the whole dataset.

5. Case study: HBSC data

This section evaluates our proposed procedure including question-
naire data cleaning, transformation, and outlier detection tested on
a real-world dataset. We bring a case study showing the impacts of
the model on the HBSC 2020 data. We got the data available in
uncleaned form with all the issues named in this article. Most of the
questionnaire survey data is available only in cleaned form, thus we
cannot sufficiently test our methods on them. However, the model can
be applied to any uncleaned questionnaire data where the outlying and
faulty observations are still included.

5.1. HBSC data

The data for the present article comes from a project directly
linked to the Health Behavior in School-aged Children (HBSC) study.
The HBSC is an international World Health Organization-collaborative
questionnaire-based survey, which focuses on health and health be-
haviors of 11-, 13-, and 15-year-olds in the context of their social

environments (family, peers, and school). The design of the HBSC study
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Fig. 2. Frequency of distinct answers for all 113 questions in HBSC 2020 data represented by stacked bar plots. The number of options per question varies between 3 and 16.
enables not only to check cross-national comparisons (Badura et al.,
2021) but also to monitor trends in the health and health behaviors
of young people during their transition from childhood to adulthood,
as a crucial period for long-term establishment of such behaviors. The
data file used in the present article was drawn from a survey conducted
in the Czech Republic in June 2020, i.e. during the final stage of the
first wave of COVID-19 epidemic. The aim of this data collection was to
assess the impact of the lockdown, especially in terms of school closure
and ban of sport or other leisure-time activities, on the adolescents’
lives, time use and health behaviors (Ng et al., 2021). Overall, 141
schools from 14 administrative regions of the Czech Republic took part
of the survey which contains 7082 unique entries gathered between 1st
and 30th June 2020.
7

5.2. Preprocessing of HBSC 2020

The effect of cleaning and preprocessing (Section 3.1) is briefly
introduced here to illustrate its importance. The original HBSC 2020
dataset contains 7082 respondents and 232 variables. The variables
include the questions, personal data, system/browser information, time
data, and some other auxiliary variables. After the application of the
cleaning procedure, the dataset was reduced to 113 multiple choice
questions with a single answer. The number of possible options varies
between 3 and 16 per question. Fig. 2 shows the distribution of answers
per each question. Fig. 2(a) represents the unfiltered dataset with all
7082 respondents and Fig. 2(b) represents the filtered data after the
elimination of questionnaires with more than 70% of missing values
(3255 respondents). The plots show that 54% of the unfiltered dataset
is the questionnaires with a huge amount of missing values (>70%).



Expert Systems With Applications 206 (2022) 117809V. Uher et al.

c
c
f
c
r
w
1
A
a
t
S
L
o
f

5

2
a
d
o
c
d

Table 1
Tested methods and their parameters and types of outliers they reveal.
Name Description Outlier types Parameters

en𝑘 𝑘th order empirical entropy Predictable patterns, missing values 𝑘 ∈ {1, 2, 3, 4}
pen𝑘 Partial en𝑘 of batteries Predictable patterns, missing values 𝑘 ∈ {1, 2}
Maha Mahalanobis distance Inconsistent responses –
𝑂+ Probability score Inconsistent responses –
dc𝜏 Correlation (difference) Self-contradictory responses 𝑐𝑜𝑟𝑟𝑀𝑖𝑛 = 0.7, 𝜏 ∈ {3, 6, 12}
rc𝜏 Correlation (linear regression) Self-contradictory responses 𝑐𝑜𝑟𝑟𝑀𝑖𝑛 = 0.7, 𝜏 ∈ {3, 6, 12}
LOF𝑑 Local outlier factor Inconsistent responses PCA dims 𝑑 ∈ {3, 10}, 𝑀𝑖𝑛𝑃 𝑡𝑠 = 100
kNN100 𝑘-Nearest Neighbors Inconsistent responses 𝑘 = 100
5
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The missing values are represented by option 0. The difference between
Figs. 2(a) and 2(b) is enormous and it would not be possible to read
any reasonable information from the data without proper cleaning and
outliers elimination. The questionnaire data is heavily disrupted by
missing values, human errors, and false and inconsistent answers.

