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Abstract

In machine learning, one of the issues that data scientists face is improving the quality of their
datasets. Datasets of high quality are required to ensure that machine learning algorithms perform
optimally. Furthermore, many machine learning models require that the input consists exclusively
of numerical data, implying that string data be converted to a numerical representation for the
models to work as intended. In comparison to numerical data, categorical string data can repres-
ent various types of features (e.g., zip codes, names, marital status). Because of this wide variety
of string features, it is relatively difficult to automate data cleaning without sacrificing data qual-
ity. This thesis focuses on dealing with different varieties of string features to be automatically
preprocessed and encoded. As a result, a Python framework1 is developed that automatically
identifies different types of string features, processes them accordingly, and encodes them into
numerical representations using a combination of best practices and novel techniques. Evaluation
of all components demonstrates promising results that suggest that automated string handling
and cleaning is feasible while ensuring high-quality standards. These results indicate that the
proposed techniques and this field of research are worth investigating further.

1The framework developed during this thesis can be found on GitHub at https://github.com/ml-tue/automa

ted-string-cleaning.
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Chapter 1

Introduction

In machine learning, one of the issues that data scientists face is improving the quality of their
datasets. Datasets acquired from the real world come from various sources and serve different
purposes but are often unrefined (dirty), and their quality might be sub-optimal. These datasets
may contain missing values, outliers, and various non-numerical data types such as categorical
(string) data. Datasets of high quality are required to ensure that machine learning algorithms
perform optimally. The quality of the dataset highly depends on criteria such as validity, accuracy,
completeness, consistency, and uniformity [71].

Furthermore, many machine learning models require that the input consist exclusively of nu-
merical data, implying that string data be converted to a numerical representation for the models
to work as intended. In comparison to numerical data, categorical string data can represent various
features (e.g., zip codes, names, marital status). Each string feature requires specific processing to
ensure that the model outputs optimal results. For example, it could be beneficial in terms of in-
terpretability and predictive performance to encode geographical string data as numerical latitude
and longitude representations instead of a categorical encoding. In order to increase data qual-
ity and handle various string data effectively, data scientists are required to manually preprocess
unrefined data using suitable methods, heuristics, and data cleaning applications.

1.1 Motivation

According to a report by CrowdFlower (2016), data scientists can spend up to 60% of their
day cleaning data [30]. Data cleaning is required to ensure that potential bias factors, such as
missing values or outliers, are addressed. Furthermore, it is required for most machine learning
models that string data are correctly represented as numerical values, which may require different
strategies for each unique string feature. However, sufficient data cleaning comes at the cost
of spending a significant amount of time to ensure that a reasonable quality is achieved. Even
though data cleaning tools can reduce some workload, they still require time and effort from
their users. Automated data cleaning tools exist; however, such tools are sub-optimal for robustly
preprocessing and encoding different string feature types. Consequently, developing a method that
attempts to ease and automate data cleaning and string feature handling from data scientists is
essential.

1.2 Objective

This thesis is concerned with the automation of handling and processing string data in the cleaning
process. We address the problem by developing a Python framework that performs a series of
procedures to ensure that various string features in datasets are properly handled. Considering
that numerous data formats are available, we focus on developing a framework that aims at
preprocessing tabular data.

From Strings to Data Science: a Practical Framework for Automated String Handling 1



CHAPTER 1. INTRODUCTION

1.3 Outline

The remainder of this work is presented as follows. In Chapter 2, the problem statement is defined
as well as the different challenges and components that need to be addressed and evaluated. In
Chapter 3, a broad literature review is provided on all relevant topics that can be used to develop a
solution to the problem statement. In Chapter 4, the proposed methodology aimed at addressing
the problem statement is established and thoroughly described. In Chapter 5, the proposed
methodology is evaluated against different criteria. Finally, Chapter 6 summarizes the problem,
discusses the findings, and presents future directions in this subject.

From Strings to Data Science: a Practical Framework for Automated String Handling 2



Chapter 2

Problem statement

Surveys have shown that a significant amount of an analysts’ time is spent on preparing and
cleaning data [30, 46]. Extensive research has been done on optimizing and automating data
cleaning steps and its potential to be a feasible solution to the time-consuming nature [18, 75, 84].
There are also tools available that automate a great deal of the data cleaning steps [53, 54,
55, 63, 83]. Current solutions are sub-optimal because automated solutions do not offer specific
cleaning steps for various categorical string features in the data. String features refer to categories
represented by strings, such as zip codes, names, and addresses. Users are still required to manually
recognize, process, and encode string data based on their unique features. Research on this topic
is still ongoing and remains relatively open.

This thesis aims to address the following problem:

How can we deal with different varieties of string features in tabular datasets such
that they can be automatically preprocessed and encoded?

Given that the scope of machine learning is broad, we decided to limit our scope to cleaning
strings in tabular data. To adequately address the problem, it is essential to investigate all sub-
challenges that need to be addressed to transform ‘dirty’ string data into processed, interpretable
data. We review relevant current state-of-the-art techniques for each of these components. After a
preliminary study, we have discovered four key components that can be used to address the main
problem.

Inference of string feature types In general, various data types require different handling
and processing. These data types can usually be determined using various techniques. Hence, to
handle each string type accordingly, it is essential to have a technique that can recognize different
string features in the data. The preprocessing of string data remains fairly general without such
a technique, as each string feature is only recognized as a ‘standard’ string type in programming
languages such as Python. Furthermore, since this step most likely occurs at the beginning of the
data cleaning process, type inference should be robust against missing values and outlying data
types. Therefore, it is essential to research and implement a technique that allows us to achieve
string feature inference, preferably using state-of-the-art techniques related to this topic. For this
step in the process, we aim at answering the following question:

• How can we robustly and accurately infer various string features in the data?

From Strings to Data Science: a Practical Framework for Automated String Handling 3



CHAPTER 2. PROBLEM STATEMENT

Preprocessing inferred string features String data can often be further preprocessed to
remove redundancies and to extract additional information. As each string feature requires dif-
ferent handling, it is necessary to investigate what types of processing and encoding techniques
are relevant for the inferred string features. Furthermore, it is also necessary to investigate the
potential benefits of these processing steps for each feature. For this step in the process, we aim
at answering the following questions:

• Which processing type has the highest impact on performance?

• Which of the inferred string features are the most relevant to process?

Detecting ordinality in string data A wide, if not infinite, variety of string feature types
exist, implying that an inference technique cannot distinguish all of them. If a string feature
is not of a known type, we still need to apply an appropriate encoding technique. Thus, for
these unknown string feature types, there is a need for a technique that extracts other properties
from the set of so-called ‘standard’ string data whose feature type could not be inferred. In this
work, we decided to focus on classifying the ordinality of standard string data by identifying
whether a column contains ordered (ordinal) or unordered (nominal) string data. The difference
between both is that ordinal data is categorical data where the variables have a natural ordering
associated to them (e.g., cold, warm, hot), whereas nominal data is categorical data without a
natural ordering (e.g., red, green, blue). Distinguishing string data based on this property allows
for assigning a suitable encoding strategy. For this step in the process, we aim at answering the
following question:

• How can we detect the ordinality of a string column, and how well does this method perform?

Robust and scalable categorical encoding As stated in Chapter 1, most machine learning
models require all the input data to be numerical values. As a result, it is relevant to assign proper
encoding techniques to each inferred string feature and other string data based on ordinality of
the data. Since the data can be of any size and any cardinality, it is important to investigate
both commonly used and state-of-the-art encoding techniques to allow for robust and scalable
encoding. Furthermore, for ordinal data, it is desired that the natural ordering is maintained
after encoding. While this is relatively trivial in a manual data cleaning setting, it is much more
challenging to do so in an automated setting. This challenge is related to interpretability, which
can play a significant role in assigning the order. For this step in the process, we aim at answering
the following questions:

• How can we encode string data of arbitrary length and cardinality in a robust and scalable
manner without sacrificing performance?

• How can we determine the natural ordering of entries in ordinal data automatically, how
well can this be done, and is there a noticeable difference in terms of performance?

The developed solution to address the main challenge will be evaluated based on how well it
performs compared to currently applied techniques of dealing with string data. Additionally, each
sub-component is evaluated using either ground truth values or a control group (e.g., comparing the
performance between preprocessing and not preprocessing with a particular technique), whichever
is most relevant to the sub-component.
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Chapter 3

Literature analysis

There exist literature and techniques covering several aspects of string handling in general or
introducing approaches to handle specific string features. In order to automate string handling
for automated data cleaning, a system needs to be able to identify and process string feature
types, classify ordinality of ‘standard’ string (i.e., string features of an unknown type) columns,
and encode categorical features correctly. This chapter provides a literature review on several
topics that are relevant to the problem statement. More specifically, this literature review covers
type detection, classification models for ordinality prediction, string categorization and processing,
encoding strategies, other relevant data cleaning techniques, and currently existing state-of-the-art
data cleaning tools.

3.1 Type detection

This technique refers to stating or predicting the data type of each column for a given dataset. It
is essential to review the literature on this technique, as it can potentially allow the automation
of data cleaning by automatically determining which cleaning techniques should be applied based
on the inferred data types. In the context of our problem, the sub-problem of type inference for
simple types, such as integers, floats, and general strings, is solved quite well and would most likely
only have to be applied as is. However, it could be possible to adapt the described techniques to
address detection of string feature types.

3.1.1 Data type inference (dtype)

The Pandas library contains two methods to detect which type of data is present in a column,
namely (infer dtype()) and (infer objects()) [89]. The former method takes a list of values,
checks the data type of each value, and returns a corresponding result. Despite its efficiency, it is
highly error-prone. For example, if a column consists of ten strings and one integer, it is inferred
as ’mixed’ by the function, whereas it is more likely for a human observer to conclude that the
integer entry is anomalous. The latter method attempts soft conversion of object-dtyped columns,
leaving non-object and unconvertible columns unchanged. Soft conversion is the process of finding
the most suitable dtype for a given column, whereas hard conversion forces a given column into a
given dtype.

3.1.2 Type inference using Probabilistic Finite-State Machines

Ceritli et al. (2020) recently developed a type inference method that makes use of Probabilistic
Finite-State Machines (PFSMs) to predict column types [27]. Besides its ability to infer data
types of a given column, this approach also allows users to detect missing and anomalous data in
each entry by using weighted predictions.
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According to Paz (1971) and Rabin (1963), PFSMs are a class of mathematical models that
represent a system consisting of a finite number of states, where transitions between states occur
w.r.t. probability distributions [76, 81]. PFSMs can be defined as a tuple A = (θ,Σ, δ, I, F, T ),
where θ is a finite set of states, Σ is a set of observed symbols, δ ⊆ θ × Σ × θ is a set of
transitions among states w.r.t. observed symbols, I, F : θ → R+ are the initial-state and final-
state probabilities respectively, and T : δ → R+ is the transition probabilities for elements of δ. A
graphical representation of a PFSM is depicted in Figure 3.1. Note that for each transition, the
left value denotes the probability of firing the transition, and the character in brackets represents
what is emitted upon firing the corresponding transition.

Furthermore, PFSMs have to adhere to two conditions: (1) the sum of the initial-state prob-
abilities has to be equal to 1, and (2) at each state q ∈ θ, either a transition is done to state q′ ∈ θ
and emit a symbol α ∈ Σ, or the process is stopped at state q without emitting any symbol. Based
on the definition and conditions, PFSMs can generate a set of characters Σ∗. Likewise, for a given
set of characters, we are now able to calculate the probability for a given PFSM to generate this
set of characters [27].

Figure 3.1: Representation of a PFSM with θ = {q0, q1, q2} and Σ = {+,−, 0, ..., 9} with p =
1−Pstop

10 , where Pstop represents the stopping probability [27].

Ceritli et al. (2020) developed a mixture of PFSMs that represents data types and missing
values, which are used to construct a noisy observation model. This model is a generative model
with a set of latent variables that essentially generates a column for each data type that can
possibly contain outliers (i.e., entries of other data types) and missing values. To be precise,
assuming a column of data x = {xi}Ni=1 is given where each xi denotes the characters in the
i-th row and N is the total number of rows, the generative model consists of latent variables
t ∈ {1, 2, ..,K} and z = {zi}Ni=1, where t and zi respectively denote the data type of a column
and its i-th row and K is the total number of data types possible. The model has the following
generative process:

column type t ∼ U(1,K)

row type zi =


t with probability πtt
m with probability πmt , m = missing

a with probability πat , a = anomalous

row value xi ∼ p(xi|zi)

Where U represents a discrete Uniform distribution, πtt , π
m
t , π

a
t represent the probability that

a row type is a certain data type given the current data type with πtt + πmt + πat = 1, and p(xi|zi)
represents the observation model of the generative process.

The inference model that is set up using the generative process is aimed at inferring the column
type t, which is cast to the problem of calculating the posterior distribution of t given x, denoted by
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p(t|x). It is then assumed that each row is either the same data type as the column type, a missing
value, or an anomalous data type. The posterior distribution of column type t is determined as
follows:

p(t = k|x) ∝ p(t = k)

N∏
i=1

(
πkkp(xi|zi = k) + πmk p(xi|zi = m) + πakp(xi|zi = a)

)
Essentially, a posterior probability of each data type is calculated for a given data column, and

the data type with the highest posterior probability most likely corresponds to the data type of
the given column. After inference of the column type, each entry of x is also evaluated in terms
of how likely it is that they represent missing or anomalous values. This inference is is done by
comparing the posterior probabilities for each row type to the posterior probability of the missing
and anomalous values as follows:

p(zi = j|t = k, xi) =
πjkp(xi|zi = j)∑

`∈{k,m,a} π
`
kp(xi|zi = `)

In the context of string feature inference, the work of Ceritli et al. can be adapted to also
consider specific string feature types in the posterior distribution of column type t. This goal
can be achieved by constructing PFSMs based on string feature types and to include them in the
generative process of the model.

3.2 Classification models for ordinality detection

Classification tasks exist in most machine learning domains, with the aims varying from e-mail
spam detection to object detection in images. In the context of tabular data, classification models
are used to predict which class is most likely associated with several characteristics for a given
sample. Therefore, in the context of classifying ordinality for standard string columns, it might
be relevant to use a classification model to predict whether the standard string column contains
ordinal or nominal data. This section describes several classification models that could be used to
predict the ordinality of a standard string column.

3.2.1 Statistical type inference

Valera et al. (2017) proposed a Bayesian approach to automatically discover the statistical data
type of a column (e.g., ordinal, categorical, or real-valued) [90]. Their approach exploits the key
ideas that there is a latent structure in the data that captures statistical dependencies among the
different objects and that the observation model for each attribute can be expressed as a mixture
of likelihood models. From these two ideas, an efficient Markov chain Monte Carlo (MCMC)
inference algorithm was derived to jointly infer both the low-rank representation and the weight of
each likelihood model for each attribute in the observed data. This approach would then exploit
the latent structure in the data to automatically distinguish among categorical, ordinal, and
count data as types of discrete variables. A disadvantage to this method is that it uses the latent
distribution of the input data for classification, giving ambiguous results when the distribution of
different classes is similar (e.g., some columns in the paper are inferred as “categorical or ordinal”).
This ambiguity implies that a domain expert would still have to classify the attributes themselves
as either nominal or ordinal, which is not necessarily ideal in an automated setting.

3.2.2 Decision tree learning

Decision tree learning is a simple predictive modeling approach commonly used in statistics, data
mining, and (supervised) machine learning. As the name suggests, a decision tree is used as a
predictive model to predict a specific target value based on observations. These trees have a
flowchart-like structure where each node represents an evaluation on a (set of) attribute(s) of the

From Strings to Data Science: a Practical Framework for Automated String Handling 7



CHAPTER 3. LITERATURE ANALYSIS

data, and each leaf represents a class label. This technique is efficient at picking global features
with the most statistical information gain [37], which makes it useful for tabular data containing
different statistical types (e.g., discrete categorical variables and continuous numerical variables).

In the context of ordinality detection, a decision tree could be trained to classify whether
a column contains ordinal data or not. The decision tree would be trained on a dataset that
exclusively consists of nominal and ordinal columns by constructing splits based on the contents
of each column. Additionally, a meta-dataset could be constructed based on features of various
nominal and ordinal columns, which are then used to train a decision tree to distinguish between
the two statistical types accurately. An example of a decision tree that could be constructed based
on ordinality features is depicted in Figure 3.2.

A limiting factor of decision tree learning is that the trees tend to be non-robust, meaning
that a slight change in the training data can significantly affect the final prediction. Furthermore,
decision tree learners are prone to overfitting.

x < 0.05 or x >= 0.2

#unique values vs.
total #rows

>= 1000< 1000

Column length Common substring

Data

Ordinal Nominal

0.05 <= x < 0.2

Yes No

Ordinal Nominal

Figure 3.2: An example of a decision tree on determining ordinality based on features of the
columns. The decision tree consists of nodes representing features of the data, directed edges
representing the evaluation from the feature, and the leaf nodes representing the predicted class
label.

3.2.3 Random forest

This is an ensemble learning method for tasks such as classification and regression which makes use
of decision trees. During training, multiple decision trees are constructed from subsets of random
samples of the data to form the random forest. The random forest predicts the data by taking the
mean or mode of the output class labels of all decision trees on the same data. An example of a
random forest classifier is depicted in Figure 3.3. An advantage of this strategy is that it counters
the overfitting nature of decision trees [33]. In general, random forests outperform decision trees
in most settings, but their performance can be affected due to various data characteristics. Similar
to decision trees, a random forest learner could be trained to classify whether a column contains
ordinal data or not. The learner constructs multiple decision trees based on features of the data
and holds a majority vote to classify whether the given dataset is nominal or ordinal.
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Data

Decision tree 2Decision tree 1 Decision tree n

Random
subset

Random
subset

Random
subset

Mean / majority voting

Class prediction nClass prediction 2Class prediction 1

Final
prediction

Figure 3.3: An example of a random forest. A multitude of decision trees are constructed based
on random subsets, and each tree outputs a class prediction.

3.2.4 Gradient boosting

This is also an ensemble learning method for classification and regression tasks similar to random
forest. However, gradient boosting takes a weak learner1 (e.g., a decision tree) and iteratively
modifies this learner to improve its performance instead of creating a multitude of learners that
produce different class predictions. Gradient boosting is therefore not only more memory efficient,
but it has also shown that it usually outperforms random forests on the same data [33]. Similar to
decision trees and random forests, gradient boosting classifiers can be used to classify ordinality
in the data based on the most relevant features in the given (meta-)dataset.

Gradient boosting is made up of three components. Firstly, a proper loss function needs to be
defined and optimized for the given problem. Secondly, a weak learner is selected to be used as
the base of the predictor. This weak learner is almost always a decision tree. Finally, an additive
model is specified, which adds trees to the existing tree one at a time. When adding these trees,
a gradient descent procedure is usually applied to minimize the loss and update the weights.

In literature, Friedman (2002) designed a stochastic gradient boosting algorithm which incor-
porates randomization to increase the robustness against overcapacity of the base learner and to
improve the execution speed [34]. More recently, Dorogush et al. (2018) created a novel gradient
boosting library that successfully handles categorical features and reduces computation times even
further by incorporating both the GPU and CPU upon execution [31].

3.2.5 Neural networks for tabular data

Several (deep) neural network architectures have recently been developed to incorporate neural
network solutions for tabular data. These solutions are known to equal or outperform gradient
boosting algorithms for classification tasks. One of these neural network solutions is TabNN, as
proposed by Ke et al. [50]. Their approach is to leverage feature groups obtained from a gradient
boosting decision tree (GBDT) and feed them into a recursive neural network architecture with
shared embeddings (RESE). More specifically, all feature groups obtained from the GBDT are

1A weak learner is a predictive model which performs slightly better than random guessing.
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merged into k sets while maximizing the minimum number of common features in one set. Then,
each set is processed in its own RESE (giving us k RESEs in total) to allow more critical features
in each set to contribute more to the overall result. Finally, the final result of all RESEs are
concatenated as inputs of a final fully connected layer. An illustration of the architecture is
depicted in Figure 3.4.

Figure 3.4: The architecture of TabNN, containing k RESEs where the embedding of common
features x̂j is shared in these layers (shared neurons) [50].

In the context of ordinality detection, a neural network used for classification in tabular data
could be trained exclusively on nominal and ordinal data, such that it may discover latent relations
between the data and the ordinality that can be leveraged in production.

3.3 String categorization and processing

This task refers to recognizing, categorizing, and processing different string entities in the dataset.
In a non-automated scenario, a data scientist can (sub)consciously make this distinction for most
strings based on their intuition. Without techniques that address this part in an automated
scenario, choosing the best categorical encoding for a given dataset would be random at best,
and processing remains relatively minimal. Listed below are a few methods that could deliver
promising results for categorizing strings and further processing them.

3.3.1 Regular expressions (Regex)

Regular expressions are a powerful tool in computer science. Regexes consist of a sequence of
characters that allows for pattern matching, location, and management2. The applications of
regexes in natural language processing (NLP) models include web searching, word processing, field
validation in databases, and information extraction [45]. According to Shahbaz et al. (2012), this
method is proven to be able to extract identifiers in strings [87]. This property could potentially
allow further categorization of strings by, e.g., automatically developing complex PFSMs using
regexes [27].

As an example, consider that a regular expression needs be constructed to match strings
containing one or more digits followed by a single string character. There are various syntaxes
available for creating regex rules, but in this example we only consider the basic concepts3. Given
the basic regex rules, we can design the regular expression [0-9]+[a-zA-Z], which states that we
want to match any strings that start with one or more characters (+) from the set 0 to 9 ([0-9]),
followed by exactly one character from the set a to z or A to Z ([a-zA-Z]). An alternative regex
that gives the same result is defined as \d+[a-zA-Z], where \d stands for a single digit. It is
possible to visualize these regexes in the form of finite automata [42]. An illustration of the
aforementioned regexes is depicted in Figure 3.5.

2https://www.computerhope.com/jargon/r/regex.htm
3An inexhaustive, but introductory, list of basic regex rules can be found at https://www.rexegg.com/regex-q

uickstart.html.
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(a) [0-9]+[a-zA-Z] (b) \d+[a-zA-Z]

Figure 3.5: Finite automata of the example regular expressions

From the example, it becomes apparent that constructing slightly more complex expressions
can lead to rules that are hard to interpret, which is also the major disadvantage of using regexes.

3.3.2 Named-entity recognition and classification (NERC)

This technique is a subtask of information extraction4 and is mainly used for unstructured text.
Using NLP, NERC can recognize strings and categorize them as, for example, a name or a location.
In the context of string feature processing in tabular data, NERC or a similar technique can be
applied to reduce the complexity of sentences in columns by only considering keywords. It could
also be considered as a technique to identify string feature types using a trained model.

The working of a NERC system can be seen as follows. First, the system extracts information
from the given data and selects a set of candidate entities based on pattern matching, linguistics,
syntax, semantics, or a combination of approaches5. After this, the system tries to classify each
entity based on either linguistic grammar-based techniques or statistical models.

Research has suggested that linguistic grammar-based techniques have a higher precision com-
pared to statistical models [48]. However, this high precision comes at the cost of a lower recall
and the time it takes for experts in the field of computational linguistics to design the semantics
[48]. On the other hand, statistical models such as machine learning algorithms often require a
large amount of training data that are manually annotated. As a suggestion to avoid some of
this manual effort, semisupervised models were suggested [59, 74]. Statistical systems can also
be constructed using unsupervised learning. In this setting, the typical approach for NERC is
clustering [73]. Studies have suggested that this approach can be used to link input words with
appropriate named-entity types [12] or to classify named entities under a given type using Point-
wise Mutual Information and Information Retrieval (PMI-IR) [32]. An example of how NERC can
be applied on a dataset can be seen in Figure 3.6. In the context of string feature type inference,
the annotations can be used to identify similar entries in a string column and to classify the string
feature type of the column as the annotation that occurs the most frequent. As for preprocessing
string features, the annotations can be used to extract the most relevant features in a string entry
consisting of sentences to reduce the overall complexity while retaining most of the information.

