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ABSTRACT 

Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave 

(mmWave) radars has gained lots of attention for medical, civilian, and military applications. 

These mmWave radars are small, light, and portable which can be deployed to various places. To 

increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar 

can be used to acquire non-redundant information of vital sign signals from different perspectives 

because each MIMO channel has different fields of view with respect to the subject under test 

(SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave 

(FMCW) radar operating at 77-81 GHz for this application. Vital sign signal is first reconstructed 

with Arctangent Demodulation (AD) method using phase change’s information collected by the 

radar due to chest wall displacement from respiration and heartbeat activities. Since the heartbeat 

signals can be corrupted and concealed by the third/fourth harmonics of the respiratory signals as 

well as random body motion (RBM) from the SUT, we have developed an automatic Heartbeat 

Template (HBT) extraction method based on Constellation Diagrams of the received signals. The 

extraction method will automatically spot and extract signals’ portions that carry good amount of 

heartbeat signals which are not corrupted by the RBM. The extracted HBT is then used as an 

adapted wavelet for Continuous Wavelet Transform (CWT) to reduce interferences from 

respiratory harmonics and RBM, as well as magnify the heartbeat signals. As the nature of RBM 

is unpredictable, the extracted HBT may not completely cancel the interferences from RBM. 

Therefore, to provide better HR detection’s accuracy, we have also developed a spectral-based HR 

selection method to gather frequency spectra of heartbeat signals from different MIMO channels. 

Based on this gathered spectral information, we can determine an accurate HR even if the heartbeat 

signals are significantly concealed by the RBM. To further improve the detection’s accuracy of 

RR and HR, two deep learning (DL) frameworks are also investigated. First, a Convolutional 

Neural Network (CNN) has been proposed to optimally select clean MIMO channels and eliminate 

MIMO channels with low SNR of heartbeat signals. After that, a Multi-layer Perceptron (MLP) 

neural network (NN) is utilized to reconstruct the heartbeat signals that will be used to assess and 

select the final HR with high confidence.   
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CHAPTER I 

INTRODUCTION 

Vital signs can be monitored in a medical setting, such as by a doctor or nurse practitioner or at 

home using vital signs monitoring equipment. It is used to assess subjects’ wellbeing, diagnose a 

medical issue, or even suggest lifestyle change.  Monitoring vital signs is crucial to live longer and 

healthy life as it can indicate signs of an infection, early or prevent a misdiagnosis. Commonly, 

blood pressure, heart rate, respiration rate, and oxygen level are tracked. In this dissertation, we 

will only focus on respiration rate and heart rate detection, keeping in mind that a normal heart 

rate is between 60 and 100 beats per minute, and normal respiration rate for adults range from 12 

to 20 breaths a minute [1].  

1.1 Human Vital Sign Monitoring 

Traditional human vital sign monitoring systems to capture respiratory rate (RR) and heart rate 

(HR) requires contact devices to subjects’ chest. Figure 1.1 and Figure 1.2 illustrate some popular 

systems for measuring RR and HR from human subjects. For example, to measure the RR of the 

patients, belt sensors that wrap around patients’ lower chests can be used which employ several 

sensors such as piezo-electric sensors [2], inductive sensors [3], capacitive sensors [4] and fiber 

optic sensors [5], etc. These systems measure the changes of pressure induced to the sensors by 

the chest movements during inhaling/exhaling periods. The pressure waveforms can then be used 

to estimated RR from the subjects under test (SUT). For HR measurement, multi-lead 

Electrocardiogram (ECG) devices shown in Figure 1.2 are usually used in hospitals or clinics 

facilities. These wearable systems, however, require contact with patients’ chests and are not 

convenient under scenarios in which the patients have serious chest injury or when long-term  

https://infiniummedical.com/vitalsignsmonitoroptions
https://www.mayoclinic.org/healthy-lifestyle/fitness/expert-answers/heart-rate/faq-20057979#:~:text=A%20normal%20resting%20heart%20rate%20for%20adults%20ranges%20from%2060,to%2040%20beats%20per%20minute.
https://www.medicalnewstoday.com/articles/324409
https://www.medicalnewstoday.com/articles/324409
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Figure 1.1. Contact Belt Sensor to Respiration Rate using a) Piezo-electric sensor [2], b) Back 

Electrode [3], c) Inductive sensor [4], and d) Fiber optic sensor [5]. 

 

 

 

Figure 1.2. Contact ECG system to measure heart rate [6-7], a) 12-lead ECG system, b) 

ambulatory ECG system, and c) typical ECG waveform. 
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continuous monitoring is needed. Fig. 1.2c shows a typical ECG signal that can be used to measure 

HR as well as diagnose heart symptoms such as arrhythmias or coronary heart disease [6-7].  

Another type of wearable devices used for HR measurement is electro-optic devices to measure 

the tissue blood volume changes in the microvascular tissue bed underneath the skin [8]. These 

devices measure photoplethysmogram (PPG) signals and can be used to estimate HR as well as 

assist clinicians to evaluate various cardiovascular-related diseases [8]. Although this technique 

has good potential as an innovative way to access cardiac pulsation, it is still inconvenient in daily 

monitoring of HR as the person must wear these devices 24/7. Furthermore, the accuracy is limited 

in tracking the PPG signals during daily activities and light physical exercises [8]. Figure 1.3 shows 

some PPG measuring devices such as finger pulse sensors, Apple iWatch or Fitbit devices, etc. 

Therefore, to overcome the inconveniences of traditional contact vital signs sensors discussed 

above, the non-contact measurement of human vital sign has the potential to improve many 

applications in different areas such as medical [9-10], civil [11, 13], and military [14]. Figure 1.4 

illustrates some of the practical uses of a remote vital sign monitoring system. These systems can 

be deployed in public places such as airports or hospitals to monitor vital signs of multiple subjects.  

Current state-of-the-art systems employ technologies such as camera- [15-16] or radar-based [9-

12] techniques for monitoring patients’ vital sign from a distance. Table 1.1 summarizes the 

technologies that are currently under considerations for remote vital sign monitoring application 

along with the advantages and limitations of these systems. It can be shown from Table 1.1 that 

although both systems have similar limitations such as their vulnerability to motion artifacts, the 

camera-based systems are more sensitive to lighting conditions, patients’ skin colors as well as its 

incapability to penetrate materials for through-wall detection. Therefore, radar-based monitoring 

system is more attractive in wider range of applications/use cases as it offers precise localization 
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Figure 1.3. Wearable LED-based sensor for measuring human vital sign. a) Finger sensor, b) 

Apple iWatch, and c) Fitbit devices. Sources obtained from Google Images. 

 

 

 

Figure 1.4. Remote vital sign monitoring system in a) airports, b) hospital or clinical facilities. 
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Table 1.1. Current Technologies for Remote Vital Sign Monitoring [9-12, 15-16] 

Technologies Principles Advantages Limitations 

Video Camera-based 

Techniques 

Measures induced 

movement of the 

chest by 

quantifying 

variation of image 

intensities over time 

Non-contact, 

unobtrusive, ability 

to perform remote 

measurements via 

low-cost webcams. 

Susceptible to 

motion artifacts, 

sensitive to lighting 

condition/skin 

colors, privacy 

issues to patients, 

unable to penetrate 

materials. 

Radar 

Detect movements 

of the chest caused 

by breathing and 

heartbeat. 

Non-contact, ability 

to penetrate 

materials, precise 

localization of SUT. 

Vulnerable to 

motion artifacts 

signal attenuation 

by high body fat 

and low SNR of 

heartbeat. 
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of patients, ability to penetrate materials for through-wall monitoring applications without 

invading the privacy of patients. Our objective is to develop a highly accurate non-contact RR/HR 

portable monitoring system based on radar techniques. Hence, we will utilize and study the newly 

developed mmWave radar systems. In this dissertation, we propose the use of a compact, portable, 

widely distributed MIMO radar system operating at 77-81 GHz to improve the accuracy of RR/HR 

detection results. It will be shown that by using more widely distributed MIMO channel, better 

estimation accuracy especially for HR can be achieved compared with single channel systems. As 

shown in Table 1.1, radar-based techniques for RR/HR detection suffer from two main challenging 

issues: low SNR and RBM. In the next sections, we discuss these challenges in details and 

literature surveys on solutions to tackle these issues. 

 

1.2 Current Challenges of Radar-based Techniques for Vital Sign Detection  

Since the concept of remote vital sign detection using a portable system at mmWave frequencies 

is based on sensing physiological motion of the chest’s skin, several external factors might corrupt 

the vital sign signals captured by the radar. These include random motions during the 

measurements that add noises to the reading of vital sign signals and significantly degrade the SNR 

especially of the heartbeat signal that makes the detection more challenging. Following are the 

literature surveys on dealing with the Random Motions effects as well as methods for improving 

the SNR of vital sign signals. 

 

1.2.1 Improving SNR of Heartbeat Signals 

Although mmWave sensors with significantly reduced size have made remote human vital signs 

monitoring more feasible and portable to be deployed in public places, they severely suffer from 
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EM propagation loss and multipath interferences, which eventually cause errors in reading human 

vital signs. HR detection in particular suffers more, since reflected EM signals from chest 

displacement due to heartbeat are smaller compared to respiration and respiratory spurious 

harmonics [9-12]. There are a number of solutions in the literature to improve the signal to noise 

ratio (SNR) of the received vital signs signals. In [17,18], a directional horn antenna with a 20-dBi 

gain was used. Their HR estimation results show less than 2% error compared to a standard contact 

sensor. However, directive antennas reduce the field of view of the radar and make it impractical 

to work effectively in public places for multi-subject monitoring. Implementation of advanced 

signal processing algorithms at the receiver side is another solution for boosting SNR. A stepped-

frequency continuous wave (SFCW) radar operating within 2-4 GHz is used with Arctangent 

Demodulation (AD) and State-Space Method (SSM) to enhance the SNR of the heart signals to 

12dB [19-21]. Their results show a deviation of <1.5% from the estimated HR using a standard 

contact sensor when the subject is 0.8 m away from the transceiver. In [22], CWT and cross-

correlation methods between two CW radars operated at 10 GHz were used to improve the SNR 

of heart signals. This method has improved the detection accuracy of HR by up to 14% compared 

to conventional CWT. In [23-24], an adaptive scale selection method with CWT is used to 

eliminate random body motion and noise components. They show an improvement of up to 40% 

in HR estimation accuracy. While their signal processing can be utilized at mmWave, these 

systems are successful, but still operate at low frequencies and are bulky so they do not offer 

portability. 

Progress has also been made with mmWave FMCW radar [25-28], where processing techniques 

have been proposed to improve the quality of HR estimation. In [25], a 77-GHz FMCW radar is 

used with pre-processing methods such as noise/motion corrupted segment removal, windowing 
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and gain control, etc. to increase the quality of vital sign signal before estimation methods such as 

FFT and inter-peak estimation are employed to guarantee high accuracy. The work from [26-27] 

and [28] employ similar hardware but uses different processing chain such as maximum likelihood 

(ML) [26-27] and SSM [28] for HR estimation. Although producing accurate results, these 

approaches use single TX-RX antenna pair which does not take full advantages of the MIMO radar 

hardware.  Mm-wave antennas and components can now be integrated into small circuitry to form 

a phased-array with steering capabilities [29-31]. In [29], two uniform linear arrays (ULA) are 

used with digital phase shifters to physically steer the TX-RX beams to the angular positions of 

subjects. An average SNR of 15 dB is achieved when a subject is detected. Recently, self-injection-

locked radar [30-31] has also been used for vital sign applications. The radar operates at 2.4 GHz 

and transmits the output signal via one TX antenna. The echo signal is received by a 4-element 

ULA supported by 0°/90° digital phase shifter. Although HR estimation accuracy is not fully 

reported, the proposed system worked up to 3.6 m and 120° angular position.  

While a phased-array with steering capability enhances the SNR of detected signal, it is still 

considered a single TX-RX pair and does not take advantage of spatial diversity. With L-TX and 

M-RX to form a MIMO configuration with 𝐿 ⨯ 𝑀 diverse channels; an opportunity for spatial 

diversity is offered. While the main advantage of phased-array radar is the coherent processing 

gain at the transmitting side, studies show that MIMO radars may offer enhanced performance 

with better tolerance to fading as they utilize spatially diverse transmitters and receivers [32-34]. 

Given that the target’s radar cross section (RCS) at the aspect angle is varied, MIMO radar systems 

could outperform phased-array radar systems in higher SNR environments. Several works in 

literature takes advantage of MIMO radar for vital sign applications [35-36]. A 4 TX - 4 RX, 

FMCW MIMO radars with 7-GHz bandwidth are employed in [36] where the four TX-RX pairs 
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are placed at four corners of a room. The superposition of FFT magnitude from these TX-RX pairs 

is performed. Results from [36] show a 6% improvement in HR estimation accuracy compared 

with a single TX-RX pair.  

In [37-40], the authors employ Maximal Ratio Combining (MRC) methods to combine the 

captured signals from separate TX-RX pairs to increase the SNR of the heartbeat signals. They 

show that with increase SNR, the HR accuracy rate is improved by 18% in [39] and 8% in [40]. 

One limitation from this approach is, however, after the combining processes, it is hard to identify 

the interferences of random motions from the combined signals especially for the cases where 

random motions are subtly induced to the vital sign signals. Table 1.2 summarizes the methods 

discussed above for improving the SNR of vital sign signal. It can be observed that most of the 

proposed work in literatures do not take advantage of the spatial diversity of MIMO radar 

configuration in further increasing the SNR of vital sign signals, especially the heartbeat signal. 

Although the authors in [39, 41] employs mmWave MIMO radar configuration in improving 

heartbeat’s SNR using MRC, random motion is difficult to deal with when all signals are combined 

into one. Thus, in this dissertation, we will investigate the use of MIMO configuration to see if it 

can help increase the SNR of the vital sign signals and to deal with subtly induced random motions. 

As a result, improvements of RR/HR detection accuracy can be achieved. 

 

1.2.2 Random Motion Cancellation on Vital Sign Detection 

During the experiments, interferences from Random Motion (RM) certainly impacts the 

accuracy of RR and HR monitoring. This interference remains to be the most difficult challenge 

to address to date. There have been numerous works in the literature that proposed approaches to 

address this issue and a brief discussion will be given here. Generally, RM can be divided into two  
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Table 1.2. Proposed Solutions in Literature for SNR Improvement of Heartbeat Signal 

Research Groups Methods Advantages Limitations 

Li, et al. [12] High Gain Antennas 
Increase SNR of 

heartbeat Signal 

Single TX-RX, 

Decrease fields of 

view, Large Size 

Radar 

Ren et al. [21] State-spaced method 

Increase SNR of 

heartbeat Signal 

Single TX-RX, Large 

Size Radar 
Tateishi et al. [22] 

Wavelet Transform 

and Cross-correlation 

Shoichiro et al. [23] Wavelet Transform  

Alizadeh et al. [27] Maximum Likelihood Increase SNR of 

heartbeat Signal, 

Compact Size Radar 

Single TX-RX 
Oleksak et al. [28] State-spaced method 

Mehrdad et al. [29] Phased-array 

Increase SNR of 

heartbeat Signal, 

target localization 

Complex Hardware, 

single TX-RX 

Sakamoto et al. [39] 
Maximal Ratio 

Combining Methods 

Increase SNR of 

heartbeat signal, 

portable Radar. 