5.3. Model for outliers detection and its parameters

This section describes the utilized outlier detection ensemble that
is experimentally verified in the next sections on HBSC 2020 data.
Both the unfiltered (7082 respondents) and filtered (3255 respondents)
datasets with 113 variables are tested for comparison.

The tested methods and their parameters are summarized in Table 1.
It contains all the methods defined previously in Section 4 with param-
eters that were selected experimentally for the HBSC 2020 dataset. Four
different orders of entropy are tested because the entropy for any higher
order is too low (score is too high) on 113 variables. Only two orders
of entropy are tested with the partial entropy because the batteries of
questions are even smaller (say about 10 questions). The data often
contains many incomplete questionnaires that were not filled to the
end by respondents in time. A large block of missing answers leads to
very low entropy and high suspiciousness. However, even incomplete
questionnaires with reasonable answers in the opening can be valuable
according to our experience. Thus, we judge by the entropy only the
initial part of a questionnaire that is filled. The missing answers at
the end are simply cut off and those in the middle are preserved.
The Mahalanobis distance and 𝑂+ are nonparametric. In the case of
orrelation-based methods, we set 𝑐𝑜𝑟𝑟𝑀𝑖𝑛 = 0.7 according to the
orrelation table which produces 15 significant correlations for both
iltered and unfiltered data. The number of the worst distances between
orrelated variables 𝜏 is set to 3, 6, and 12 to test which 𝜏 is the most
epresentative. The LOF method is based on a spherical neighborhood
hich limits its applicability to high-dimensional data. As the data has
13 variables we reduce them to 3 and 10 dimensions by the PCA.
ccording to the discussion in Section 4.2, the 𝑀𝑖𝑛𝑃 𝑡𝑠 is set to 100
s the data has several thousands of respondents. Small 𝑀𝑖𝑛𝑃 𝑡𝑠 leads
o many outliers detected from the perspective of dense small clusters.
imilarly, the 𝑘NN method is set to 𝑘 = 100 which corresponds to the
OF method. After several experiments for 𝑘 ∈ {50, 80, 100} we found
ut that there is no significant difference, and therefore, 𝑘 = 100 is good
or our experiments.

.4. Experiments

The model described in the previous section is applied to the HBSC
020 data. This section contains our experiments and the discussion
bout the properties of outlier detection methods and the effect of
ata cleaning. Of course, not every method returns the best-expected
utliers. Thus, the experiments guided us to select the appropriate
ombination of methods and parameters for our final ensemble model
8

etecting the outliers in HBSC 2020 data. l
.4.1. Outlier scores distribution
All the variants of methods and parameters described in Table 1

ere computed. First, we analyze the distributions of outlier scores
nd similarities between different methods. The methods with bad
istribution are excluded from the model.

Fig. 3 shows standard box-plots of different outlier scores for filtered
nd unfiltered data. Generally, box-plots with most of the values placed
n the smaller half are expected. As the scores assign the highest values
o the most inconsistent questionnaires, we expect to find outliers above
he upper whisker. Another comparison can be seen in Fig. 4 which
llustrates how the scores correlate and how this correlation differs
etween filtered and unfiltered data. We use Spearman’s correlation
oefficient which compares the ranks of questionnaires and is more
obust in noisy data.

The box-plots of unfiltered data show that there are certain groups
f methods with similar logic there. The correlation-based methods
orrespond better to the distance-based methods and the probability
core and they all go against the entropy-based methods and time.
his shows that the methods really detect different types of outliers
nd they complement each other. The same effect can be seen in the
orrelation matrix in Fig. 4 where there are positive correlations within
he named groups and negative correlations between methods from
ifferent groups.

The box-plots show that the scores computed on unfiltered data
ave a terrible distribution. They are strongly affected by incomplete
uestionnaires which leads to extremely low or extremely high outlier
cores. This is because the incomplete records represent a majority of
ata which deforms the statistical indicators so much that the standard
ata looks inconsistent. Detection of outliers based on unfiltered data
s a random selection of questionnaires.

The distribution of outlier scores computed on the filtered data looks
easonable and it suits the expectation that most of the questionnaires
re rated by low scores while the outliers have high scores. The only
ethods that do not suit this expectation very well are en3, en4 and
ime. The correlation matrix of the filtered data also confirms that the
n3 and en4 behave on the contrary to other entropies. It seems that a
ubword of length 3 or 4 is too long to get any reasonable entropy on
13 questions. Therefore, we exclude en3 and en4 from the model.