3.3.3 Automated feature engineering

In feature engineering, data scientists apply their domain knowledge to extract certain attributes or
properties (features) from raw datasets. By determining which features are relevant for the problem
to be solved, data scientists can process the data to maximize the performance of a machine
learning algorithm. Research on optimal automation of this process is still ongoing. Previous
work suggests using features obtained from decision trees [37] and multi-relational decision tree
learning, which makes use of supervised learning [52]. However, these techniques may introduce
many redundant operations unless the algorithm is regulated using incremental updates. A more
recent development in automated feature engineering involves a Deep Feature Synthesis algorithm,

4Automated retrieval of specific information in a text.
5https://www.expert.ai/blog/entity-extraction-work/
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Figure 3.6: An example of NERC on a piece of text. Image taken from Medium at https:

//medium.com/@b.terryjack/nlp-pretrained-named-entity-recognition-7caa5cd28d7b

which was able to beat 615 of 906 human teams in terms of feature engineering [39, 47]. Tools
that include Deep Feature Synthesis for automated feature engineering include Featuretools [4],
OneBM [56], and ExploreKit [49]. These tools are aimed at transforming relational datasets into
feature matrices for machine learning, rather than cleaning the data that is presented to them.

3.4 Encoding techniques

Several encoding techniques can be applied to different types of string data. One type of encoding
that is commonly used in structured data is categorical encoding. Machine learning models exist
that work exclusively on numerical values because they execute certain operations that can only
be performed on numbers. Encoding ensures that string data is transformed to a numerical
representation such that they can be used in such machine learning applications [79]. Categorical
string data can be subdivided into ordinal data (categories have an order) and nominal data
(categories have no order, such as cold, warm, and hot). A significant amount of research and
development has been done to develop encoding strategies for a variety of applications [29, 91, 8,
68]. However, robustly automating these encoding strategies remains challenging and relatively
open. This section describes some commonly used categorical encoders and a few experimental
encoders that were shown to outperform them and are deemed promising for applications in an
automated environment.

3.4.1 Common practices

One-hot encoding This encoder is used when the data is nominal and mutually exclusive [29].
The encoder maps every category in a column to a unique binary value of length equal to the
number of categories. More specifically, for n categories, one-hot encoding maps these categories
to n unique binary values containing a single one and n − 1 zeroes. Despite its popularity and
performance, the learning algorithms may suffer from high dimensionality since the dimensions
of the encoded data depend on the number of categories in the data [19]. Furthermore, similar
entries may be placed into separate categories when the data is unprocessed (e.g., entries contain
errata). Alternatives to one-hot encoding that decrease the dimensionality include dummy encod-
ing (similar to one-hot encoding except that it maps the categories to n−1 unique binary values),
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effect encoding, and binary encoding [29].

Ordinal encoding This encoder maps every unique categorical value to a positive integer. For
example, the entries ‘cold’, ‘warm’, and ‘hot’ would be encoded as 1, 2, and 3 respectively. The
encoder assigns the order either at random or by a pre-defined order that the user passes to the
encoder. Given that integers are naturally ordered, ordinal encoding helps to reflect the ordering
of the original data to the machine learning model6. However, the downside of this encoder is that
it is sub-optimal for nominal data. If nominal data is encoded using the ordinal encoder, learning
algorithms may incorrectly assume that order plays a role, possibly making models unnecessarily
complex and prone to overfitting7.

Hash encoding Hash encoding represents categorical data in the form of hashes. This technique
has the major advantage that the length of the hash does not depend on the number of categories
in the data [91]. This advantage implies that hash-encoded data can have much fewer dimensions
than one-hot encoded data. A drawback to this method is that it is prone to collision and loss of
information, which could result in errors in the trained machine learning model [91].

Target encoding In contrast to the previously mentioned encoders, target encoding is an en-
coding technique based on both the dependent variable and the categorical variable [66]. An
example of a target encoder can be found in the scikit-learn library [67]. This target encoding
can be applied on both continuous and categorical targets. For categorical targets, the features
are replaced with a mix of a posterior probability of the target given the particular categorical
value and the prior probability of the target over all the training data. Each feature is encoded
using the following formula:

Si = λ(ni)
niY
ni︸ ︷︷ ︸

posterior probability

+ (1− λ(ni))
nY
nTR︸ ︷︷ ︸

prior probability

Where λ(ni) represents a weighting factor bounded between 0 and 1, niY represents the ratio
between the number of observations of Y for similar cells i, ni represents the size of the cell,
nY represents the total number of observations of Y , and nTR represents the number of records
contained in the training set.

When the target values are continuous, the features are replaced with a mix of the expected
value of the target given the particular categorical value and the expected value of the target over
all the training data. The formula is similar to that of categorical targets, except that the mean of
target value Y is considered across the training data. Each feature is encoded using the following
formula:

Si = λ(ni)

∑
k∈Li

Yk

ni︸ ︷︷ ︸
exp. value given particular value

+ (1− λ(ni))

∑NTR

k=1 Yk
nTR︸ ︷︷ ︸

exp. value over all samples

Where Li is the set of observations, of size ni, for which X = Xi, and Yk represents the target
attribute at row k. The target encoder also considers that there could be specific categories in the
data that rarely occur but are not outliers.

Geocoding This encoding technique is useful for encoding geographical string data in structured
and unstructured data into a representation of latitude and longitude values. These encodings
could be useful when models need to be trained with geographical data. Python libraries pgeocode
[8] and geopy [5] promise to be effective solutions in realizing this type of encoding.

6https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/
7https://towardsdatascience.com/a-common-mistake-to-avoid-when-encoding-ordinal-features-79e402

796ab4
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Word embeddings This encoding technique takes words or phrases from a vocabulary and
maps these to a value in a vector space. It is beneficial for data that consists of words or sentences.
Word2Vec is a well-established approach to perform this encoding and provides practical model
architectures to make effective embeddings from such datasets [68, 69]. An example of how words
can be represented in a three-dimensional vector space can be seen in Figure 3.7. Global Vectors
for Word Representation (GloVe) is another approach to create word vectors [78]. It is a hybrid
method that uses machine learning and statistics to construct low-rank approximations to retrieve
latent features, including those for comparative and superlative words. An approach to use word
embeddings as an encoding type in an automated setting is to use a library of trained word vectors
(such as GloVe) in combination with random embeddings for words that are not present in the
trained model.

Figure 3.7: Examples of several word embeddings and the possibility to produce certain analogies.
Image taken from https://developers.google.com/machine-learning/crash-course/embe

ddings/translating-to-a-lower-dimensional-space.

3.4.2 Similarity encoding

In unstructured data, the set of possible categories is unknown due to their lack of standardization.
Unprocessed data can suffer from a wide range of errors such as errata (typos) [51]. If these are
not fixed, entries with (un)intentional errors are viewed as separate categories by the statistical
model. To tackle this issue, Cerda et al. (2018) proposed an encoding technique that performs a
one-hot encoding based on string similarity measures [25].

This encoding strategy works as follows. Let sim : (S×S)→ [0, 1] be any string-based similarity
measure8 such that:

sim(s1, s2) = sim(s2, s1), ∀s1, s2 ∈ S

Furthermore, let V be a categorical variable of cardinality k. The similarity encoding that
they propose replaces all instances of V with category di, i = 1...n by a feature vector xi ∈ Rk
such that:

xi = [sim(di, d1), sim(di, d2), ..., sim(di, dk)]

This encoder can be demonstrated with an example. Let x1 = Paris and x2 = Parisian, with 3-
gram similarity as the string-based similarity measure. The 3-gram similarity measure breaks down
entries into consecutive grams of length three and calculates the ratio of the intersection and the
union of the grams of two entries. In our example, we obtain the 3-grams x1,grams = {Par, ari, ris}

8These measure the similarity between two strings, with S as the set of strings. A list of commonly used measures
can be found in [36].
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and x2,grams = {Par, ari, ris, isi, sia, ian}, and we can observe that three of the 3-grams are similar
for both words. The 3-gram similarity measure for each possible pair of entries is then:

sim(x1, x1) = 1

sim(x1, x2) =
3

6
= 0.5

sim(x2, x2) = 1

The similarity encoder using the 3-gram similarity measure would encode both entries as
follows:

x1 = [sim(x1, x1), sim(x1, x2)] = [1, 0.5]

x2 = [sim(x2, x1), sim(x2, x2)] = [0.5, 1]

To tackle any possible high-cardinality encodings that derive from this strategy, they also ex-
plored some dimensionality reduction methods to reduce the number of dimensions in the encoding
[25].

3.4.3 Categorical encoders for high-cardinality strings

Research is still ongoing about providing accurate categorical encodings of string data without
the need for data cleaning with limited dimensionality. Cerda et al. (2020) proposed two novel
encoding methods for high-cardinality string data: a min-hash encoder and a Gamma-Poisson
matrix factorization encoder [24]. They have shown that these encoding strategies provide a
scalable and automated replacement for cleaning and encoding categorical data.

Min-hash encoder This encoder is based on the min-hash function, which is one of the most
famous functions of the locality-sensitive hashing (LSH) family [21, 35]. The LSH family consists
of algorithmic techniques that hash similar inputs into the same “buckets” with high probability
[82] and is originally designed to retrieve documents that are similar in terms in terms of the
Jaccard coefficient9. This function can be used as an encoder by building it using salt numbers
(random data) instead of random permutations to make it computationally efficient, as generating
random permutations may take some time. Let X ∗ be a totally ordered set, with non-empty and
finitely cardinal X ⊆ X ∗. Furthermore, let hj be a hash function on X ∗ with salt value j. We can
then construct the min-hash function Z(X ) as:

Z(X )
def
= min

x∈X
hj(x)

For the problem regarding categorical data, Cerda et al. (2020) rely on a fast approximation
of the Jaccard coefficient between two sets of consecutive n-grams for a string s (denoted as
J(G(si),G(sj))). With xmin-hash representing the min-hash feature map, they define the min-hash
encoder as:

xmin-hash(s)
def
= [Z1(G(s)), ..., Zd(G(s))] ∈ Rd

By considering the hash functions as random processes, it can be implied using Equation 6
from [24] that the encoder has the property that:

1

d
· E
[
xmin-hash(si)− xmin-hash(sj)

]
= J(G(si),G(sj))

Cerda et al. (2020) state that this encoder is especially suitable for categorical encoding since
it is fast to compute and is stateless. Furthermore, they state that the min-hash encoder can form
inclusion relations of strings into an order relation in the feature space, as can be seen in Figure

9The Jaccard coefficient is used to calculate the similarity and diversity of sample sets.
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3.8. However, they also mention that the encoding is hard to invert and interpret in terms of the
original string entries because the encoder relies on hashing [24]. In practice, users can define the
number of dimensions the encoded data must have, and any given column of data is encoded in
those dimensions using the min-hash feature map, where each dimension also represents an order
relation in the feature space.

Figure 3.8: A visual representation of the order relations of strings created by the min-hash
encoder. In this example, three containment regions are laid out (Supply, Technician, and Senior)
where containment in a word region can imply that a string entry contains this word (dots are grey
if the entry does not contain the containment region word). The entry “Senior Supply Technician”
is one of the few that crosses all three regions, implying an order is established based on how many
substrings are contained in an entry [24].

Gamma-Poisson matrix factorization To allow high-cardinality strings to have some de-
gree of interpretability compared to the min-hash encoder, Cerda et al. (2020) designed the
Gamma-Poisson matrix factorization encoder (gap encoder). This encoding strategy makes use of
a generative model of strings from latent categories using the Gamma-Poisson model [23]. Given
that these string entries may contain errata and are relatively smaller compared to the entries
that the model was initially developed for (text documents), Cerda et al. relied on the sub-string
representation of said entries (i.e., they represent each entry by its count vector of character-level
structure of n-grams). Each string entry described by its count vector is then modeled as a linear
combination of unknown prototypes that represent the latent categories of the entry. An example
of how the gap encoder allows users to interpret the data entries and their relation to different
latent topics produced by the model is depicted in Figure 3.9.

3.4.4 Determining the order in ordinal data

As mentioned in Subsection 3.4.1, the ordinal encoder helps to reflect the ordering of the original
data to the machine learning model. When the ordering is not passed through the encoder as a
parameter, the encoder will take the lexicographical ordering of the original data, which does not
always represent the true order of the data. This subsection will cover two approaches that aim
to define the natural ordering of entries in ordered data automatically.

Heuristic approach Ordinal data may consist of quantifiers, comparatives-superlatives, and
antonyms of certain string entries. Based on these properties, a heuristic approach can be set up
to determine the order of data based on the contents of each entry. The method could do so by
comparing every entry to a list of pre-defined word(s) that represent one of the aforementioned
properties. Pre-defined words for each property could be manually set or determined by a linguistic
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(a) Data before applying the gap en-
coder.

(b) Data after applying the gap encoder.

(c) Heatmap where the x-axis displays the ten top-three
latent topics of the data generated by the Gap encoder,
and the y-axis displays the first ten entries of the data. A
higher topic activation for a given entry implies that the
entry has a higher affinity with one of the top-three latent
topic compared to other latent topics. This topic activ-
ation directly translates itself into the encoded value, as
can be seen by comparing the entries in (a) to the encoded
results in (b)

Figure 3.9: Application and interpretability of the Gap encoder on string data.

Python package. For example, several linguistic websites such as linguapress10 and curso-ingles11

contain lists of quantifiers or comparatives and superlatives that can be included in the dictionary
of the approach. Another example is the Natural Language Toolkit (nltk) package, which provides
a built-in WordNet module that can be used to fetch a list of antonyms for a given word [70]. The
obtained variations can be ordered heuristically and each entry in the given data will be ranked
based on where they are placed within that order. However, a disadvantage to this approach is

10https://linguapress.com/
11https://www.curso-ingles.com/
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that it will only work accurately when all entries are in the correct format and contain one or
more of the aforementioned properties.

Sentiment analysis Another approach to determining the order in data is to take a trained
sentiment analysis tool and evaluate each string entry using sentiment analysis. In general, sen-
timent analysis tools evaluate sentences based on their degree of positivity or negativity. For
example, the sentence “I hate you” would receive a negative evaluation because the word “hate”
is determined to be negative in the pre-defined sentiment analyzer. Similarly, this approach could
be applied for evaluating string entries based on their degree of positivity or negativity and order
each entry based on this score. The remainder of this paragraph describes some trained sentiment
analysis tools from various NLP libraries.

The nltk package contains the VADER sentiment analysis tool by Hutto et al. (2014), who
claim that VADER outperforms individual human raters and generalizes more favorably across
contexts than any of their benchmarks on microblog-like contexts [43]. VADER makes use of
a bag-of-words approach, which essentially consists of a lookup table for positive and negative
words and heuristics for certain keywords to determine the overall intensity of sub-sentences. The
disadvantage of this approach is that it only works on words contained within the corpus of the
model. This limitation implies that errata or words that are not part of the vocabulary are seen
as “neutral” and will not receive any score. An example of how a sentence is evaluated using nltk

can be seen in Table 3.1.

Words i really liked the food but the service was terrible Total
Score 0 0 0.4215 0 0 0 0 0 0 -0.4767 -0.4773

Table 3.1: The sentiment intensity evaluation of nltk VADER on an example sentence.

The TextBlob package works similarly to nltk; it makes use of a bag-of-words classifier but
includes a subjectivity analysis to evaluate how opinionated a piece of text is [62]. The major
disadvantage of this package in our setting is that there are no heuristics to take quantifiers
or negations into account. The absence of these heuristics implies that a significant amount of
sub-sentences (such as “not bad”) are incorrectly evaluated, making the package sub-optimal for
determining the ordering in data.

The FlairNLP (Flair) package provides a unified and straightforward interface for word and
document embeddings [11]. Flair includes a sentiment analysis classifier based on a character-level
long short-term memory (LSTM) neural network that predicts sentiments while taking the letter
and word sequences into account. Because of the properties of the LSTM, the trained model can
handle negations, intensifiers, and out-of-vocabulary (OOV) words, which makes it a powerful
tool even when unknown words or errata are presented to the model. The ordinal data could be
passed to model, which will then give each entry a sentiment score. The data can then be ordered
according to this score.

3.5 Other data cleaning techniques

Several other data cleaning techniques can be used to handle string data. However, given the
context of the problem, these techniques might be less relevant on their own compared to the
techniques that were previously mentioned in this review. For each technique, we list some basic
approaches and some slightly more sophisticated strategies that can be applied in different cases.

3.5.1 Handling missing values

A significant number of real-life datasets contain incomplete or missing observations, which is an
issue for most machine learning algorithms as they only work if the data is complete. Missing
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values also occur in categorical data, implying that missing values also need to be addressed in
this work for completeness. Missing values can be addressed by removing or imputing them from
the data. However, it is essential to consider which technique benefits the results from the data.
Missing values that are not appropriately handled may introduce issues during training [94]. For
example, removing a significant number of rows to handle missing values may introduce bias to
machine learning algorithms. This subsection describes the types of missing data that are possibly
present in datasets and how to handle them.

In 1976, three different types of missing data were identified by Donald Rubin and are still
used to date to apply the optimal missing value handling technique [85].

The first type of missing data is data missing completely at random (MCAR). In this case,
the probability that a data point is missing from the dataset is equal for all points, suggesting that
missing values are unrelated to the dataset itself and that no imputation technique or deletion
will impact the performance. In other words, the data that is MCAR is unrelated to observed or
unobserved values, and no structural relationship to the missingness can be established in any way.
We can test the data using Little’s Test of MCAR, which is a chi-square statistical test that tests
whether the null hypothesis ‘The missingness mechanism of the incomplete dataset is MCAR’ can
be rejected [60]. In other words, this test checks for the correlation of a missing value in a feature
and the value of any other of the features, where correlation indicates that the missing values are
MAR.

The second type of missing data is data missing at random (MAR). For MAR, the probability
that a value from a specific group is missing is the same for all values contained within the same
group of the observed data. In other words, MAR data is unrelated to unobserved values and
may be related to observed values. According to Stef van Buuren, modern missing data methods
generally start from the MAR assumption.

The third type of missing data is data missing not at random (MNAR). In this case, the
probability that a value is missing varies from one observation to another for unknown reasons.
In other words, the missing data is related to the values that they are supposed to represent. An
example of MNAR data includes censored data, such as the body weights of overweight individuals
who are less likely to report their weight. Missing data is classified as MNAR when neither MCAR
nor MAR holds. This case is the most complex and cannot be determined solely on the observed
data and might require a domain expert to handle these cases accordingly. Since the latter might
not be feasible in an automated setting (since a domain expert is not always present). It is
therefore assumed in this work that MNAR data is handled similarly to MAR.

Deleting entries A simple approach to handle missing values is to remove rows or columns
that contain missing values. This approach is not costly and can be applied to all types of data.
However, the disadvantage of this approach is the significant loss of information when a relatively
large amount of data is missing throughout the dataset, which can introduce bias in the data
and reduce performance. In practice, it is regarded as a rule-of-thumb to remove rows containing
missing values when the total number of missing values accounts for at most 5% of all data.

Mean or mode This simple technique replaces missing values with the mean (for numerical
data) or the mode (for categorical data) of non-missing cases of that variable. Despite its simplicity,
it has the significant drawback of possibly making the data biased for data that is MAR or MNAR.

Multinomial logistic regression (MLR) Can be used to predict the probabilities of the dif-
ferent possible outcomes of categorical data, given a set of variables12. This technique works under
the assumption that each independent variable has a single value for each case. A disadvantage
to MLR is that it does not scale well, implying that it becomes computationally expensive to use
when the number of categories is high.

12https://en.wikipedia.org/wiki/Multinomial logistic regression
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Multiple Imputation This technique makes use of single imputation techniques such as mean
or mode, except that the imputed values are drawn multiple times from a distribution rather
than once. This technique creates multiple datasets containing imputed values, which are then
combined into one result by, for example, calculating the mean, variance, and confidence interval
of the variable of concern [93]. The advantage of using multiple imputations is that it works well
on all cases of missing values (MCAR, MAR, and MNAR). Several approaches of the multiple
imputer have been developed, such as multiple imputations by chained equations (MICE) [14]
and scikit-learn multivariate imputer, which models each feature with missing values as an
estimator function of other features [77].

Predictive mean matching (PMM) This technique builds small subsets of data points that
have matching outcome variables13. The data points containing missing values will then be filled
with real values sampled from other entries in the same subset. This method consequently reduces
the bias introduced by imputation [13]. This method was proven to work on both numerical and
categorical variables, according to van Buuren et al. [22].

Hot deck imputation This technique finds substitute values from similar entries that are
similar to those that are missing data. The similarity between entries can be determined by
various algorithms that compute the distance between entries. An example of an algorithm that
could be used is the k-nearest neighbors algorithm.

Imputation through deep learning It is possible to lift limitations from conventional im-
putation methods by making use of deep learning methods. Depending on the deep learning
method used, they are (1) able to compute both numerical and non-numerical values (n-gram
models, Long Short-Term Memory models (LSTMs) [16], and RandomForests [88]), (2) able to
determine underlying distributions (General Adversarial Networks (GANs) [92] and Variational
Autoencoders (VAEs) [65]), and (3) computationally efficient (n-gram models and LSTMs [16]).

3.5.2 Outlier detection

Outliers (also referred to as anomalies) are data points that deviate significantly from most other
obtained results [40]. For numerical values, it is possible to detect outliers by finding specific
patterns or observations in the data that do not follow the expected behavior [28]. According
to Hampel (1973), the total number of outliers in a dataset is around 5 to 10% of the given
dataset [38], depending on the domain of the data and the method used to record it. In the
context of categorical (string) values, there is no concept of outlier detection similar to that of
numerical values, as each value counts as a label. This work considers errata (typos) as string
outliers. For a string entry to be categorized as an outlier, it must be strongly similar to another
entry in the data regarding their string similarities, and it must occur significantly less frequently
compared to the strongly similar entry. A disadvantage to this approach is that edge cases where a
category is similar to another category that occurs more often might also be considered an outlier.
These criteria can therefore be relatively robust if configured accordingly. This subsection covers
a few outlier detection methods for numerical values and some string metrics that can be used to
determine potential outliers in categorical values.

Statistical outlier detection A common statistical measure that is used to detect outliers
is the interquartile range (IQR). In this measure, all data points that fall below Q1 - 1.5·IQR
and above Q3 + 1.5·IQR are considered potential outliers14. This method is useful when the
distribution of the data is known beforehand or when the data follows a univariate distribution15.

13http://stefvanbuuren.name/fimd/sec-pmm.html.
14https://en.wikipedia.org/wiki/Interquartile range
15A probability distribution of a single random variable.
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Distance-based outlier detection Local outlier factor (LOF) computes the local density de-
viation of a given data point with respect to its neighbors [15, 20]. In this method, a data point
is considered an outlier when its density is significantly smaller than the density of its neigh-
bors. Next to LOF, one can also make use of a One-Class Support Vector Machine (SVM). This
technique finds a hyperplane whose distance is maximized from the origin and also separates all
the data points from the origin [86], consequently creating a decision boundary in which a small
fraction of all data points falls outside. These points are then considered to be outliers.

Cluster-based outlier detection These are generally unsupervised detection methods that
group similar data points into clusters. Outliers do not fall into these clusters and can be detected
in this way. k-means clustering, as stated by Chandola et al. (2009), is a clustering technique that
makes k clusters out of the data and calculates the distance of each data point to its neighboring
cluster [28]. A drawback to this method is that a group of outliers can also make clusters and
remain undetected. Another clustering technique is the isolation forest [61], which detects outliers
based on their frequency and difference in values with respect to normal data.