Difficult to identify 

existing random 

motion 
Dai et al. [41] 
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categories: 1) from the radar itself [42-43] and 2) from the subject under test (SUT) [44-54]. We 

will briefly discuss these RM categories along with solutions proposed in literatures to deal with 

them as well as their advantages and limitation in the next sections. Most of the time random 

motions from the radar itself are caused by operators in which they create shaky/vibrating motions 

during the measurements. To deal with these random motions, authors in [42] places a motion 

sensor onto the hand-held radar to record any unwanted vibration caused by hand-shakes. Thus, 

the hand-shake vibration can be cancelled based on motion-sensor data. While [42] uses additional 

sensors to capture the radar’s unwanted shaky motions, the authors in [43] proposed the use of 

Empirical Mode Decomposition (EMD) technique to identify and cancel out the unwanted 

vibrations as they have different spectral characteristics that can be realized from Intrinsic Mode 

Functions (IMFs). Thus, by removing the IFM featuring the RM and only using the remaining 

IMFs, the vital sign signal without hand-shake vibration effects can be recovered. As discussed 

from [42-43], while the mechanical hand-shake motions from the radar side might affect the 

accuracy of HR estimation, they can be canceled either by using extra hardware for capturing the 

interfered motions or by using a signal decomposition method such as EMD to identify and cancel 

these unwanted motions. In this dissertation, we thus focus on investigating the second category 

of RM where the interfered motions come directly from the SUT.   

While the nature of RM in the first category is more predictable and easier to overcome, it is not 

the case for the second category in which the motion comes from the body of the SUT. In [12, 44], 

the authors use two separate radar systems placed in front and back of the SUT to cancel out the 

RM as each radar captures the same RM but in opposite direction. It can be seen that for this 

approach, the measurement has to be performed simultaneously from both sides to cancel out the 

random body drifts. Thus, the complexity of hardware requirement makes this type of approach 



 12 

not suitable for deploying the system at public places. Furthermore, alignment of the dual radars 

is also important to make sure the RBM signal is captured equally by the two radars so that the 

RM can be completely canceled from the combined signal. A different antenna configuration is 

proposed in [45-46] in which the self-injection locked (SIL) antennas have different gain features 

and are placed side-by-side rather than being located in front and back of the patient. Since the 

body and vital sign movements are not uniform over the entire chest, the signals that are captured 

by these two antennas have different amplitude ratios between the body motion and vital sign 

components. Although experimental results show that this approach reveals a body motion signal 

cancellation of around 85% [45], it still possesses several limitations. Firstly, it is critical for 

antennas to align with each other as they need to capture similar random body motion for the SUT 

to be able to successfully cancel them. Secondly, the experimental setup requires the high-gain 

antenna to be tilted, which makes the hardware system complicated for practical use. Similar 

approach of using dual radars has also been proposed in [47]. However, ultra-wideband radars with 

patch antennas are used instead of the CW radars with helical antennas in [45]. The difference in 

the setup between [47] and [48] is that the antenna configuration in [47] forms an up-down 

placement system while the system in [48] forms a left-right system. This approach assumes the 

radar on the SUT’s left side captures both vital sign and RM signals while the one on the SUT’s 

right side captures only RM signals as it does not look directly at the heart’s chest area. Thus, by 

subtracting the signals captured from these two radars, only heartbeat signal remains. By properly 

combining the signals from the two radars, they show that the heartbeat spectrum SNR is enhanced 

and easier to detect. One main disadvantage of these approaches in [45-48], however, is that if the 

RBM is not received equally by both radars, these interferences cannot be totally eliminated. 

Meanwhile in [49], the authors use four radars in front, back, left, right directions of the SUT 
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and the combination of the four signals can be used for cancelling the random body motion. This 

approach is also based on a concept proposed in [12] with the enhancement that the pair of radars 

in the right-left direction can also help to increase the SNR of the vital sign signals in the presence 

of RBM. However, deployment of a system with four separate radars will limit the use of this 

system at public places due to the complexity of hardware requirements. As an alternative 

approach, [50-51] employs a hybrid system where iPhone camera is used to capture the RM from 

SUT and the radar-measured signal is compensated based on a camera-measured RBM to acquire 

vital signs. A limitation of this approach is that accurate monitoring relies on RM data captured by 

the camera, which can be easily affected by lighting conditions in the room. Therefore, this type 

of hybrid systems is more suitable for laboratory use than in practice. 

Progress has been made for a variety of advanced signal processing techniques that have been 

developed and proposed to combat RBM problems. In [25], for example, a 77-GHz FMCW radar 

is used with a simple thresholding method that eliminates large amplitude motion from the 

physiological signals that would exceed a certain threshold. The captured signals are divided into 

1-second segments and the energy in each segment is computed for a window size of 1 second. If 

the energy within this segment exceeds a certain pre-defined threshold, all samples in the segment 

are discarded. However, this method is limited as it only helps removing any impulse-like motion 

due to sudden changes in SUT’s position. With an RBM that subtly induces noises to the 

physiological signal, this method would provide an inadequate performance. In [52], a deep neural 

network (DNN) is proposed to predict the respiration pattern of SUT in the presence of RBM. Due 

to its powerful capability, DNN is employed to directly model the nonlinear relationship between 

the expected features of the respiration and the signal mixtures that contain RBM. Thus, the trained 

DNN model can still predict the respiration motion based on the relationship between random-
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motion-interfered signals and clean respiratory signals that it learned from the training process. 

The authors from [52] showed that the original signal fluctuates due to interferences of RBM while 

the predicted signal can recover the respiratory pattern and increase the SNR of respiratory signal 

in the frequency domain. One limitation of this publication is that they only tried to recover 

respiratory information. The authors in [53] introduced matched filters to retrieve the respiratory 

and heartbeat spectra interfered by large scale RBM, where the templates that contain heartbeat 

information is first acquired and applied to the output physiological signal to cancel out RBM. 

From their experimental results, the authors showed that matched filtering method is useful against 

the passive RBM from unintentional body swaying effect during the measurement. One limitation 

in this approach, however, is the fact that the templates are extracted manually and might be 

challenging for real-time application. 

It can be seen that most of the hardware-based methods require either complex hardware which 

takes up a lot of spaces and are not practical in use at public places or hybrid systems with camera 

which is highly sensitive to lighting conditions. For the software-based methods, the proposed 

techniques are generic and do not cover subtly induced RM [25], or only recover respiratory signals 

[52]. Thus, it is challenging in employing these methods to improve the HR estimation accuracy 

in practical scenarios.  

 

1.3 Contributions 

My major contributions include: 

• Propose the use of a compact, widely distributed MIMO radar system to improve the 

respiratory rate and heart rate detection results. It will be shown that by using more widely 

distributed MIMO channels, better estimation accuracy especially for heart rate can be 
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achieved compared with single channel systems even in scenarios where there are pronounced 

random body-swaying motion (RBSM) that interfere with the heartbeat signals. The 

exploration of this device on monitoring vital sign of human subjects have not been widely 

published in the literature and this dissertation is one of the first work that investigate the use 

of this device. 

• Proposes a novel automatic heartbeat template (HBT) extraction method based on constellation 

diagram of the received radar signal to adaptively identify the corrupted signal portions due to 

random swaying body motion and extract the templates that contain heartbeat signal to magnify 

its magnitude. The idea of using heartbeat template and matched filtering for magnifying 

heartbeat signals is not novel. However, the works in the literature require human intervention 

to extract a heartbeat template which are certainly not practical for real-time operation while 

our method is completely automatic and does not require human intervention. 

• Develop a spectral-based heart rate selection to adaptively search for accurate heart rate based 

on the spectral characteristics of the wavelet transformed signal to address the interfered 

random body-swaying motion. Under the strong impact from the random body-swaying 

motion, the power spectral density of the heartbeat signals can be concealed by the 

interferences that simply picking the highest peak within the frequency spectrum do not 

guarantee accurate heart rate estimation. While most of the work using MIMO in the literature 

are not fully taking use of the spatial diversity of the system, our developed spectral-based 

heart rate selection can be used in different widely distributed MIMO device to improve 

accuracy of the heart rate estimation. 

• Develop and analyze a convolutional neural network (CNN) for channel classification in which 

channels with low signal-to-noise ratio of heartbeat signals are identified and excluded from 
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the estimating procedure to reduce the error of HR detection. Currently in the literature, deep 

learning frameworks are mostly applied for single-channel radar which results in the 

requirement for large amount of data sets for certain tasks. With the advantages of having more 

information from different radar channels, we are among the first research groups that steers 

the effort of using deep learning for simpler tasks such as channel classification where there is 

no need for extensive amounts of data while still improving heart rate estimation’s accuracy. 

• We also utilize a multi-layer perceptron neural network to reconstruct the heartbeat signals and 

predict heart rates from subjects under test. While there has been works in the literature that 

use neural network for heartbeat signals’ reconstruction, most of them uses single-channel 

radar which eventually requires an extensive amount of data for reconstructing the heartbeat 

signals, especially under scenarios with moving subjects under test. Our proposed framework 

addresses the challenge that extensive amount of radar data collected from human do not 

currently exist, hence by using more information from different MIMO channels and extracted 

information about our heartbeat template extraction method, we reduce the amount of training 

data needed while still achieve satisfactory performance for heartbeat signals reconstruction. 

 

1.4 Organization of the Dissertation 

The rest of the dissertation is organized as follows: 

 Chapter 2 discusses an introduction of different radar architectures that have been used in remote 

RR/HR monitoring applications. Comparison between these radar architectures will be discussed 

to select the most appropriate radar architectures for our study. An overview of the basic theory of 

Multiple-Input Multiple-Output (MIMO) radar configuration which employs Time Division 

Multiplexing (TDM) to separate the transmitted signals from different transmitters (TX) is also 

discussed. 
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Chapter 3 discusses the state of the art of compact radar systems from different manufacturers. 

For this dissertation, an FMCW-MIMO radar system from Texas Instruments is proposed as it 

offers MIMO configuration with widely distributed channels. Design details of the system such as 

antennas characteristics, output power, FMCW chirp timing configuration will be presented. 

Chapter 4 discusses mathematic model of human chest wall displacement due to respiration, 

heartbeat as well as random body-swaying motion to aid in the development and validation of 

proposed processing chain. This chapter describes the mathematic model of the displacement of 

human chest wall due to the above signals as well as received radar signal with an FMCW radar 

employing TDM-MIMO configuration. 

Chapter 5 introduces a processing chain for monitoring RR and HR from subjects under quasi-

static scenarios in which the subjects have low random body-swaying motion. We first show a 

mathematic model of received signals using a TDM-MIMO radar for this application. Next, the 

processing chain including 2D-FFT for target selection, Arctangent Demodulation (AD), 

Constellation Correction for extracting and correcting the vital sign signals will be shown. Next, 

Maximal Ratio Combining (MRC) technique which is used to reduce complexity of the estimating 

process by combining the signal from separate MIMO channels will be discussed. This chapter 

will show that by employing more widely separated MIMO channels, better accuracy of HR 

estimation is achieved compared with single radar channel. To help reduce the interferences of 

respiratory harmonics, automatic HBT extraction and adapted CWT will also be presented. 

Experimental results with scenarios where the SUTs lie down on bed or sit down on chairs in front 

of radar will be shown followed by the results discussion and some concluding remarks of this 

chapter. 

To propose a solution for the negative impact of random body-swaying motion, Chapter 6 shows 
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that while SUTs are standing, the interferences from the random body-swaying motion (RBSM) 

severely affect the HR estimation results. In this dissertation, we only address the impact of RBSM 

in which the upper body of the SUT unintentionally sways back and forth during the experiment. 

Thus, we must modify the processing chain to deal with the strong interferences from RBSM. A 

spectral-based HR selection is added to help select the HR from multiple MIMO channels. We 

first show that with simulated mathematic models, our proposed HBT extraction and adapted CWT 

method help suppress these unwanted interferences and significantly improve HR estimation 

accuracy compared with conventional methods. Experimental results for standing subjects will be 

shown next to validate the robustness of our modified processing chain compared with 

conventional methods and several published results. Discussion on results and concluding remarks 

are presented at the end of this chapter.  

Chapter 7 discusses the Deep Learning Framework using CNN and MLP neural network that 

can be used to aid on channel classification and HR prediction. These modules are shown to be 

useful in improving the HR estimation accuracy. Training and testing results with synthesized data 

and experimental data to train these neural networks are shown to indicate their usefulness in our 

application followed by discussion and concluding remarks from this chapter. 

Chapter 8 summarizes the dissertation and puts forward several directions of potential future 

works. 
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CHAPTER II 

RADAR ARCHITECTURES AND CONFIGURATION 

There are different radar architectures that have been proposed in literature for radar-based 

respiratory rate and heart rate monitoring applications. While each radar architecture has its own 

advantages and limitations, selecting a radar configuration that fits our intended use cases is 

important so that it can provide optimal capability of detection for our system. This chapter briefly 

introduces different radar architectures that have been recently proposed in the literature and how 

with emphasis on employing FMCW radar architecture. Furthermore, we also investigate MIMO 

radar configuration with widely distributed antennas and how its use impacts on improving the 

accuracy of detection. 

 

2.1 Introduction to Different Radar Architectures 

2.1.1 Continuous Wave (CW) Radars 

Continuous Wave (CW) radars are the first popular type which can be used to extract respiratory 

rate and heart rate information from the subjects under test (SUT). In the CW radar architecture, 

single frequency signal is transmitted and received to capture the displacement from the patients’ 

chest movement caused by respiration and heartbeat [12, 54]. Although CW radars are simple to 

implement and low-cost, they do not offer range detection capability which measures the distances 

of patients from the radar. Without range-detecting capability, CW radar cannot measure 

respiratory rate and heart rate in scenarios where there is more than one patient. Therefore, we 

want to opt for a different radar architecture that has this range-detection capability. 

 



 20 

2.1.2 Ultra-Wideband (UWB) Radars 

The second type of radar architecture that can be used for this application is UWB radar in 

which the radars send narrow pulses in a scale of nanosecond. By capturing the reflected pulses, 

we can detect the distances of objects with high range resolution [55-56]. Therefore, any tiny 

changes on the patients’ chest such as periodic expansion and contraction can be detected by the 

UWB radars. It should be noted that UWB radars have power limitation and since it operates on a 

wide band, the system noises are relatively higher resulting in lower SNR compared with other 

types of radars. Furthermore, UWB radars require high-speed analog-to-digital converters (ADC), 

which will complicate the hardware design and increase the overall cost. 

 

2.1.3 Stepped-frequency Continuous Wave (SFCW) Radars 

Stepped-frequency Continuous Wave (SFCW) radar is another type of radar that can be used for 

vital sign detection application. Instead of transmitting a single frequency signal as in the CW 

radar or narrow pulse as in UWB radar, SFCW radar transmits a series of discrete tones in a 

stepwise manner to realize a large effective bandwidth. Therefore, by analyzing the received data 

on the frequency domain, SFCW radars offer range detection which enables multi-subject 

detection capability. Compared with impulse UWB radar, SFCW radar has a narrow instantaneous 

bandwidth so that lower-speed ADCs can be used and the hardware requirements for the receiver 

become less stringent [57]. Additionally, the receiver instantaneous bandwidth would be much 

smaller, resulting in a lower noise bandwidth and a higher signal-to-noise ratio (SNR). However, 

it is necessary to receive multiple tones before any processing is initiated, thus conventional SFCW 

radar suffers from a serious drawback that the data acquisition time to step over many frequencies 

is too long for many applications [57].  
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2.1.4 Frequency-Modulated Continuous Wave (FMCW) Radars 

The last radar architecture that can be used for contactless vital sign detection is Frequency 

Modulate Continuous Wave (FMCW). For this architecture, the FMCW radar transmits a chirp 

signal which is a sinusoid whose frequency increases linearly with time. The transmitted chirp is 

reflected off the subjects and is received at the receiver. By analyzing the reflected chirp signal, 

range information as well as any physiological motions can be revealed [25, 58]. The noises 

bandwidth from FMCW radars are also lower than that of UWB radars as they employ narrower 

bandwidth.  