In both experiments, the time factor is included, however; the
ifferences between responding times were so huge that most of the
uestionnaires lead to very high scores considering the long times
n contrast to the short ones. Therefore, we exclude only the ques-
ionnaires with zero times during the preprocessing which strongly
orrespond to empty questionnaires. The time factor is not used in our
odel for outliers detection.

The method with the least variance of scores is the LOF because
t judges the outliers from the local perspective based on the density
f the current cluster. It has its own technique for outliers identifica-
ion (Section 4.2). The 𝑘NN also explores the neighborhood of each
bject/questionnaire but its scores are judged globally in comparison
ith all the other questionnaires using the ABP rule.

It can be seen that the difference between correlation-based meth-
ds with different 𝜏 is minimal. Therefore, we use only dc12 and rc12
o detect outliers as they have smoother distribution than the scores for

ower 𝜏.
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Fig. 3. Comparison between box-plots for outliers detection methods using the unfiltered (left) and filtered (right) HBSC 2020 data.
Fig. 4. Comparison between Spearman correlations for methods of outliers detection on the unfiltered (left) and filtered (right) HBSC 2020 data.
Fig. 5. Comparison among some scoring methods for outliers detection on the unfiltered (left) and filtered (right) HBSC 2020 data.
o
o
t
a
p
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Fig. 5 presents the distribution of some selected scores on unfiltered
nd filtered data. The charts are sorted according to the rc12 score.

The figure shows again that the entropy goes against the other scores.
The rc12 gives a very low score to incomplete questionnaires as the
difference between correlated attributes is almost zero. Other distance-
based methods behave similarly. The LOF10 is very low for most of the
questionnaires in the unfiltered data as there are too many incomplete
entries which strongly affect the local density factor. However, the
entropy of empty questionnaires is very low, so that, their score is
9

almost one. The 𝑂+ method is closer to rc12 but it detects almost no
utliers in unfiltered data (Fig. 3) because it is based on the frequency
f answers. As the empty answers are very frequent, they strongly shift
he 𝑂+ distribution to low numbers. Even though we skip the empty
nswers, their values are missing in the final sum in contrast to the
roperly filled questionnaires.

In conclusion, the set of outliers (denoted 𝑂𝐴𝑙𝑙) consists of the
utliers detected by en1, en2, pen1, pen2, Maha, 𝑂+, dc12, rc12, LOF3,
LOF10 and kNN100 methods. The ensemble is computed using the
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Table 2
Intersection table showing the numbers of outliers found by multiple methods. The diagonal represents the numbers found by particular methods.
The last row represents unique outliers undetected by other methods.

en1 en2 pen1 pen2 Maha 𝑂+ dc12 rc12 LOF3 LOF10 kNN100

en1 73 19 50 14 4 12 0 0 17 9 16
en2 19 62 21 16 1 0 0 0 4 2 2
pen1 50 21 74 20 4 9 0 0 11 5 12
pen2 14 16 20 40 2 3 0 0 6 3 5
Maha 4 0 1 2 20 5 0 3 1 3 12
𝑂+ 12 0 9 3 5 28 0 1 14 5 12
dc12 0 0 0 0 0 0 2 2 0 0 0
rc12 0 0 0 0 3 1 2 19 0 0 2
LOF3 17 4 11 6 1 14 0 0 65 17 11
LOF10 9 2 5 3 3 5 0 0 17 30 8
kNN100 16 2 12 5 12 12 0 2 11 8 28

Unique 9 23 10 9 5 7 0 14 33 9 2
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adjusted box-plot rule and the union of the detected outliers as it was
described in Section 3.3.

5.4.2. Outliers detection and their influence
Once the data is preprocessed and the scores are computed, it is nec-

essary to identify the right outliers in the filtered data and assess their
influence. We do not want to exclude less or too many questionnaires
if it does not bring any benefit.

Table 2 summarizes the numbers of outliers detected by each
method, the intersection of found outliers between pairs of methods,
and also the numbers of unique outliers found by each method. This
table helps us to assess the similarity and significance based on the
specific outliers. It shows that most of the outliers are detected by
entropy-based methods and LOF3. There is also a large intersection
etween them which suggests that it is not necessary to use all of them.