String metrics These metrics are used in mathematics to measure the distance between two
strings of text. One of the most well-known and basic string metrics is the Levenshtein distance (or
edit distance), developed by Vladimir Levenshtein in 1966 [57]. The distance between two words
is calculated by taking the minimum number of single-character edits required to change one word
into the other, where an edit is either an insertion, deletion, or substitution. More formally, given
two strings x, y of lengths |x|, |y| respectively, the edit distance is equal to dist(x, y), where

dist(x, y) =



|x| if |y| = 0

|y| if |x| = 0

dist(x[1..], y[1..]) if x[0] = y[0]

1 + min


dist(x[1..], y)

dist(x, y[1..])

dist(x[1..], y[1..])

otherwise

Other distance metrics that can be considered for string outlier detection include the Jaro-
Winkler distance metric, which favors strings that are similar up to a certain prefix [80], and
the Jaccard distance metric, which compares the intersection of characters to the union of all
characters [44]. This metric is also used by Cerda et al. (2018) in their similarity encoder to
calculate the similarity between two entries [25].

3.6 Existing data cleaning systems

This section describes some commercial state-of-the-art data preprocessing systems that data
scientists can currently use. We distinguish each system based on its level of automation. After
all systems are described, a brief explanation is provided on the gap this work aims to fill and how
to tackle potential shortcomings that are introduced regarding the existing systems.

3.6.1 Manually operated systems

These systems allow users to have full control over the data cleaning process, such as OpenRefine
[7], Data Ladder [2], and DataCleaner [3]. They allow users to repair and transform data with
the help of an interactive and user-friendly interface. Some of these tools also contain intelligent
heuristics to suggest what to do with certain parts of the data at certain steps in the process. An
example of the user interface of one of the manually operated programs (OpenRefine) is depicted
in Figure 3.10.
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Figure 3.10: Part of the user interface of OpenRefine, in which users can easily navigate and filter
data based on specific criteria and observe that certain entries might be the cause of unnecessarily
high-cardinality in the data or errata (e.g., Altbeir vs. Altbier). Screenshot taken from http:

//digitalnomad.ie/simple-openrefine-tutorial/.

A disadvantage of such systems is that they still require a significant amount of time from users,
despite the intelligent suggestions incorporated into the system. Furthermore, manual cleaning
still relies on user interaction in the data cleaning process, which is what we aim to minimize.

3.6.2 Semi-automated systems

These systems offer complete control over the data cleaning process and allow users to define
some degree of automation of the cleaning process. Semi-automated systems, therefore, allow the
incorporation of domain knowledge to increase the data quality significantly [95]. Systems such
as Trifacta Wrangler [9] and Cloudingo [1] aid users with interpreting, cleaning, and transforming
data. Trifacta Wrangler, for example, provides intelligent, visual guidance using (undisclosed)
‘artificial intelligence’ to recommend possible data cleaning steps to increase the data quality.
In addition to the guidance, they also allow users to set up automated pipelines to take care of
repetitive data cleaning tasks for newly obtained data, as depicted in Figure 3.11. Another semi-
automated tool that was recently introduced is CoClean [72], which has an integrated collaboration
functionality that enables domain knowledge injection by multiple users simultaneously. However,
the disadvantages of these systems are similar to that of the manually operated systems; they still
require a human in the loop to clean the data and to set up the automated steps and pipelines.
Even though this probably needs to be performed once, it still require these users to have some
domain expertise to construct efficient pipelines. Furthermore, due to the market that these
systems are designed for, most of them tend to be unavailable (or as a free trial) to the general
public or require purchasing, which might discourage users from using these tools for personal use.

3.6.3 Automated systems

In addition to manual and semi-automated systems, several automated data cleaning systems have
been introduced. Some of their main functionalities include data repairing, data benchmarks (i.e.,
evaluating the quality of the data based on criteria), and pipeline generation. These systems have
proven that data cleaning can be automated and, therefore, less time-consuming. Examples of
such data cleaning tools are ActiveClean [54], AlphaClean [55], HoloClean [83], SampleClean [53],
and Raha [63]. These systems optimize the quality of the data or the generated pipelines using,
for example, search algorithms, heuristics, or weakly supervised learning algorithms.
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Figure 3.11: User interface of Trifacta Wrangler, showing how automated pipelines can be set up
to perform a set of (cleaning) steps. Image taken from https://www.trifacta.com/.

However, most of these systems are not focused on automated string handling [53, 54, 83] or
are focused on specific steps such as error detection and correction [55, 63]. Furthermore, these
systems are rarely used by data scientists due to their lack of trust in the automation process
[72], since assuring high quality data usually requires a human in the loop. Without any overhead
or control in the process, there can be a degree of uncertainty about whether the system applies
correct cleaning strategies. The degree of uncertainty would increase based on how generalized
the system is. These are essential aspects to consider when designing an automated data cleaning
system. For example, ensuring a degree of trust and certainty can be achieved by communicating
to users which decisions were made during the process and which data cleaning steps were applied.

3.6.4 Addressing shortcomings of current systems

This work aims to fill the gap between automated string (feature type) preprocessing and encod-
ing. Current systems only provide intelligent heuristics for cleaning datasets (sometimes without
focusing on string feature types) or are limited to automating cleaning steps for numerical data.
When constructing an automated system, it is essential to assess the shortcomings present in such
systems (e.g., trust and uncertainty) and attempt to minimize them. As mentioned earlier, ensur-
ing a degree of trust and certainty could be achieved by communicating to users which decisions
were made during the process and which data cleaning steps were applied. Furthermore, the
limited number of steps in an automated system can be addressed by solely focusing on handling
string data. However, this has the disadvantage that numerical data is not thoroughly cleaned.
Future work could address this concern by constructing automated numerical value cleaning on
top of this work.
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Chapter 4

Methodology

Based on the literature review of the previous chapter, it is now possible to design a methodology
to handle the processing and encoding of string features robustly. In this thesis, we decided on
developing a Python framework based on recent literature to address some of the issues regarding
automated string handling. More specifically, the goal of the framework is to automate the hand-
ling and cleaning of string data, enrich the string data where possible, and inform users about
various properties regarding string data in the dataset.

This chapter provides an overview of the framework and its design, along with an in-depth
description of each module relevant to the scope of the thesis. Furthermore, additional modules
that were implemented for completeness but are less relevant to the scope of the thesis are also
briefly explained. A brief demonstration of how the framework is used in practice is found in
Appendix A

4.1 Global framework overview

The main procedure of the framework consists of five steps made up of six separate modules in
total. The modularity of the framework has the advantage that users can run modules separately
without having to follow the entire cleaning process. This might, however, require users to pass
additional information (e.g., data types) to certain methods. A representation of the workflow of
the framework is depicted in Figure 4.1.
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Figure 4.1: General overview of the workflow of the framework.
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The framework takes a Pandas DataFrame as input and any of the following (optional) para-
meters:

• y: a column containing the target values or classes of the dataset (set to None by default).
If information is passed through this parameter, the framework can encode the column and
is able to use the target encoder for encoding string columns in the data.

• encode: a Boolean indicating whether the data needs to be encoded or not (set to True

by default). This option is useful to users who want to interpret the cleaned string data or
leverage the framework into their data preprocessing pipeline.

• dense encoding: a Boolean indicating whether encoded entries consisting of multiple fea-
tures should be put into one column as an array (set to True by default). If this parameter is
set to False, the encoded data is split into multiple columns, each consisting of one feature.
This option is helpful to reduce the number of columns in the data to retain a clear overview.
However, for training, it might still be necessary to create a column for each feature.

• display info: a Boolean indicating whether summarized information on each column must
be displayed after the framework is finished (set to True by default). This option allows users
to interpret the data and see an overview of the decisions made by the framework. Currently,
the information consists of the number of unique values, the data types, the missing values,
the outliers, the ordinality, and which encoding has or would be applied on each column.

Before the first step in the procedure, the framework checks and removes any empty columns
to ensure robustness during missing value handling.

The first step in the procedure is to infer the data type or the string feature type of each column
in the DataFrame. Each string column in the dataset is inferred either as a specific string feature
type or as a ‘standard’ string whose feature type could not be inferred. Both cases are handled
differently in the fourth step. In addition to data type and string feature type inference, the
framework also identifies missing values and data type outliers in the data, which are handled in
the second and third steps, respectively, to ensure robustness in later steps. This property makes
it essential to perform data type and feature type inference in the first step of the framework.

The second step makes sure that all missing values in the data are addressed. The specific
mechanisms (deletion or imputation) ensure that the most fitting missing value handling is applied
and that missing values will not cause any issues in the upcoming steps.

The third step aims to remove and replace any outlying values in string data if applicable. The
framework handles both data type outliers and string outliers. As mentioned in 3.5.2, a string
entry is considered an outlier when its frequency is disproportionate compared to another entry
it shares a high similarity score with. In other words, this step aims at handling entries with
incorrect data types and strings that contain errata (typos).

The fourth step consists of two modules. The columns that were inferred in step one as string
features are further processed with the aim to, for example, reduce string complexity or obtain
additional features that can be useful for further data analysis by domain experts. The standard
string columns are classified into either nominal or ordinal data to ensure that the correct encoding
strategy can be applied.

The fifth step is to encode each string column according to its cardinality and ordinality. As
mentioned before, this step is executed by default unless the user indicated that the data should
not be encoded.

Finally, either the encoded DataFrame or the processed DataFrame will be returned. In both
cases, additional information on the DataFrame is provided to the user (if indicated) to give some
insight into the decisions made during the process, such as the technique applied to handle missing
values or which encoder is applied for each string column.

The following sections give an in-depth description of how each module operates and which
techniques are used.
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4.2 String feature type inference

Before being able to handle data properly, it is vital to distinguish between different data types
(e.g., integers, strings, datetime, etc.) that are present such that the framework can apply the
corresponding cleaning steps to each column. In addition to detecting different data types, it
must also be possible to detect specific string feature types in the data. This property allows the
framework to assign specific processing steps that can benefit data enrichment and complexity
reduction. Furthermore, it is also relevant to detect missing entries and potential outliers in the
data to ensure that the framework is robust to these cases and can correctly identify and handle
them accordingly. Therefore, this module aims to infer different data types and string features in
the data, along with detecting missing values and outliers.

To achieve this goal, we build on top of ptype; the work of Ceritli et al. (2020) on data type
inference using Probabilistic Finite-State Machines (PFSMs) [27]. As mentioned in 3.1.2, PFSMs
are a class of mathematical models that represent a state machine where each transition has a
certain probability associated with it. Ceritli et al. constructed a PFSM for each data type and
missing values and set up an inference model which was able to outperform existing methods [27].
In their library, each PFSM is instantiated as a separate class which is part of a superclass that
handles the model inference. Each PFSM class handles the construction of the state machine
using the greenery library [6], which converts any regular expression into a state machine, and
the initialization of the weights of each transition from the constructed state machine. Upon
instantiation of a ptype session, users are able to fit the data into the model using schema fit()

and output the results using show(), as can be seen in Figure 4.2. The results include the inferred
type, the normal values, the missing values, and the anomalous values (i.e., outlying data type)
for each column in the data.

Figure 4.2: Using data type inference using ptype on the Car Evaluation dataset. Image taken
from https://github.com/alan-turing-institute/ptype/blob/develop/notebooks/intro-

to-ptype.ipynb.

Leveraging this technique onto our framework for (string feature) type inference is done as
follows. We first create a set of new PFSMs based on nine different string features. Constructing
new PFSMs is done by creating regular expressions that characterize these strings. After that,
the PFSMs are instantiated as new classes and included in the list of available PFSMs that ptype
use upon instantiation of a new session, where they are used as part of the generative model
in the posterior distribution. This approach is advantageous because the inference model does
not require alteration to handle these newly included PFSMs. Given this property, it becomes
possible to perform missing value and outlier detection on the selected string feature types, which
would otherwise be more difficult to implement using different methods. As mentioned by Ceritli
et al. (2020), the PFSMs can be trained to tune the probabilities that were initially assigned
to them (which is a uniform probability distribution) [27]. Training would allow the “correct”
machine to give higher probabilities to the observed entries. However, we decided not to apply
training on the string feature type PFSMs, as it already showed to perform well without training
during implementation and evaluation. Furthermore, training does not insert or remove transitions
between states or create new states based on the training data, making it less attractive to consider
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relative to the added benefit. As a source of inspiration for deciding which string features were
worth addressing, we made use of the variable types presented in Featuretools1 that users can
assign to data columns [4].

We implemented the following string feature type PFSMs in our framework:

Coordinate This string feature type represents GPS or Degree-Minute-Second (DMS) coordin-
ates such as N29.10.56 W90.00.00, N29:10:56, and 29°10’56.22"N. Coordinates can be distin-
guished from other string features based on the following characteristics:

• Two sequences of at most two digits and a third sequence which is a float with at most two
digits before the decimal point.

• A character that separates the three sequences of digits (e.g., . or :). In the context of
DMS coordinates, these characters are °, ’, and " respectively.

• A cardinal direction at the beginning or at the end of the string (i.e., N, E, S, and W).

Day This string feature type represents the names of the seven days in the week, such as Monday.
These names can appear in data in several formats. For example, Monday can be written as Mon

and Mo. Days can be distinguished from other string features based on the following characteristics:

• A prefix of at least two characters, indicating the day of the week (e.g., Mo for Monday, Th
for Thursday, etc.).

• The suffix day, if present.

• A distinct set of characters that comes after the prefix and before the suffix (e.g., if the
string is Thursday, then Th should be followed by urs).

E-mail This string feature type represents all valid e-mail addresses from any domain such as
Jane@tue.nl and john.doe@hotmail.co.uk. This feature can be distinguished from others based
on the following characteristics:

• The character @ which is between two sets of characters.

• A substring in front of the @ (i.e., the name of the e-mail) which is composed of valid
characters (e.g., the e-mail address #@*%#$@hotmail.com is invalid as the characters before
the final @ cannot be included in an e-mail name).

• A substring that comes after the @ which is composed of valid characters and at least one dot
inbetween those characters (e.g., name@hotmail is not a valid e-mail address as the domain
name is incomplete).

Filepath This string feature type represents paths within a local system such as C:/Windows/

and C:/Users/Documents. This string feature type can be written in a handful of varieties,
making it slightly more challenging to make a robust regular expression out of. In this thesis, we
consider filepath string features to be either a path with or without a file name (and possibly a file
extension) at the end. Filepaths can be distinguished from other string features by the following
characteristics:

• A series of substrings which are separated from each other using either / or \ (e.g., home/users).

• Each substring cannot contain any of the following characters: \/:*?"<>|

• If present, a prefix that represents the root disk or a sequence of dots followed by a slash or
a backslash (e.g., C:/, ../, etc.).

1The variable types can be found at https://featuretools.alteryx.com/en/stable/getting started/varia

bles.html
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Month This string feature type represents all twelve months in a year, such as January and
April. Similar to the day string feature, months also may appear in several varieties. Months can
be abbreviated based on their unique prefix (e.g., January can be abbreviated to Jan) or they can
be accompanied by a day and year, which makes the string feature become a specific DateTime
format (e.g., January 1, 2000). With this knowledge in mind, months can be distinguished from
other string features based on the following characteristics:

• A prefix of at least three characters, representing a unique month (e.g., Apr).

• If present, the remaining substring that comes after the prefix (e.g., il comes after the prefix
Apr).

• If present, a sequence of at most two digits before or after the month which represents a day
in the month (e.g., 1 January or January 1).

• If present, a sequence of at most four digits or a sequence with prefix ’ followed by two
digits that comes after the month which represents the year (e.g., January 2000 or January
’00). Both day and year can be present at the same time.

Numerical There are various entries that are relatively easy for users to distinguish as numerical
values but are usually inferred as strings by any type detection or inference technique due to
certain non-numerical characters. For example, the entry 100-200 can be interpreted by users as
a range between 100 and 200, whereas a program would identify this entry as a string because
of the hyphen. It is therefore important to categorize such entries as a string feature type to
properly handle and process them. We obtain numerical string features using any of the following
characteristics:

• Between two sequences of digits, one of the following characters: -+ /:;&’ A space or the
substring to is also applicable (e.g., 100 to 200).

• Before a single sequence of digits, any of the following words: Less than, Lower than,
Under, Below, Greater than, Higher than, Over, Above.

• Before or after a single sequence of digits, any of the following characters: <>+$%=

Sentence This string feature type is composed of a sequence of words, typically found in datasets
containing reviews or descriptions. It is slightly more challenging to express this feature type as a
regular expression compared to the other string features because of its overlapping characteristics
with regular string entries consisting of a couple of words. However, it is still possible to perform
string feature type inference for sentences based on the following characteristics:

• A substring of characters followed by a space for at least five times (i.e., the entry is at least
six words long).

URL This string feature type represents any link to a website or domain such as https://www.tue.nl/
and http://canvas.tue.nl/login. The characteristics of this string feature type are similar to
that of filepaths, with a few exceptions:

• An optional suffix which represents a certain protocol (e.g., http://).

• A series of at most four character sequences, separated from each other by a dot (e.g.,
www.google.com or google.com). Note that the last (pair of) sequence(s) contain(s) at
most three characters.
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Zip code This string feature type represents zip or postal codes from a handful of countries.
Note that we can only infer zip codes containing non-numerical characters as numerical-only zip
codes are much more difficult to infer using PFSMs without overlapping actual numerical features.
Given that each country that uses non-numerical postal codes has a specific set of characteristics,
we decided to use some of the regular expressions created by GitHub user jamesbar22.

After each string feature type PFSM is created and included to the instantiated ptype session,
users are now able to infer these string features similarly to how data types are inferred in ptype.

4.3 Processing string features

Once the type inference determined that there are certain known string features in the data, it
is now possible to process these further based on which string feature type was inferred. We
can perform specific processing automatically because type inference is based on regular expres-
sions, essentially describing the format of each string feature. This processing step is aimed at
accomplishing at least one of the following goals for each string feature:

• Reduce overall string complexity by, e.g., removing common substrings.

• Assign or perform specific encoding techniques.

• Enhance the current dataset by extracting additional information from certain string fea-
tures.

The techniques applied to each string feature type are related to at least one of these goals
and vary in complexity based on string feature complexity and possible information extraction.
For example, it may be more valuable to reduce the number of words in a sentence string feature
to only the most relevant ones, whereas zip codes may be used to fetch additional data such as
latitude and longitude values. Each technique was applied based on what is thought to be the
most suitable technique to accomplish one of the goals mentioned above. After each string feature
type is processed, the framework will also return a number alongside the data to indicate whether
the data needs to be encoded and which encoding technique should be applied. The value of this
number is based on the resulting data type after processing and the cardinality or ordinality of
each string feature type (which is pre-defined for each type based on empirical observation of what
each string feature represents). The techniques applied on each inferred string feature type are
described in the remainder of this section.

Coordinate Recall that this string feature type is formatted with specific separators and a
letter at the start or the end of the string. It is also possible that the entries are composed of two
coordinates simultaneously. Thus, with c ∈ {N,E, S,W} and x ∈ [0..9], the following formats are
possible:

• c xx.xx.xx, xx.xx.xx c, or xx.xx.xx c xx.xx.xx c

• c xx : xx : xx.xxxx, xx : xx : xx.xxxx c, or xx : xx : xx.xxxx c xx : xx : xx.xxxx c

• c xx◦ xx′ xx.xxxx”, xx◦ xx′ xx.xxxx” c, or xx◦ xx′ xx.xxxx” c xx◦ xx′ xx.xxxx” c

The goal for processing this string feature type is to transform each entry into a numerical
representation of the coordinate. This numerical representative is also known as a latlong value
(latitude, longitude, or both). Additionally, if two coordinates are given for each entry, we can
extract additional information from this feature because these pinpoint the exact location in the
world. The workflow of this process is depicted in Figure 4.3.

2The list of international postal codes can be found at https://gist.github.com/jamesbar2/1c677c22df8f21

e869cca7e439fc3f5b.
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Split string entry
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Figure 4.3: The overall workflow for processing coordinate string features.

In the first step, the string feature is split up into two separate parts for each coordinate in
the entry, in which one part represents the cardinal direction of the coordinate, and the other part
represents the numerical information. The part containing the numerical information is further
split up into three separate parts at the indices where the separators are (e.g., 90.00.00 is split
up into [90, 00, 00]). This results in a list consisting of several parts.

In the second step, the current format of the coordinate string feature is converted into the
corresponding decimal latlong value. The string feature type is formatted using degrees, minutes,
and seconds. This format can be converted to representative decimal values using the following
formula3:

decimal =

{
−(degrees + minutes

60 + seconds
3600 ) if c ∈ {S,W}

degrees + minutes
60 + seconds

3600 otherwise

In the final step, additional information is extracted if the string feature contains both the
latitude and the longitude values. We can distinguish between entries containing only one or two
latlong values based on the length of the list. Note that latitude and longitude values that appear
in separate columns are seen as two separate coordinate columns containing either latitude or
longitude values. Once this distinction is made, the following operations are performed:

• Including the Earth-Centered, Earth-Fixed (ECEF) representative of the latlong value in
the data. This representative represents latlong values as x, y, z-coordinates on a three-
dimensional graph. To calculate these coordinates, we use an approximation of the coordin-
ate transformation in Hoffmann-Wellenhof et al. [41] which gives us the following equations:

3Taken from Geographic coordinate conversion at https://en.wikipedia.org/wiki/Geographic coordinate c

onversion
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x = sin
(π

2
− latitude

)
· cos(longitude)

y = sin
(π

2
− latitude

)
· sin(longitude)

z = cos
(π

2
− latitude

) (4.1)

Even though latlong values are simple to use with different applications, some users might
prefer the ECEF representative as these values can be plotted in a three-dimensional graph.
Both latlong and ECEF are returned to the user, who may choose between using either of
them based on their preference. Additionally, the decision to include both relies on the fact
that removing either the latlong values or the ECEF values takes less effort from the user
than transforming these values manually.

• Including additional information on the location of the latlong value in the data. The
geopy library [5] is a client for several popular geocoding web services. It makes use of a
selection of APIs in order to obtain additional information for a given input. In our case, we
can communicate the latlong values to one of these APIs to obtain metadata about which
country and postal code the latlong values point to. In case no country or postal code can
be found, the resulting value is set to unknown. These additional features are included in the
data to uncover latent relations between entries that are not observed in the latlong values,
which could increase the overall performance of a machine learning model running on the
data. Postal codes and country codes may be already included in the data, which is not
necessarily a problem as the user can remove the additional information with little effort.

After these operations are performed, the string feature has been processed and additional
features have been obtained. If the user decides to encode the data, the extracted postal and
country codes will receive a nominal encoding in the final step of the framework. An example of
how the data is transformed is depicted in Figure 4.4.

Day As this string feature type is the least complex out of all inferred string features, it is also
the simplest to process. The aim of processing this string feature type is to remove as much
redundant information as possible, as this may help reduce the encoding time while maintaining
the same task performance. This aim is achieved by only considering the first two characters in
each entry and removing the remaining ones. Considering only the first two characters for days is
the most reduction that can be applied while still being able to make a distinction between each
unique day of the week. If the user decides to encode the data, this string feature will receive a
nominal encoding in the final step of the framework. An example of how the data is transformed
is depicted in Figure 4.5.