 

2.2 A Focus on FMCW Radar 

To summarize the advantages and limitation of the radar architectures that are discussed above, 

Table 2.1 shows a comparison between different types of radars architectures in terms of 

localization capability, multi-subject detection, ADC speed requirements, system noises and data 

acquisition time. Although each of them offers several advantages and disadvantages for using in 

vital sign monitoring applications, FMCW is shown to be a good candidate when used for this 

purpose. Thus, in this dissertation, we focus our investigation on the use of a FMCW radar 

configuration as it offers precise localization for multiple subject detection which CW radar is not 

capable of. Furthermore, FMCW radar generally has lower system noises than UWB radars as they 

require narrower instantaneous operating bandwidth and lower required data acquisition time 

compared with SFCW radars as they do not have to wait for complete reception of multiple single-

frequency signals prior to processing. In the next chapter, we will discuss in detail about the 

FMCW radar we want to use as well as its antenna configuration. 
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Table 2.1. Comparison between different radar architectures 

 CW UWB SFCW FMCW 

Localization No Yes Yes Yes 

Multiple 

Subjects 
No Yes Yes Yes 

ADC Speed Low Fast Low Low 

System Noises Low High Low Low 

Data Acquisition 

Time 
Fast 

Fast with high 

ADC speed 
Slow Fast 
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2.3 Principle of MIMO Configuration and Virtual Antenna Array 

The MIMO radar systems consists of multiple transmitters and receivers which allows 

transmitting and receiving noncoherent waveforms [59-60]. Figure 2.1 demonstrates a typical 

MIMO radar in remote sensing applications such as target detection or localization [24]. Compared 

with the use of a single-input single-output (SISO) configuration, MIMO radars offer spatial 

diversity advantages to overcome target scintillation [60]. As the target radar cross section (RCS) 

can vary significantly with viewing angles, by deploying antennas that are widely distributed in 

space, the target can be illuminated and viewed at different spatial aspects. Thus, the signal-to-

noise ratio (SNR) can be improved and results in the enhancements of detection performance. For 

a MIMO radar that can be considered as widely-spaced such that each element can view the target 

at different view aspect, the inter-element spacing 𝑑𝑡 between the radar element has to satisfy the 

following condition [60]:  

                                                                            𝑑𝑡 ≥
𝜆𝑅

𝐷
                                                                           (2.1) 

 

where 𝜆 is the operating wavelength, R is the distance from the radar to the target and D is the size 

of target. If this condition is satisfied, each element of MIMO array can then receive the reflected 

signals from the target via an independent path which helps to overcome the target scintillation 

issue. 

Another advantage of a MIMO radar is its capability to differentiate closely spaced targets with 

high resolution by forming a virtual array configuration based on the MIMO array geometry [61-

62]. While a SISO radar does not have the capability of finding the target’s angles in space, i.e. 

angle of arrival (AoA), a single-input multiple-output (SIMO) radar can still do it but with lower 

number of antennas than an equivalent MIMO radar. This is demonstrated in Figures 2.2 and 2.3  
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Figure 2.1. General MIMO radar system illuminating the targets with different transmitters and 

receiving the reflected signals with different receivers [60]. 

 

 

Figure 2.2. SIMO radar with single transmitter and 8 receivers [63]. 

 

 

Figure 2.3. MIMO radar with 2 transmitters and 4 receivers [63]. 
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in which the angle resolution of the MIMO radar with 𝑁𝑇𝑋 transmitting antennas and 𝑁𝑅𝑋 receiving 

antennas can be made equivalent to a SIMO radar with  𝑁𝑇𝑋  ⨯ 𝑁𝑅𝑋 receiving antennas [62]. Angle 

resolution 𝜃𝑟𝑒𝑠 of a MIMO radar system is the minimum angle separation for the two objects to be 

distinguished as separate peaks and is given by [63]: 

 

                                                                     𝜃𝑟𝑒𝑠 =
𝜆

𝑁𝑑𝑐𝑜𝑠(𝜃)
                                                                 (2.2) 

 

where 𝜆 is the operating wavelength,  𝑁 = 𝑁𝑇𝑋  ⨯ 𝑁𝑅𝑋 is the number of virtual antennas which 

depends on the number of physical antennas, 𝑑 is the inter-element spacing of the virtual antennas 

and 𝜃 is the target’s angle.  

As shown in Figure 2.2, a transmission from the transmitter (TX) results in the phase of 

[0 𝛿 2𝛿 …7𝛿] at all of the eight receivers (RX). Also, it requires 9 antennas (1 TX – 8 RX) to be 

able to have a good angle resolution for a given target angle 𝜃. In the MIMO case in Figure 2.3, 

the transmission of TX1 results in the phase of [0 𝛿 2𝛿 3𝛿] at the four RX. Since the TX2 is 4d 

away from TX1, transmitted signal from TX2 travels an additional path length of 4𝑑𝑠𝑖𝑛(𝜃). Thus, 

the phase of the signal at the four RX due to transmission from TX2 is [4𝛿 5𝛿 6𝛿 7𝛿]. It can be 

shown that with MIMO configuration, it only uses 6 antennas (2 TX – 4 RX) to obtain the same 

resolution. Figure 2.2 and 2.3 shows that the MIMO configuration offers lower hardware cost for 

angle estimation compared with the SIMO configuration while maintaining the same angle 

resolution for target localization.  

The principle of using MIMO configuration to form a virtual array can also be extended to 

multidimensional arrays. Figure 2.4 shows an example where a MIMO configuration can form a 

2D virtual array with azimuth and elevation angle estimation capability. 
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Figure 2.4. An example of using MIMO configuration to form a 2D virtual array for azimuth and 

elevation estimation capability. 
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To summarize the advantages of MIMO configuration over SIMO or SISO, Table 2.2 compares 

these configurations in terms of angle estimation capability, angle resolution, spatial diversity, and 

hardware costs assuming the same inter-element spacing and number of receivers. It can be seen 

from Table 2.2 that MIMO provides better spatial diversity as well as lower cost to produce the 

same angle resolution as with the SIMO configuration. Therefore, in this dissertation, we focus on 

investigating the use of MIMO radar to improve the SNR of received signal. Although we will not 

focus on the investigation of angle resolution in this dissertation, MIMO radar configuration also 

provides a higher angle resolution compared with other configuration which is beneficial in 

applications where it is required to detect multiple reflected radar signals from multiple targets in 

the scene. 

 

2.4 Time Division Multiplexing (TDM) Strategies for MIMO Configuration 

For MIMO configuration, it is important for the RX antennas to be able to separate the signals 

corresponding to different TX antennas (i.e. by having different TX antennas transmit on 

orthogonal channels). In this dissertation, TDM-MIMO is employed to separate signals from 

multiple TX antennas as it is the simplest way to implement in FMCW radar. In TDM-MIMO, 

there will be a time delay between sperate TX antennas to make sure they do not transmit at the 

same time. Each transmitting frame consists of several blocks, with each block consisting of 

several time slots 𝑇𝑟 each corresponding to transmission by one of the numbers of the TX antennas 

[38]. As an example, in Figure 2.5, an FMCW radar with two time slots alternate time slots are 

dedicated to TX1 and TX2. Therefore, it guarantees that transmitted signals from different TX do 

not interfere with each other's. 
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Table 2.2. Comparison between different radar configurations 

 SISO SIMO MIMO 

Angle Estimation No Yes Yes 

Angle Resolution(1) __ High High 

Spatial Diversity(2) __ Low High 

Hardware Cost(3) __ High Low 

 

 

 

 

Figure 2.5. TDM-MIMO concept demonstration. 
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CHAPTER III 

COMPACT ON-CHIP RADAR SYSTEMS 

This chapter discusses the current state-of-the-art compact, integrated devices that are developed 

for mmWave radar from various manufacturers. As discussed in Chapter 2, since we are 

investigating radars with FMCW architectures and MIMO configuration, we can narrow down the 

search for available commercial devices that such capabilities. We will then give a brief 

introduction of the device of interest and the hardware setup for our application. 

 

3.1 Current State of the Art 

As the size of the antennas shrinks when the operating frequency increases and since we want to 

reduce the size of the radars so that it is more practical for the system to be deployed at public 

places or even portable, we opt for the use of millimeter-wave (mmWave) sensors. This frequency 

range attains a compact radar size that is enough for use as a handheld device while maintaining a 

high range resolution which is the main capability and advantage of the radar in distinguishing 

multiple subjects in space. Furthermore, with the size of the antennas significantly decreases in the 

mmWave frequencies, larger numbers of antennas can be integrated to the system without 

changing the overall size of the radar system, this enables a larger MIMO configuration in which 

various multiple antennas illuminate and receive the reflected signals from the subjects under test 

at different spatial angles. This helps to increase the accuracy of vital sign detection as there are 

multiple versions of captured signals from different angles. Figure 3.1 shows some available on-

chip mmWave MIMO radar system that can be used for remote sensing applications in general. 
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Figure 3.1. On-chip MIMO radar for remote sensing applications. Sources from Google Images. 
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Table 3.1 shows current state of the art mmWave radar system with MIMO configuration. The 

table shows the operation frequency of the system, the type of radar and the number of transmitters 

(TX) and receivers (RX). It should be noticed that there are other vendors who offer mmWave 

radar as well but are not listed here as their products do not support MIMO configuration. As seen 

from this list, we adopt the Texas Instrument (TI) MMWCAS-RF-EVM because it uses FMCW 

architectures which enable the range detection of the subjects. It also carries 12 TXs and 16 RXs 

antennas which vastly improves the spatial diversity for better signals realization as well as 

increases the angle solution of the radar in cases where we need to localize multiple subjects in the 

scene. 

 

3.2 System Hardware 

The Texas Instrument (TI) MMWCAS-RF-EVM; which is a four-device cascaded array of 

AWR2243, operating across 77-81 GHz frequency range. The Evaluation Module (EVM) for the 

MMWCAS-RF-EVM is shown in Figure 3.2 [64]. 

 

3.2.1 Antenna Structure 

Figures 3.3, 3.4 and 3.5 show the TX-RX antenna structures of the radar system. The structure 

includes 12 TXs and 16 RXs resulting in a total of 192 separate channels. For the RX antennas, 

there are three groups which are RX Array A, RX Array B and C as shown in Figure 3.3. The 

spacing between antennas in each group is 
𝜆0

2
 in which 𝜆0 is the wavelength at 77 GHz. Separation 

between the three RX groups denoted as A2, A3 and A4 are listed in Table 3.2. These separations 

are designed to meet the cascading requirement between different chips [64].  

Among the 12 TX antennas shown in Figure 3.4, there are 3 TXs from the master chip are placed  
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Table 3.1. State of the art mmWave radar with MIMO configuration 

Manufacturer Type Frequency # of TX – RX 

Texas Instruments (TI) FMCW 60 GHz – 64 GHz 3 TX – 4 RX 

Texas Instruments (TI) FMCW 77 GHz – 81 GHz 3 TX – 4 RX 

Texas Instruments (TI) FMCW 77 GHz – 81 GHz 12 TX – 16 RX 

Sivers IMA CW 57 GHz – 71 GHz 16 TX – 16 RX 

NXP FMCW 76 GHz – 81 GHz 3 TX – 4 RX 

RFbeam Microwave 

GmbH 
FMCW 76 GHz – 77 GHz 4 TX – 6 RX 

ST Microelectronics FMCW 76 GHz – 81 GHz 3 TX – 4RX 

 

 

 

 

Figure 3.2. MMWCAS-RF EVM, (1) RX Array A – 8, 𝜆0/2, linear elements, (2) RX Array B – 

4, 𝜆0/2, linear elements, (3) RX Array C – 4, 𝜆0/2, linear elements, (4) TX Array – 9, 2𝜆0, linear 

elements in azimuth, 4 elements in elevation. 
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in vertical direction to enable elevation estimation. The other 9 TXs are placed in the horizontal 

plane for azimuth angle estimation. The 9 azimuth TXs are placed 2𝜆0 apart so that together with 

the 16 RXs, they form a virtual array within MIMO mode with 86 virtual antennas in azimuth 

direction and provide an angle resolution of up to 1.4°. The elevation angle resolution is equivalent 

to the resolution achieved with 7 antennas, which is approximately 18° [64]. 

Figure 3.5 shows the overall separation between TX antenna array and RX antenna array groups. 

As the vertical spacing between TX and RX groups is 19𝜆0. This hardware is a good candidate to 

study the efficiency of spatial diversity for HR estimation.  

Figure 3.6 shows the TX-RX antennas along with the dimensions shown in Table 3.3. The 

antennas are 4-element series-fed patches. It has 12 dBi gain and its 3dB-beamwidths are 

approximately 70° for E-plane (𝜙 = 0°) and 20° for H-plane (𝜙 = 90°).  

Figure 3.7 shows the 3D radiation pattern of the antenna and its 2D radiation pattern cuts in the 

E-plane and H-plane [64].  

 

3.2.2 RF Front End 

The MMWCAS-RF EVM is implemented by cascading four AWR2243 which is a self-

contained FMCW transceiver single-chip solution operating across 76 to 81 GHz band. The 

AWR2243 is built on low-power 45-nm RFCMOS process to enable a monolithic implementation 

of a three TXs and four RXs system with built-in Phase-Locked Loop (PLL) and Analog-to-Digital 

Converters (ADC). Figure 3.8 shows the functional block diagram of a single AWR2243 device 

[64]. As discussed in the manufacturer’s documentations of the hardware in [64], each AWR2243 

device consists of three TXs and four RXs. Firstly, a ramp generator along with a local synthesizer 

of 20 GHz will generate a chirp profile. Each TX includes a programable 6-bit phase shifter (5.625°  
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Figure 3.3. RX Antenna Array Dimensions of TI MMWCAS-RF-EVM 

 

 

 

Figure 3.4. TX Antenna Array Dimensions of TI MMWCAS-RF-EVM 
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Figure 3.5. TX and RX Antenna Relative Dimensions of TI MMWCAS-RF-EVM 

 

 

 

Figure 3.6. Series-Fed, Microstrip Patch Array Antenna Element and Dimensions of TI 

MMWCAS-RF-EVM 
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Figure 3.7. a) 3D Antenna Pattern @78.5 GHz Operation, b) 2D slices of E-plane and H-plane 

@76 GHz, 78.5 GHz and 81 GHz Operation of the Series-Fed, Microstrip Patch Array Antenna. 

