17 research outputs found

    An UWB LNA Design with PSO Using Support Vector Microstrip Line Model

    Get PDF
    A rigorous and novel design procedure is constituted for an ultra-wideband (UWB) low noise amplifier (LNA) by exploiting the 3D electromagnetic simulator based support vector regression machine (SVRM) microstrip line model. First of all, in order to design input and output matching circuits (IMC-OMC), source ZS and load ZL termination impedance of matching circuit, which are necessary to obtain required input VSWR (Vireq), noise (Freq), and gain (GTreq), are determined using performance characterisation of employed transistor, NE3512S02, between 3 and 8 GHz frequencies. After the determination of the termination impedance, to provide this impedance with IMC and OMC, dimensions of microstrip lines are obtained with simple, derivative-free, easily implemented algorithm Particle Swarm Optimization (PSO). In the optimization of matching circuits, highly accurate and fast SVRM model of microstrip line is used instead of analytical formulations. ADCH-80a is used to provide ultra-wideband RF choking in DC bias. During the design process, it is aimed that Vireq = 1.85, Freq = Fmin, and GTreq = GTmax all over operating frequency band. Measurements taken from the realized LNA demonstrate the success of this approximation over the band

    Reconfigurable Antennas

    Get PDF
    In this new book, we present a collection of the advanced developments in reconfigurable antennas and metasurfaces. It begins with a review of reconfigurability technologies, and proceeds to the presentation of a series of reconfigurable antennas, UWB MIMO antennas and reconfigurable arrays. Then, reconfigurable metasurfaces are introduced and the latest advances are presented and discussed

    Active Backscattering Positioning System Using Innovative Harmonic Oscillator Tags for Future Internet of Things: Theory and Experiments

    Get PDF
    RÉSUMÉ D'ici 2020, l'Internet des objets (IoT) permettra probablement de créer 25 milliards d'objets connectés, 44 ZB de données et de débloquer 11 000 milliards de dollars d’opportunités commerciales. Par conséquent, ce sujet a suscité d’énormes intérêts de recherche dans le monde académique entier. L'une des technologies clés pour l'IoT concerne le positionnement physique intérieur précis. Le principal objectif dans ce domaine est le développement d'un système de positionnement intérieur avec une grande précision, une haute résolution, un fonctionnement à plusieurs cibles, un faible coût, un faible encombrement et une faible consommation d'énergie. Le système de positionnement intérieur conventionnel basé sur les technologies de Wi-Fi ou d'identification par radiofréquence (RFID) ne peut répondre à ces exigences. Principalement parce que leur appareil et leur signal ne sont pas conçus spécialement pour atteindre les objectifs visés. Les chercheurs ont découvert qu'en mettant en oeuvre de différents types de modulation sur les étiquettes, le radar à onde continue (CW) et ses dérivés deviennent des solutions prometteuses. Les activités de recherche présentées dans cette thèse sont menées dans le but de développer des systèmes de positionnement en intérieur bidimensionnel (2-D) à plusieurs cibles basées sur des étiquettes actives à rétrodiffusion harmonique avec une technique à onde continue modulée en fréquence (FMCW). Les contributions de cette thèse peuvent être résumées comme suit: Tout d'abord, la conception d'un circuit actif harmonique, plus spécifiquement une classe d'oscillateurs harmoniques innovants utilisée comme composant central des étiquettes actives dans notre système, implique une méthodologie de conception de signal de grande taille et des installations de caractérisation. L’analyseur de réseau à grand signal (LSNA) est un instrument émergent basé sur les fondements théoriques du cadre de distorsion polyharmonique (PHD). Bien qu'ils soient disponibles dans le commerce depuis 2008, des organismes de normalisation et de recherche tels que l’Institut national des normes et de la technologie (NIST) des États-Unis travaillent toujours à la mise au point d'un standard largement reconnu permettant d'évaluer et de comparer leurs performances. Dans ce travail, un artefact de génération multi-harmonique pour la vérification LSNA est développé. C'est un dispositif actif capable de générer les 5 premières harmoniques d'un signal d'entrée avec une réponse ultra-stables en amplitude et en phase, quelle que soit la variation de l'impédance de la charge.----------ABSTRACT By 2020, the internet of things (IoT) will probably enable 25 billion connected objects, create 44 ZB data and unlock 11 trillion US dollar business opportunities. Therefore, this topic has been attracting tremendous research interests in the entire academic world. One of the key enabling technologies for IoT is concerned with accurate indoor physical positioning. The development of such an indoor positioning system with high accuracy, high resolution, multitarget operation, low cost, small footprint, and low power consumption is the major objective in this area. The conventional indoor positioning system based on WiFi or radiofrequency identification (RFID) technology cannot fulfill these requirements mainly because their device and signal are not purposely designed for achieving the targeted goals. Researchers have found that by implementing different types of modulation on the tags, continuous-wave (CW) radar and its derivatives become promising solutions. The research activities presented in this Ph.D. thesis are carried out towards the goal of developing multitarget two-dimensional (2-D) indoor positioning systems based on harmonic backscattering active tags together with a frequency-modulated continuous-wave (FMCW) technique. Research contributions of this thesis can be summarized as follows: First of all, the design of a harmonic active circuit, more specifically, a class of innovative harmonic oscillators used as the core component of active tags in our system, involves a large signal design methodology and characterization facilities. The large signal network analyzer (LSNA) is an emerging instrument based on the theoretical foundation for the Poly-Harmonic Distortion (PHD) framework. Although they have been commercially available since 2008, standard and research organizations such as the National Institute of Standards and Technology (NIST) of the US are still working towards a widely-recognized standard to evaluate and cross-reference their performances. In this work, a multi-harmonic generation artifact for LSNA verification is developed. It is an active device that can generate the first 5 harmonics of an input signal with ultra-stable amplitude and phase response regardless of the load impedance variation