E-mail The goal of processing this string feature type is to reduce its overall string complexity
such that the overall dimensionality of the encoded strings is reduced. This aim is relatively simple
to achieve since all e-mail addresses adhere to a specific format, namely name@domain.topleveldom

ain. The process is split up into two main steps.
The first step involves removing the longest common suffix of all entries. Removing the longest

common suffix helps reduce string length, which consequently can impact string complexity. It
also helps with emphasizing the main differences between all entries, as the proportion of dif-
ferences between each entry is increased. In order to remove the longest common suffix, it is
possible to make use of the built-in os library in Python. Using the library, one can call the
function os.path.commonprefix(list) to obtain the longest common prefix of length n, which
is a function that iterates over a list of strings and finds the longest common prefix. After the
longest common prefix is found, slicing away the first n characters for each entry gives the de-
sired result. To find the longest common suffix, one can reverse all the strings before calling
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(a) Single coordinate per column.

(b) Both coordinates in a single column.

Figure 4.4: Coordinate string features before and after processing.

Figure 4.5: Day string features before and after processing.

os.path.commonprefix(list). In terms of reducing string complexity, the worst-case scenario
occurs when no common suffix was found, and the best-case scenario occurs when the longest
common suffix is equal to @domain.topleveldomain and only the usernames remain in the list.

The second step removes any special characters from the remaining data and also the top-level
domain if these were still present. The reason for removing the top-level domain is because this
substring is believed to be the least beneficial in terms of performance and computation time.

After both steps are performed, the final string feature will at best be reduced to contain only
the names of each e-mail address and at worst be reduced to the name and domain. If the user
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decides to encode the data, this string feature will receive a nominal encoding in the final step of
the framework. An example of how the data is transformed is depicted in Figure 4.11.

Figure 4.6: E-mail string features before and after processing.

Filepath and URL This process is aimed to reduce string complexity and is similar to how
e-mail addresses are processed. Given that filepaths are formatted hierarchically, and URLs also
adhere to a specific format, it is relatively simple to remove redundant substrings for both of these.

The procedure is split up into two separate parts. The first part removes the longest common
prefix and suffix from all entries to emphasize the differences between all entries and reduce
overall string complexity. Removing the longest common prefix and suffix is done using the same
procedure as described for e-mail addresses. The second step is to replace all special characters
with a space using regular expression splits and list filtering for consistency. The final result is a
string feature with reduced complexity and consistent characters. If the user decides to encode
the data, these string features will receive a nominal encoding in the final step of the framework.
An example of how the data is transformed is depicted in Figure 4.7.

(a) Filepaths.

(b) URLs.

Figure 4.7: Filepath and URL string features before and after processing.
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Month Given that a variety of formats of this string feature type can be inferred, several dis-
tinctions have to be made before the feature can be processed correctly. The goal of processing
this string feature is to encode this feature into a numerical representation without loss of inter-
pretability by the user. An overview of the process is depicted in Figure 4.8.

Split string entry

Map string month
to integer

Check for digits

Set digit to year

Check for non-
digits

Map string month
to integer

1

2

3Length?

Yes

Nois digit?

Concatenate
values

NoYes is digit? Map string month
to integer

Check
characteristics day

and year

Yes

No

is year? Set digit to year

Set digit to day Concatenate
values

yymm format yymmdd formatmm format

month string feature

Figure 4.8: The overall workflow for processing month string features.

The string feature can take up any of the following formats:

• month: a string of at least length 3 representing the month (e.g., January or Jan).

• yyyy month, ’yy month, month yyyy, month ’yy: The month and year, where the year is
either all four digits or the last two digits of the year (e.g., ’21 Jan). Note that the separator
is not limited to a space.

• dd month yyyy, dd month ’yy, month dd yyyy, month dd ’yy: The day, month, and year
of an entry, where days can also be a single digit value (e.g., January 1, ’21).

The process starts by splitting and removing all special characters except for the apostrophe,
resulting in a list with a length of at most 3. The next step is to identify what each component in
the list may represent based on the length of the list.

If the length of the list is 1, the list can only contain the month and the corresponding numerical
representation of the month will be assigned to this entry.

If the length of the list is 2, the list will contain a month and year. In this case, the entries
will be distinguished based on whether the value is numeric and whether the value contains an
apostrophe. In any case, the last two digits of the year will be concatenated to the numerical
representation of the month, and this new value will be transformed into an integer.

If the length of the list is 3, it means that the list is composed of a day, month, and year. It
is necessary to distinguish between day and year, as these can occur in any particular order in
the entry. Out of all three entries, the month will first be determined because it will be used to
limit how many days this particular month has. Next, an item in the list will be defined as a year
when there are four digits in the entry, when the item contains an apostrophe, or when a day has
already been defined. The value is set as a day when none of the previous options apply and when
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the value does not exceed the maximum value of the day of the corresponding month. Finally, all
three digits will be concatenated and transformed into an integer.

After all three cases have been considered, each variety of the string feature will have been
properly processed into their respective numerical values, i.e., mm, yymm, and yymmdd, respectively.
As the string feature is already transformed to its numerical representation, no encoding would
be required if the user requested so. An example of how the data is transformed is depicted in
Figure 4.9.

(a) Only months.

(b) Day, month, and year.

Figure 4.9: Month string features before and after processing..

Numerical Recall that there exist numerical values that are inferred as strings because they
contain special characters. Inferred numerical string features represent either an interval or a
numerical value with at least one special character (e.g., $500, 80+3). The goal for processing this
string feature type is to determine the order of the values and to encode these accordingly.

The procedure consists of two steps. In the first step, the string feature format is determined
by checking which part of the regular expression of the PFSM matches with the entry and is then
processed accordingly. Making this distinction before processing ensures that the correct ordering
of the values is not altered. The processed entries are coupled with their original value for the
second step. Each case is processed in the following way:

• Intervals such as 100-200: The entries are split on the special character and the mean of
the two numbers of each entry is taken using numpy.mean.

• Singular value intervals and values with special characters as a prefix or suffix such as <100
and 20%: Remove all special characters.

• Non-interval values such as 80+3: Each entry is split based on the special characters, and
each split is considered as a new feature in the DataFrame. For example, the value 80+3 is
processed into [80, 3] and now represents two features instead of one. For these values,
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one could also consider prepending all but the first number in the split with zeroes and
concatenating the splits such that all entries have the same length. However, this idea was
omitted since it requires more work without being beneficial in terms of performance.

In the second step, the tuples containing original and processed values of the interval data
are sorted on the latter value using the built-in sort() function. The result is a list of tuples in
the correct order, and the encoded values are simply the mapping of each original value to the
index of the list where the value is positioned. As the string feature is already transformed to its
numerical representation, no encoding would be required if the user requested so. An example of
how different numerical string features are processed is depicted in Figure 4.10.

(a) Non-interval data.

(b) Interval data.

Figure 4.10: Numerical string features before and after processing.

Sentence The goal for processing sentence string features is to remove redundancy in the entry
and make them more relevant for use in tabular data. The technique used to achieve this goal
is the nltk word tokenizer [17], which takes a sentence and divides these into tuples containing
each word and their associated part of speech. Then, every word associated with a noun is joined
together with a space into a single string which is then passed on. The resulting entry is a group
of nouns that supposedly represent the essence of the sentence and are ready to be encoded in the
next step of the framework. If the user decides to encode the data, this string feature type will
receive a nominal encoding in the final step of the framework. An example of the procedure is
depicted in Figure 4.11.

Note that in the context of our thesis, we want to process sentences to be considered useful
for certain tasks performed on tabular data without increasing the dimensionality of the data
immensely. This statement implies that this processing step may not be the ideal procedure in
the context of specific NLP tasks.
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Figure 4.11: Sentence string features before and after processing.

Zip code Processing this string feature type is similar to that of coordinate string features,
except that the first and second steps are unnecessary. The goal of processing this string feature
type is to extract additional features from each entry to potentially discover latent relations that
are not presented by zip codes. Using the geopy library, we can extract the following features for
each entry:

• City

• Country

• Latitude and longitude

In case the API was not able to identify a feature corresponding to the zip code, the resulting
value for that entry will be set to unknown. Additionally, we calculate the ECEF representative
of the latlong value using the formulas described in 4.1 to provide users with the choice to use
either one. If the user decides to encode the data, the zip code string feature will receive a nominal
encoding in the final step of the framework. An example of how the data is transformed is depicted
in Figure 4.12.

Figure 4.12: zip code string features before and after processing.
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4.4 Ordinality detection

There will be string feature types that the PFSMs could not explicitly infer because they have an
‘unknown’ type. In this case, such string columns are inferred as standard strings. In order to
make the most out of these unidentified string features, it is possible to determine whether the data
in the column is ordered or unordered (i.e., whether the data is ordinal or nominal). Ordinal data
is typically described as nominal data with a defined ranking, where the distance between each
rank may vary [10]. Examples of ordinal string data can be found in surveys, where questions and
possible answers are laid out to the participants in a Likert-type scale4. Recall from the literature
review that encoding ordinal data using an order-based encoder helps to reflect the ordering and
structure of the original data to the machine learning model and the user. Furthermore, it helps
to reduce the complexity of the data after encoding when the correct encoding techniques are
applied. For example, applying a one-hot encoder to all string columns regardless of ordinality
would significantly increase the dimensionality of the data, whereas an approach to apply an
ordinal encoder to all ordered data would result in a significantly lower dimensionality increase.
Thus, in this step of the overall procedure, the goal is to predict which of the standard string
columns are ordered such that these can be appropriately encoded in the last step. The prediction
should be accurate and robust to changes in data characteristics such as length and values.

4.4.1 Choosing a model

To achieve this goal, we can make use of one of the classification models for ordinality prediction
that were described in Section 3.2. At first, it seemed that the Bayesian approach proposed by
Valera et al. (2017) was viable for our work to discover the statistical data type of a column [90].
However, this approach was not found to be the most optimal strategy for this framework. As
mentioned in the previous chapter, their approach exploits the key idea that a latent structure
in the data captures statistical dependencies among different objects. For this, the assumption is
made that the input data has a latent distribution from which a classification can be derived. This
assumption might be error-prone when nominal and ordinal data share the same latent distribution
or when the correct latent distribution is not used. This limitation is observed in the results of
the paper of Valera et al., where some columns are inferred as “categorical or ordinal”, as can be
seen in Figure 4.13.

Figure 4.13: Results from Valera et al. (2017) on the Adult and German datasets. Note that
certain columns are inferred as cat./ord. as the latent distribution in the dataset can resemble
both statistical types [90].

4The Likert scale is a psychometric scale that could, for example, be used to measure the level of agreement of
participants on a particular subject. This scale has been developed by Rensis Likert in 1932 [58].
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As an alternative solution, we propose to solve the prediction of ordinality in data as a binary
classification task. In the previous chapter, we described four different classifiers that could be
used to address the problem:

• Decision tree classifier: The simplest model out of the four, relatively easy to work with,
and relatively fast in terms of prediction time. However, decision trees are non-robust to
small changes in the data and are prone to overfitting due to their simplicity.

• Random forest classifier: Tackles the issue of overfitting for decision trees, but it is
generally not memory efficient and its performance can still be affected by various data
characteristics.

• Gradient boosting classifier: Tackles both issues of the random forest classifier and is
known to outperform. The model is slightly more complex compared to the previous two.

• Neural network classifier for tabular data: Recent studies have shown that they can
outperform gradient boosting classifiers in terms of accuracy either by constructing tree-like
neural networks or by leveraging feature groups obtained by gradient boosting decision trees
[50]. These models are much more complex in comparison to the previous three classifiers.

Out of these four classifiers, we opted for the gradient boosting classifier (GBC) due to its
overall performance relative to the overall complexity of the model. The idea is to train the GBC
on a set of labeled training samples and to store this trained GBC into the framework.

After choosing a classifier, it is essential to make sure that it is robust to differences between
various datasets. We propose a heuristic implementation based on feature engineering that extracts
relevant features from the data for classifying ordinality to tackle this problem. As mentioned in
Section 3.3.3, feature engineering is the process of applying domain knowledge to raw data in
order to extract specific characteristics and properties. The characteristics and properties can be
retrieved from any dataset regardless of its composition, making it a valuable strategy to generate
data samples from data columns that differ in length and context.

4.4.2 Implementation

The process of classifying whether data is ordered or unordered can be divided into two parts,
namely (1) feature extraction from the data using feature engineering and (2) classification of the
obtained sample using a trained GBC. An overview of the process of the workflow is depicted in
Figure 4.14.

In the first step, eight features are extracted from a column of string data. Each feature is
constructed based on how relevant it would be to solving the problem. Some of these features are
general, whereas other features may resemble characteristics typically found in either ordinal or
nominal data. After each feature is extracted, they are appended to a list that represents a single
data sample. A brief description is provided regarding each feature’s relevance for classification
and how these features are obtained from the data.

• The total number of rows in the column: It is possible that the number of rows in combination
with other extracted features can increase the performance of the classifier. Obtaining this
value is done by measuring the length of the column.

• The number of unique values in the column: In general, nominal data tends to vary more
in cardinality as opposed to ordinal data. Furthermore, some ordinal data columns tend to
adhere to Likert-scale characteristics regarding the possible number of unique entries, which
also limits its cardinality. The value is obtained by counting all unique entries in a column.

• The ratio between the number of unique values and the total number of rows: As a rule of
thumb, some domain experts tend to classify data as ordinal when the ratio between the
unique values and the total number of rows is at most 0.05. The ratio for nominal data
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Figure 4.14: Workflow of ordinality prediction for a given string column.

tends to be at most 0.2. As a result of this rule of thumb, we extract the ratio for use in the
classifier by dividing the number of unique values by the total number of rows.

• The mean of the variance of the distance between the word embeddings of unique entries: The
idea behind extracting this feature is that the word embeddings of certain entries showcase
interesting linear substructures in the word vector space. By taking a pre-trained word vector
space, the classifier may distinguish between ordered and unordered data based on differences
in the substructure. The first step is to split each entry into a set of words, which are then
embedded using a pre-trained word vector space. This work makes use of the Wikipedia word
vector space by GloVe, which consists of over 400 000 words in the vocabulary embedded
into a 50-dimensional vector space [78], to assign each word in an entry to a vector. A
random point in the vector space will be assigned to a word if it does not appear in the
pre-trained corpus. Next, the mean of all dimensions for each word vector in the entry is
calculated such that all word vectors of the entry are now represented as a single point in
the 50-dimensional vector space. After this is done for all entries in the column, the variance
between each dimension is calculated. Finally, the mean of each dimension is taken, and the
resulting value is a single float value that can be used to potentially distinguish ordered data
from unordered data.

• Whether the column name is commonly used in ordinal data: There are a set of keywords that
can commonly be found in column names for ordinal data. Examples of certain keywords
include grade, stage, and opinion. By checking whether a column name is contained within
one of those keywords and vice versa, we can tell whether the data in the column is more
likely to be ordinal or not. Note that keywords for column names used in this work are
created based on domain expertise, which means that results may vary when other keywords
are used.

• Whether the column name is commonly used in nominal data: The approach of extracting
this feature is similar to checking ordinal traits in the column name, except that the names
obtained via domain expertise are now commonly used in nominal data. Typical nominal
column names include address, city, name, and type. Again, since the names are based on
domain expertise, results in performance may vary when other names are used.

• Whether the unique entries contain keywords that are commonly found in ordinal data:
Extracting this feature is similar to the two aforementioned techniques, except that ordinality
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will now be implied based on keywords commonly found in ordinal data. The keywords that
were used in this work are adjectives and nouns that are typically found in Likert-scale
questionnaires [64].

• Whether the unique entries share a number of common substrings: Ordinal data tends to
contain entries with overlapping substrings. For example, the strings disagree, agree,
and wholeheartedly agree all contain the substring agree. By checking whether there are
common substrings in the data of sufficient length, the classifier may associate the occurrence
of substrings with the implication that the data is ordinal.

In the second step, the trained GBC is loaded from memory, and the new data is passed
to the model. The model then predicts the original string column based on the features in the
data. The model is trained on a meta-dataset consisting of the aforementioned features from 149
string columns (81 ordinal and 68 nominal string columns) from a total of 29 datasets. The meta-
dataset took at most two hours to create and the GBC took less than ten seconds to train, which
is feasible considering that these operations only needed to be performed once. Nevertheless, it
could be efficiently retrained on new data when desired.

Both steps are performed on all string columns in the data. The result is a list of integers of
either 0 (column classified as ordinal) or 1 (column classified as nominal), where the i-th value in
the list corresponds to the i-th string column processed in this module. This list is used to assign
the appropriate encoding technique to each string column.

4.5 Encoding

After all inferred string feature type columns are processed and the ordinality of other string
columns is determined, the string data is ready to be encoded based on the result of the previous
step. Each string column is encoded using either a nominal encoder or an ordinal encoder. Gen-
erally, encoding string data to a numerical representation is required for most machine learning
models as they cannot deal with non-numerical values. This module aims to encode all string
columns properly while ensuring a reasonable dimensionality in the resulting dataset. This goal
can be split up into two parts. The first part of the goal is ensuring that nominal string columns
are encoded in an efficient and scalable manner while retaining (most of) the information, re-
gardless of their cardinality. The second part of the goal is ensuring that ordinal string columns
are encoded such that the actual order between different categories is properly captured since
this might prove beneficial for the performance of a machine learning task. The approaches to
achieving these sub-goals and their implementation are described in the upcoming subsections.
An overview of the workflow of the encoding step is depicted in Figure 4.15.

Note that the string data is only encoded if the user indicated that this should happen. Giving
the users the option not to encode the string data allows them to apply an encoding technique
themselves and deploy the library in an automated pipeline. Furthermore, this option allows users
to analyze the cleaned data after being processed instead of performing tasks on them shortly
after.

4.5.1 Nominal encoding

Since the data potentially consists of morphological variants or has a high cardinality, the most op-
timal choice for encoding the data in an automated setting would be to make use of the dirty cat

library by Cerda et al. [26]. The significant benefit these encoders offer compared to the stand-
ard nominal encoders is that they take morphological variants into account. These morphological
variants are, for example, different string categories that represent the same entity. dirty cat can
capture and represent these similarities in the encoded data. Furthermore, the high-cardinality
string encoders of dirty cat ensure that the dimensionality of the encoded data does not exceed
a certain number of dimensions, which reduces the overhead and complexity of the resulting data
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Figure 4.15: Workflow of encoding a given string column and the passed or predicted ordinality.

while maintaining most of the relevant information needed for learning algorithms. In addition
to the dirty cat encoders, the target encoder is also implemented when the target classes are
balanced, i.e., when the frequency of each target class is relatively the same. This work considers
target classes as balanced when the standard deviation of all class frequencies is at most half the
mean of all class frequencies. The most-fitting encoder is chosen based on a rule mentioned in
the paper on encoding high-cardinality strings by Cerda et al. [26]. The authors state a possible
rule for encoding tabular data into an AutoML pipeline, which is to apply the one-hot encoder for
low-cardinal data (which is a cardinality of at most 30) and to apply the Gamma-Poisson encoder
or min-hash encoder otherwise [24]. In this work, we decided to modify this rule in the following
manner:

• When the cardinality is lower than 30 and the target values are balanced: encode data using
the target encoder

• When the cardinality is lower than 30 and the target values are imbalanced: encode data
using the similarity encoder

• When the cardinality is between 30 and 100: encode data using the Gamma-Poisson encoder

• When the cardinality is at least 100: encode data using the min-hash encoder

We opted for using the similarity encoder over the one-hot encoder because the string data may
still be prone to morphological variants at this cardinality. In that case, the similarity encoder
is slightly more useful in highlighting similarities in the encoded data. Additionally, the target
encoder was chosen over the similarity encoder in some cases, as it appeared in the past to perform
better on target classes that are relatively balanced during the first evaluation iteration. As for the
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high-cardinality encoders, the Gamma-Poisson encoder is used for its interpretability possibility
when the cardinality is at most 100. However, as this encoder does not scale well, the min-hash
encoder is used for higher cardinalities since it scales significantly better. An example of the
impact that these sophisticated encoding techniques can have on the dimensionality of the data is
depicted in Figure 4.16.

(a) Before encoding. (b) After using Gamma-Poisson encoder.

(c) After using one-hot encoder.

Figure 4.16: An example of the difference in dimensionality that the dirty cat encoders offer.
Notice how the dimensions the Gamma-Poisson encoded data are limited to 771 by 10, whereas
the dimensions of the one-hot encoded data scales with the number of unique entries.

4.5.2 Ordinal encoding

Ordinal data is encoded using the built-in ordinal encoder from scikit-learn [77]. The benefit
of this encoder is its scalability regarding dimensionality and speed while still being indicative
of ordering in the categories. Typically, users can pass a list to the encoder that contains each
category in the correct order to ensure that the correct ordering is maintained. However, in an
automated setting with no user in the process, the encoder takes the lexicographical order of
entries, which is not always the correct order.

To counter this issue, we propose an approach to determine the order in ordinal data automat-
ically such that this order can be given to the ordinal encoder. The approach is to make use of the
text sentiment intensity analyzer provided by FlairNLP, which is typically used to analyze how
intense an input string is in terms of its positivity and negativity. As mentioned in Section 3.4.4,
the sentiment intensity analyzer predicts the sentiment for a given input and how intense it is for
a given input while taking the letter and word sequences into account. Since this classifier is based
on a character-level LSTM neural network, their pre-trained network can handle negations, intens-
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ifiers, errata, and out-of-vocabulary (OOV) words. These properties make the classifier an ideal
candidate for determining the order in ordinal data when the categories are based on sentiments
and when the categories may still consist of slight spelling mistakes.

In our approach, all unique entries of an ordinal column are passed to the sentiment analyzer.
The sentiment analyzer then returns a value between 0 and 1 and a label that indicates whether
the string is either negative or positive. The results of the sentiment analyzer are processed into
numerical values and are coupled with the corresponding strings. Afterward, the list of tuples is
sorted on the numerical values, and the original strings are extracted in the resulting order. The
result is a list of ordered strings using FlairNLP from the most negative sentiments to the most
positive, which is also the ordering that will be passed on to the ordinal encoder. An example of
how the ordering in a list of unique entries is determined is depicted in Figure 4.17.

(a) Input data. (b) Results from FlairNLP. (c) Processing and sorting results.

Figure 4.17: An example of applying FlairNLP on a sample of data to determine the order.

4.6 Other modules

This section describes other modules in the library that are implemented. Despite the necessity of
implementing these modules to ensure robustness in the framework, they are not the main focus
of this thesis.

4.6.1 Imputing missing values

The tool provides an imputation of missing values for each column. An overview of the imputation
process is depicted in Figure 4.18.

During the stage where each data type is inferred for each column, the PFSMs also check
whether the columns contain a set of characters that are used to represent missing values (e.g., ?
and na). The procedure starts by converting any of the inferred missing values into numpy.nan.
This step is done to ensure that all possible missing values are converted to a single value.

After converting the missing values, the proportion is calculated between the number of rows
containing missing values and the total number of rows. If this proportion is lower than 0.05, we can
delete the rows containing missing values without significantly affecting the model’s performance.

If the proportion is 0.05 or higher, we check whether the missing values are either MCAR or
MAR/MNAR. This check is done by performing Little’s MCAR test as described in Section 3.5.
The implementation of Little’s MCAR test has been derived from the Python implementation
created by Rianne Schouten5. If the missing values are most likely MCAR, we know that the
applied imputation technique will not influence the performance of the model. In this case, the
data is imputed using the mean imputation for numerical values and the mode imputation for
string values.

If the missing values are not MCAR, it means that the data is either MAR or MNAR. Since
it is not possible to distinguish between MAR or MNAR without input from the user, the missing
values are imputed using the iterative imputer of scikit-learn [77]. This imputation technique

5The original implementation can be found at https://github.com/RianneSchouten/pymice/blob/6ff7be8d74

55adb45ee88456c289e7009f34a034/pymice/exploration/mcar tests.py#L40.
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Figure 4.18: Workflow of missing value imputation.

was found to be one of the few that worked for both cases without possibly introducing a significant
bias in the data.