 

 

Table 3.2. TX – RX Antenna Array Dimensions of TI MMWCAS-RF-EVM [64] 

Dimension Label Dimension (mils) Dimension (77 GHz, 𝝀𝟎) 

A1 76.78 0.5 

A2 4069.34 26.5 

A3 614.24 4.0 

A4 2456.96 16.0 

A5 1191.5 7.759 

A6 307.12 20 

B1 2928.84 19.072 

B2 76.78 0.5 

B3 230.36 1.5 

B4 153.56 1.0 

 

 

 

 

(a) (b) 
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Table 3.3. Series-Fed, Microstrip Patch Array Antenna Element Dimensions of TI MMWCAS-

RF-EVM [64] 

Dimension Label Dimension (mils) 

A1 27.568 

A2 11.802 

B1 47.24 

B2 49.21 

B3 45.27 

B4 49.21 

C1 42.52 

C2 40.95 

D1 16.722 

D2 20.002 

E1 39.38 

E2 55.12 

F1 8.4 

F2 10.62 

F3 3.94 

G >78.7402 

H <=20.67 
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Figure 3.8. Functional Block Diagram of single AWR2243 device 
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step) to enable beam-forming applications. Following the phase shifters are power amplifiers (PA) 

and transmit antennas. On the receiving side the receiving antennas and low noise amplifiers 

(LNA) are placed. The output from the LNA will be passed through mixers along with the original 

chirp to reconstruct the baseband signals which have the information of range and movement of 

the subject under test. The output power of each AWR2243 is 10 dBm. For each series-fed antenna 

element with a 12-dBi gain, a total of 22 dBm Equivalent Isotropically Radiated Power (EIRP, 

which is the product of transmission power and gain in a direction relative to an isotropic antenna) 

will be realized. This is well below the restricted level for this type of device under FCC Part 

15.255 and FCC Part 15.256 in which the peak EIRP should be less than 40 dBm and 33 dBm, 

correspondingly. Figure 3.9 shows a simplified functional block diagram of the MMWCAS-RF-

EVM which is a cascade of four AWR2243 devices and their associated power, clocking, 

synchronization, local oscillator, and RF circuits. The AWR22243 devices are separated into 

master and slave devices in which the master device will use its built-in local oscillator distribution, 

clock distribution and frame synchronization to communicate and synchronize with other three 

slave devices. This allows the system to generate and receive coherent FMCW chirps across all 

master and slave devices. Each AWR2243 device on the board also has a 4-port CSI2.0 transmitter 

to send radar data to a host processor for data storage and processing. The MMWCAS-RF-EVM 

accepts 5V DC, 8 A (max) power through the host board connectors. The primary 5V system rails 

will then be converted into various AWR2243 device rails by a pair of LP87524P, quad-channel, 

monolithic, buck-converters. 

 

3.3 Chirp Configuration and Related Parameters 

3.3.1 Chirp Timing Parameters 

The configuration of the FMCW chirp profile (such as frequency slope, sweep bandwidth, chirp 
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cycle time, etc.) directly affects the interpretation of measurement results as well as important 

capabilities of the system such as target distance, range resolution, and velocity resolution. Figure 

3.10 depicts a single chirp and the associated timing parameters [65]. Within a slow-time frame, 

as the active chirp time is much shorter than the frame time, it is possible to use a series of chirps 

within a frame to stabilize the radar performance. The maximum number of chirps per frame will 

be dependent on the active chirp time and frame time. Figure 3.11 shows an example of a frame 

structure that consists of a series of chirps. 

 

3.3.2 Maximum Detectable Range and Range Resolution 

The maximum and minimum distance over which a radar can detect objects is an important 

parameter for a radar sensor. The max range information is determined from the sampling 

frequency, 𝑓𝑠, and the chirp sweeping slope, 𝑆 [65]. 

 

                                                              𝑅𝑎𝑛𝑔𝑒𝑚𝑎𝑥 =
𝑓𝑠 ⨯ 𝑐0
2 ⨯ 𝑆

                                                      (3.1) 

 

where 𝑐0 is the speed of light in m/s. The 𝑓𝑠 is also dependent on the ADC sampling frequency 

used. 

While the max range calculated in (3.1) is theoretical range merely based on chirp profile and 

can be used as a rule of thumb when designing the chirp. There are other aspects that can limit the 

max range of the radar sensor in practice. These aspects include output power from TX, noise 

figures from RX, chirp duration, number of chirps per frame, TX-RX antenna gain in the direction 

of interest, object characteristics like Radar Cross Section (RCS) as well as the minimum SNR  
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Figure 3.9. Simplified Functional Block Diagram of MMWCAS-RF-EVM consisting of a master 

AWR2243 device and three slaves AWR2243 devices. 

 

 

 

Figure 3.10. Typical FMCW Chirp Timing Setup [65] 
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Figure 3.11. Typical FMCW Frame Structure 
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required by the detection algorithm to detect the target. Therefore, a more robust way to calculate  

max range is [65]: 

 

                  𝑅𝑎𝑛𝑔𝑒𝑚𝑎𝑥,𝑆𝑁𝑅 = √
𝑃𝑡 ⨯ 𝐺𝑇𝑋 ⨯ 𝐺𝑅𝑋 ⨯ 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 ⨯𝑁𝑐ℎ𝑖𝑟𝑝 ⨯ 𝑇𝑐ℎ𝑖𝑟𝑝 ⨯ 𝑐0

2

𝑓0
2(4𝜋)3 ⨯ 𝑘𝑇𝑑𝑒𝑡 ⨯𝑁𝐹𝑅𝑋 ⨯ 𝑆𝑁𝑅𝑑𝑒𝑡

4

                     (3.2) 

 

where 𝑃𝑡 is the TX output power, 𝐺𝑇𝑋 , 𝐺𝑅𝑋 are the TX and RX Antenna Gain, 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 is the RCS 

of the target, 𝑁𝑐ℎ𝑖𝑟𝑝 is the number of chirps per frame, 𝑇𝑐ℎ𝑖𝑟𝑝 is the active chirp time, 𝑓0 is the 

operating frequency, k is Boltzmann constant, 𝑇𝑑𝑒𝑡 is the ambient temperature, 𝑁𝐹𝑅𝑋 is the noise 

figure of the RX and 𝑆𝑁𝑅𝑑𝑒𝑡 is the minimum SNR required by the algorithm to detect a target. 

 

In scenarios where there are multiple subjects, the radar must be able to resolve two closely 

separated subjects. The smallest distance between two subjects that allows them to be detected 

separately is referred as the range resolution. This parameter depends on the chirp sweep 

bandwidth. This explains why the continuous wave (CW) radar does not have the capability of 

measuring range information as it only transmits single frequency signal. Range resolution is 

calculated as: 

                                                                  𝑅𝑎𝑛𝑔𝑒𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑐0

2 ⨯ 𝐵
                                                     (3.3) 

 

where 𝐵 is the sweep bandwidth of FMCW chirp. As seen from (3.3), the larger the sweep 

bandwidth, the better the range resolution. For MMWCAS-RF-EVM, the maximum sweep 

bandwidth is 4 GHz which is equivalent to a theoretical range resolution of approximately 4 cm. 
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3.3.3 Maximum Detectable Velocity and Velocity Resolution 

The maximum detectable velocity of the radar sensor is also dependent on the chirp cycle time, 

which is the difference between the start of two consecutive chirps. This in turn depends on how 

fast the frequency sweep can be performed and the minimum inter-chirp time allowed. The 

maximum unambiguous velocity is calculated as [65]: 

 

                                                             𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑚𝑎𝑥 =
𝜆0

4𝑇𝑐ℎ𝑖𝑟𝑝
                                                              (3.4) 

 

where  𝜆0 is the operating wavelength, 𝑇𝑐ℎ𝑖𝑟𝑝 is the total chirp time including active chirp time and 

idle time. For vital sign monitoring application, the detection of high-speed target is not required. 

Thus, the choice of 𝑇𝑐ℎ𝑖𝑟𝑝 is significantly relaxed. In scenarios where there are multiple moving 

targets, the radar sensor might need to separate out targets with small velocities differences. This 

is where a good velocity resolution is necessary. The velocity resolution can be calculated as: 

 

                                                      𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝜆0

2𝑁𝑐ℎ𝑖𝑟𝑝𝑇𝑐ℎ𝑖𝑟𝑝
                                               (3.5) 

  

where 𝑁𝑐ℎ𝑖𝑟𝑝 is the number of chirps per frame, 𝑇𝑐ℎ𝑖𝑟𝑝 is the total chirp time and 𝜆0 is wavelength. 

 

3.3.4 Angular Resolution 

Apart from the angular field of view, it is also important to resolve two objects at that are close 

by angles. Therefore, having a good angular resolution is also important for a radar in many 

applications. In general, the angle resolution measurements depend on the number of receiver 
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antennas available. The larger the number of available antennas, the better angular resolution. The 

angular resolution can be calculated as:  

                                                  𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝜆0

𝑑 × 𝑁𝑅𝑋𝑐𝑜𝑠𝜃
×
180

𝜋
                                       (3.6) 

 

where 𝑑 is the spacing between receiving antennas,  𝑁𝑅𝑋 is the number of receiving antennas and 

𝜃 is the angle at which the objects are present. 

 

3.3.5 Chirp Configurations for RR/HR Monitoring Applications 

The most common applications for radar include the short-range radar and mid- or long-range 

radar. For our application, the chirp configuration can be selected to adapt the short-range radar 

because if the SUTs are too far away from the radar, it may be difficult to detect heartbeat signals 

because their magnitudes are relatively weak compared with other interferences such as respiratory 

and random body-swaying motion signals. 

Table 3.4 shows so the chirp timing configuration and other parameters that we are using for our 

RR/HR monitoring applications with the MMWCAS-RF-EVM device. Because the typical heart 

rate of human subjects is in range 0.75 – 2.5 Hz, the slow-time sampling frequency 𝑓𝑠 is chosen as 

20 Hz to satisfy Nyquist requirement. Since the active chirp time 𝑇𝑐 ≃ 40𝜇𝑠 << the slow-time 

sampling time 𝑇𝑠, multiple chirps can be used in one slow-time frame to increase the SNR of 

received chirp and stabilize the target range bin identification. Theoretical maximum unambiguous 

range and range resolution calculated using equations (3.1) and (3.2) based on the chirps’ timing 

parameters are 3.83 cm and 3.3 m, respectively. With these values of maximum unambiguous 

range and range resolution, the radar hardware should be able to acquire sufficient vital sign 

information when the radar is within this range. 
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Table 3.4. Chirp Timing and General Parameters used in this dissertation 
 

Start Frequency, 𝑓𝑐 (GHz) 77 

Frequency Slope, 𝑆 (MHz/μs) 98 

Idle Time (μs) 250 

TX Start Time (μs) 1 

ADC Start Time (μs) 10 

ADC Samples 64 

ADC Sampling Frequency (MHz) 2.2 

Ramp End Time (μs) 40 

Number of Chirp Per Frame 8 

Slow-time Sampling Frequency, 𝑓𝑠 = 1/𝑇𝑠 (Hz) 20 

Range resolution (𝑐𝑚) 3.83 

Maximum unambiguous range (m) 3.3 
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CHAPTER IV 

SIMULATION OF VITAL SIGN AND RADAR SIGNALS 

To aid in the development and validation of proposed processing chain, mathematical modeling 

of human chest wall displacement due to respiration, heartbeat as well as random body-swaying 

motion are necessary. This chapter describes the mathematical model of the displacement of 

human chest wall due to the above signals as well as received radar signal with an FMCW radar 

employing TDM-MIMO configuration. 

 

4.1 Chest Wall Displacement Model due to Respiration and Heartbeat 

 The chest wall displacement due to respiration 𝛥𝑅𝑟 can be modeled as a periodic sequence of 

quadratic inhalation and exponential exhalation waveform. This is a result of fitting functions to 

published measurements of pressure induced by respiration muscles [66-67]. 

 

                              𝛥𝑅𝑟(𝑡) =

{
 
 

 
 −

𝐾𝑏
𝑇𝑖𝑇𝑒

𝑡2 +
𝐾𝑏𝑇

𝑇𝑖𝑇𝑒
𝑡,                       𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇𝑖]

𝐾𝑏

1 − 𝑒−
𝑇𝑒
𝜏

[𝑒−
𝑡−𝑇𝑖
𝜏 − 𝑒−

𝑇𝑒
𝜏 ] , 𝑓𝑜𝑟 𝑡 ∈ [𝑇𝑖 , 𝑇]

                              (4.1) 

  

where 𝐾𝑏 is the minimum end-inspiratory pressure value representing the amplitude of the 

inspiratory effort, 𝑇𝑖 and 𝑇𝑒 are the durations of inspiratory and expiratory phases, 𝑇 = 𝑇𝑖 + 𝑇𝑒 =

1

𝑓𝑅𝑅
 is the respiratory period of corresponding respiratory frequency 𝑓𝑅𝑅, 𝜏 is the time constant of 

the exponential expiratory profile. Typical displacement amplitudes 𝐾𝑏 are 4-12 mm [67] and 

typical RR of adults are 8-20 breaths per minute (BRPM). As the above model is a quadratic 
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waveform, it will introduce higher-order harmonic components that interfere with the heartbeat 

signals. 

Since the heartbeat signals are narrowband, the chest wall displacement due to heartbeat 𝛥𝑅ℎ 

can be modeled as a pure sinewave [12, 53]: 

 

                                                         𝛥𝑅ℎ(𝑡) = 𝐴ℎ𝑠𝑖𝑛(2𝜋𝑓𝐻𝑅𝑡 + 𝜑ℎ)                                                   (4.2) 

 

where 𝐴ℎ is the displacement of the chest induced by heartbeat, 𝑓𝐻𝑅 is the heartbeat frequency and 

𝜑ℎ is the initial phase of the heartbeat signals. Typical HR of adults are 50 – 100 beats per minute 

(BPM) [68].  

To illustrate an example of our simulated chest displacement waveform, Table 4.1 lists several 

simulating parameters for respiratory rate, heart rate, maximum displacement due to respiration 

and heartbeat activity along with other timing parameters to simulate the waveform. Furthermore, 

as the chest displacement waveforms are time-variant, we introduce noises into the simulated 

waveform in which Gaussian noises are added to the following parameters 

𝑓𝑅𝑅 , 𝑓𝐻𝑅 , 𝐾𝑏 , 𝑇𝑖, 𝑇𝑒 , 𝜏, 𝐴ℎ  during the 20-second simulation so that the simulated waveforms are more 

practical. 

Figure 4.1 shows the simulated waveforms from the given set of parameters discussed in Table 

4.1. It can be shown in Figure 4.1 that due to the added noises to the parameters in Table 4.1, the 

displacements of both respiratory and heartbeat signals are not uniform across the time domain, 

which is more realistic for analysis of interferences from harmonic components of the respiratory 

signal.  
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Table 4.1. Simulated Parameters for Chest Displacement due to Respiration and Heartbeat 

 

 

𝑓𝑅𝑅 (𝐻𝑧) 𝑓𝐻𝑅  (𝐻𝑧) 𝐾𝑏 (𝑚𝑚) 𝑇𝑖 (𝑠) 𝑇𝑒 (𝑠) 𝜏 (𝑠) 𝐴ℎ  (𝑚𝑚) 

0.25 1.1 4.3 1.95 1.95 0.27 0.15 

 

 

 

 

Figure 4.1. Simulated chest displacement due to a) Respiration, b) Heartbeat, c) Combination of 

respiration and heartbeat. 
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4.2 Interferences Model due to Random Body-Swaying Motion 

Previous studies show that the spectra of random body-swaying motions are essentially 

wideband [53], which extend beyond the spectrum of heartbeats from the DC frequency. As the 

radar sees the body-swaying motion as a back-and-forth motion, we can model it as a series of 

triangular pulses with varying amplitude and lengths [53]. 