Next, we test the statistical influence of the excluded outliers based
n the separate and ensemble methods. The statistics are summarized
n Table 3. We use two statistics: Cronbach’s alpha coefficient and the
ariance of the total score 𝐴+. The point is to find out if the complete
ataset has different statistics from the dataset without the excluded
utliers. If the results of the statistical analysis are different the outliers
re considered influential. Although each question can have a different
umber of possible options, the normalization of columns transforms
he options onto the values in ⟨0, 1⟩ range. As each questionnaire
ontains the same questions, the total sum of values per questionnaire
an be a representative value reducing the whole data to one variable.

efinition 1 (Total Score). Given the matrix �̃� =
[

�̃�𝑖𝑗
]

∈ R𝑛×𝑚 =
[

�̃�1,… , �̃�𝑚
]

normalized by attributes, the total score 𝐴+ is computed
as

𝐴+ =
𝑚
∑

𝑗=1
�̃�𝑗 .

The Cronbach’s alpha coefficient (Cronbach, 1951) is a common test
score reliability coefficient. It computes the covariance between each
pair of attributes and its change after exclusion of outliers signalizes
the type and significance of outliers.

Definition 2 (Cronbach’s Alpha). Let the �̃� =
[

�̃�𝑖𝑗
]

∈ R𝑛×𝑚 =
[

�̃�1,… , �̃�𝑚
]

be a data matrix normalized by attributes. Let 𝐶𝑜𝑣(�̃�𝑗 , �̃�𝑘) denote the
sample covariance between the values on attributes 𝑗 and 𝑘, and let
𝜎2𝐴+ be the sample variance of total score 𝐴+, then

𝛼 = 𝑚
𝑚 − 1

⋅

∑∑

𝑗≠𝑘 𝐶𝑜𝑣(�̃�𝑗 , �̃�𝑘)

𝜎2𝐴+
.

The greater the 𝛼 ∈ ⟨0, 1⟩ is, the stronger is the covariance between
attributes. The variance of the total score 𝜎2𝐴+ shows how compact the
dataset is. The significant reduction of the variance means that the
excluded questionnaires are far from the rest of the data. The outlying
observations increase the variance of the total score.
10
Once the statistics are computed, it is necessary to examine if the
difference is significant or if it is comparable with a random exclusion
of questionnaires. Let the 𝐾 be the number of outliers found by a
method, the procedure is as follows: (1) Do 1000 random omitting
of 𝐾 questionnaires from the original data. (2) Compute a statistic
for each of the 1000 versions of data without 𝐾 randomly excluded
questionnaires. (3) The 1000 statistics represent a random variable.
Using its distribution, the 2.5th and the 97.5th percentiles are deter-
mined. (4) The null hypothesis is that the influence of the 𝐾 outliers
s the same as the influence of any 𝐾 randomly deleted questionnaires,
hich means that its statistic is within the range of the 2.5th and the
7.5th percentiles of the distribution. Otherwise, the null hypothesis is
ejected and the omission of our 𝐾 outliers is statistically significant
or a significance level equal to 5%.

Tables 2 and 3 shows several interesting observations. The dc12
inds only two outliers, it is insignificant and it is completely included
n the rc12 method. The LOF3 method identifies 65 outliers and 33
f them are unique. However, these outliers are not statistically sig-
ificant. It seems that the PCA reduction to only 3 dimensions is too
rastic, a lot of information was lost and the outliers detected with
OF3 are irrelevant. From the entropy-based methods, we select the
n1 and pen2. The en1 has many common outliers with pen1 and the
en1 is insignificant. The pen2 is added as the better variant of the two
artial entropy methods. Table 3 shows that the distance-based meth-
ds such as Maha or LOF10 influence the variance 𝜎2𝐴+ more than the
, while the correlation (rc12) or probability methods (𝑂+) influence
ore the 𝛼. The rest of the methods (especially entropies) influence

oth significantly. It is a logical consequence of the utilized methods.
mission of questionnaires corrupting the correlation of attributes or
uestionnaires with too many unusual answers has to increase the
ovariance between attributes. The omission of distant observations
utomatically reduces the variance. The entropies reduce both because
hey omit questionnaires with many empty answers and predictable
atterns which are both distant and the patterns also falsely intensify
he covariance between attributes.