4.6.2 Handling errata and data type outliers

The tool provides outlier handling for string data to ensure that small errata in categories are
repaired. A string entry is considered an outlier when it has a string similarity score with another
string entry with a significantly higher frequency in the data. In our work, the string similarity
between two strings is calculated with the n-gram similarity with n = 3, which splits both strings
into consecutive n-grams and calculates the proportion of the intersection and union of both string
grams. For example, the 3-grams of strings s1 = example and s2 = exams are { exa, xam, amp,
mpl, ple } and { exa, xam, ams } respectively. The 3-gram similarity of both strings is then

sim3-gram(s1, s2) =
|3-gram(s1) ∩ 3-gram(s2)|
|3-gram(s1) ∪ 3-gram(s2)|

=
|{exa, xam}|

|{exa, xam, amp, mpl, ple, ams}|
=

2

6

This measure is used to find pairs of strings with the highest similarity. After that, the ratio of
frequencies is calculated for each pair of strongly similar strings. Given that this module was not
in the focus of the thesis, the set thresholds are based on rules of thumb and empirical evaluation.
More precisely, the thresholds for string similarity and the frequency ratio have been set to at
least 0.75 and lower than 0.05, respectively. Future work could investigate a more clever approach
to obtain more optimized results. If the potential outlier passes both thresholds, it is most likely
an outlying value, and the most similar string replaces the outlier.

In addition to outlier handling for string data, data type outliers (e.g., a single string entry in
an integer-only column) for other columns are also handled to ensure robustness in later steps and
during model training. The framework first checks whether any non-outlying values are similar to
the outlier according to the same criteria mentioned for the string outliers. If at least one similar
entry is found, the most similar entry replaces the outlier. If no similar entries are found, the
outlier is replaced by a random non-outlying value. In this case, we assume that the outlier is a
missing value whose missingness is MCAR.
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Evaluation

This chapter covers the evaluation of the framework as a whole and all relevant components of the
framework described in the previous chapter individually. For each component, we describe the
goal of the experiment, how the experiment is set up, and how success is measured. Furthermore,
the results of the experiments are reported and discussed. All experiments are performed on a
machine with an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz and 16 GB RAM. In order to
allow for reproducibility of the results, a description of all the datasets that were used is provided
in Appendix B and the source code of the framework can be found at https://github.com/ml-
tue/automated-string-cleaning.

5.1 Global framework evaluation

5.1.1 Experiment set-up

To evaluate the overall performance of the framework, we cleaned ten datasets containing either a
classification or regression task and at least one string feature or standard string column. A brief
description of each dataset and which model is used to solve the task are described in Table 5.1
and Appendix B. A gradient boosting classifier or regressor (both using default hyperparameter
settings) is used depending on the prediction task that needs to be solved, and either the accuracy
or mean absolute error (MAE) is reported. The target variable of each dataset is predicted using
stratified five-fold cross-validation, where the average score is compared against the average score of
a baseline process. The baseline process entails basic encoding techniques (i.e., using either ordinal
encoding only or target encoding only for all categorical columns) and imputation techniques for
missing values (i.e., mean or mode imputation, depending on whether the data is numerical or
categorical). The one-hot encoder was not used for the baseline because some datasets contain
high-cardinality features, making comparisons infeasible. After the results are obtained, all values
are transformed around the mean of the baseline for each dataset using the following formula:

x′D =


(
xD

µB
− 1
)
· 100 if metric = accuracy

−
(
xD

µB
− 1
)
· 100 if metric = MAE ∨ time

(5.1)

Where D is the list of results, B is the list of results of the baseline, xD is item x ∈ D, x′D is
the transformed value of x ∈ D, and µB is the mean of all values in B. Note that the baseline
results are also transformed using this formula. In case the results from the MAE or running times
are transformed, the transformation is negated since comparisons of MAEs and running times are
based on “the lower, the better”, whereas accuracies are compared based on “the higher, the
better”. By applying the transformation to the results, it becomes visible whether the framework
offers any improvements and how well these improvements are in proportion to the baseline. All
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the results on the left of the baseline indicate a percentual performance decrease compared to the
baseline, whereas results on the right of the baseline indicate a percentual performance increase
compared to the baseline.

This evaluation aims to discuss the effectiveness of the framework in comparison to manual
cleaning using common practice and whether it is a feasible option to automate string cleaning.

Dataset
Number of

rows

Number of
numerical

columns

Number of
categorical

columns

Average
cardinality

Number of
missing values

Target column

automobile 205 16 10 6.10 5356 price
fifa 18207 45 44 988 79089 Value
HR-analytics 19158 3 11 17.6 20733 target
HR-employee-attrition 1470 26 9 3.44 0 MonthlyIncome
mushrooms 8124 0 23 5.17 2480 class
registered-companies* 1992170 3 14 488796 2110412 COMPANY STATUS
SF-crime* 878049 2 7 59062 0 Category
StudentsPerformance 1000 3 5 3.4 0 writing score
winemag-130k 129971 3 11 232612 26909 points
xAPI-Edu 480 4 13 5.46 0 Class

* Due to the size of these datasets, a subset of 100 000 random samples is used for evaluation

Table 5.1: Description of the datasets used for the global framework evaluation.

5.1.2 Results

The results of the evaluation are depicted in Figure 5.1 and Table 5.2. We observe that our
framework provides at least the same performance, if not better, as the baseline and the target
encoder for all the datasets. This observation indicates that our framework is generally a suitable
and automated alternative to string handling and data cleaning. Upon closer inspection of the
datasets and the corresponding components, it appears that a significant performance improvement
can be observed when the data consists of columns with high-cardinality strings or balanced target
values. These improvements are most likely due to the processing of string features and the novel
encoding techniques, as some of these were also shown to give promising results in their paper
[24, 25].

The framework performs slightly worse than the target encoder on the HR-analytics and
winemag datasets. For HR-analytics, the reduced performance may be caused by folds that
are disadvantageous to the framework, as the most significant performance difference between
methods is lower than half a percent. Upon closer inspection of the winemag dataset, it appears
that the more unsatisfactory performance is mainly related to the encoding technique applied to
specific columns. More specifically, the target encoder may be optimal for certain high-cardinality
columns compared to the Gamma-Poisson and min-hash encoders due to a mismatch between the
data and the methodology of these encoders (i.e., focus on string similarity between entries). As
the Gamma-Poisson and min-hash encoders both rely on substring counts and string similarities, it
might be possible that incorrect relations are established during model fitting, resulting in slightly
more unsatisfactory performance than the target encoder.

In general, it appears that most datasets suffer from outlier folds with significantly more
unsatisfactory results compared to the other folds. These outliers could result from numerical
outliers in the data or unfortunate splits during training. As this might impact some of the results
significantly, it is worth considering mitigating this variance by, for example, shuffling the samples.

An alternative approach (which does not require shuffling the data) to confirm performance
differences regardless of outlying folds is to run a statistical test to determine whether the difference
between the three methods on the current results is statistically significant. In this statistical test,
the results from the classification and regression tasks are computed separately, implying that the
statistical analysis is conducted on three populations with 25 paired samples and a family-wise
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Figure 5.1: The relative performance of the framework against baseline preprocessing using the
ordinal encoder and the target encoder on regression (r) and classification (c) tasks.

Dataset Method Accuracy

HR-analytics
OE 0.783 ± 6.22e-3
TE 0.786 ± 5.57e-3
Ours 0.782 ± 6.30e-3

mushrooms
OE 0.990 ± 1.50e-2
TE 0.999 ± 3.00e-3
Ours 0.999 ± 2.00e-3

registered-
companies

OE 0.717 ± 6.91e-2
TE 0.763 ± 6.19e-2
Ours 0.845 ± 3.90e-2

SF-crime
OE 0.766 ± 0.358
TE 0.787 ± 0.320
Ours 0.991 ± 1.12e-3

xAPI-Edu
OE 0.652 ± 3.64e-2
TE 0.663 ± 3.58e-2
Ours 0.665 ± 5.21e-2

(a) Classification tasks

Dataset Method MAE

automobile
OE 2883 ± 601
TE 2322 ± 436
Ours 2295 ± 291

fifa
OE 357.5 ± 242
TE 379.9 ± 135
Ours 353.0 ± 231

HR-employee-
attrition

OE 826.8 ± 33.0
TE 782.3 ± 32.1
Ours 779.2 ± 30.7

StudentsPerformance
OE 3.025 ± 0.163
TE 3.000 ± 0.161
Ours 2.989 ± 0.148

winemag-130k
OE 2.087 ± 0.484
TE 1.477 ± 0.135
Ours 1.793 ± 0.150

(b) Regression tasks

Table 5.2: The performance of the framework (Ours) against baseline preprocessing using the
ordinal encoder (OE) and the target encoder (TE) on different learning tasks.

significance level of α = 0.05. Based on the Shapiro-Wilk test to assess normality of the samples,
we reject the null hypothesis that the population is normal for all three methods for both tasks
(classification: pOE = 0.006, pTE = 0.001, pF = 0.000; regression: pOE = 0.000, pTE = 0.000,
pF = 0.000). Based on these observations, we use the non-parametric Friedman test to determine
significant differences between the median values of the population and the post-hoc Nemenyi test
to infer which differences are significant for both learning tasks. The results of these tests for
classification and regression are shown in Figures 5.2b and 5.3b, respectively.
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Method MR MED MAD CI γ Magnitude

Framework 1.720 0.861 0.194 [0.729, 1.000] 0.000 negligible
TargetEncoder 1.840 0.791 0.179 [0.667, 1.000] 0.374 small
OrdinalEncoder 2.440 0.785 0.222 [0.635, 1.000] 0.360 small

(a) Summary of the Friedman test on the three methods; MR = Mean Rank, MED = Median,
MAD = Mean Absolute Deviation, CI = Confidence Interval, γ = Gamma effect size, Magnitude
= Effect size.
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OrdinalEncoder
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Framework

CD

(b) Critical Difference (CD) diagram to visualize the results of the Nemenyi post-hoc test. The
horizontal lines indicate that differences are not significant.

Figure 5.2: Friedman test with Nemenyi post-hoc test on the three methods concerning classific-
ation tasks.

Method MR MED MAD CI γ Magnitude

TargetEncoder 1.640 -307.947 -454.503 [-1829.350, -1.390] 0.000 negligible
Framework 1.640 -212.261 -312.169 [-1856.656, -1.713] -0.245 small
OrdinalEncoder 2.720 -209.511 -307.915 [-2204.346, -1.833] -0.254 small

(a) Summary of the Friedman test on the three methods; MR = Mean Rank, MED = Median,
MAD = Mean Absolute Deviation, CI = Confidence Interval, γ = Gamma effect size, Magnitude
= Effect size.
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(b) Critical Difference (CD) diagram to visualize the results of the Nemenyi post-hoc test. The
horizontal lines indicate that differences are not significant.

Figure 5.3: Friedman test with Nemenyi post-hoc test on the three methods concerning regression
tasks. Note that the negative MAE is taken for this test, as it better reflects the performance in
this test.

Based on these statistical tests, we reject the null hypotheses of the Friedman tests for both
classification (p = 0.015) and regression (p = 0.000) that there is no difference in the central
tendency of the three methods. The results indicate that the framework has the highest mean
rank (MR) for classification tasks and a close second-place MR for regression tasks. Therefore,
we assume a statistically significant difference between the median values of the methods for both
tasks. Furthermore, based on the post-hoc Nemenyi test, we observe no significant difference
between the ordinal encoder and the target encoder and between the target encoder and the
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framework for classification tasks. As for regression tasks, we observe no significant difference
between the target encoder and the framework. All other differences appear to be statistically
significant. Therefore, the analysis indicates that the difference between the ordinal encoder and
the framework is statistically significant, whereas the difference between the target encoder and
the framework is not.

To summarize, based on all the aforementioned results, it can be said that the framework
provides a feasible automated solution to identifying and cleaning string data, but further study
can still be conducted to increase the overall performance.

5.2 String feature inference

5.2.1 Experiment set-up

To evaluate the performance of this module, we infer the string feature of 33 string columns
originating from 19 datasets in total that were downloaded from Kaggle. Each dataset contains
at least one of the string features discussed earlier, and each column has been manually labeled
for evaluation (ground truth). To ensure that all string feature PFSMs are evaluated, the set of
used columns contains all the discussed string features at least once.

The performance of each PFSM is evaluated based on the inference result with respect to the
ground truth. Furthermore, to investigate whether each string feature can accurately be presented
as a PFSM, we evaluate the reported outliers after inference. The outliers that are reported could
contain a certain number of false negatives. If the proportion of false negatives reported is relatively
significant, it is worth investigating how this proportion could be reduced.

5.2.2 Results

The results of the evaluation are summarized in Table 5.3. The table contains a column indicating
which string feature PFSM is evaluated. Furthermore, the number of columns containing the
corresponding string feature, the number of correctly inferred columns, and the accuracy are also
shown in the table. Finally, the last two columns in the table correspond to the number of false
negative outliers detected by the PFSM and the ratio of false negative outliers to the total number
of entries in the data.

String feature
Number of

columns
Number of correctly

inferred columns
Accuracy

Number of false
negative outliers

Ratio of false
negative outliers

Coordinate 2 2 1.0 0 -
Day 1 1 1.0 0 -
E-mail 4 4 1.0 0 -
Filepath 5 4 0.80 0 -
Month 3 3 1.0 0 -
Numerical 6 6 1.0 0 -
Sentence 4 3 0.75 42158 0.32
URL 4 4 1.0 0 -
Zip code 4 4 1.0 0 -

Table 5.3: Results of string feature inference using PFSMs.

As can be seen from Table 5.3, the performance of the PFSMs is generally ideal for the provided
datasets. Most string feature PFSMs report a perfect accuracy except for the filepath and sentence
PFSMs. The overall performance is most likely related to the fact that the string features can
easily be represented as regular expressions, as rule-based approaches achieve a relatively high
score when the data format adheres to the rules.
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However, rule-based approaches also come with the disadvantage that all features must adhere
to a specific format. In other words, the PFSMs will report incorrect results when the format of
the data in a column is slightly off. Take the filepath PFSM as an example. One of the columns
that were used for evaluation contained filepaths in the format filename.extension, whereas
the regular expression which the PFSM is based on also requires at least one slash or backslash
at the beginning of such a string (i.e., /filename.extension). A similar case can be seen for
the sentence PFSM, where a column consisting of short sentences is inferred as regular strings.
One could argue that these mistakes can be prevented by including the format in the regular
expression. However, one must also acknowledge that expressions of other PFSMs may overlap
when the expression is more generalized (e.g., expressions for URLs or regular strings).

Out of the nine PFSMs, only the sentence state machine reported false-negative outliers. Out
of the 130 217 entries, 42 158 entries were incorrectly classified as outliers. This result implies
that slightly over 32% of the entries would more likely be classified as another data type or string
feature rather than the ground truth. This detail can be problematic when the sentences in a
column are exclusively made up of false negative entries, as these columns would be misclassified.

Upon closer inspection of the data, it was discovered that entries containing certain symbols
or relatively shorter sentences are not considered as sentences by the PFSM system. The mis-
classifications are related to the regular expression that was used to create the sentence PFSM.
This regular expression does not take all symbols into account and only considers an entry as a
sentence consisting of at least six words. It is possible to generalize the regular expression to lower
the number of false negatives. However, as mentioned earlier, this also increases the probability
that the PFSM will overlap with other PFSMs, potentially making the results ambiguous and
incorrect.

Overall, it can be argued that eight out of nine string features that were evaluated can be
adequately represented by PFSMs using the current regular expressions. The only string feature
that might benefit more from other techniques is sentences, as creating a regular expression to
detect a variety of sentences in different formats is nontrivial compared to the other string features.

5.3 Processing inferred string features

5.3.1 Experiment set-up

To evaluate the effectiveness of our processing steps, we process six datasets containing either a
classification or regression task and at least one of the string features that our probabilistic model
can infer. A relevant machine learning model (gradient boosting classifier or regressor with default
hyperparameter settings) is fitted on the data using stratified five-fold cross-validation, and either
the average accuracy or MAE is reported. As for the baseline, the dataset is cleaned the same way
as the dataset containing the processed string feature, except that the string feature in question is
regarded as a standard string and is not uniquely processed. More specifically, after string feature
inference, the string feature to be evaluated is labeled as a standard string instead and will be
checked for missing values, outliers, and ordinality before being encoded accordingly. For each
dataset used, additional information on the task, the model, and the target column is provided
in Appendix B.1. Furthermore, the processing and training times of both instances are measured
by taking the average over five runs. After the results are obtained, all values are transformed
around the mean of the baseline for each dataset using Equation 5.1.

This experiment aims to determine the usefulness of processing the inferred string features
using our approach, which type of processing techniques are worth considering the most, and
which string features are the most valuable to consider processing.

5.3.2 Results

To evaluate the effects of string feature processing, we compare the processing time, training time,
and model performance against our framework when no processing is applied for a specific string
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feature. The results are depicted in Figure 5.4 and Table 5.4 in which various observations can be
made.

Firstly, we observe that the model performance is either close to the baseline or slightly im-
proved compared to the baseline. This detail can indicate that processing certain string features
can positively impact the performance of the model in the best case and a performance decrease
of at most one percent in the worst case.

Secondly, we observe that some string features take a significant amount of time to process,
which is the case for the datasets that process sentence and zip code string features. These signi-
ficant preprocessing time differences may be related to cardinality in the data and the dependency
of APIs to fetch additional information. However, it is noticeable that the processed datasets
display improved model performance. Thus, this observation indicates that processing certain
string features may only be worth considering when performance and information fetching are
prioritized. In our case, processing for performance over speed would apply to sentence and zip
code string features.

Thirdly, we observe that preprocessing and task times for half of the evaluated datasets are
reduced by at least ten percent, some at the cost of at most one percent of the model performance.
These occurrences are evident when processing month, numerical, and URL string features. These
string features are processed to reduce string complexity and correctly transform them into their
numerical representation. These results indicate that reducing string complexity and transforming
quasi-numerical values can be a preferred strategy to reduce running times while maintaining most
of the model performance.

Finally, it appears that processing day string features using the current technique is not be-
neficial in terms of performance and slightly in terms of training time. This observation could
indicate that different techniques may need to be considered or to drop any processing techniques
from this string feature.

Based on all results, it can be argued that the most valuable processing techniques to apply for
improved running times are string complexity reduction and quasi-numerical value transformation.
Furthermore, processing string features such as sentences and zip codes using certain information
extraction techniques is only valuable when performance is a priority and time is not an issue.
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Figure 5.4: Difference in performance metrics (accuracy/MAE, preprocessing time, and training
time) with and without processing of known string feature types on regression (r) or classification
(c) tasks.
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Dataset
(string feature)

Method
Preprocessing
time

Training time
Accuracy
(classification)

MAE
(regression)

SF-crime
(day)

Without processing 2789 ± 22.5 1.17e4 ± 49.3 0.992 ± 1.11e-3 -
With processing 2778 ± 19.1 1.15e4 ± 47.3 0.991 ± 1.12e-3 -

fifa
(month)

Without processing 345.2 ± 1.72 52.50 ± 0.457 - 1238 ± 2.12e3
With processing 319.7 ± 4.04 47.68 ± 0.191 - 1237 ± 2.12e3

fifa
(numerical)

Without processing 382.9 ± 6.36 150.3 ± 2.31 - 353.3 ± 235
With processing 341.9 ± 8.16 72.89 ± 1.13 - 353.0 ± 231

winemag-130k
(sentence)

Without processing 4465 ± 67.1 31.48 ± 0.382 - 1.823 ± 3.91e-2
With processing 9012 ± 131 342.7 ± 15.8 - 1.617 ± 2.71e-2

fifa
(url)

Without processing 349.7 ± 7.29 51.87 ± 0.225 - 1233 ± 2.12e3
With processing 319.7 ± 4.04 46.76 ± 0.295 - 1236 ± 2.12e3

house-price
(zip code)

Without processing 0.5246 ± 4.92e-3 4.706 ± 2.50e-2 - 1.246e5 ± 1.98e4
With processing 9573 ± 204 22.06 ± 0.259 - 1.180e5 ± 1.91e4

Table 5.4: Differences in performance metrics (accuracy/MAE, preprocessing time, and training
time) with and without processing of known string feature types on different learning tasks.

5.4 Ordinality detection

5.4.1 Experiment set-up

In order to train and evaluate the performance of this module, 149 string columns are used
from a total of 29 datasets downloaded from the UCI Machine Learning Repository and Kaggle.
Out of the 149 columns, there are 81 ordinal and 68 nominal string columns. For each column,
the eight features mentioned in Section 4.4.2 are extracted, and a label is appended indicating
whether the column is nominal or ordinal. This procedure gives us 149 data points in total,
each containing eight features for training and evaluating the model. The proposed model is the
gradient boosting classifier provided by sklearn with hyperparameter max depth=2 and default for
all other hyperparameters. The classifier’s performance is evaluated using Leave-One-Out Cross-
Validation (LOOCV) on the 149 data points and compared to the ground truth. Additionally, the
F1 score, precision, recall, and Area Under the Curve (AUC) score are provided. Based on these
criteria, we can discuss whether the extracted column features provide sufficient information for
the model and how suitable the model is in a practical setting.

5.4.2 Results

The results of the evaluation are summarized in Table 5.5. Firstly, the reported accuracy sits
at 0.98, with a standard deviation of 0.14. The relatively high standard deviation comes from
evaluating using LOOCV, as this method results in an unbiased estimate of the performance.
Despite the relatively high standard deviation, the performance is still acceptable when considering
the worst case of the standard deviation. Secondly, the confusion matrix shows that one nominal
and two ordinal columns have been misclassified, which is insignificant compared to the total
amount of correctly classified ordinal and nominal columns. This insignificance is also noticeable
in the precision, recall, and F1 score. Finally, the high AUC score indicates that the quality of
prediction of the model is excellent.

Based on these results, it can be said that the gradient boosting classifier performs well when
it has to classify order in the data given the extracted features. It also indicates that the extracted
features using the proposed heuristics were indicative enough of whether the data is nominal or
ordinal.
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Metric Score

Accuracy 0.980 ± 0.140
F1 score 0.978
Precision 0.971
Recall 0.985
AUC score 0.980

(a) Score for each metric

Predicted class

Ordinal Nominal

A
ct

u
al

cl
a
ss

Ordinal 79 2

Nominal 1 67

(b) Confusion matrix

Table 5.5: Results of ordinality prediction using the gradient boosting classifier.

5.5 Ordinal encoding

5.5.1 Experiment set-up

To evaluate the performance of our approach, we determine the order of the string entries of 81
columns from a total of 11 datasets downloaded from the UCI Machine Learning Repository and
Kaggle. Each column consists of at least two entries that are naturally ordered. The performance
of our approach is measured based on the ground truth of the order by calculating the Spearman’s
Rank Correlation Coefficient of both orders. As for the baseline, we compute the ordering using
the default settings of the ordinal encoder provided by scikit-learn. The comparison between
the baseline and our approach tells us whether our approach is suitable for finding order in the
data and in which cases the baseline method may perform better than our approach. After the
correlation is computed for all columns, the mean score and the standard deviation are reported.

Furthermore, to evaluate whether the order affects the performance of a machine learning
model, four out of the 11 datasets are used to evaluate the overall performance on the corresponding
prediction task and the running times in seconds of preprocessing when our approach is applied in
practice. The results are obtained by taking the mean of five preprocessing and training runs using
stratified five-fold cross-validation. The tasks to be solved are either classification or regression
tasks and are evaluated using the MAE and the accuracy metrics, respectively. The results of our
approach will once again be compared to the baseline and the ground truth (oracle) undergoing
the same data preparation procedure. For each dataset, the task, model, and target column are
described in Appendix B.2.2.