                    𝛥𝑅𝐵𝑆𝑀(𝑡) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐴1 −
2𝐴1 |𝑡 −

𝑇1
2 − 𝑡𝑑1|

𝑇1
,

𝑡𝑑1 ≤ 𝑡 ≤ 𝑇1 + 𝑡𝑑1 
 
 

𝐴2 −
2𝐴2 |𝑡 −

𝑇2
2 − 𝑇1 − 𝑡𝑑1 − 𝑡𝑑2|

𝑇2
,

𝑇1 + 𝑡𝑑1 + 𝑡𝑑2 ≤ 𝑡 ≤ 𝑇1 + 𝑇2 + 𝑡𝑑1 + 𝑡𝑑2
 
 
⋮

𝐴𝑛 −
2𝐴𝑛 |𝑡 −

𝑇𝑛
2 − 𝑇1 −⋯− 𝑇𝑛−1 − 𝑡𝑑1 −⋯− 𝑡𝑑𝑛|

𝑇𝑛
,

𝑇1 +⋯+ 𝑇𝑛−1 + 𝑡𝑑1 + 𝑡𝑑𝑛 ≤ 𝑡 ≤ 𝑇1+. . . +𝑇𝑛 + 𝑡𝑑1 + 𝑡𝑑𝑛

            (4.3) 

  

where 𝑇1, 𝑇2, … , 𝑇𝑛 are the lengths of different triangular pulses with corresponding magnitudes of 

𝐴1, 𝐴2, … , 𝐴𝑛, 𝑡𝑑1, 𝑡𝑑2, … , 𝑡𝑑𝑛 are time delay between the triangular pulses. For unintentional body-

swaying motion that we are considering in this dissertation, the body displacement 𝐴𝑛 is 

approximately 5-15mm and the length 𝑇𝑛 of these back-and-forth motions is about 0.5-1.5s [53]. 

To illustrate an example where chest displacement waveforms are corrupted by RBSM, Table 4.2 

lists several parameters of two RBSM. Gaussian noises are added to the following parameters 

𝑇𝑛, 𝐴𝑛 during the 20-second simulation. Figure 4.2 shows the vital sign signal from Figure 4.1, the 

RBSM and the combined signals between them. 
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Table 4.2. Simulated Parameters for Two RBSM for 20 seconds 

 

𝐴1 (𝑚𝑚) 𝐴2 (𝑚𝑚) 𝑇1 (𝑠) 𝑇2 (𝑠) 𝑡𝑑1 (𝑠) 𝑡𝑑2 (𝑠) 

11 12 1.1 1 2.9 9.7 

 

 

 

Figure 4.2. a) Simulated chest displacement due to respiration and heartbeat, b) Interferences from 

two RBSM, c) Combination of both. 
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To show the impact of on RR/HR estimation due to wideband RBSM noise, in Figure 4.3 we 

show the frequency spectrum of the signals on two passbands 0.1 – 0.6 Hz and 0.75 – 2.5 Hz in 

Figure 4.2a and 4.2c, respectively. These are the passbands that are used to determine RR and HR. 

Figures 4.3a shows that without RBSM, we can clearly obtain the RR in the passband 0.1 – 0.6 

Hz. However, the RBSM seems to interfere with the spectrum of heartbeat signal in the passband 

0.75 – 2.5 Hz as shown in Figure 4.3b. Therefore, it can be observed that while the RR estimation 

is not significantly affected, the estimation of HR in the presence of RBSM is inaccurate if we 

only use conventional peak picking of the spectrum.  Therefore, to accurately estimated HR in the 

presence of RBSM, new approach needs to be developed. 

 

4.3 FMCW Radar Equation for TDM-MIMO 

As discussed in Chapter 2, an FMCW radar transmits a series of linear frequency ramps. When 

a TDM-MIMO is applied, the active TX is switched after each transmission to separate the 

transmitted signals between TXs. An example with two TXs is shown in Figure 4.4. Following is 

the formulation to show the phase error at each TX-RX pair. Supposed the FMCW transmitted 

signal is [25]:  

                                          𝑥𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑(𝑡) = 𝐴𝑇𝑐𝑜𝑠 [2𝜋𝑓𝑐𝑡 +
𝜋𝐵

𝑇𝑐
𝑡2 + 𝜙(𝑡)]                                 (4.4) 

 

where 𝐴𝑇 is the transmitted power, 𝑓𝑐 is the chirp starting frequency, 𝐵 is the chirp bandwidth, 𝑇𝑐 

is the chirp duration and 𝜙(𝑡) is the phase noise from the transmitter. 
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Figure 4.3. Frequency spectrum comparison between signals with and without RBSM. a) In the 

region 0.1 – 0.6 Hz, b) In the region 0.75 – 2 Hz. 

 

 

 

Figure 4.4. In the TDM-MIMO scheme, the TXs operate in an alternative way.  
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If multiple TX antennas in TDM-MIMO scheme are used, where 𝑚𝑡ℎ TX location is 𝑑𝑚 =

(𝑚 − 1)𝑑𝑇𝑋 and 𝑑𝑇𝑋 is the separation between two TX antennas. Based on (4.4), the transmitted 

signal at 𝑚𝑡ℎ TX is: 

𝑥𝑚(𝑡) = 𝐴𝑇𝑚𝑐𝑜𝑠 {2𝜋𝑓𝑐[𝑡 − (𝑚 − 1)𝑇𝑟] +
𝜋𝐵

𝑇𝑐
[𝑡 − (𝑚 − 1)𝑇𝑟]

2 +
2𝜋

𝜆
𝑑𝑚𝑠𝑖𝑛𝜃𝑇𝑋𝜙𝑚(𝑡)}    (4.5) 

where 𝑇𝑟 is the switching time between TX antennas in TDM scheme and 𝜃𝑇𝑋 is the departure 

angle from 𝑚𝑡ℎ TX to target. The signal received, at 𝑛𝑡ℎ RX at location 𝑑𝑛 = (𝑛 − 1)𝑑𝑅𝑋 where 

𝑑𝑅𝑋 is the separation between two RXs, is: 

𝑥𝑚𝑛(𝑡) = 𝛼𝑛𝐴𝑇𝑚𝑐𝑜𝑠 {2𝜋𝑓𝑐[𝑡 − (𝑚 − 1)𝑇𝑟 − 𝑡𝑑] +
𝜋𝐵

𝑇𝑐
[𝑡 − (𝑚 − 1)𝑇𝑟 − 𝑡𝑑]

2 +
2𝜋

𝜆
𝑑𝑚𝑠𝑖𝑛𝜃𝑇𝑋

+
2𝜋

𝜆
𝑑𝑛𝑠𝑖𝑛𝜃𝑅𝑋 + 𝜙𝑚𝑛(𝑡)}                                                                                         (4.6) 

where 𝛼𝑛 is reflection coefficient of a target, 𝑡𝑑 = 2𝑅(𝑡)/𝑐 is the range-dependent time delay from 

the target at range 𝑅(𝑡) and 𝜃𝑅𝑋 is the arrival angle from the target to 𝑛𝑡ℎ RX antenna. The received 

signal in (4.6) is mixed with transmitted signal in (4.4) and after I/Q mixing the signal is 

approximated as: 

              𝑓𝑚𝑛(𝑡) = 𝐴𝑚𝑛𝑒
𝑗{2𝜋𝑓𝑐[(𝑚−1)𝑇𝑟+𝑡𝑑]+

𝜋𝐵
𝑇𝑐
[(𝑚−1)𝑇𝑟+𝑡𝑑]

2+2𝜋𝑓𝑏𝑡+𝛥𝜙𝑚𝑛(𝑡)}                                         

⨯ 𝑒𝑗[
2𝜋
𝜆
(𝑑𝑚𝑠𝑖𝑛𝜃𝑇𝑋+𝑑𝑛𝑠𝑖𝑛𝜃𝑅𝑋)]                                                                                         (4.7) 

where 𝐴𝑚𝑛 is the received signal power at (𝑚𝑡ℎ, 𝑛𝑡ℎ) TX-RX pair, 𝑓𝑏 = 𝐵[(𝑚 − 1)𝑇𝑟 + 𝑡𝑑]/𝑇𝑐 is 

the beat frequency. The residual phase noise 𝛥𝜙𝑚𝑛(𝑡) and the term 
𝜋𝐵

𝑇𝑐
[(𝑚 − 1)𝑇𝑟 + 𝑡𝑑]

2 can be 

neglected in short range radar practical applications [19]. The beat signal after I/Q sampling can 

be expressed for the 𝑘𝑡ℎ ADC sample and 𝑙𝑡ℎ chirp as [19]: 
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        𝑓𝑚𝑛(𝑘, 𝑙) = 𝐴𝑚𝑛𝑒
𝑗{2𝜋𝑓𝑐(𝑚−1)𝑇𝑟+2𝜋𝑓𝑏𝑘𝑇𝑓+

4𝜋
𝜆
𝑅(𝑘𝑇𝑓+𝑙𝑇𝑠)} ⨯ 𝑒𝑗[

2𝜋
𝜆
(𝑑𝑚𝑠𝑖𝑛𝜃𝑇𝑋+𝑑𝑛𝑠𝑖𝑛𝜃𝑅𝑋)]         (4.8) 

where 𝑇𝑓 is fast-time ADC sampling interval and 𝑇𝑠 is slow-time sampling interval. Since the chest 

displacement due to vital sign is slow (typically < 3 Hz), no changes in phase during chirp time 

(fast-time axis) could occur. Therefore, one only needs to measure phase changes between 

successive chirps (slow-time axis) for a vital sign estimation. If the target is stationary at range 

𝑅𝑡𝑎𝑟𝑔𝑒𝑡, then from [19]: 

                                                              𝑅(𝑘𝑇𝑓 + 𝑙𝑇𝑠) ≈ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑅(𝑙𝑇𝑠)                                           (4.9) 

The phase shift received for (𝑚𝑡ℎ, 𝑛𝑡ℎ) TX-RX pair is then: 

𝜙𝑚𝑛(𝑙𝑇𝑠) =
4𝜋𝑅(𝑙𝑇𝑠)

𝜆
+
4𝜋𝑅𝑡𝑎𝑟𝑔𝑒𝑡

𝜆
+
2𝜋

𝜆
(𝑑𝑚𝑠𝑖𝑛𝜃𝑇𝑋 + 𝑑𝑛𝑠𝑖𝑛𝜃𝑅𝑋) + 2𝜋𝑓𝑐(𝑚 − 1)𝑇𝑟       (4.10) 

From (4.10), the first term is the phase change due to chest displacement on slow-time axis. The 

latter three terms affect the phase induced from vital sign if there are large body motion. Therefore, 

it is necessary to compensate for these phase errors in imaging or velocity extraction applications. 

The first term of (4.10) can be expressed as: 

 

                                            𝑅(𝑙𝑇𝑠) = 𝛥𝑅𝑟(𝑙𝑇𝑠) + 𝛥𝑅ℎ(𝑙𝑇𝑠) + 𝛥𝑅𝑅𝐵𝑆𝑀(𝑙𝑇𝑠)                                  (4.11) 

where 𝛥𝑅𝑟 , 𝛥𝑅ℎ are chest displacements due to respiration, heartbeat and 𝛥𝑅𝑅𝐵𝑆𝑀 is the body 

displacement due to RBSM that are modeled in (4.1) – (4.3).  

 

4.4 Received Radar Signal from Vital Sign Signal and RBSM 

From (4.8), assuming the signal received at 𝑇𝑋1 − 𝑅𝑋1 pair (i.e. 𝑚 = 𝑛 = 1), the I/Q signal 
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sampled by the ADC at the target distance 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 along the slow-time axis can be simplified as: 

 

                            𝐼(𝑡) = AIcos [
4𝜋

𝜆 
(𝛥𝑅ℎ(𝑡) + 𝛥𝑅𝑟(𝑡) + 𝛥𝑅𝑅𝐵𝑆𝑀(𝑡)) + 𝜙𝐼] + 𝑛𝐼                    (4.12) 

                            𝑄(𝑡) = AQsin [
4𝜋

𝜆 
(𝛥𝑅ℎ(𝑡) + 𝛥𝑅𝑟(𝑡) + 𝛥𝑅𝑅𝐵𝑆𝑀(𝑡)) + 𝜙𝑄] + 𝑛𝑄                 (4.13) 

 

where 𝐴𝐼 , 𝑛𝐼 , 𝜙𝐼 and 𝐴𝑄 , 𝑛𝑄 , 𝜙𝑄 are magnitude, phase, and DC offsets from the I/Q channels of 

ADC. Due to imbalance issues which are usually present in the hardware ADC, these parameters 

may not be equal between I/Q channels, and it requires compensation methods to correct these 

imbalances. However, in the MMWCAS-RF-EVM radar device that we are using in this 

dissertation, the IQ imbalance issue has been corrected internally using a frequency-independent 

algorithm that adapts blindly with the received signal [68]. Therefore, we can assume that the level 

of differences between of 𝐴𝐼 , 𝑛𝐼 , 𝜙𝐼 and 𝐴𝑄 , 𝑛𝑄 , 𝜙𝑄 exist but are negligible in this radar device.  

On the complex plane, because AI ≃ 𝐴𝑄 since there is negligible I/Q imbalance issue in this radar 

device, the I/Q components will form a constellation that presents the circular shape due to the 

oscillation of the periodic terms such as 𝛥𝑅𝑟(𝑡) and 𝛥𝑅ℎ(𝑡). However, if a different radar device 

is used and if the I/Q imbalances on that hardware is severe, i.e. AI ≠ 𝐴𝑄, the constellation is no 

longer circular but is deformed into elliptical shapes [69]. For 𝛥𝑅𝑅𝐵𝑆𝑀(𝑡), as it is not a periodic 

component, it will cause a drift in the original circular constellation to a new origin [70]. Figure 

4.5 shows a comparison between the constellation of the same signal in Figures 4.1 and 4.2 with 

and without RBSM. It can be shown in Figure 4.5a that if we assume  𝛥𝑅𝑅𝐵𝑆𝑀(𝑡) = 0, 𝐴𝐼 ≃ 𝐴𝑄 ,

𝜙𝐼 ≃ 𝜙𝑄 , 𝑛𝐼 ≃ 𝑛𝑄 ≃ 0, in (4.12) and (4.13), then the constellation is a clean circular shape at the 

origin (0,0). If there is 𝛥𝑅𝑅𝐵𝑆𝑀(𝑡) and small level of 𝑛𝐼 and 𝑛𝑄, the same constellation is shifted  
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Figure 4.5. Simulated Constellation Diagram for received radar signals a) without RBSM and 

hardware noises, b) with RBSM and hardware noises. 
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to the new origin as shown in Figure 4.5b and the constellation points vary in a tolerable region. It 

will be discussed in the next chapter that the constellation shift due to body drifts also affects the 

accuracy of RR/HR estimation. Thus, it is necessary to correct the constellation as a pre-processing 

step prior to estimation of RR/HR. The shifted constellation can be expressed as: 

 

                                                          𝐼𝑤𝑖𝑡ℎ𝑅𝐵𝑆𝑀(𝑡) = 𝐼(𝑡) + 𝑑𝑐𝑖                                                          (4.14) 

                                                         𝑄𝑤𝑖𝑡ℎ𝑅𝐵𝑆𝑀(𝑡) = 𝑄(𝑡) + 𝑑𝑐𝑞                                                       (4.15) 

 

where 𝑑𝑐𝑖 and 𝑑𝑐𝑞 represent the new origin of the shifted constellation. 
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CHAPTER V 

PROPOSED SIGNAL PROCESSING TECHNIQUES 

This chapter describes our proposed signal processing chain to accurately estimate RR/HR of 

SUTs under quasi-static scenarios. We show that by employing multiple MIMO channels, we can 

achieve better accuracy compared with single channel radar. To reduce the complexity and 

computational time, Maximal Ratio Combining (MRC) is employed to combine signals from 

separate channels into one for processing RR/HR information. In scenarios where the 3𝑡ℎ − 4𝑡ℎ 

harmonic components from respiratory signals can interfere with the heartbeat signals and make it 

more difficult to estimate HR, we introduce an automatic HBT extraction technique and continuous 

wavelet transform to help reduce the harmonic levels and increase the magnitude of heartbeat 

signal. Simulated results will first be shown to analyze and validate the proposed HBT extraction 

technique. Then, experimental results for quasi-static SUT will be shown to demonstrate the 

robustness of our signal processing chain. Analysis and results for SUTs under scenarios with 

higher RBSM interferences will be shown in the next chapter. 