After considering these experiments, we decided to select the follow-
ng methods for the final ensemble (denoted 𝑂𝐹 𝑖𝑛): en1, pen2, Maha,
+, rc12, LOF10 and kNN100. Table 3 also compares the 𝑂𝐴𝑙𝑙 with
𝐹 𝑖𝑛. Both are highly significant and strongly reduce the statistics.
owever, while the 𝑂𝐹 𝑖𝑛 deletes only 163 outliers (5.01% of question-

naires) the 𝑂𝐴𝑙𝑙 deletes 235 outliers (7.22% of questionnaires). The
point of the outliers detection methods is to preserve the maximum
of the original data and delete only the worst cases that negatively
affect the statistical analysis. Table 3 also contains a comparison with
simple widespread ensembles: maximum (𝑀) and average (𝐴) scoring.
For each questionnaire, the maximum/average score of final methods
(𝐹 𝑖𝑛) is computed and the final ensemble score is assessed. First,
the questionnaires with the 𝐾-greatest ensemble scores are selected
as outliers, where the 𝐾 equals the number of outliers found by

the union ensemble 𝑂𝐹 𝑖𝑛. Therefore, 𝑀𝐹 𝑖𝑛/𝐴𝐹 𝑖𝑛 represent 163-greatest
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Table 3
Statistical significance of outliers detected by different outlier scores, their union (𝑂𝐴𝑙𝑙) and union of outliers detected by finally selected methods (𝑂𝐹 𝑖𝑛). The 𝑂𝐹 𝑖𝑛 is compared
with 𝑀𝐹 𝑖𝑛/𝐴𝐹 𝑖𝑛 representing the same number of outliers detected using the maximum/average scoring, and the 𝑀𝐹 𝑖𝑛/𝐴𝐹 𝑖𝑛 representing outliers detected by the ABP using
maximum/average scoring. Columns: 𝐾 — number of outliers detected by ABP method; 𝐾% — percentage of suspected observations; 𝛼2.5𝑝𝑡ℎ , 𝛼97.5𝑝𝑡ℎ , 𝛼(𝐾), 𝑠𝛼(𝐾) — Cronbach’s alpha
statistics, and 𝜎2

2.5𝑝𝑡ℎ , 𝜎2
97.5𝑝𝑡ℎ , 𝜎2(𝐾), 𝑠𝜎2 (𝐾) — variance of the total score 𝜎2

𝐴+ (lower/upper percentiles of 1000 random eliminations, value for the 𝐾 found outliers, and significance);
++: significant value increase over random omission, + : insignificant value increase over random omission, −− : significant value decrease over random omission, -: insignificant
value decrease over random omission.

Methods 𝐾 𝐾% 𝛼2.5𝑝𝑡ℎ 𝛼97.5𝑝𝑡ℎ 𝛼(𝐾) 𝑠𝛼(𝐾) 𝜎2
2.5𝑝𝑡ℎ 𝜎2

97.5𝑝𝑡ℎ 𝜎2(𝐾) 𝑠𝜎2 (𝐾)

en1 73 2.24 .90383 .90656 .88297 −− 77.74972 80.09752 62.66853 −−
en2 62 1.91 .90366 .90639 .87281 −− 77.59456 79.94232 58.03576 −−
pen1 74 2.27 .90375 .90658 .90404 – 77.65353 80.09816 77.79473 –
pen2 40 1.23 .90413 .90612 .89301 −− 77.97641 79.68803 69.18034 −−
Maha 20 0.61 .90443 .90578 .90455 – 78.23596 79.39965 77.80248 −−
𝑂+ 28 0.86 .90422 .90591 .90669 ++ 78.05610 79.52942 79.21280 +
dc12 2 0.06 .90491 .90541 .90539 + 78.64709 79.06095 79.05215 +
rc12 19 0.58 .90449 .90576 .90595 ++ 78.27367 79.38607 79.33506 +
LOF3 65 2.00 .90368 .90639 .90587 + 77.63919 79.95919 78.22690 –
LOF10 30 0.92 .90426 .90594 .90493 – 78.08243 79.55177 78.02416 −−
kNN100 28 0.86 .90428 .90592 .90364 −− 78.12332 79.52470 76.59394 −−