5.5.2 Results

The summarized results of the evaluation for the ordering are shown in Table 5.6. More details on
these results can be found in Tables C.1 and C.2 in Appendix C. Furthermore, the performance
results are summarized in Table 5.8 and visualized in Figure 5.5.

Ordering method Rank Correlation

baseline 0.1562 ± 0.5313
FlairNLP 0.7189 ± 0.5356

Table 5.6: Spearman’s Rank Correlation Coefficient for ordinal encoders vs. ground truth ordering.

Based on Table 5.6, it appears that our approach significantly outperforms the baseline when
it comes to determining the natural order. Furthermore, the standard deviation of both methods
is relatively high to the point that the performance can fluctuate significantly. The high standard
deviation may be related to the scale of Spearman’s Rank Correlation (which ranges from -1 up
to 1) and how sensitive the correlation calculation is for columns with few unique values to order.
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Upon closer inspection of the results in Appendix C, we observe that our approach performs
well for ordinal entries that consist of multiple words and performs poorly when numbers play a
crucial role in ordering entries. This result makes sense as FlairNLP is used originally to analyze
the sentiment and the intensity of sentences. Furthermore, as our approach orders entries from
negative to positive, the order of all columns that scale from the least bad to the worst are inverted.
This property could also have contributed to the high standard deviation reported. This result is
not necessarily a problem as the order between values is still correct. Additionally, the baseline
method scores high on alphabetically ordered entries and numerically ordered entries. This result
makes sense since the encoder orders entries based on lexicographical order when no order is
provided. These observations suggest that a sophisticated hybrid between the baseline and our
approach might perform even better than each method separately.

As for evaluating the performance difference between passing different encoding orders, based
on Table 5.8 and Figure 5.5, it appears that the difference in model performance between each
method is insignificant in most cases. Surprisingly, it appears that the perfectly ordered encoding
(oracle) appears to perform poorly compared to the baseline and FlairNLP. The reason for this
occurrence is currently unknown and may be related to unlucky splits during cross-validation.

However, to ensure that the current results are reliable, a Friedman test is conducted on the
transformed values to confirm whether the differences between the three methods are statistically
significant. The transformed values are considered instead of separating the analysis on the learn-
ing tasks because of the small number of samples available. The result of the analysis is visible in
Table 5.7. Based on the p-value, we reject the null hypothesis of the Friedman test that there is
no difference in the central tendency of the three methods. Therefore, we assume that there is no
statistically significant difference between the median values of the methods.

Method MR MED MAD CI p-value

FlairNLP 1.600 0.097 0.781 [-0.835, 89.689]
baseline 2.150 0.005 0.181 [-1.755, 98.604] 0.086
oracle 2.250 -1.539 2.312 [-23.812, 55.110]

Table 5.7: Summary of the Friedman test on the three methods; MR = Mean Rank, MED =
Median, MAD = Mean Absolute Deviation, CI = Confidence Interval

Furthermore, we observe that preprocessing using our approach always takes significantly
longer than the baseline and the oracle. This detail is expected since FlairNLP needs to pro-
cess and predict the order for each column it receives, which takes longer than default ordering or
processing a pre-defined order. It does appear that training times are reduced in some cases when
FlairNLP is used. However, this time reduction is smaller than the extra time spent determining
the order using FlairNLP.

These results indicate that the order in which the data is encoded is not essential for regression
and classification tasks. Additionally, it appears that using FlairNLP is sub-optimal when the
user does not require the interpretability of the data due to its preprocessing time.
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Dataset
Ordering
method

Preprocessing
time

Training time
Accuracy
(classification)

MAE
(regression)

car
baseline 2.02e-2 ± 2.83e-3 1.99e-3 ± 2.03e-4 0.699 ± 1.89e-2 -
FlairNLP 26.6 ± 0.136 1.99e-3 ± 1.08e-5 0.701 ± 1.96e-2 -
oracle 1.45e-2 ± 2.91e-3 2.10e-3 ± 1.78e-4 0.701 ± 1.91e-2 -

nursery
baseline 3.87e-2 ± 2.41e-3 3.87e-3 ± 6.12e-4 0.662 ± 7.36e-3 -
FlairNLP 35.6 ± 0.671 4.52e-3 ± 1.19e-3 0.662 ± 7.08e-3 -
oracle 1.70e-2 ± 1.16e-3 4.11e-3 ± 8.11e-4 0.663 ± 7.23e-3 -

solar-flare
baseline 4.34e-2 ± 4.74e-3 8.17e-2 ± 7.03e-3 - 0.179 ± 0.184
FlairNLP 21.9 ± 0.488 7.93e-2 ± 5.11e-3 - 0.180 ± 0.184
oracle 2.08e-2 ± 2.86e-3 7.97e-2 ± 7.33e-3 - 0.181 ± 0.186

soybean
baseline 0.159 ± 1.51e-2 2.84e-3 ± 1.28e-3 0.858 ± 4.58e-2 -
FlairNLP 26.7 ± 0.483 2.58e-3 ± 5.61e-4 0.860 ± 4.74e-2 -
oracle 0.193 ± 2.78e-2 4.13e-3 ± 8.14e-4 0.846 ± 7.23e-3 -

Table 5.8: Performance result of different ordering methods on machine learning tasks.
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Figure 5.5: Difference in performance metrics (accuracy/MAE, preprocessing time, and training
time) between different ordering strategies on regression (r) or classification (c) tasks.
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Conclusions

Data cleaning is a crucial step to ensure that high-quality data is used to analyze and fit machine
learning models. However, due to the time-consuming nature of data cleaning, many users spend
a significant amount of time to ensure that the data is up to standard. Tools have been developed
to tackle this issue, but they still require users to interact and clean the data themselves. The
automation of data cleaning is still a relatively open research field. While there are a handful of
feasible solutions available to automatically preprocess numerical data, a system that can robustly
preprocess different types of string features does not yet exist.

This thesis focused on automated handling and cleaning of strings in tabular data. We invest-
igated and applied novel techniques in string handling and encoding and combined them into a
Python framework that allows for automated string data cleaning. The framework can infer vari-
ous string features using a probabilistic approach that uses Probabilistic Finite-State Machines
constructed from regular expressions. Additionally, these inferred string features are further pro-
cessed to reduce string complexity and extract additional features relevant to further analysis. If
no specific string feature could be inferred using the probabilistic approach, our implemented pre-
trained classifier can accurately distinguish between ordered string values and unordered string
values based on certain features in the data. Finally, users can decide whether the data is encoded
or not. If the data requires to be encoded, the most fitting encoder is used based on previously
made inferences and predictions. The encoders used in this work vary from simple techniques to
novel techniques that are robust to morphological variants and high-cardinality in the data. In
the end, users receive a clean dataset of high quality that can be used for analysis or machine
learning tasks.

Based on our evaluation of the framework and its modules, several conclusions were drawn.
First of all, the framework proved to perform well on the evaluated data, outperforming both
baselines in most of the datasets. Improvements can be made by re-evaluating and optimizing
the preprocessing steps for specific string feature types and by considering more encoding options
to use in specific cases. Secondly, it appears that string feature inference using custom PFSMs
works well when the string features adhere to the same format as the regular expression used to
construct the PFSM. This property indicates that string feature types with a slightly different
format than the PFSMs corresponding to these types might not be subject to inference. However,
this problem did not seem to occur often in the results. Thirdly, it can be argued that the
most valuable processing techniques to apply for improved running times are string complexity
reduction and quasi-numerical value transformation. Furthermore, processing string features such
as sentences and zip codes using certain information extraction techniques are valuable when
performance is a priority and time is not an issue. Fourthly, using a gradient boosting classifier
on various extracted characteristics worked excellent for classifying ordinal and nominal string
columns. This result indicates that classifying string columns more generally is undoubtedly
feasible and can automatically suggest specific encoding techniques. Finally, it turns out that the
text sentiment intensity analyzer of FlairNLP was shown to outperform the ordinal encoder when
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it comes to encoding ordinal data according to the actual order. However, it can be argued that
this approach does not have a much-added benefit to the overall performance of a machine learning
model on a prediction task. Therefore, it might only be useful in the context of interpretability
for the users after the framework has finished its operations.

To summarize, the framework and its components seem to be suitable approaches to automate
the process of handling and cleaning string data into high-quality data, and we hope that this
framework and open-source implementation will speed up research in these areas.

6.1 Future work

Given the broadness of the topic, there is much room for improvement for the various implementa-
tions by building upon existing methods or designing more complex frameworks for specific steps.
Listed below are some of the potential future work that can be picked up.

• General improvements: Currently, the framework only provides automated string hand-
ling for tabular data and associated prediction tasks. It is possible to expand the framework
to handle strings in non-tabular data, such as pieces of text for NLP tasks. Additionally,
the framework has only been evaluated on a gradient tree boosting learner. The evaluation
could also be extended to compare the performance differences of other learners (e.g., linear
models or support vector machines) to investigate the influence of the learner on the results.
Finally, (interactive) visualizations could be introduced to improve the interpretability of
the cleaned data for users.

• String feature inference: The current implementation of string feature inference is rel-
atively strict. As mentioned before, all string features that we are currently inferring need
to match the whole pattern of the Probabilistic Finite-State Machine. Possible future work
could perhaps investigate the possibility of relaxing this constraint via sub-pattern matching
and better use of type probabilities in subsequent processing (e.g., if it is only 60% certain
that a string feature represents a date, a more robust encoding is needed, or a human should
be brought into the loop). One could also investigate whether it is valuable to split the
data into subsets and let the PFSMs predict each subset separately to allow policies such as
majority voting to make the final inference. Additionally, more useful string features could
be investigated and handled via regular expressions.

• Processing string features: Inferred string features are currently processed to extract
additional features, reduce complexity, and apply unique encoding strategies. Future work
could investigate different goals or processing techniques that may benefit certain string
features more than what is currently applied.

• Ordinality prediction: Classifying ordinal and nominal columns is currently done using
feature engineering that is partly based on domain knowledge. It would be interesting to
investigate whether some features that depend on domain knowledge could be omitted to
allow for more objective features that dictate the ordinality of data. It is also interesting to
investigate a combination of multiple strategies to give a final predicament on the ordinality
of the data. For example, the Bayesian approach by Valera et al. (2017) could be worth
revisiting and added to the system to see whether it might benefit the whole classification
step.

• Encoding: The best nominal encoding technique to be applied is currently determined based
on the cardinality of the data and whether target classes are balanced. A possible research
direction could be to create a system that recommends or applies an encoding technique
that is the most applicable based on various other features of the data (e.g., the similarity
between entries and other features). The encoding techniques in this system could be basic,
more sophisticated, or state-of-the-art. Additionally, research could be done on optimizing
the heuristics for selecting the currently implemented encoders. Furthermore, there is still
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CHAPTER 6. CONCLUSIONS

room for improvement when it comes to predicting the order in ordinal data. Although
FlairNLP was designed for a different purpose, it has been demonstrated to perform well in
some aspects and poorly in others. This result indicates that there is still room to improve
on aspects where the predictor performed poorly by, for example, also taking numbers into
account when weighing the sentiments.

• Outlier detection: The current implementation for outlier detection and handling for
string entries is relatively simple. As this was not part of the scope of the thesis, further
research on automated outlier and (automated) errata handling for string data could be
worth investigating for optimizing the current decision criteria.
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Appendix A

Demonstration

This appendix provides a brief installation guide and a few examples of the framework in action.

A.1 Installing the framework

Users can install the framework using pip or by cloning the GitHub repository:

# pip

pip install git+https :// github.com/ml-tue/automated -string -cleaning.git

# GitHub clone

git clone https :// github.com/ml -tue/automated -string -cleaning.git

When cloning from GitHub, it might be necessary to install relevant packages like so:

pip install -r requirements.txt

A.2 Example 1: Clean and encode the Academic Perform-
ance dataset

In this example, we clean and encode a dataset containing string columns.

1. Download the Students’ Academic Performance dataset from https://www.kaggle.com/a

ljarah/xAPI-Edu-Data.

2. Load the dataset as a pandas DataFrame in Jupyter Notebook.

import pandas as pd

X = pd.read_csv(r’<path -to-csv >/<filename >.csv’)

display(X)
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3. Run the framework on the data in one of the following ways:

• Default settings: the encoded data is fitted in the original column and no target encoder
is applied since no target column is passed through.

from auto_string_cleaner import main

X = main.run(X)

• With dense encoding disabled: each dimension in the encoded data is put in a separate
column.

from auto_string_cleaner import main

X = main.run(X, dense_encoding=False)

• With target encoder enabled: separate the target column from the dataset and pass it
through the framework.

from auto_string_cleaner import main

y = X.iloc[:, ’Class’]

X = X.drop(columns =[’Class’])

X, y = main.run(X, y)

4. During cleaning, the framework prints at which step it currently is and some of the changes
that it makes to the data.

> Performing pre-checks...

> Inferring data types and string features...

> Checking and handling any missing values...

> Checking and handling any string and data type outliers...

> Processing string features in the data...

> Predicting ordinality of string columns without string features...

> Encoding string data...

5. At the end, a brief overview is given in some of the decisions that were made during the
process. Users can display the data to see the result of using the framework (image example
uses default settings).

Number of unique values Type Missing values Outliers Ordinal? Encoding
gender 1 boolean [] [M] NaN NaN
NationalITy 14 string [] [] No SimilarityEncoder
PlaceofBirth 14 string [] [] No SimilarityEncoder
StageID 3 string [] [] No SimilarityEncoder
GradeID 10 string [] [G-02, ..., G-12] No SimilarityEncoder
SectionID 3 string [] [] No SimilarityEncoder
Topic 12 string [] [] No SimilarityEncoder
Semester 1 boolean [] [S] NaN NaN
Relation 2 string [] [] No SimilarityEncoder
raisedhands 82 integer [] [] NaN NaN
VisITedResources 89 integer [] [] NaN NaN
AnnouncementsView 88 integer [] [] NaN NaN
Discussion 90 integer [] [] NaN NaN
ParentAnsweringSurvey 2 boolean [] [] NaN NaN
ParentschoolSatisfaction 2 string [] [] No SimilarityEncoder
StudentAbsenceDays 2 numerical [] [] NaN NaN
Class 3 string [] [] No SimilarityEncoder
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A.3 Example 2: Clean the Wine Reviews dataset

In this example, we clean a dataset containing high-cardinality string columns and some string
features.

1. Download the Wine Reviews dataset from https://www.kaggle.com/zynicide/wine-rev

iews.

2. Load the dataset as a pandas DataFrame in Jupyter Notebook.

import pandas as pd

X = pd.read_csv(r’<path -to-csv >/<filename >.csv’)

display(X)

3. Run the framework on the data.

from auto_string_cleaner import main

X = main.run(X, encode=False)
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4. During cleaning, the framework prints at which step it currently is and some of the changes
that it makes to the data.

> Performing pre-checks...

> Inferring data types and string features...

> Checking and handling any missing values...

>> Missing values imputed using IterativeImputer

> Checking and handling any string and data type outliers...

>> Outlier found in column "designation". Outlier "’Unfiltered’" replaced by "Unfiltered".

>> Outlier found in column "designation". Outlier "Brut Rose" replaced by "Brut Rosé".

...

>> Outlier found in column "designation". Outlier "Criança" replaced by "Crianza".

>> Outlier found in column "designation". Outlier "Cuveé" replaced by "Cuvée".

> Processing string features in the data...

> Predicting ordinality of string columns without string features...

5. At the end, a brief overview is given in some of the decisions that were made during the
process. Users can display the data to see the result of using the framework.

Number of unique values Type Missing values Outliers Ordinal? Encoding

country 43 string [nan] [] No GapEncoder

description 119955 sentence [] [<outlier length too large>] NaN MinHashEncoder

designation 37963 string [nan] [%@#$!, ..., \P"] No MinHashEncoder

points 21 integer [] [] NaN NaN

price 405 float [nan] [] NaN NaN

province 425 string [nan] [Bı́o Bı́o Valley, ..., Župa] No MinHashEncoder

region_1 1227 string [nan] [<outlier length too large>] No MinHashEncoder

region_2 17 string [nan] [Napa-Sonoma] No SimilarityEncoder

taster_name 19 string [nan] [Kerin O’Keefe] No SimilarityEncoder

taster_twitter_handle 15 string [nan] [] No SimilarityEncoder

title 118840 sentence [] [<outlier length too large>] NaN MinHashEncoder

variety 705 string [nan] [Albari~no, ..., Žilavka] No MinHashEncoder

winery 16755 string [] [1+1=3, ..., Štoka] No MinHashEncoder
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List of datasets

In this appendix, a list of all datasets used during the evaluation is provided, including additional
information on what was used from the data to run the corresponding learning task.

B.1 String feature inference and processing

Some of the datasets listed below were used to evaluate both string feature inference and string
feature processing. The datasets without model, task, and target were only used to evaluate string
feature inference based on the manually assigned ground truth of the columns. The datasets with
the previously mentioned components were used for both string feature inference (with manual
labeling of string feature) and string feature processing (evaluation by running the associated
task).

B.1.1 Coordinate

Digital altimetric data information - GPS. Columns: latgms, loggms. https://www.kaggle
.com/mpwolke/cusersmarildownloadsgpscsv

B.1.2 Day

San Francisco Crime Classification. Columns: DayOfWeek. Model: GradientBoostingClassi-
fier. Task: Classification. Target: Category. https://www.kaggle.com/kaggle/san-francisc

o-crime-classification

B.1.3 E-mail

Data UK. Columns: email. https://www.kaggle.com/phool1804/data-uk

Enrico’s Email Flows. Columns: sender, receiver. https://www.kaggle.com/emarock/enric

os-email-flows

Indian Companies Registration Data [1857 - 2020]. Columns: EMAIL ADDR. Model:
GradientBoostingClassifier. Task: Classification. Target: COMPANY STATUS https://www.ka

ggle.com/rowhitswami/all-indian-companies-registration-data-1900-2019

B.1.4 Filepath

Collection of Classification & Regression Datasets. Columns: Image Index. https://ww

w.kaggle.com/balakrishcodes/others?select=xrayfull.csv
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Hillary Clinton’s Emails. Columns: MetadataPdfLink. https://www.kaggle.com/kaggle/hi
llary-clinton-emails?select=Emails.csv

Liver and Liver Tumor Segmentation. Columns: filepath, liver maskpath, tumor maskpath.
https://www.kaggle.com/andrewmvd/lits-png?select=lits df.csv

B.1.5 Month

FIFA 19 complete player dataset. Model: GradientBoostingRegressor. Task: Regression.
Target: Value. Columns: Joined. https://www.kaggle.com/karangadiya/fifa19

Netflix Movies and TV Shows. Columns: date added. https://www.kaggle.com/shivamb/n
etflix-shows

Metacritic-Game Releases by Score. Columns: Date. https://www.kaggle.com/abhishe

kdataset/metacriticgame-releases-by-score

B.1.6 Numerical

FIFA 19 complete player dataset. Columns: LS, ST, RS, LW. Model: GradientBoostingRe-
gressor. Task: Regression. Target: Value. https://www.kaggle.com/karangadiya/fifa19

HR Analytics: Job Change of Data Scientists. Columns: company size. https://www.kagg
le.com/arashnic/hr-analytics-job-change-of-data-scientists?select=aug train.csv

Students’ Academic Performance Dataset. Columns: StudentAbsenceDays. https://www.

kaggle.com/aljarah/xAPI-Edu-Data

B.1.7 Sentence

Wine Reviews. Columns: description. Model: GradientBoostingRegressor. Task: Regression.
Target: points https://www.kaggle.com/zynicide/wine-reviews

World Development Indicators. Columns: SpecialNotes, SystemOfNationalAccounts. https:
//www.kaggle.com/worldbank/world-development-indicators

B.1.8 URL

FIFA 19 complete player dataset. Columns: Photo, Flag, Club Logo. Model: GradientBoost-
ingRegressor. Task: Regression. Target: Value. https://www.kaggle.com/karangadiya/fifa19

Walmart Product Details 2020. Columns: Product Url. https://www.kaggle.com/promptc

loud/walmart-product-details-2020

B.1.9 Zip code

Data UK. Columns: postal. https://www.kaggle.com/phool1804/data-uk

OpenAddresses - Europe. Columns: POSTCODE. https://www.kaggle.com/openaddress
es/openaddresses-europe?select=netherlands.csv

OpenAddresses - North America (excluding U.S.). Columns: POSTCODE. https://ww
w.kaggle.com/openaddresses/openaddresses-north-america-excluding-us?select=berm

uda.csv

House Price Data, England & Wales, 2015 to 2019. Columns: SS2 6ST. Model: Gradient-
BoostingRegressor. Task: Regression. Target: 249995. https://www.kaggle.com/dmaso01dsta

/house-price-data-england-wales-2015-to-2019
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B.2 Statistical type detection and determining the order in
data

B.2.1 Nominal datasets

[NeurIPS 2020] Data Science for COVID-19 (DS4C). Columns: province, city. https:

//www.kaggle.com/kimjihoo/coronavirusdataset?select=Case.csv

[NeurIPS 2020] Data Science for COVID-19 (DS4C). Columns: type, gov policy. https:

//www.kaggle.com/kimjihoo/coronavirusdataset?select=Policy.csv

AB NYC 2019. Columns: name, host name, neighborhood group, neighborhood, room type. ht

tps://www.kaggle.com/chadra/ab-nyc-2019

Automobile Dataset. Columns: make. https://www.kaggle.com/toramky/automobile-da

taset

Craft Beers Dataset. Columns: style. https://www.kaggle.com/nickhould/craft-cans?s

elect=beers.csv

Craft Beers Dataset. Columns: city, state. https://www.kaggle.com/nickhould/craft-can
s?select=breweries.csv

FIFA 19 complete player dataset. Columns: Nationality, Club. https://www.kaggle.com/k
arangadiya/fifa19

FiveThirtyEight Comic Characters Dataset. Columns: ALIGN, EYE, HAIR. https://ww
w.kaggle.com/fivethirtyeight/fivethirtyeight-comic-characters-dataset?select=dc

-wikia-data.csv

HR Analytics: Job Change of Data Scientists. Columns: city, major discipline, com-
pany type. https://www.kaggle.com/arashnic/hr-analytics-job-change-of-data-scient

ists?select=aug train.csv

IBM HR Analytics Employee Attrition & Performance. Columns: Department, Educa-
tionField, JobRole. Model: GradientBoostingRegressor. Task: Regression. Target: MonthlyIn-
come. https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

Kickstarter Projects. Columns: category, main category, currency, country. https://www.ka

ggle.com/kemical/kickstarter-projects?select=ks-projects-201612.csv

Mushroom Classification. Columns: class, cap-shape, cap-surface, cap-color, bruises, odor,
gill-attachment, gill-spacing, gill-size, gill-color, stalk-shape, stalk-root, stalk-surface-above-ring,
stalk-surface-below-ring, stalk-color-above-ring, stalk-color-below-ring, veil-type, veil-color, ring-
numer, ring-type, spore-print-color, population, habitat.
https://www.kaggle.com/uciml/mushroom-classification

Pokemon with stats. Columns: Type 1, Type 2. https://www.kaggle.com/abcsds/pokemon

Ramen Ratings. Columns: Brand, Variety, Style, Country. https://www.kaggle.com/resid

entmario/ramen-ratings

Stroke Prediction Dataset. Columns: work type, smoking status. https://www.kaggle.com

/fedesoriano/stroke-prediction-dataset
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Students’ Academic Performance Dataset. Columns: PlaceOfBirth, GradeID, SectionID,
Topic. https://www.kaggle.com/aljarah/xAPI-Edu-Data

Students Performance in Exams. Columns: race/ethnicity. https://www.kaggle.com/sps

cientist/students-performance-in-exams

Wine Reviews. Columns: country, province, region 1, variety. Model: GradientBoostingRe-
gressor. Task: Regression. Target: points. https://www.kaggle.com/zynicide/wine-reviews

B.2.2 Ordinal datasets

Some of the datasets listed below were used for both ordinality prediction and determining the
order in ordinal data. The datasets without model, task, and target were only used to classify
the ordinality based on the manually labeled ground truth of the columns. The datasets with the
previously mentioned components were used for both ordinality prediction (with manual labeling
of ordinality) and performance evaluation of FlairNLP (evaluation by running the associated task).