 

5.1 RR/HR Estimation in Quasi-Static Scenarios 

In this chapter, we consider the scenarios where there are minimal interferences of RBSM. 

Therefore, the term 𝛥𝑅𝑅𝐵𝑆𝑀 in equation (4.11) can be negligible and the radar should capture only 

chest displacement due to respiration 𝛥𝑅𝑟(𝑡) and heartbeat 𝛥𝑅ℎ(𝑙𝑇𝑠). Since the respiratory signal 

is several orders of magnitude larger compared with heartbeat signal and is not purely sinusoidal, 

there are multiple harmonics of respiratory signals that also have higher magnitudes than heartbeat 

signal. Therefore, even though there are minimal random body motion in this case, respiratory 
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harmonics need to be suppressed to ensure high accuracy of HR estimation which will be shown 

in the next example. Processing chain on received radar signals in equation (4.8) from MIMO 

channels for estimating RR/HR is visualized in Figure 5.1.  

As shown in the block diagram, the first step is to localize subject under test (SUT) in the scene 

by performing a range FFT of the complex ADC data in equation (4.8). This would result in a 

range profile of all objects in the scene. As the SUT is in front of the radar, their reflected signals 

should be strongest compared with other background clutters. Therefore, the range information of 

the SUT, i.e. their range bins, can be obtained on all MIMO channels. Next, the complex range 

profile values at the SUT’s range bin will be extracted. This complex value is referred as a 

constellation point and similar to the equations (4.12) – (4.13). By extracting the constellation 

point as a function of time, we can determine the SUT’s chest displacement due to respiration and 

heartbeat. As discussed in Chapter 4, a constellation correction technique must first be applied to 

shift the constellation back to the origin (0,0). This is because even under quasi-static scenarios, 

there are still body drift that make the original constellation shifted to a random origin. After the 

constellation correction step, phase extraction and impulse-like noise removal are then applied to 

obtain a clean chest displacement signal which contain information of RR and HR.  

In scenarios which the SUTs are lying on beds or sitting on chairs, the interferences from RBSM, 

especially with upper body, should be minimal. Thus, the Maximal Ratio Combining (MRC) can 

be used to effectively combine chest displacement signals captured by all MIMO channels 

together. This helps to reduce the computational complexity as only one combined signal will be 

processed for RR and HR instead of multiple separate MIMO channels. To determine RR, the 

combined signal is passed through a band-pass filter (BPF) with passband 0.1 – 0.6 Hz to remove 

any DC components. Then, RR can be found by finding the peak of frequency spectrum of the  
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Figure 5.1. Proposed Chain of Signal Processing for RR/HR Estimation. 
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filtered signal. For HR estimation, the combined signal is passed through another BPF with 

passband 0.75 – 2.5 Hz. Then, we extract an HBT based on the constellation diagram from a 

separate channel. This HBT will be used to magnify the heartbeat signals by calculating CWT 

coefficient. Finally, accurate HR is determined by finding the peak from the frequency spectrum 

of the CWT coefficient signal. In the next sections, we discuss in detail the processing steps above. 

 

5.2 Range FFT and Target Range Bin Selection 

The Range FFT is performed separately on each channel’s complex IQ data to obtain the range 

profile of the scenario under test. The range bin of the target will then be selected at which the 

variance of the magnitude of Range FFT is maximum. It should also be noted that the selected 

range bins are expected to be slightly different for separate MIMO channels. This is because the 

radar being used is a distributed MIMO system, propagating round-trip delay between certain TX-

RX pairs might be slightly different which results in the slightly different detected range bin of the 

SUT between these TX-RX pairs. Figure 5.2 shows some examples for certain MIMO channels. 

 

5.3 Chest Displacement Signal Extraction and Correction 

5.3.1 Constellation Correction with Non-linear Least Square (NLLS) Method 

As discussed in Chapter 4, the constellation is generally shifted from the origin (0,0) because of 

the body drift. This has nothing to do with the hardware but is dependent on the SUTs as shown 

in equations (4.12) – (4.15). For the state-of-the-art radar devices, the IQ channels of the ADC 

should not have any unbalancing issues. Thus, if the constellation is not properly corrected, they 

may distort the chest displacement signal extracted at the SUT’s range bin which results in increase 

in harmonics level and make it harder for accurate RR/HR estimation [26-27]. With FMCW radar,  
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Figure 5.2. Range 2D-FFT matrix from a MIMO channel a) single subject, b) two-subject 

scenario. 
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constellation is corrected on the complex range profile at the selected range bin, i.e. 𝑅𝑖(𝑘𝑖, 𝑡). The 

extracted chest displacement signal (or phase variation to the radar due to chest displacement) is 

[12]: 

                                    𝛹𝑖(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑄(𝑡) + 𝑑𝑐𝑄
𝐼(𝑡) + 𝑑𝑐𝐼

] ≠ 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑄(𝑡)

𝐼(𝑡)
]                                       (5.1) 

 

where (𝑑𝑐𝐼 , 𝑑𝑐𝑄) are the shifted origin of constellation points cloud as discussed in Chapter 4. 

Figures 5.3 shows an example of the constellation before and after correction along with their 

corresponding phase variation. It can be observed in Figure 5.3b that without correction, the 

uncorrected constellation produces an inaccurate phase variation. To shift the constellation to the 

origin, the center (𝑑𝑐𝐼 , 𝑑𝑐𝑄) of the constellation needs to be estimated. We adopted the NLLS 

method proposed in [26] to minimize the squared error between the radius and distance of sample 

points to the hypothetical center point of the cloud. If 𝒂𝒋 = [ 𝐼[𝑗]+𝑑𝑐𝐼
𝑄[𝑗]+𝑑𝑐𝑄

] is the 𝑗𝑡ℎ constellation point, 

then the optimum solution of the hypothetical radius 𝑅𝑐𝑜𝑛𝑠𝑡𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 and shifted center  (𝑑𝑐𝐼 , 𝑑𝑐𝑄) 

is: 

                                                          [

𝑅𝑐𝑜𝑛𝑠𝑡𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛
𝑑𝑐𝐼
𝑑𝑐𝑄

] = (𝐴𝑇𝐴)−1𝐴𝑇𝒃                                                   (5.2) 

where 𝐴 =

[
 
 
 
1 −2𝒂𝟏

𝑻

1 −2𝒂𝟏
𝑻

⋮
1

⋮
−2𝒂𝑴

𝑻 ]
 
 
 

 is a full column rank matrix for M > 3 and M is the number of constellation 

points in the cloud, and b is calculated as  𝒃 =

[
 
 
 
−‖𝑎1‖

𝟐

−‖𝑎2‖
𝟐

⋮
−‖𝑎𝑀‖

𝟐]
 
 
 
. 
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5.3.2 Arctangent Demodulation (AD) 

AD is a sub-category of phase-based method used to extract the phase variation of radar signals 

due to the oscillatory motion of a target [12]. The output of AD algorithm is the unwrapped phase 

after constellation correction step when the constellation cloud is shifted back to the origin (0,0). 

Phase unwrapping is performed on the extracted phase to remove any phase drifts greater than ±𝜋 

when 𝛹(𝑡) is between the boundary of two adjacent quadrants. This is done by adding/subtracting 

2𝜋 if the phase drift occurs. The extracted phase as the function of time can be calculated as follow 

which is the angle of each constellation point with respect to the horizontal (real) axis on the 

complex plane: 

 

                                                 𝛹𝑖(𝑡) = 𝑢𝑛𝑤𝑟𝑎𝑝 {𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑄(𝑡)

𝐼(𝑡)
]}                                                     (5.3) 

 

5.3.3 Impulse-like Noise Removal 

If the phase drifts still exist; but does not exceed ±𝜋, the phase unwrapping would not obviously 

remove these phase drifts. As a result, they affect the periodicity of the extracted phase and 

eventually affects the accuracy of RR/HR estimation. These impulse-like noises are removed by 

computing a forward 𝛹(𝑡 + 1) − 𝛹(𝑡) phase difference for each 𝛹(𝑡). If the phase difference 

exceeds a threshold, then 𝛹(𝑡 + 1) is replaced by an extrapolated value 𝛹𝑒𝑥𝑡𝑟𝑎𝑝(𝑡 + 1) using 

three-point Lagrange interpolation with previous three values [25]. Figure 5.4 shows the effect of 

noise removal for several channels and corresponding phases before and after the removal 

procedure.  
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Figure 5.3. a) Constellation correction of the complex signal at the selected target bin, b) 

Corresponding extracted phase variation due to chest displacement. 

 

 

Figure 5.4. Example of Impulse-like Noise Removal on phase variation signals from a) Channel 

#63, b) Channel #64. 
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5.4 Maximal Ratio Combining (MRC) 

The goal of MRC is to enhance the SNR of respiratory and heart signals by optimally combining 

the extracted phase variation signals 𝛹𝑖(𝑡) calculated in equation (5.3) from different MIMO 

channels. Because AD method extracts relative chest displacement on the slow-time axis within 

separate MIMO channels, each channel produces its own independent version of 𝛹𝑖(𝑡), and since 

the phase 𝛹𝑖(𝑡) are not affected by their relative antennas’ positions and target, there is no need to 

perform phase compensation to correct the beat FMCW signal. Detailed formulation of MRC is 

shown below [39-40]: 

                                                              𝛹𝑀𝑅𝐶(𝑡) =∑𝑤𝑖𝛹𝑖(𝑡)

𝑁

𝑖=1

                                                            (5.4) 

where 𝑤𝑖 is a weighted coefficient for the 𝑖𝑡ℎ channel which is directly proportional to the channel 

SNR. To determine 𝑤𝑖, a cross-correlation matrix is formed based on the time domain signals of 

the various channels [𝛹1(𝑡), … ,𝛹𝑁(𝑡)]: 

                                                               𝑅𝑖𝑗 ≃ ∫𝛹𝑖(𝑡)𝛹𝑗
∗(𝑡)𝑑𝑡                                                              (5.5) 

After forming the cross-correlation matrix, eigenvalue decomposition is performed resulting in: 

                                         𝑅𝑖𝑗 = [𝑣1𝑣2…𝑣𝑁]𝑑𝑖𝑎𝑔[𝜎1𝜎2…𝜎𝑁][𝑣1
∗𝑣2

∗…𝑣𝑁
∗ ]𝑇                                    (5.6) 

where 𝝈𝟏−𝑵 are eigenvalues, 𝒗𝟏−𝑵 are eigenvectors for each channel. MRC method uses the first 

eigenvector as weights, i.e. 𝒘 = 𝒗𝟏
𝑯, to combine all channels such that: 

                                                                   𝛹𝑀𝑅𝐶(𝑡) = 𝑣1
𝐻𝛹(𝑡)                                                               (5.7) 

where H represents a complex conjugate transpose. The eigenvector 𝒗𝟏 is normalized; so that its 

norm is 1.  
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Identifying and eliminating some bad channels (or outliers) is good practice in improving MRC 

performance [37]. This process is referred as channel selection. It helps to reduce the contribution 

of bad channels as manifested in the weights’ calculation. Thus, combined 𝛹𝑀𝑅𝐶(𝑡) carries only 

useful information and is not corrupted by noise factors from the bad channels. In this chapter, 

since we are considering scenarios with minimal interferences from RBSM, channel selection is 

performed simply as: 

1. Find weights vector 𝒘 with 𝛹𝑖(𝑡) as input to MRC using equations (5.5) and (5.7). 

2. Find maximum value 𝑤𝑚𝑎𝑥 of the absolute vector |𝒘|. 

3. For a given threshold 𝑤𝑡ℎ = 𝛼𝑤𝑚𝑎𝑥 with 𝛼 = [0,1], eliminate the channel 𝑖𝑡ℎ where | 𝑤𝑖| <

𝑤𝑡ℎ. Higher value of 𝛼 results in more channels elimination. The idea is to make sure phases 𝛹𝑖(𝑡) 

from certain channels that possess strong periodic patterns due to chest displacement are selected. 

For scenarios where there are more interferences from RBSM, more robust approach should be 

employed for channel classifications so that higher accuracy can be achieved. 

 

5.5 RR Estimation  

Under scenarios where there are minimal interferences from RBSM, the radar only captures 

chest displacement due to respiration and heartbeat. As the magnitude of respiratory signal is 

significantly higher than that of heartbeat signal, RR can be estimated by first passing the combined 

signal 𝛹𝑀𝑅𝐶(𝑡) through a band-pass filter (BPF) with passband frequency 0.1 – 0.6 Hz. This is 

because the possible RR of a normal human subject is within this range. In this dissertation, 8𝑡ℎ-

order Infinite Impulse Response (IIR) bandpass filters are used. Next, the Fast Fourier Transform 

(FFT) of the filtered signal is calculated and the maximum of the spectrum should occurr at the 
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respiratory frequency. Figure 5.5a shows the magnitude response of the BPF used for RR 

estimation. Figures 5.5b and 5.5c show the raw phase variation and its filtered version along with 

their frequency spectrum. It can be seen that the peak of the spectrum occurs at the respiratory 

frequency which can be validated by the ground truth result. 

 

5.6 HR Estimation using HBT Extraction and CWT 

Typical heart waveform includes a dicrotic notch created due to the closing of the cardiac valve 

and reflections of the vasodile blood wave at blood vessels and forks [71]. In some cases, a second 

notch caused by the venous pulse effect produces another local maximum prior to the main 

maximum of a heartbeat signal [71]. Since there are several effects on the thorax area, the shape 

of heartbeat signal can be different for various subjects [53, 71-72]. Therefore, if we can adaptively 

extract a HBT that contains significant amount of heartbeat signal from the SUTs, the accuracy of 

heart rate detection can be significantly improved [53]. This section discusses our proposed 

approach for an automatic HBT extraction using information from the constellation diagram to 

improve the accuracy of HR estimation. 

 

5.6.1 Heartbeat Template (HBT) Extraction 

As discussed in Section 4.4 from Chapter 4 and Section 5.3.1 above, the constellation diagram 

[I(t),Q(t)] contains information not only about respiratory and heartbeat signals but also RBSM 

signals. Ideally, a periodic motion would result in a perfect circle on the constellation diagram. 

However, this is not the case for the physiological motions caused by heart and lungs as there are 

induced noises from body drifts that distorts these signals. To investigate the correlation between 

constellation diagram and its phase variations, Figure 5.6 shows an example of signals acquired  
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Figure 5.5. a) Magnitude Response in dB of the BPF with passband 0.1 Hz – 0.6 Hz used for RR 

estimation, b) An example of raw phase variation signal and filtered signal, c) Frequency spectrum 

of the signals in Figure 5.5b and results from ground truth. 
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from a sitting SUT with minimal RBSM. Let 𝑃𝑗 be a constellation points where 𝑗𝑡ℎ is the time-

frame number, then the distance between two adjacent constellation points 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ in 

time is defined as 𝑑𝑗,𝑗+1. Additionally, the angle 𝜃𝑗,𝑗+1,𝑗+2 is defined as the angle between two 

vectors formed by three consecutive constellation points in frames 𝑗𝑡ℎ, (𝑗 + 1)𝑡ℎ and (𝑗 + 2)𝑡ℎ. 