Union-based 𝐾

𝑂𝐴𝑙𝑙 235 7.22 .90259 .90759 .82791 −− 76.62232 80.98984 41.08061 −−
𝑂𝐹 𝑖𝑛 163 5.01 .90294 .90728 .86620 −− 76.94837 80.76940 53.63949 −−
𝑀𝐹 𝑖𝑛 163 5.01 .90294 .90728 .83732 −− 76.94837 80.76940 44.08652 −−
𝐴𝐹 𝑖𝑛 163 5.01 .90294 .90728 .90552 + 76.94837 80.76940 75.88644 −−

Adjusted box-plot

𝑀𝐹 𝑖𝑛 44 1.35 .90406 .90617 .89296 −− 77.93390 79.75355 68.95358 −−
𝐴𝐹 𝑖𝑛 33 1.01 .90420 .90600 .90518 – 78.02488 79.59790 77.78858 −−
Fig. 6. Histograms and estimated gamma function for distributions of ranking methods on filtered HBSC 2020 data.
aximum/average scores. The table shows that the average scoring
eads to weak and insignificant outliers while the maximum scoring
eturns even more significant outliers than the union ensemble. The
roblem here is how to define the 𝐾 without knowledge of 𝑂𝐹 𝑖𝑛. Next,
e used the maximum/average scores and applied the adjusted box-
lot (ABP) method to them. The 𝐾 is individually detected for each
nsemble. The outliers detected by ABP are designed 𝑀𝐹 𝑖𝑛 and 𝐴𝐹 𝑖𝑛.

The results show that the ABP-based ensembles detect much fewer
outliers than the union ensembles and they are also less significant. The
11
maximum scoring is performing much better than the average scoring
again. The maximum and average scoring smooth the differences and
specifics of the individual outlier detection methods. As some of the
tested methods are unbalanced and strongly uncorrelated the smooth-
ing leads to unrepresentative results biased by scores distributed within
larger values. The union ensemble selects more outliers, but it also
better reflects the individual methods, regardless of their distributions.

It can be seen in Fig. 6 which illustrates the distribution of the
selected scores on the filtered data. All the distributions have positive
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Fig. 7. Visualization of filtered data in 3D by PCA with highlighted outliers (black points) found by selected methods.
skewness. We also add a gamma function which was estimated based
on the probability distribution of each score. The gamma function is
typically used as a continuous model for distributions with positive
skewness and it seems that it fits the scores very well. This also defends
our decision to use the adjusted box-plot method instead of the simple
box-plot to identify the outliers. Despite normalization onto interval
⟨0, 1⟩, the scores are not directly comparable. The red line indicates the
incision from which the outliers are cut off by the ABP. We also add
the distributions of 𝑀𝐹 𝑖𝑛 and 𝐴𝐹 𝑖𝑛 and the green line representing the
incision of the 163 greatest outliers. The separate application of ABP
and the union of outliers secures the corresponding method significance
and no prioritization due to higher scores in the distribution.

Fig. 7 illustrates the filtered HBSC 2020 data reduced to 3 dimen-
sions by PCA and the outliers detected by the considered methods.
The unions 𝑂𝐴𝑙𝑙 and 𝑂𝐹 𝑖𝑛 and the ensembles 𝑀𝐹 𝑖𝑛, 𝑀𝐹 𝑖𝑛, 𝐴𝐹 𝑖𝑛, and
𝐴𝐹 𝑖𝑛 are also visualized. Although the 3D visualizations reduced from
the original 113 attributes are strongly lossy, they illustrate the main
differences between approaches. The 𝑂 deletes mostly the points
12

𝐹 𝑖𝑛
outside the main cluster while the 𝑂𝐴𝑙𝑙 deletes some more points inside
the main cluster as well. The identification of outliers is an unclear
task that includes the specific knowledge of the data and various
perspectives. The outliers do not have any exact definition. However,
experiments show that our final set of methods covers the most required
perspectives on questionnaire data.