Amazon - Ratings (Beauty Products). Columns: Rating. https://www.kaggle.com/skill
smuggler/amazon-ratings?select=ratings Beauty.csv

Audiology (Original) Data Set. Columns: air, ar c, ar u, bone, o ar c, o ar u, speech. https:
//archive.ics.uci.edu/ml/datasets/Audiology+%28Original%29

Basic Income Survey - 2016 European Dataset. Columns: dem education level, awareness,
vote, age group. https://www.kaggle.com/daliaresearch/basic-income-survey-european-

dataset

Car Evaluation Data Set. Columns: buying, maint, doors, persons, lug boot, safety, class
value. Model: GradientBoostingClassifier. Task: Classification. Target: Class Values. https:

//archive.ics.uci.edu/ml/datasets/Car+Evaluation

Earthquake Magnitude, Damage and Impact. Columns: damage overall colapse, dam-
age overall leaning, damage grade, technical solution proposed. https://www.kaggle.com/arash

nic/earthquake-magnitude-damage-and-impact?select=csv building damage assessment.

csv

Earthquake Magnitude, Damage and Impact. Columns: education level household head.
https://www.kaggle.com/arashnic/earthquake-magnitude-damage-and-impact?select=cs

v household demographics.csv

Hayes-Roth Data Set. Columns: age, educational level, marital status. https://archive.ic

s.uci.edu/ml/datasets/Hayes-Roth

Linux Gamers Survey, Q1 2016. Columns: LinuxUserHowLong, DesktopLinuxGamerHowLong,
HeavyGamer, LinuxExclusivity, LinuxGamingHabitChange, LinuxGamingHabitFuture, LinuxGam-
ingMachineShared, FolksAroundYouAwareLinux, LinuxGamesPurchaseFrequency, SatisfactionSteam,
SatisfactionGOG, SatisfactionHB, DistroChangeFrequency, DistroImpactPerformance, HardwareUp-
gradeIntent, AwarenessBrandedSteamMachines, AwarenessSteamController, AwarenessSteamLink,
SteamMachineConceptLike, SteamMachinesExpandLinuxDoubtful, SteamMachinesLaunchEvaluation,
SteamMachinesAwarenessAlienware, SteamMachinesAwarenessZotac, SteamMachinesAwarenessSy-
ber, SteamMachinesWantToBuy, MachinesMaximumPrice, MachinesDIYIntent, SteamControl-
lerPurchaseIntent, SteamOSEverTried, SteamIHSUage, SteamLinkPurchaseIntent, WINEUsageVanilla,
PlayOnLinux, Crossover, WINEEvaluation. https://www.kaggle.com/sanqualis/linuxgame

rssurvey
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Nursery Data Set. Columns: parents, has nurs, form, housing, finance, social, health. Model:
GradientBoostingClassifier. Task: Classification. Target: Nursery. https://archive.ics.uci.

edu/ml/datasets/Nursery

Solar Flare Data Set. Columns: activity, evolution, previous 24h flare activity code, area.
Model: GradientBoostingRegressor. Task: Regression. Target: C-class, M-class, X-class. https:

//archive.ics.uci.edu/ml/datasets/Solar+Flare

Soybean (Large) Data Set. Columns: precip, temp, crop-hist, area-damaged, severity, stem-
cankers. Model: GradientBoostingClassifier. Task: Classification. Target: class. https://arch

ive.ics.uci.edu/ml/datasets/Soybean+%28Large%29
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Appendix C

Additional tables

C.1 Evaluation determining order

Dataset Column
FlairNLP order com

-pared to ground truth
Edit distance Accuracy

Audiology

Air 4, 1, 2, 3, 5 2 0.60
ar c,
ar u,
o ar c,
o ar u

1, 2, 3 0 1.0

Bone 1, 2, 3, 4 0 1.0
Speech 1, 2, 3, 4, 5, 6 0 1.0

Soybean-large

Precip,
temp

2, 1, 3 2 0.33

Crop-hist 3, 2, 4, 1 3 0.25
Area-damaged 1, 2, 3, 4 0 1.0
Severity 2, 3, 1 2 0.33
Stem-cankers 1, 2, 4, 3 2 0.50

Basic income survey

Dem education level 2, 1, 3, 4 2 0.50
Awareness 1, 2, 3, 4 0 1.0
Vote 1, 3, 2, 4, 5 2 0.60
Age group (n) 3, 2, 1 2 (0) 0.33 (1.0)

building damage assessment

Collapse,
leaning

1, 3, 2 2 0.33

Damage grade 2, 4, 1, 3, 5 4 0.20
Proposed 2, 1, 3, 4 2 0.50

Building household demographics Household head
1, 14, 15, 2, 19, 11, 4,
9, 5, 10, 12, 6, 8, 3, 16,
7, 13, 18, 17

15 0.21

Car evaluation

Buying,
maint

1, 2, 3, 4 0 1.0

Doors 2, 1, 3, 4 2 0.50
Persons 1, 2, 3 0 1.0
Lug boot 1, 3, 2 2 0.33
Safety 1, 2, 3 0 1.0
Class value 1, 4, 2, 3 2 0.50

Flare

Activity (n) 2, 1 2 (0) 0.0 (1.0)
Evolution 1, 2, 3 0 1.0
Flare activity 1, 2 0 1.0
Area 1, 2 0 1.0

Hayes-roth
Age 1, 4, 3, 2 2 0.50
Education level 3, 1, 4, 2 4 0.0
Marital status 4, 1, 3, 2 3 0.25

Nursery

Parents 2, 1, 3 2 0.33
Has nurs 2, 3, 5, 4, 1 3 0.40
Form 3, 2, 1, 4 2 0.50
Children 1, 3, 2, 4 2 0.50
Housing 2, 3, 1 2 0.33
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Finance 1, 2 0 1.0
Social (n) 3, 2, 1 2 (0) 0.33 (1.0)
Health 1, 2, 3 0 1.0

Ratings beauty Rating 1, 2, 3, 4, 5 0 1.0

Steam-linux-survey-v2

LinuxUserHowLong,
DesktopLinuxGamerHowLong

1, 2, 3, 4, 7, 5, 6 2 0.71

HeavyGamer 1, 2, 3, 5, 4 2 0.60
LinuxExclusivity 6, 1, 5, 3, 4, 2 4 0.33
LinuxGamingHabitChange 1, 3, 2, 4, 5 2 0.60
LinuxGamingHabitFuture 1, 3, 2, 5, 4 3 0.40
LinuxGamingMachineShared 1, 2, 3 0 1.0
FolksAroundYouAwareLinux 1, 2, 4, 3 2 0.50
LinuxGamesPurchaseFrequency 1, 2, 5, 4, 3, 6, 7 2 0.71
SatisfactionSteam 1, 3, 2, 4, 5 2 0.60
SatisfactionGOG,
SatisfactionHB

1, 2, 4, 3, 5, 6 2 0.67

DistroChangeFrequency 1, 4, 7, 5, 6, 2, 3 5 0.29
DistroImpactPerformance 1, 2, 3, 4 0 1.0
HardwareUpgradeIntent 3, 1, 2, 4, 5 2 0.60
AwarenessBrandedSteamMachines,
AwarenessSteamController,
AwarenessSteamLink

1, 3, 2, 4, 5 2 0.60

SteamMachineConceptLike 1, 2, 3, 4 0 1.0
SteamMachinesExpandLinuxDoubtful 1, 2, 3, 4, 5 0 1.0
SteamMachinesLaunchEvaluation 3, 2, 4, 5, 1, 6 3 0.50
SteamMachinesAwarenessAlienware 4, 2, 5, 1, 3, 6 4 0.33
SteamMachinesAwarenessZotac 3, 1, 2, 4 2 0.50
SteamMachinesAwarenessSyber 4, 2, 1, 3, 5 3 0.40
SteamMachinesWantToBuy 1, 2, 3, 4, 5, 7, 6 2 0.71
MachinesMaximumPrice 1, 3, 2, 4, 5, 6, 7 2 0.71
MachinesDIYIntent 1, 3, 2, 4, 5, 6 2 0.67
SteamControllerPurchaseIntent 1, 2, 3, 5, 4, 6, 7 2 0.71
SteamOSEverTried 2, 1, 3 2 0.33
SteamIHSUsage 2, 3, 1, 4 2 0.50
SteamLinkPurchaseIntent 1, 2, 3, 5, 6, 7, 4 3 0.50
WINEUsageVanilla,
PlayOnLinux,
Crossover

2, 1, 3, 4, 5 2 0.60

WINEEvaluation 1, 2, 3, 4, 5 0 1.0

Table C.1: Detailed results of using FlairNLP to determine the order. Note that a (n) indicates
that the result can potentially be negated.
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Dataset Column
Order compared
to ground truth

Edit distance Accuracy

audiology

Air 2, 3, 1, 5, 4 3 0.4
ar c,
ar u,
o ar c,
o ar u

1, 3, 2 2 0.33

Bone 3, 4, 2, 1 4 0.0
Speech 5, 4, 3, 1, 6, 2 5 0.17

backup-large

Precip,
temp

3, 1, 2 2 0.33

Crop-hist 1, 4, 3, 2 2 0.5
Area-damaged 2, 1, 3, 4 2 0.5
Severity 1, 2, 3 0 1.0
Stem-cankers 4, 3, 1, 2 4 0.0

basic income dataset dalia

Dem education level 4, 2, 3, 1 2 0.5
Awareness 2, 1, 3, 4 2 0.5
Vote 3, 2, 4, 1, 5 3 0.4
Age group 1, 2, 3 0 1.0

building damage assessment

Collapse,
leaning

1, 2, 3 0 1.0

Damage grade 1, 2, 3, 4, 5 0 1.0
Proposed 3, 2, 1, 4 2 0.5

building household demographics Household head
16, 3, 12, 4, 5, 6, 7,
8, 9, 10, 11, 1, 13, 17,
15, 2, 19, 18, 13

9 0.53

car-evaluation

Buying,
maint

3, 1, 2, 4 2 0.5

Doors 1, 2, 3, 4 0 1.0
Persons 1, 2, 3 0 1.0
Lug boot 3, 2, 1 2 0.33
Safety 3, 1, 2 2 0.33
Class value 2, 3, 1, 4 2 0.5

flare

Activity 2, 1 2 0.0
Evolution 1, 3, 2 2 0.33
Flare activity 2, 1 2 0.0
Area 2, 1 2 0.0

hayes-roth
Age 1, 3, 4, 2 2 0.5
Education level 3, 2, 1, 4 2 0.5
Marital status 4, 3, 2, 1 4 0.0

nursery

Parents 3, 2, 1 2 0.33
Has nurs 4, 3, 2, 1, 5 4 0.2
Form 1, 2, 4, 3 2 0.5
Children 1, 2, 3, 4 0 1.0
Housing 1, 3, 2 2 0.33
Finance 1, 2 0 1.0
Social 1, 3, 2 2 0.33
Health 3, 2, 1 2 0.33

ratings beauty Rating 3, 5, 4, 2, 1 5 0.0

Linux

LinuxUserHowLong,
DesktopLinuxGamerHowLong

6, 5, 2, 4, 3, 1, 7 5 0.0

HeavyGamer 3, 1, 2, 5, 4 3 0.4
LinuxExclusivity 6, 3, 4, 2, 5, 1 4 0.33
LinuxGamingHabitChange 2, 4, 1, 5, 3 4 0.2
LinuxGamingHabitFuture 2, 3, 1, 4 2 0.5
LinuxGamingMachineShared 1, 2, 3 0 1.0
FolksAroundYouAwareLinux 1, 2, 4, 3 2 0.5
LinuxGamesPurchaseFrequency 6, 3, 4, 7, 1, 2, 5 6 0.14
SatisfactionSteam 3, 4, 2, 1, 5 4 0.2
SatisfactionGOG,
SatisfactionHB

4, 5, 3, 2, 1, 6 4 0.33

DistroChangeFrequency 7, 4, 3, 2, 1, 5, 6 5 0.29
DistroImpactPerformance 2, 1, 4, 3 3 0.25
HardwareUpgradeIntent 1, 2, 3, 5, 4 2 0.6

From Strings to Data Science: a Practical Framework for Automated String Handling 77



APPENDIX C. ADDITIONAL TABLES

AwarenessBrandedSteamMachines,
AwarenessSteamController,
AwarenessSteamLink

2, 5, 1, 4, 3 4 0.2

SteamMachineConceptLike 1, 3, 4, 2 2 0.5
SteamMachinesExpandLinuxDoubtful 2, 5, 1, 3, 4 4 0.2
SteamMachinesLaunchEvaluation 3, 1, 5, 4, 6, 2 5 0.17
SteamMachinesAwarenessAlienware 1, 6, 5, 4, 2, 3 4 0.33
SteamMachinesAwarenessZotac 1, 4, 2, 3 2 0.5
SteamMachinesAwarenessSyber 1, 5, 4, 2, 3 4 0.2
SteamMachinesWantToBuy 6, 2, 1, 5, 3, 4 5 0.17
MachinesMaximumPrice 2, 3, 4, 5, 6, 1, 7 2 0.71
MachinesDIYIntent 6, 1, 5, 3, 4, 2 4 0.33
SteamControllerPurchaseIntent 7, 3, 6, 5, 1, 4, 2 6 0.14
SteamOSEverTried 1, 3, 2 2 0.33
SteamIHSUsage 1, 2, 4, 3 2 0.5
SteamLinkPurchaseIntent 7, 3, 4, 1, 2, 6, 5 5 0.29
WINEUsageVanilla,
PlayOnLinux,
Crossover

1, 2, 3, 5, 4 2 0.6

WINEEvaluation 3, 2, 4, 5, 1 3 0.4

Table C.2: Detailed results of the baseline to determine the order.
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Abstract. Many machine learning libraries require that string features
be converted to a numerical representation for the models to work as
intended. Categorical string features can represent a wide variety of data
(e.g., zip codes, names, marital status), and are notoriously difficult to
preprocess automatically. In this paper, we propose a framework to do
so based on best practices, domain knowledge, and novel techniques.
It automatically identifies different types of string features, processes
them accordingly, and encodes them into numerical representations. We
also provide an open source Python implementation1 to automatically
preprocess string data in tabular datasets and demonstrate promising
results on a wide range of datasets.

Keywords: Data cleaning · String features · Automated data science.

1 Introduction

Datasets acquired from the real world often contain categorical string data, such
as zip codes, names, or occupations. Many machine learning algorithms require
that such string features be converted to a numerical representation to work
as intended. Depending on the type of data, specific processing is required. For
example, geographical string data (e.g., addresses) may be best expressed by
latitudes and longitudes. Data scientists are required to manually preprocess
such unrefined data, requiring a significant amount of time, up to 60% of their
day [10]. Automated data cleaning tools exist but often fail to robustly address
the wide variety of categorical string data. This paper presents a framework that
systematically identifies various types of categorical string features in tabular
datasets and encodes them appropriately. We also present an open-source Python
implementation that we evaluate on a wide range of datasets.

2 Challenges and Related Work

Our framework addresses a range of challenges. First, type detection aims to
identify predefined ‘types’ of string data (e.g., dates) that require special prepro-
cessing. Probabilistic Finite State Machines (PFSMs) [9] are a practical solution
based on regular expressions and can produce type probabilities. They can also
detect missing or anomalous values, such as numeric values in a string column.

1 Open-source library: https://github.com/ml-tue/automated-string-cleaning
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Fig. 1: The overall workflow of the framework.

Statistical type inference predicts a feature’s statistical type (e.g., ordinal
or categorical) based on the intrinsic data distribution. Valera et al. [29] use
a Bayesian approach to discovers whether features are ordinal, categorical, or
real-valued, although some manual assessment is still needed. Other techniques
that predict classes using features of the data use random forest and gradient
boosting classifiers [11]. Similar techniques could be leveraged to achieve class
prediction for the statistical type.

Encoding techniques convert categorical string data to numeric values, which
is challenging because there may be small errors (e.g., typos) and intrinsic mean-
ing (e.g., a time or location). Cerda et al. [7, 8] use string similarity metrics and
min-hashing to tackle morphological variants of the same string. Geocoding APIs
(e.g., pgeocode and geopy) can convert geographical strings to coordinates [3,
5]. For ordinal string data, heuristic approaches exist that could determine or-
der based on antonyms, superlatives, and quantifiers, e.g. using WordNet [22] or
sentiment intensity analyzers (e.g. VADER, TextBlob, and FlairNLP) [6, 13, 20].

Methods have been proposed exist that recognize, categorize, and process dif-
ferent string entities based on regular expressions [28] or domain knowledge that
can outperform human experts [12, 14]. Data cleaning tools exist that are man-
ually operated [1, 2, 4], semi-automated [23, 30], or fully automated [15–17, 21,
26]. At present, however, these automated tools do not focus on string handling
[15, 16, 26] or they focus on specific steps such as error correction [17, 21].

3 Methodology

Our framework, shown in Fig. 1, is designed to detect and appropriately encode
different types of string data in tabular datasets. First, we use PFSMs to infer
whether a column is numerical, a known type of string feature (e.g., a date),
or any other type of ‘standard’ string data. Based on this first categorization,
appropriate missing value and outlier handling methods are applied to the entire
dataset to repair inconsistencies. Next, columns with recognized string types go
through intermediate type-specific processing, while the remaining columns are
classified based on their statistical type (e.g., nominal or ordinal). Finally, the
data is encoded by applying the most fitting encoding for each feature.
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Fig. 2: Workflow of predicting the statistical type for a given string column.

3.1 String feature inference

In the first step, we build on PFSMs and the ptype library [9]. We created PFSMs
based on regular expressions for nine types of string features: coordinates, days,
e-mail addresses, filepaths, months, numerical strings, sentences, URLs, and zip
codes. A detailed description for each of these can be found in Appendix A. The
PFSMs were trained on a range of datasets, listed in Appendix C, for which we
manually annotated the ground truth string types.

3.2 Handling missing values and outliers

Next, missing values are imputed based on the feature type and the missingness
of the data [19, 27] (missing at random, missing not at random, missing com-
pletely at random) using mean/mode imputation or a multivariate imputation
technique [24]. Minor typos are corrected using string metrics [18], and data type
outliers are corrected if applicable to ensure robustness in the remaining steps.

3.3 Processing inferred string features

Next, we perform intermediate processing of all the string types identified by the
PFSMs. First, we simplify the strings, for instance, by removing redundant words
in sentences. Second, we assign or perform specific encoding techniques, such
as replacing a date with year-month-day values. Third, we include additional
information, such as fetching latitude and longitude values for zip codes.

3.4 Statistical type prediction

String features not identified by the PFSMs are marked as ‘standard’ strings. For
these, we infer their statistical type, i.e., whether they contain ordered (ordinal)
data or unordered (nominal) data. The prediction is based on eight properties
extracted from the feature, shown in Fig. 2, including the uniqueness of the string
values, whether the column name or values suggests ordinality, and whether a
GloVe word embedding of the string values shows clear relationships between the
values. The rationale behind these is explained in Appendix B. These features are
fed to a gradient boosting classifier to predict the statistical type. This classifier
was trained on real-world features, manually annotated, listed in Appendix C.
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Fig. 3: Relative performance of our framework against baseline preprocessing.

3.5 Encoding

Finally, an appropriate encoding is applied for each categorical string feature.
For the string types identified by the PFSMs, a predefined encoding is applied,
per Appendix A. For nominal data, we use the dirty cat library due to its ro-
bustness to morphological variants and high cardinality features [7, 8]. We apply
the similarity, Gamma-Poisson, and min-hash encoders on nominal data when
the cardinality is below 30, below 100, and at least 100, respectively. For ordinal
data, a simple ordinal encoder is applied where the ordering is defined by a text
sentiment intensity analyzer (FlairNLP [6]).

4 Evaluation

We evaluate our framework and its individual components on a range of real-
world datasets with categorical string features, listed in Appendix C. Perfor-
mance is evaluated using the downstream performance of gradient boosting mod-
els trained on the encoded data. These models are intrinsically robust against
high-dimensional encodings, hence ensuring a stringent evaluation. We use strat-
ified 5-fold cross-validation in all experiments. The evaluation metrics are accu-
racy for classification tasks and MAE for regression tasks.

Global framework evaluation. First, we evaluate the framework as a
whole and compare it to a baseline where the data is manually preprocessed using
mean/mode imputation for missing values and ordinal or target encoding for the
categorical string features. Fig. 3 shows the relative performance differences for
each of the five folds and their mean. These results indicate that our framework
can be a suitable automated alternative to string handling. On some datasets,
the automated encodings prove suboptimal, which warrants further study.

Feature type inference. In Table 1, we compare the predictions of our
PFSMs against the ground truth feature types. Most PFSMs report perfect
accuracy. Filepaths and sentences are detected with 70-80% accuracy. In the
latter, the exact format of the data can often be unexpected. Outliers are also
detected correctly, except for sentence PFSMs, where out of the 130217 entries,
42158 entries were false positives, which is certainly a point for improvement.
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String feature
Nr. of
columns

Nr. of correctly
inferred columns

Accuracy
Nr. of false
negative outliers

Ratio of false
negative outliers

Coordinate 2 2 1.0 0 -
Day 1 1 1.0 0 -
E-mail 4 4 1.0 0 -
Filepath 5 4 0.80 0 -
Month 3 3 1.0 0 -
Numerical 6 6 1.0 0 -
Sentence 4 3 0.75 42158 0.32
URL 4 4 1.0 0 -
Zip code 3 3 1.0 0 -

Table 1: Results of string feature inference using PFSMs.
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Fig. 4: Difference in performance metrics (accuracy/MAE, preprocessing time,
and training time) with and without processing of known string feature types.

Processing inferred string features. Fig. 4 compares the performance
of our framework with and without the intermediate processing for the string
feature types identified by the PFSMs. For some features, this processing causes
a 10% performance improvement, while on others, it remains about the same.
This processing does require extra processing time, caused by API latency and
text processing, yet it seems worth the extra time for zip codes and sentences.
Moreover, the reduced string complexity (removing redundant words) and con-
version of numerical strings (e.g. ‘> 10’) into numerical representations reduce
the training time by at least ten percent on half of the datasets.

Statistical type prediction. Tables 2a and 2b evaluate the gradient boost-
ing classifier that predicts whether standard string features are nominal or ordi-
nal, by comparison against the ground truth using leave-one-out cross-validation.
These predictions are highly accurate, with very few misclassifications. Hence,
our eight extracted features are highly indicative of ordinality in the feature
values.