Figure 5.6a shows an example of the chest displacement signal obtained using AD method for a 

sitting subject. With the frame rate of 20 Hz, a 20-second duration signal is equivalent to 400 

frames. For the analysis of HBT extraction, we use frame number so that it is easier to identify and 

track the frames. Figure 5.6b shows the corresponding constellation diagram [𝐼(𝑡), 𝑄(𝑡)] obtained 

from the target range bin 𝑘𝑡ℎ. It can be seen that the constellation diagram can be divided into two 

main regions where the distances of the points are further away (larger radius curvature) in one 

and closer (smaller radius curvature) in the other. Figure 5.6c zooms into few specific frames 

112𝑡ℎ − 115𝑡ℎ and 139𝑡ℎ − 142𝑡ℎ, in which they correspond to both the respiratory and heartbeat 

signals. This is because the frames 112𝑡ℎ − 115𝑡ℎ belongs to the exhaling period of respiration 

while 139𝑡ℎ − 142𝑡ℎ belongs to the resting period after exhalation that we can see the modulating 

heartbeat signal. It can be observed in Figure 5.6d that the distances between consecutive points 

in the heartbeat signals region are small (𝑑139,140 = 0.018, 𝑑140,141 = 0.008, 𝑑141,142 = 0.004) 

while the changes in angles between consecutive vectors are faster (from 23˚ to 112˚). This is 

opposite in respiration signals’ region where distances between consecutive points are larger 

(𝑑112,113 = 0.27, 𝑑112,113 = 0.19, 𝑑114,115 = 0.14)  and the changes in angles are slower (from 

154˚ to 162˚). This can be explained by the fact that the heartbeat signals have significantly smaller 

magnitude (represented by the displacements/distances between consecutive constellation points) 

than respiratory/RBSM signals. Thus, the arc created by heartbeat’s constellation points is 

relatively small, which makes the angles between consecutive vectors change their directions faster 
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Figure 5.6. a) Chest displacement obtained using Arctangent Demodulation (AD) method, b) 

Corresponding Constellation Diagram, c) A zoom-in of frames 112th – 115th and 139th – 142th, d) 

A zoom-in of constellation graph into the interested frames. 
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than that of the respiratory/swaying-body motion signals. Based on these constellation diagrams’ 

characteristics, we propose a method to automatically extract the HBT: 

(i) As distances between two consecutive constellation points due to heartbeat are much closer 

than the ones produced by respiration/RBSM. By setting a threshold value 𝑑𝑡ℎ, if 𝑑𝑗,𝑗+1 ≤ 𝑑𝑡ℎ, 

then frames 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ are valid for a HBT. 

(ii) Similarly, given that angles formed between two vectors from three adjacent constellation 

points change much faster due to heartbeat signals than those generated from respiration/RBSM. 

Then upon setting a threshold value 𝜃𝑡ℎ, if 𝜃𝑗,𝑗+1,𝑗+2 ≥ 𝜃𝑡ℎ, then frames 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ are 

considered appropriate for a possible HBT. 

(iii) A frame that can be considered valid for a possible HBT must satisfy conditions (i) and (ii). 

Additionally, an HBT is considered valid if there is at least 2 seconds of constellation data 

(equivalent to 40 frames) that satisfy conditions (i), (ii). This is because the 2-second templates 

should contain at least one cycle of heartbeat signal [21]. It should be noted that there is no upper 

limit duration for extracting the HBT. As long as the frames satisfy the above conditions, they will 

be considered valid for the HBT. Take Figure 5.7, which shows the chest displacement signal of a 

sitting SUT as an example. There are four valid HBT satisfying conditions (i)-(iii). HBTs #1 and 

#2 have 2.5-second duration while HBT #3 and HBT #4 have 3-second duration. Also, if any 

channel does not produce a valid HBT, it is eliminated from the estimating procedure.  

From Figure 5.7, several observations are made: 

Observation 1: Multiple HBTs can be extracted from the original physiological signals. Thus, 

making the HR estimation more accurate as there is more heartbeat information from different 

HBTs. Because we only deal with quasi-static or with RBSM scenarios from SUT in this 
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dissertation, there always exists signal segments which contain only respiratory and heartbeat 

signals [53]. Thus, valid HBT can always be extracted if only these scenarios are considered.   

Observation 2: Figures 5.7b and 5.7c demonstrate how the selected regions comply with 

conditions (i) and (ii). Although more robust analysis can be done to find optimal values of 𝑑𝑡ℎ 

and 𝜃𝑡ℎ, we simply choose 𝑑𝑡ℎ and 𝜃𝑡ℎ as the mean values of all frames’ distances and angles in 

this dissertation. It should be noted that while most of the distances 𝑑𝑗,𝑗+1 ≤ 𝑑𝑡ℎ (condition (i) is 

satisfied) as the magnitude of heartbeat signal is small, there are few numbers of frames that have 

angles  𝜃𝑗,𝑗+1,𝑗+2 < 𝜃𝑡ℎ (condition (ii) is not satisfied) but they are still considered valid. This can 

be explained by the fact that while constellation points due to heartbeat may change their direction 

faster and more frequently, there are still frames where their angles do not change that significantly 

as the nature of the heartbeat signal is oscillatory and might still be on an circular arc. Thus, for a 

given frame 𝑗𝑡ℎ that only comply with condition (i), we should check several adjacent frames 𝑗𝑡ℎ +

1, 𝑗𝑡ℎ + 2, etc. to make sure any valid frame is not overlooked. To make sure each HBT has at least 

2-second duration (i.e. 40 time frames) to comply with condition (iii), for potential HBT with more 

than 30 frames, we extended 5 frames at the beginning and at the end of the HBT so that we do 

not leave out potential HBT that already has more than 30 frames. This explain why the boundaries 

of the HBTs shown in Figure 5.7b have several frames that do not comply with conditions (i) and 

(ii). 

Observation 3: A closer look at Figure 5.7b shows that the periodicity of distances data also 

correlates well with that of the phase variation data in Figure 5.7a, i.e. both have similar periodicity 

𝑇𝑅𝑅 of respiratory signal. This makes sense as the distances 𝑑𝑗,𝑗+1 between constellation points 𝑗𝑡ℎ 

and (𝑗 + 1)𝑡ℎ should also reflect the periodicity of all physiological motions during the 

measurements. While this is an interesting observation and might be useful for RR estimation, we 
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Figure 5.7. Signal Analysis for Sitting Subject, a) Chest displacement obtained using AD method, 

b) Normalized distances 𝑑𝑗,𝑗+1 between consecutive constellation points, c) Angles between 

vectors formed by consecutive constellation points 𝜃𝑗,𝑗+1,𝑗+2. 
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do not investigate this further as it is not challenging to estimate RR even when there are RBSM. 

Observation 4: The constellation diagrams are used to determine the time frames that are valid 

for a HBT. The HBT itself is then extracted from the phase variation signal found by using AD 

method. It can be seen from [53] that while it is challenging to identify a good HBT from 

physiological waveform that is partly distorted by body motion. The distances/angles data 

calculated from constellation points make it easier for this task. This way we can avoid extracting 

the segments that are already distorted by the RBSM.  

After extracting the valid HBT, the next step is to pre-process it to remove several low-frequency 

components. The original HBTs, i.e. 𝐻𝐵𝑇𝑜𝑟𝑖, still contain information about the respiratory signal 

and respiratory harmonics, these low-frequency components need to be removed to achieve better 

performance. This can be done by using a 5th-order polynomial fitting [53, 73] to approximate the 

initial HBTs. Let the polynomial fitted version of 𝐻𝐵𝑇𝑜𝑟𝑖 be 𝐻𝐵𝑇𝑓𝑖𝑡𝑡𝑒𝑑. The final version of HBT 

can be found by subtracting the initial HBTs with the polynomial fitted version: 

 

                                                       𝐻𝐵𝑇𝑛𝑒𝑤 = 𝐻𝐵𝑇𝑜𝑟𝑖 − 𝐻𝐵𝑇𝑓𝑖𝑡𝑡𝑒𝑑                                                     (5.8) 

 

Figures 5.8a, 5.8c, 5.8e and 5.8g show the four original HBTs from Figure 5.7 along with their 

polynomial fitted versions. It can be shown in Figure 5.8 that the polynomial fitting acts as a 

moving-average filter to find the trend of the HBTs [53, 73]. Then the new HBT after subtraction 

in equation (5.8) only recover the heartbeat signals as shown in Figures 5.8b, 5.8d, 5.8f and 5.8h. 

This approach makes sure there are no low-frequency components interfering with the estimation 

process and only heartbeat components are contained in the 𝐻𝐵𝑇𝑛𝑒𝑤.  
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5.6.2 Continuous Wavelet Transform (CWT) with Adapted Wavelet 

In time-frequency analysis, CWT measures the correlation between input signal s(t) and 

compressed/stretched/shifted versions of a wavelet Φ(t) [74]. For a scale parameter, a > 0, and 

position b, 1D-CWT is defined as: 

                                                   𝑊(𝑎, 𝑏) = ∫ 𝑠(𝑡)
1

𝑎
𝛷∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

                                                  (5.9) 

where 𝑠(𝑡) denotes the input signal, 𝛷(𝑡) denotes the wavelet, 𝑎, b are scale and position 

parameters. If 𝑠(𝑡) is complex, then ∗ denotes the complex conjugate and CWT is a complex-

valued function. An advantage of CWT is that with proper use of the wavelet that is specially 

adapted to the heartbeat signal, it can improve the effectiveness of heartbeat signal extraction [53, 

71-73]. So even if the heartbeat signal is dominated by respiratory harmonics, and since these 

signals do not resemble the shape of chosen wavelet, their correlation will be low. Following are 

steps to design adapted wavelet from the 𝐻𝐵𝑇𝑛𝑒𝑤 from equation (5.8) and employ CWT for HR 

estimation: 

Step 1: Extract 𝐻𝐵𝑇𝑛𝑒𝑤 from constellation diagram and phase variation signals as discussed in 

Section 5.6.1. 

Step 2: Design the wavelet 𝛷(𝑡) with the extracted 𝐻𝐵𝑇𝑛𝑒𝑤. To be admissible as a wavelet for 

CWT, 𝛷(𝑡) needs to satisfy two main conditions such that [74]: 

                                                                       {
∫𝛷(𝑡)𝑑𝑡 = 0                                                               (5.10)

∫|𝛷(𝑡)|2𝑑𝑡 = 1                                                           (5.11)
 

 A 10th-degree polynomial is used with least-square optimization to find the polynomial 

coefficients satisfying the conditions in (5.10) – (5.11) for approximating the wavelet.  
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Figure 5.8. a), c), e), g) Original HBT and their polynomial fitted version, b), d), f), h) New HBTs 

after subtraction using equation (5.8). 
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Step 3: The combined phase variation signal 𝜓𝑀𝑅𝐶(𝑡) is first passed through a band-pass filtered 

with passband 0.75 Hz – 2.5 Hz to filter out lower-frequency components. This is the typical HR 

range of human subjects [12]. The CWT coefficients W1(t) is then calculated based on equation 

(5.9) with 𝑠(𝑡) = 𝜓𝑀𝑅𝐶𝑓𝑖𝑙𝑡(𝑡) at scale 𝑎 = 1. This is because adapted wavelet is approximated 

from the heartbeat waveform, the correlation between itself and the input signal will retain the 

spectral features of the heartbeat signal. Figure 5.9 shows the magnitude response of the BPF used 

for HR estimation.  

Step 4: As W1(t) contains the fundamental frequency of the heartbeat signal, Fast Fourier 

Transform (FFT) is then performed on the wavelet coefficients W1(t) to estimate HR. To show 

the effectiveness of the adapted wavelets on suppressing the respiratory harmonics, Figure 5.10 

shows a comparison of frequency spectrum between the filtered original phase variation and CWT 

coefficients W1(t) calculated using the CWT for each wavelet adapted from 𝐻𝐵𝑇𝑛𝑒𝑤1 − 𝐻𝐵𝑇𝑛𝑒𝑤4 

in Figure 5.8. Figure 5.10 demonstrates reduction of the third/fourth respiratory harmonics level 

and magnification of heartbeat spectrum. From the normalized spectra in Figure 5.10, heartbeat 

signals are being interfered by the third/fourth harmonics of the respiratory signals. However, the 

adapted wavelet reduces these interferences and helps magnify the heartbeat signal so that they 

can be accurately estimated compared with the ground truth. 

 

5.7 Simulation Results 

To validate the robustness of our proposed automatic HBT extraction and CWT with adapted 

wavelet methods, we first show results with simulated data using the chest displacement and 

received signal models from equations (4.1), (4.2), and (4.12) – (4.15) that are discussed in Chapter  
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Figure 5.9. Magnitude Response in dB of the BPF with passband 0.75 Hz – 2.5 Hz used for HR 

estimation 
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Figure 5.10. Frequency Spectrum of filtered version of original phase variation signal and CWT 

coefficients with the adapted wavelets from 𝐻𝐵𝑇𝑛𝑒𝑤1 − 𝐻𝐵𝑇𝑛𝑒𝑤4 shown in Figure 5.8. 
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4. Since we are considering quasi-static scenarios in this chapter, we will assume that the interfered 

body movements from RSBM is negligible in these simulations. However, in the next chapter, we 

will consider the effect of RSBM into the simulated models as well. Table 5.1 shows simulated 

parameters of chest displacement due to respiration and heartbeat 𝑓𝑅𝑅 , 𝑓𝐻𝑅 , 𝐾𝑏 , 𝑇𝑖, 𝑇𝑒 , 𝜏, 𝐴ℎ for the 

20-second simulation. In this simulation, we select a high value of respiratory rate such as 𝑓𝑅𝑅 =

0.18 𝐻𝑧 so that its harmonic components will interfere with the spectrum contents when estimating 

HR. Therefore, we can show the efficiency of our HBT extraction and CWT with adapted wavelet 

techniques. Figures 5.11a-c show the simulated chest displacement due to respiratory, heartbeat 

and combined signal, respectively using equations (4.1) and (4.2) discussed from Chapter 4. In 

this simulation, the amplitude of displacement due to respiratory signal is almost 30 times higher 

than that of the heartbeat signal. The constellation from the combined vital sign signals is then 

calculated using equations (4.12) and (4.13) and is shown in Figure 5.12 below. Since we are 

neglecting the effect of RSBM, we can see that the constellation is not shifted by body drift effect. 