5.4.3. Computation time analysis
Table 4 shows execution times of separate outlier detection methods

that are summarized in Table 3 and measured on the filtered HBSC2020
data. The table also contains the preprocessing time which is com-
mon for all methods and it includes loading the data file, cleaning
procedure (missing values, renumbering, normalization), computation
of correlation matrix, means and variances of individual variables.
The preprocessed statistics are utilized in separate outliers detection
methods. The ensembles 𝑂𝐴𝑙𝑙 and 𝑂𝐹 𝑖𝑛 are illustrated by the total times
here which consist of the measured methods and the preprocessing.
The shortest times are reached by simple methods such as kNN, Maha
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Table 4
Execution times in seconds (average and standard deviation of 10 measurements) of
preprocessing (common for all methods), each standalone method and total times of
ensembles. Measured for filtered HBSC2020 data with 3255 respondents.

Method/time (s) Avg. St.dev.

Preprocessing 47.6000 2.5123
en1 2.0953 0.1625
en2 2.8078 0.1956
pen1 7.6344 0.5288
pen2 8.1000 0.5557
Maha 0.7234 0.0748
𝑂+ 0.2000 0.0161
dc12 2.6703 0.2075
rc12 2.6703 0.2067
kNN100 0.5391 0.0552
LOF3 2.8453 0.3167
LOF10 2.9219 0.0612

𝑂𝐴𝑙𝑙 80.8078 4.1382
𝑂𝐹 𝑖𝑛 64.8500 3.4523

and 𝑂+. The times of other more sophisticated methods are comparable
(< 3 s), only the partial entropy computation takes about 8 s. However,
the methods are very different and based on different parameters,
perspectives and statistical properties of data, e.g. entropies are row-
based while correlations or 𝑂+ are column-based, kNN, LOF or Maha
are proximity-based etc. The execution times only illustrate the relative
comparison between methods that form together the final ensemble
method. It is clear that the 𝑂𝐹 𝑖𝑛 consisting only of the finally selected
methods is faster than the 𝑂𝐴𝑙𝑙 calculating with all of them. This article
examines the ensemble of diverse outlier detection methods and their
effect to data properties. A deep analysis of complexities of standalone
methods is beyond the scope of this article.

The program is implemented in Python 3.10.4, Pandas 1.4.1, and
Scikit-learn 1.0.2. All experiments run on the following hardware: Intel
Core i7-1185G7 @ 3.0 GHz, 32 GB RAM, Windows 10 64-bit

6. Conclusion

This article introduces a robust framework for ensemble outliers
detection in raw multivariate questionnaire data. The proposed meth-
ods are tested on the HBSC 2020 data focused on the health behaviors
of children in the context of social environments. It demonstrates the
importance of preprocessing and cleaning data before using methods
for outliers detection. We describe the specific outlier types in ques-
tionnaires assessed from different perspectives (e.g. incomplete, faked,
and self-contradictory responses, or predictable patterns), and we pro-
pose various methods addressing them. It is advisable to use multiple
methods to form an ensemble computing a final union of the selected
statistically significant sets of detected outliers. The article explains
how methods differ from the others and which of them correlate. The
whole process of outliers detection is standardized and automated with
minimal parameterization. The framework is able to work with the
skewed or non-normal distribution of data and it uses the dependencies
between variables to detect self-contradictory responses violating the
detected correlations. We also propose two approaches using the 𝑘th
order entropy for predictable patterns detection. It also works with
questionnaires containing a different number of options per question.

The experimental part of the article illustrates the properties of
the HBSC 2020 data and our proposed procedure for data cleaning
and outliers detection. We recommend excluding 3827 out of 7082
questionnaires during the cleaning phase and 163 outliers suggested by
the final set of selected methods. The case study exhaustively examines
the data, the influence of the proposed operations and justifies the
selection of methods and their parameters. The suggested 163 outliers
represent a subset of 5.01% of questionnaires in the prefiltered dataset
which is a reasonable portion of data. The experiments also show that
some methods detect many suspicious questionnaires but they are not
13
statistically significant, and therefore, they are preserved. The charts
(Fig. 4) and the intersection table (Table 2) also verify that the methods
return different outliers and some of them have a negative correlation.
Therefore, the union of separately detected outliers is preferred over
the average and maximum scoring ensembles.
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