    Dielectrically Loaded Quad-ridge Flared Horns for Ultra Wideband Reflector Feed Applications in Radio Astronomy

    Get PDF
    Reflector-based radio telescopes are used as tools for observations in both radio astronomy and space geodesy. To observe the weak sources in space, highly sensitive receivers, fronted by optimized reflector feeds, are therefore needed. Wideband and ultra-wideband (UWB) systems enable large continuous frequency bandwidth and reduce the number of receivers that are needed to cover the radio spectrum. Therefore, they are attractive for existing and next generation of reflector arrays such as the Square Kilometre Array (SKA), Allen Telescope Array (ATA), Deep Synoptic Array (DSA), and the Next Generation Very Large Array (ngVLA). To achieve sensitive wideband and UWB performance with reflector feeds, a near-constant beamwidth and good impedance match are required over large frequency bands. The quad-ridge flared horn (QRFH) is a robust and compact UWB feed technology for this purpose, and is easily designed with single-ended excitation for 50-Ohm ports. The QRFH is dual-linear polarized and can typically achieve good performance up to 6:1 bandwidth with high band-average aperture efficiency and good impedance match. A drawback in existing state-of-the-art QRFH designs, is that they suffer from gradually narrowing beamwidth and increasing cross-polarization in the upper part of the frequency band. This is especially challenging for QRFHs that are designed to illuminate deep reflector geometries. The narrowing beamwidth leads to reduced aperture efficiency, and therefore also reduced sensitivity. To meet the demand for high sensitivity observations over large bandwidths, these challenges need to be addressed.This thesis introduces and investigates low-loss, dielectric loading of the QRFH design to achieve ultra-wideband performance that reaches beyond decade bandwidth exemplified with 20:1 bandwidth in one single QRFH. The dielectric load is homogeneous, with a small and non-intrusive footprint and improves the beamwidth performance over the frequency band, while keeping the complexity low and the QRFH footprint compact. Keeping the QRFH robustness and compact footprint is favorable for practical receiver installation in real-world applications for radio observations. Three quad-ridge designs with dielectric loading are investigated, both for room temperature and cryogenic applications, and are shown to be highly suitable for wideband operation in existing and future reflector arrays

    Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar at Millimeter-Wave Frequencies

    Get PDF
    Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 GHz for this application. Vital sign signal is first reconstructed with Arctangent Demodulation (AD) method using phase change’s information collected by the radar due to chest wall displacement from respiration and heartbeat activities. Since the heartbeat signals can be corrupted and concealed by the third/fourth harmonics of the respiratory signals as well as random body motion (RBM) from the SUT, we have developed an automatic Heartbeat Template (HBT) extraction method based on Constellation Diagrams of the received signals. The extraction method will automatically spot and extract signals’ portions that carry good amount of heartbeat signals which are not corrupted by the RBM. The extracted HBT is then used as an adapted wavelet for Continuous Wavelet Transform (CWT) to reduce interferences from respiratory harmonics and RBM, as well as magnify the heartbeat signals. As the nature of RBM is unpredictable, the extracted HBT may not completely cancel the interferences from RBM. Therefore, to provide better HR detection’s accuracy, we have also developed a spectral-based HR selection method to gather frequency spectra of heartbeat signals from different MIMO channels. Based on this gathered spectral information, we can determine an accurate HR even if the heartbeat signals are significantly concealed by the RBM. To further improve the detection’s accuracy of RR and HR, two deep learning (DL) frameworks are also investigated. First, a Convolutional Neural Network (CNN) has been proposed to optimally select clean MIMO channels and eliminate MIMO channels with low SNR of heartbeat signals. After that, a Multi-layer Perceptron (MLP) neural network (NN) is utilized to reconstruct the heartbeat signals that will be used to assess and select the final HR with high confidence

    Cognitive radio performance optimisation through spectrum availability prediction

    Get PDF
    The federal communications commission (FCC) has predicted that, under the current regulatory environment, a spectrum shortage may be faced in the near future. This impending spectrum shortage is in part due to a rapidly increasing demand for wireless services and in part due to inefficient usage of currently licensed bands. A new paradigm pertaining to wireless spectrum allocation, known as cognitive radio (CR), has been proposed as a potential solution to this problem. This dissertation seeks to contribute to research in the field of CR through an investigation into the effect that a primary user (PU) channel occupancy model will have on the performance of a secondary user (SU) in a CR network. The model assumes that PU channel occupancy can be described as a binary process and a two state Hidden Markov Model (HMM) was thus chosen for this investigation. Traditional algorithms for training the model were compared with certain evolutionary-based training algorithms in terms of their resulting prediction accuracy and computational complexity. The performance of this model is important since it provides SUs with a basis for channel switching and future channel allocations. A CR simulation platform was developed and the results gained illustrated the effect that the model had on channel switching and the subsequently achievable performance of a SU operating within a CR network. Performance with regard to achievable SU data throughput, PU disruption rate and SU power consumption, were examined for both theoretical test data as well as data obtained from real world spectrum measurements (taken in Pretoria, South Africa). The results show that a trade-off exists between the achievable SU throughput and the average PU disruption rate. Significant SU performance improvements were observed when prediction modelling was employed and it was found that the performance and complexity of the model were influenced by the algorithm employed to train it. SU performance was also affected by the length of the quick sensing interval employed. Results obtained from measured occupancy data were comparable with those obtained from theoretical occupancy data with an average percentage similarity score of 96% for prediction accuracy (using the Viterbi training algorithm), 90% for SU throughput, 83% for SU power consumption and 71% for PU disruption rate.Dissertation (MEng)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques
    corecore