Ordinal encoding. Finally, we compare the ordinal encoding based on senti-
ment intensity (FlairNLP) vs. the baseline ordinal encoding by comparing them
to an oracle with the ground-truth ordering. Table 2c and Fig. 5 show that
FlairNLP significantly outperforms the baseline, although the effect on down-
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Metric Score

Accuracy 0.980 ± 0.14
F1 score 0.978
Precision 0.971
Recall 0.985
AUC score 0.980

(a) Statistical type pre-
diction scores

Predicted class
Ordinal Nominal

A
ct

u
a
l

cl
a
ss

Ordinal 79 2

Nominal 1 67

(b) Statistical type pre-
diction: Confusion matrix

Ordering method Rank Correlation

Baseline 0.1562 ± 0.5313
FlairNLP 0.7189 ± 0.5356

(c) Spearman Rank Correlation
for ordinal encoders vs. ground
truth ordering.

Table 2: Results from various modules of the framework.
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Fig. 5: Difference in performance metrics between different ordering strategies.

stream model performance is limited (< 1%), and FlairNLP does require signif-
icantly more preprocessing time.

5 Conclusions and future work

The automation of data cleaning is still a fledgling open research field. We pre-
sented a framework that combines state-of-the-art techniques and additional
novel components to enable automated string data cleaning. This framework
shows promising results, and some of its novel components perform very well,
especially in terms of identifying special types of categorical string data and
adequately processing and encoding them. However, several challenges remain.
First, string feature type inference using PFSMs based on regular expressions is
sensitive to the exact formatting of strings. More robust techniques are needed,
such as sub-pattern matching and better use of type probabilities in subsequent
processing. For instance, if it is only 60% certain that a string feature represents
a date, a more robust encoding is needed, or a human should be brought in the
loop. Second, the string type-specific processing and final encoding were subop-
timal or no better than the baseline on some datasets. These provide interesting
cases for further study. Finally, the encoding of ordinal string data still leaves
room for improvement. The sentiment intensity-based encoding has shown to
perform well on some aspects and poorly on others. We believe that more so-
phisticated approaches are possible, e.g., paying special attention to numbers
appearing in the string data. Overall, we hope that this framework and open-
source implementation will speed up research in these areas.
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A Details on string features and processing

Coordinate This is a string feature that represent GPS or Degree-Minute-
Second (DMS) coordinates such as N29.10.56 W90.00.00, N29:10:56, and 29°
10’56.22"N. Coordinates can be distinguished from other string features based
on the following characteristics:

– Two sequences of at most two digits and a third sequence which is a float
with at most two digits before the decimal point.

– A character that separates the three sequences of digits (e.g., . or :). In the
context of DMS coordinates, these characters are °, ’, and " respectively.

– A cardinal direction at the beginning or at the end of the string (i.e., N, E,
S, and W).

This string feature is processed as follows. First, the string feature is split
up into two separate parts for each coordinate in the entry, in which one part
represents the cardinal direction of the coordinate and the other part represents
the numerical information. Second, the current format of the coordinate string
feature is converted into the corresponding decimal latlong value. The string
feature is formatted using degrees, minutes, and seconds. This format can be
converted to representative decimal values using the following formula2:

decimal =

{
−(degrees + minutes

60 + seconds
3600 ) if c ∈ {S,W}

degrees + minutes
60 + seconds

3600 otherwise

Last, additional information is extracted in case the string feature contains
both the latitude and the longitude values. The additional information that can
be extracted includes Earth-Centered Earth-Fixed representations of the latlong
value and postal codes and country codes via geopy [3]. If the user decides to
encode the data, the extracted postal and country codes will receive a nominal
encoding in the final step of the framework.

Day This string feature represent the names of the seven days in the week such
as Monday. These names can appear in data in several formats. For example,
Monday can be written as Mon and Mo. Days can be distinguished from other
string features based on the following characteristics:

– A prefix of at least two characters, indicating the day of the week (e.g., Mo
for Monday, Th for Thursday, etc.).

– The suffix day, if present.

– A distinct set of characters that comes after the prefix and before the suffix
(e.g., if the string is Thursday, then Th should be followed by urs).

2 Taken from “Geographic coordinate conversion” at https://en.wikipedia.org/w

iki/Geographic\ coordinate\ conversion
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As this string feature is the least complex out of all inferred string features,
it is also the most simple to process. Considering only the first two characters
for days is the most reduction that can be done while still being able to make a
distinction between each unique day of the week. If the user decides to encode
the data, this string feature will receive a nominal encoding in the final step of
the framework.

E-mail This string feature represents all valid e-mail addresses from any do-
main such as Jane@tue.nl and john.doe@hotmail.co.uk. This feature can be
distinguished from others based on the following characteristics:

– The character @ which is between two sets of characters.
– A substring in front of the @ (i.e., the name of the e-mail) which is composed

of valid characters (e.g., the e-mail address #@*%#$@hotmail.com is invalid
as the characters before the final @ cannot be included in an e-mail name).

– A substring that comes after the @ which is composed of valid characters
and at least one dot inbetween those characters (e.g., name@hotmail is not
a valid e-mail address as the domain name is incomplete).

This string feature is processed as follows. We first remove the longest com-
mon suffix of all entries. Then, additional special characters are removed to
simplify the values. If the user decides to encode the data, this string feature
will receive a nominal encoding in the final step of the framework.

Filepath This string feature represents paths within a local system such as
C:/Windows/ and C:/Users/Documents. Filepaths can be distinguished from
other string features by the following characteristics:

– A series of substrings which are separated from each other using either / or
\ (e.g., home/users).

– Each substring cannot contain any of the following characters: \/:*?"<>|
– If present, a prefix that represents the root disk or a sequence of dots followed

by a slash or a backslash (e.g., C:/, ../, etc.).

Processing this string feature is similar to how e-mail addresses are processed
and is aimed to reduce string complexity. For this feature, the longest common
prefix and suffix are removed from all entries and all special characters are re-
moved. If the user decides to encode the data, this string feature will receive a
nominal encoding in the final step of the framework.

Month This string feature represents the non-numerical representation of a
month with or without year and day and can be distinguished based on the
following criteria:

– A prefix of at least three characters, representing a unique month (e.g., Apr).
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– If present, the remaining substring that comes after the prefix (e.g., il comes
after the prefix Apr).

– If present, a sequence of at most two digits before or after the month which
represents a day in the month (e.g., 1 January or January 1).

– If present, a sequence of at most four digits or a sequence with prefix ’

followed by two digits that comes after the month which represents the year
(e.g., January 2000 or January ’00). Both day and year can be present at
the same time.

Processing this string feature is based on the format that is being presented.
Each format is split up into individual components that represent either a day,
month, or year. The key step in this procedure is to ensure that the string repre-
sentative of the month is turned into the corresponding numerical representation.
After this key step is performed, all values are concatenated to each other ac-
cording to the format yyyymmdd. The overall workflow of this processing step is
depicted in Fig. 6. As the string feature is already transformed to its numerical
representation, no encoding would be required if the user requested so.

Fig. 6: The overall workflow for processing month string features.

Numerical There are a variety of entries that are relatively easy for users to
distinguish as numerical values but are usually inferred as strings by any type
detection or inference technique due to the presence of certain non-numerical
characters. It is therefore important to categorize such entries as a string feature
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to properly handle and process them. We obtain numerical string features using
any of the following characteristics:

– Between two sequences of digits, one of the following characters: -+ /:;&’

A space or the substring to is also applicable (e.g., 100 to 200).
– Before a single sequence of digits, any of the following words: Less than,

Lower than, Under, Below, Greater than, Higher than, Over, Above.
– Before or after a single sequence of digits, any of the following characters:

<>+$%=

Numerical string features are processed based on what they represent. If the
string feature represents a range of values, the mean of the range is calculated
for each entry. After that, the range entries are encoded according to the nu-
merical order of the ranges. If the string feature does not represent a range,
we remove all special characters and consider all resulting numbers as separate
numerical features. As the string feature is already transformed to its numerical
representation, no encoding would be required if the user requested so.

Sentence This string feature is composed of a sequence of words, typically found
in datasets that contain reviews or descriptions. It is slightly more difficult to
express this string feature as a regular expression compared to the others because
of its overlapping characteristics with regular string entries that consists of a
couple of words. However, it is still possible to perform string feature inference
for sentences based on the following characteristics:

– A substring of characters followed by a space for at least five times (i.e., the
entry is at least six words long).

The goal for processing sentence string features is to remove redundancy in
the entry and to make these more relevant for use in tabular data. The technique
used to achieve this goal is the NLTK word tokenizer, which takes a sentence
and divides these into tuples containing each word and their associated part of
speech. Then, every word that is associated with a noun is joined together with
a space into a single string which is then passed on. The result is a group of
nouns that are supposed to represent the essence of the sentence and are ready
to be encoded in the next step of the library. If the user decides to encode the
data, this string feature will receive a nominal encoding in the final step of the
framework.

URL This string feature represents any link to a website or domain such as
https://www.tue.nl/ and http://canvas.tue.nl/login. The characteristics
of this string feature is similar to that of filepaths, with a few exceptions:

– An optional suffix which represents a certain protocol (e.g., http://).
– A series of at most four character sequences, separated from each other by

a dot (e.g., www.google.com or google.com). Note that the last (pair of)
sequence(s) contain(s) at most three characters.
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Processing this string feature follows the same procedure as filepaths. If the
user decides to encode the data, this string feature will receive a nominal encod-
ing in the final step of the framework.

Zip code This string feature represents zip or postal codes from a handful
of countries. Note that we are only able to infer zip codes that contain non-
numerical characters as numerical-only zip codes are much more difficult to infer
using PFSMs without overlapping actual numerical features.

Processing this string feature is mainly done to extract additional informa-
tion from each entry. In our case, we make use of the geopy library to fetch the
latitude, longitude, and country code of the zip code. Furthermore, we also cal-
culate the ECEF coordinate using the latitude and longitude values. If the user
decides to encode the data, the zip code string feature will receive a nominal
encoding in the final step of the framework.

B Details on ordinality feature extraction

– The total number of rows in the column: It is possible that the number of rows
in combination with other extracted features can increase the performance
of the classifier. Obtaining this value is done by measuring the length of the
column.

– The number of unique values in the column: In general, nominal data tends
to vary more in cardinality as opposed to ordinal data. Furthermore, some
ordinal data columns tend to adhere to Likert-scale characteristics regarding
the possible number of unique entries, which also limits its cardinality. The
value is obtained by counting all unique entries in a column.

– The ratio between the number of unique values and the total number of rows:
As a rule of thumb, some domain experts tend to classify data as ordinal
when the ratio between the unique values and the total number of rows is at
most 0.05. The ratio for nominal data tends to be at most 0.2. As a result of
this rule of thumb, we extract the ratio for use in the classifier by dividing
the number of unique values by the total number of rows.

– The mean of the variance of the distance between the word embeddings of
unique entries: The idea behind extracting this feature is that the word
embeddings of certain entries showcase interesting linear substructures in the
word vector space. By taking a pre-trained word vector space, the classifier
may be able to make a distinction between ordered and unordered data based
on differences in the substructure. The first step is to split each entry into
a set of words which are then embedded using a pre-trained word vector
space. This work makes use of the Wikipedia word vector space by GloVe,
which consists of over 400 000 words in the vocabulary embedded into a 50-
dimensional vector space [25], to assign each word in an entry to a vector.
A random point in the vector space will be assigned to a word in case it
does not appear in the pre-trained corpus. Next, the mean of all dimensions
for each word vector in the entry is calculated such that all word vectors of
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the entry are now represented as a single point in the 50-dimensional vector
space. After this is done for all entries in the column, the variance between
each dimension is calculated. Finally, the mean of each dimension is taken
and the resulting value is a single float value that can be used to potentially
distinguish ordered data from unordered data.

– Whether the column name is commonly used in ordinal data: There are a
set of keywords that can commonly be found in column names for ordinal
data. Examples of certain keywords include grade, stage, and opinion. By
checking whether a column name is contained within one of those keywords
and vice versa, we are able to tell whether the data in the column is more
likely to be ordinal or not. Note that keywords for column names used in
this work are created based on domain expertise, which means that results
may vary when other keywords are used.

– Whether the column name is commonly used in nominal data: The approach
of extracting this feature is similar to that of checking ordinal traits in the
column name, except that the names obtained via domain expertise are now
commonly used in nominal data. Typical nominal column names include
address, city, name, and type. Again, since the used names are based on
domain expertise, results in performance may vary when other names are
used.

– Whether the unique entries contain keywords that are commonly found in
ordinal data: Extracting this feature is similar to the two aforementioned
techniques, except that ordinality will now be implied based on keywords
that are commonly found in ordinal data. The keywords that were used in
this work are adjectives and nouns that are typically found in Likert-scale
questionnaires.

– Whether the unique entries share a number of common substrings: Ordinal
data tends to contain entries with overlapping substrings. For example, the
strings disagree, agree, and wholeheartedly agree all contain the sub-
string agree. By checking whether there are common substrings in the data
of sufficient length, it is possible that the classifier associates the occurrence
of substrings with the implication that the data is ordinal.
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C Datasets

A list of all datasets that were used during the evaluation are provided here,
including additional information on what was used from the data.

C.1 String feature inference and processing

Some of the datasets listed below were used to evaluate both string feature in-
ference and string feature processing. The datasets without model, task, and
target were only used to evaluate string feature inference based on the man-
ually assigned ground truth of the columns. The datasets with the previously
mentioned components were used for both string feature inference (with manual
labeling of string feature) and string feature processing (evaluation by running
the associated task).

Coordinate

– Digital altimetric data information - GPS. Columns: latgms, loggms.
https://www.kaggle.com/mpwolke/cusersmarildownloadsgpscsv

Day

– San Francisco Crime Classification. Columns: DayOfWeek. Model: Gra-
dientBoostingClassifier. Task: Classification. Target: Category.
https://www.kaggle.com/kaggle/san-francisco-crime-classificati

on

E-mail

– Data UK. Columns: email. https://www.kaggle.com/phool1804/data-
uk

– Enrico’s Email Flows. Columns: sender, receiver.
https://www.kaggle.com/emarock/enricos-email-flows

– Indian Companies Registration Data [1857 - 2020]. Columns: EMAIL
ADDR. https://www.kaggle.com/rowhitswami/all-indian-companie
s-registration-data-1900-2019

Filepath

– Collection of Classification & Regression Datasets. Columns: Image
Index. https://www.kaggle.com/balakrishcodes/others?select=xray
full.csv

– Hillary Clinton’s Emails. Columns: MetadataPdfLink.
https://www.kaggle.com/kaggle/hillary-clinton-emails?select=Em

ails.csv
– Liver and Liver Tumor Segmentation. Columns: filepath, liver maskpath,

tumor maskpath. https://www.kaggle.com/andrewmvd/lits-png?selec
t=lits\ df.csv
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Month

– FIFA 19 complete player dataset. Model: GradientBoostingRegressor.
Task: Regression. Target: Value. Columns: Joined.
https://www.kaggle.com/karangadiya/fifa19

– Netflix Movies and TV Shows. Columns: date added.
https://www.kaggle.com/shivamb/netflix-shows

– Metacritic-Game Releases by Score. Columns: Date.
https://www.kaggle.com/abhishekdataset/metacriticgame-releases

-by-score

Numerical

– FIFA 19 complete player dataset. Columns: LS, ST, RS, LW. Model:
GradientBoostingRegressor. Task: Regression. Target: Value.
https://www.kaggle.com/karangadiya/fifa19

– HR Analytics: Job Change of Data Scientists. Columns: company size.
https://www.kaggle.com/arashnic/hr-analytics-job-change-of-dat

a-scientists?select=aug\ train.csv

– Students’ Academic Performance Dataset. Columns: StudentAbsence-
Days. https://www.kaggle.com/aljarah/xAPI-Edu-Data

Sentence

– Wine Reviews. Columns: description. Model: GradientBoostingRegressor.
Task: Regression. Target: points https://www.kaggle.com/zynicide/wi

ne-reviews

– World Development Indicators. Columns: SpecialNotes, SystemOfNa-
tionalAccounts. https://www.kaggle.com/worldbank/world-developme
nt-indicators

URL

– FIFA 19 complete player dataset. Columns: Photo, Flag, Club Logo.
Model: GradientBoostingRegressor. Task: Regression.
Target: Value. https://www.kaggle.com/karangadiya/fifa19

– Walmart Product Details 2020. Columns: Product Url.
https://www.kaggle.com/promptcloud/walmart-product-details-202

0

Zip code

– Data UK. Columns: postal. https://www.kaggle.com/phool1804/data-
uk

– OpenAddresses - Europe. Columns: POSTCODE.
https://www.kaggle.com/openaddresses/openaddresses-europe?sel

ect=netherlands.csv
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– OpenAddresses - North America (excluding U.S.). Columns: POST-
CODE. https://www.kaggle.com/openaddresses/openaddresses-north
-america-excluding-us?select=bermuda.csv

– House Price Data, England & Wales, 2015 to 2019. Columns: SS2
6ST. Model: GradientBoostingRegressor. Task: Regression. Target: 249995.
https://www.kaggle.com/dmaso01dsta/house-price-data-england-wa

les-2015-to-2019

C.2 Statistical type prediction and determining order in data

Some of the datasets listed below were used for both statistical type prediction
and determining the order in ordinal data. The datasets without model, task,
and target were only used to classify the statistical type based on the manually
labeled ground truth of the columns. The datasets with the previously mentioned
components were used for both statistical type prediction (with manual labeling
of ordinality) and performance evaluation of FlairNLP (evaluation by running
the associated task).

Nominal datasets

– [NeurIPS 2020] Data Science for COVID-19 (DS4C). Columns: province,
city. https://www.kaggle.com/kimjihoo/coronavirusdataset?select=
Case.csv

– [NeurIPS 2020] Data Science for COVID-19 (DS4C). Columns: type,
gov policy.
https://www.kaggle.com/kimjihoo/coronavirusdataset?select=Poli

cy.csv
– AB NYC 2019. Columns: name, host name, neighborhood group, neigh-

borhood, room type.
https://www.kaggle.com/chadra/ab-nyc-2019

– Automobile Dataset. Columns: make.
https://www.kaggle.com/toramky/automobile-dataset

– Craft Beers Dataset. Columns: style.
https://www.kaggle.com/nickhould/craft-cans?select=beers.csv

– Craft Beers Dataset. Columns: city, state.
https://www.kaggle.com/nickhould/craft-cans?select=breweries.

csv
– FIFA 19 complete player dataset. Columns: Nationality, Club.

https://www.kaggle.com/karangadiya/fifa19
– FiveThirtyEight Comic Characters Dataset. Columns: ALIGN, EYE,

HAIR.
https://www.kaggle.com/fivethirtyeight/fivethirtyeight-comic-c

haracters-dataset?select=dc-wikia-data.csv
– HR Analytics: Job Change of Data Scientists. Columns: city, ma-

jor discipline, company type.
https://www.kaggle.com/arashnic/hr-analytics-job-change-of-dat

a-scientists?select=aug\ train.csv
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– IBM HR Analytics Employee Attrition & Performance. Columns:
Department, EducationField, JobRole. Model: GradientBoostingRegressor.
Task: Regression. Target: MonthlyIncome.
https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attritio

n-dataset

– Kickstarter Projects. Columns: category, main category, currency, coun-
try.
https://www.kaggle.com/kemical/kickstarter-projects?select=ks

-projects-201612.csv

– Mushroom Classification. Columns: class, cap-shape, cap-surface, cap-
color, bruises, odor, gill-attachment, gill-spacing, gill-size, gill-color, stalk-
shape, stalk-root, stalk-surface-above-ring, stalk-surface-below-ring, stalk-color-
above-ring, stalk-color-below-ring, veil-type, veil-color, ring-numer, ring-type,
spore-print-color, population, habitat.
https://www.kaggle.com/uciml/mushroom-classification

– Pokemon with stats. Columns: Type 1, Type 2.
https://www.kaggle.com/abcsds/pokemon

– Ramen Ratings. Columns: Brand, Variety, Style, Country.
https://www.kaggle.com/residentmario/ramen-ratings

– Stroke Prediction Dataset. Columns: work type, smoking status.
https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

– Students’ Academic Performance Dataset. Columns: PlaceOfBirth,
GradeID, SectionID, Topic.
https://www.kaggle.com/aljarah/xAPI-Edu-Data

– Students Performance in Exams. Columns: race/ethnicity.
https://www.kaggle.com/spscientist/students-performance-in-exa

ms

– Wine Reviews. Columns: country, province, region 1, variety. Model: Gra-
dientBoostingRegressor. Task: Regression. Target: points.
https://www.kaggle.com/zynicide/wine-reviews

Ordinal datasets

– Amazon - Ratings (Beauty Products). Columns: Rating.
https://www.kaggle.com/skillsmuggler/amazon-ratings?select=ra

tings\ Beauty.csv

– Audiology (Original) Data Set. Columns: air, ar c, ar u, bone, o ar c,
o ar u, speech.
https://archive.ics.uci.edu/ml/datasets/Audiology+\%28Original

\%29

– Basic Income Survey - 2016 European Dataset. Columns: dem education
level, awareness, vote, age group.
https://www.kaggle.com/daliaresearch/basic-income-survey-europ

ean-dataset

– Car Evaluation Data Set. Columns: buying, maint, doors, persons, lug boot,
safety, class value. Model: GradientBoostingClassifier. Task: Classification.
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Target: Class Values.
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

– Earthquake Magnitude, Damage and Impact. Columns: damage overall
colapse, damage overall leaning, damage grade, technical solution proposed.
https://www.kaggle.com/arashnic/earthquake-magnitude-damage-an

d-impact?select=csv\ building\ damage\ assessment.csv

– Earthquake Magnitude, Damage and Impact. Columns: education level
household head.
https://www.kaggle.com/arashnic/earthquake-magnitude-damage-an

d-impact?select=csv\ household\ demographics.csv

– Hayes-Roth Data Set. Columns: age, educational level, marital status.
https://archive.ics.uci.edu/ml/datasets/Hayes-Roth

– Linux Gamers Survey, Q1 2016. Columns: LinuxUserHowLong, Deskto-
pLinuxGamerHowLong, HeavyGamer, LinuxExclusivity, LinuxGamingHabit-
Change, LinuxGamingHabitFuture, LinuxGamingMachineShared, FolksAround-
YouAwareLinux, LinuxGamesPurchaseFrequency, SatisfactionSteam, Satis-
factionGOG, SatisfactionHB, DistroChangeFrequency, DistroImpactPerfor-
mance, HardwareUpgradeIntent, AwarenessBrandedSteamMachines, Aware-
nessSteamController, AwarenessSteamLink, SteamMachineConceptLike, Steam-
MachinesExpandLinuxDoubtful, SteamMachinesLaunchEvaluation, SteamMa-
chinesAwarenessAlienware, SteamMachinesAwarenessZotac, SteamMachine-
sAwarenessSyber, SteamMachinesWantToBuy, MachinesMaximumPrice, Ma-
chinesDIYIntent, SteamControllerPurchaseIntent, SteamOSEverTried, SteamIH-
SUage, SteamLinkPurchaseIntent, WINEUsageVanilla, PlayOnLinux, Crossover,
WINEEvaluation.
https://www.kaggle.com/sanqualis/linuxgamerssurvey

– Nursery Data Set. Columns: parents, has nurs, form, housing, finance,
social, health. Model: GradientBoostingClassifier. Task: Classification. Tar-
get: Nursery.
https://archive.ics.uci.edu/ml/datasets/Nursery

– Solar Flare Data Set. Columns: activity, evolution, previous 24h flare acti-
vity code, area. Model: GradientBoostingRegressor. Task: Regression. Target:
C-class, M-class, X-class.
https://archive.ics.uci.edu/ml/datasets/Solar+Flare

– Soybean (Large) Data Set. Columns: precip, temp, crop-hist, area-damaged,
severity, stem-cankers. Model: GradientBoostingClassifier. Task: Classifica-
tion. Target: class.
https://archive.ics.uci.edu/ml/datasets/Soybean+\%28Large\%29
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