Figure 5.13a shows the extracted phase variation by applying AD method to the constellation data 

in Figure 5.12. Due to phase unwrapping from AD, we observe the vertical offset increasing 

compared with the original signals in Figure 5.11. It also shows the extracted HBT that comply 

with the two conditions (i) and (ii) discussed in section 5.6.1 above. We can see that for this 

simulation, there are 3 HBTs that are considered valid. Figure 5.14 shows the RR estimation by 

first passing the phase variation signal in Figure 5.13a through the BPF with passband 0.1 – 0.6 

Hz. Then by finding the peak of frequency spectrum, we can determine the RR which agrees well 

with the true RR (approximately 11 BRPM). Next, the original 3 extracted HBTs shown in Figure 

5.13 are further processed by first finding their polynomial fitted versions as shown in Figures 

5.15a, 5.15d and 5.15g. Then, the new version 𝐻𝐵𝑇𝑛𝑒𝑤 of these HBTs can be found by subtracting 
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Table 5.1. Simulated Parameters for Chest Displacement due to Respiration and Heartbeat 

 

𝑓𝑅𝑅 (𝐻𝑧) 𝑓𝐻𝑅  (𝐻𝑧) 𝐾𝑏 (𝑚𝑚) 𝑇𝑖 (𝑠) 𝑇𝑒 (𝑠) 𝜏 (𝑠) 𝐴ℎ (𝑚𝑚) 

0.18 1.48 7.65 1.73 3.71 0.23 0.25 

 

 

 

 

Figure 5.11. Simulated Chest displacement due to, a) Respiration Signal, b) Heartbeat Signal, c) 

Combined Vital Sign Signal. 
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Figure 5.12. Constellation diagram of vital sign signal from simulated data. 
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Figure 5.13. Signal Analysis from simulated data, a) Phase variation obtained using AD method, 

b) Normalized distances 𝑑𝑗,𝑗+1 between consecutive constellation points, c) Angles between 

vectors formed by consecutive constellation points 𝜃𝑗,𝑗+1,𝑗+2. 



 86 

 

Figure 5.14. Estimation of RR for simulated data. 

 

 

Figure 5.15. a), d), g) Original HBTs and their polynomial fitter versions, b). e), h) New versions 

of HBTs, c), f), i) Comparisons of frequency spectrum before and after using CWT with adapted 

wavelet from HBTs. 
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the original 𝐻𝐵𝑇𝑜𝑟𝑖 with the fitted versions 𝐻𝐵𝑇𝑓𝑖𝑡𝑡𝑒𝑑 as shown in Figures 5.15b, 5.15e and 5.15h. 

Figures 5.15c, 5.15f and 5.15i show the comparisons of frequency spectra between the filtered 

version of the original phase variation and the CWT coefficients using wavelet adapted from the 

extracted 𝐻𝐵𝑇𝑛𝑒𝑤. We can see that only using the BPF with passband 0.75 – 2.5 Hz is not sufficient 

for HR estimation as the 3𝑡ℎ/4𝑡ℎ harmonic components of the respiratory signals are still 

significantly stronger than the heartbeat signals in some cases. Therefore, by using our HBT-CWT 

method, we can reduce the harmonic components of the respiratory signal and magnify the 

heartbeat signal so that HR can be accurately estimated. The final HR values is then determined 

by finding the average values of the HR estimated from each HBT. It should be noticed that this 

simulation is only to show the efficiency of the proposed HBT extraction and CWT with adapted 

wavelet technique in reducing the harmonic of respiratory signals. We do not consider the use of 

multiple MIMO channels in this situation. However, in the next section, we will also show that by 

having more radar channels, we can typically improve the accuracy of HR estimation compared 

with the performance of single channel.  

 

5.8 Experimental Scenarios and Results 

Scenarios with single subjects at different postures and radar locations are performed and studied 

to validate our proposed signal processing chain. Approval of all ethical experimental procedures 

and protocols was granted by The Institutional Review Board (IRB) of The University of 

Tennessee – Knoxville, under Applications UTK IRB-14-01040-XM and UTK IRB-22-06785-

FB. Respiration waveform from Belt Sensor NUL-236 and photoplethysmogram (PPG) signal 

from Pulse sensor SEN-11574 are extracted and processed with FFT to estimate RR and HR as 

our ground truth. Each experiment will last for 1 to 5 minutes so that we can assess the performance 
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of the system in a long-term monitoring manner. The 5-minute collected data will be divided into 

20-second sliding windows and RR/HR are then estimated for each sliding window. Two adjacent 

windows have 19-second overlapped data and 1-second new data. This way for real-time 

operation, we can estimate and display RR and HR every 1 second.  

To assess the estimation performance throughout our experiments, several statistical metrics are 

used. The mean-error 𝜇𝑒 measures the average of the error vector 𝒆 = 𝑑𝑒𝑠𝑡 − 𝑑𝐺𝑇 between radar’s 

estimated results 𝑑𝑒𝑠𝑡 and ground truth’s results 𝑑𝐺𝑇. We expect the lower values of mean-error 

the better the estimated results from radar. The standard deviation (std) of errors 𝜎𝑒 shown in 

equation (5.12) indicates whether the error of estimation is close to or spread out over wider range 

away from the mean value 𝜇𝑒. Thus, the lower values of 𝜎𝑒 the better the estimate.  

                                                                 𝜎𝑒 = √
1

𝑃
∑(𝑒𝑖 − 𝜇𝑒)2
𝑃

𝑖=1

                                                        (5.12) 

where 𝜇𝑒 is the mean-error calculated above and P is the sample size of the vector. Besides the 

metrics mentioned above, accuracy rates are also calculated to assess the estimation accuracy of 

FMCW radar. Accuracy rate for estimated error <= 3 BPM and > 3 BPM compared with the 

contact sensor reading are considered and shown. We determined this error threshold since this 

approximates a widely accepted standard within health sciences research for this level of accuracy 

in measuring HR [75, 76]. 

Because we are using MIMO configuration with multiple channels, there are different ways to 

implement the RR/HR estimation. For example, common approach is to first estimate HR for each 

channel individually. Then, the final HR value can be estimated by finding the average values 

between the channels after eliminating the outliers. We will call this channel average method. In 
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this dissertation, instead of merely calculating the HR by channel average method, which is 

probably time-consuming. We opt for the use of MRC where we combine the phase variation from 

multiple channels into one for processing. Thus, it will take less processing time. In this section, 

we will show the comparison of experimental results between the following methods to assess the 

performance:  

1. MRC with all channels: Apply signal processing chain in Figure 5.1 for all MIMO channels. 

Then, combine the phase variations from all channels into one for processing to find RR and HR. 

2. MRC with selected channels: Apply signal processing chain in Figure 5.1 for all MIMO 

channels. However, only phase variations from selected channels are combined using MRC to 

estimate RR and HR. This method should produce slightly better results compared with the above 

as we eliminated some channels that might contribute bad information especially of the heartbeat 

signals.  

3. Channel average with all channels: Apply signal processing chain in Figure 5.1 for all MIMO 

channels. However, RR and HR are also estimated separately for each channel. Final RR and HR 

are then found by calculating the average from all channels. As discussed above, while this is a 

common approach, it may be more time-consuming. 

4. Channel average with selected channels: Apply signal processing chain in Figure 5.1 for all 

MIMO channels. However, RR and HR are estimated separately for only selected channels. Final 

RR and HR are then found by calculating the average from these selected channels. 

5. Single channel with lowest mean-error: This estimates RR and HR separately for each channel 

then finds the channel with lowest mean-error compared with contact sensors. Finding the channel 

with lowest mean-error in this case is only for assessing how much better/worse the MRC/channel 
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average results are compared with the single channel approach. In practical, we do not know which 

channel will have the best performance. 

 

5.8.1 Scenario #1: Subjects Sitting Down and Withholding Respiration in front of Radar 

In this experiment, the SUTs hold their breath for almost 1 minute and sit 1 meter away from the 

radar as shown in Figure 5.16a. 2D-FFT to show the location of the target during the experiment 

is shown in Figure 5.16b as an example. For this scenario, three participants are asked to 

participate. Table 5.2 shows information about genders, ages, weights, and heights of these 

participants. 

The purpose of this experiment is to initially validate if the radar device can estimate HR when 

there are no interferences from the respiratory signals and RBSM. As the alignment between the 

radar and upper body of the SUTs are crucial for an accurate HR reading. Figure 5.17 shows the 

estimated HR results for Participants #1, #2, and #3 from the MRC with selected channels method 

as function of time. We can see a correlation in trend between the estimated radar and ground truth. 

Furthermore, because the participants try to hold their breath for 1 minute, their HR increase 

because the nervous systems are reacting due to the lack of oxygen level for the brain and other 

organs to function. Figures 5.18a, 5.18c and 5.18e show that HR can be estimated with good 

accuracy. For participants #1 and #3, the channel with lowest mean-error gives comparable 

performance compared with other methods based on their accuracy rates, 𝜎𝑒, 𝜇𝑒. For participant 

#2, channel with lowest mean-error performs slightly worse than the channel average with all 

channels. Thus, it is not the case that channel with lowest mean-error always outperforms other 

methods. Therefore, we expect that having multiple channels is generally useful for making sure 

that the estimated results are better than or at least comparable to a single channel. Between MRC 
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Table 5.2. Information of participants in Scenario #1 

 

 

Participant # Gender Age Weight (lbs) Height (in) 

1 Male 29 125 64 

2 Female 30 110 62 

3 Male 22 185 70 

 

 

 

Figure 5.16. a) Experimental Setup of Scenario #1 and #2, b) 2D-FFT Range Profile 

 

 

 

Figure 5.17. HR Estimation compared with ground truth pulse sensor of, a) Subject #1, b) Subject 

#2, c) Subject #3. 
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and channel average methods, they have their own advantages and disadvantages. On the one hand, 

MRC helps reduce complexity of the estimation process as it performs a weighted average of the 

signals and then HR can be estimated from one combined signal. On the other hand, channel 

average uses HR estimated from multiple MIMO channels and find the average of those HR values. 

Therefore, it is not easy to conclude which method will outperform the others. In fact, based on 

our experimental results, these two methods produce comparable accuracy in estimating HR. 

However, since MRC requires less computation and processing time, it will be more appropriate 

for real-time operation which will be discussed shortly. As shown in Figures 5.18c and 5.18d, 

channel average method with all channels clearly outperforms the others. This result suggests that 

MRC does not always outperform channel average method in accuracy. Furthermore, as can be 

shown in all participants, the accuracy rate of MRC with selected channels method usually slightly 

outperforms the MRC with all Channels. Thus, it shows that our simple channel classification 

method discussed in section 5.4 is working.  

Figure 5.19 shows the comparison of average processing time between methods when 192 

channels are used. The processing time shown in Figure 5.19 is approximated on a Dell Latitude 

7400 laptop with 8-core Intel Core i7 CPU and a total 16 GB of memory running at 2.1 GHz. The 

laptop operates on Microsoft Windows 10, and all implementation/calculation is done with 

MATLAB version R2021b. As expected, channel average requires more time as it has to perform 

the same processing chain for all channels including the HBT extraction before being able to 

acquire final HR value.  

 

 

5.8.2 Scenario #2: Subjects Sitting Down and Normally Breathing in front of Radar 

The experimental setup for this scenario is similar to that of Scenario #1 where the SUTs sit in  
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Figure 5.18. Results of HR Estimation from Scenario #1. a), b) Error Analysis and Accuracy Rate 

from Subjects #1, c), d), Error Analysis and Accuracy Rate from Subjects #2, e), f) Error Analysis 

and Accuracy Rate from Subjects #3. Horizontal axis shows: 1) MRC with all channels, 2) MRC 

with selected channels, 3) Channel average with all channels, 4) Channel average with selected 

channels, 5) Channel with lowest mean-error compared with ground truth among all channels.  
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Figure 5.19. Comparison of average processing time between different methods. 

 

 

 

 

 

 

 

 

 

 



 95 

front of the radar and is 1 m away. However, they will be asked to normally breath during the 5-

minute experiment so that both their RR and HR can be monitored by the radar in a long-term 

setup. Since this is a common scenario and can be applied to various real-world applications such 

as at clinics, hospitals, etc., we recruited 10 voluntary participants for this scenario to have a better 

performance analysis of our proposed hardware and algorithm chains over a wide range of 

participants. Table 5.3 shows information about genders, ages, weights, and heights of these 

participants.  

Figure 5.20 shows the RR estimation results from radar using MRC with all channels method 

compared with the ground truth Belt Sensor NUL-236. As reported from literatures [9-11], RR 

estimation in quasi-static scenarios is relatively straightforward and generally has high accuracy. 

This can be validated in experimental results where for most the participants, the trend in RR 

estimated from the radar agrees well with the RR estimated from ground truth. For subjects #7 and 

#9, there were technical issues where the Belt Sensor does not fit the subjects. Therefore, we could 

not capture the refence respiratory waveforms for comparison. 

Figure 5.21 shows the error analysis of the RR estimation results shown above by calculating 

the std-error 𝜎𝑒𝑟𝑟𝑜𝑟 and mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 of the estimated results. We can see that for all 

participating subjects, the mean-error of estimated results can be as low as 0.2 BRPM and the 

worst result is from subjects #8 with mean-error 1.4 BRPM. 

Figure 5.22 shows the accuracy rate as another metrics to assess the estimation accuracy 

compared with the ground truth. We can see that estimated RR from most of the subjects have 

100% of error within 3 BRPM compared with the ground truth. Only subject #5 has slightly lower 

accuracy rate in which only 89% of estimated RR is within 3-BRPM error compared with the 

ground truth. We can see a good agreement between radar’s results and ground truth in first four 
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Table 5.3. Information of participants in Scenario #2 

 

Participant # Gender Age Weight (lbs) Height (in) 

1 Male 29 125 64 

2 Female 30 110 62 

3 Male 22 185 70 

4 Male 26 150 69 

5 Female 54 150 61 

6 Female 65 110 64 

7 Female 64 235 67 

8 Male 23 170 72 

9 Male 33 340 73 

10 Male 27 125 66 

 

 

 

 

Figure 5.20. RR Estimation compared with Ground Truth from all participating subjects. 
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Figure 5.21. Error Analysis of RR Estimation compared with Ground Truth from all subjects. 

 

 

Figure 5.22. Accuracy Rate of RR Estimation compared with Ground Truth from all subjects. 
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minutes of the experiment of subject #5. However, since the ground truth estimation fluctuates for 

the last 1 minute, the Belt Sensor may not be able to clearly capture the pressure changed due to 

respiration. This explains the low agreement between estimated results from radar and belt sensor. 

Next, we analyze the performance of HR estimation from all participating subjects for Scenario 

#2. Figure 5.23 shows the estimated HR from radar using the MRC with selected channels method 

in comparison with the ground truth Pulse Sensor SEN-11574. We can see that estimated HR using 

radar from most subjects agree well with the estimated HR from ground truth. However, subjects 

#8 and #9 show some fluctuations between radar’s results compared with ground truth. The 

difference in accuracy of HR estimation from different subjects under the same scenarios set up 

has also been reported in literature [79]. While we are not certain what is the main reason that 

cause this fluctuation, there can be factors that might affect the HR estimation results using radar 

such as alignment issue between radar and SUT. Thus, better alignment system using simple laser 

devices can be used to make sure the chest area that cover the heart region is optimally aligned 

with radar to improve the SNR of the capture heartbeat signals. 

Figure 5.24 shows the error analysis using std-error 𝜎𝑒𝑟𝑟𝑜𝑟 and mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 from all 

participating subjects using different methods as discussed above. It can be shown in this 

experiment with subjects #2, #4, #5, #6, #7 and #8 that results from single channel with lowest 

mean-error compared with ground truth are worse than the other methods using multiple channels. 

Therefore, we can see that using more channels can generally help to improve the accuracy of HR 

estimation. For most subjects, the performance between using MRC method and channel average 

method is comparable and it is hard to say which one is better in terms of accuracy. However, 

because MRC method offers less complexity and computation as shown in Figure 5.19, it is more 

preferable for the real-time operating especially when we want to integrate the radar for multiple  
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Figure 5.23. HR Estimation compared with Ground Truth from all participating subjects. 

 

 

Figure 5.24. a) Std-Error, b) Mean-Error Analysis of HR Estimation compared with Ground Truth 

from all subjects. 

 



 100 

purposes besides vital sign detection such as localization and tracking of multiple subjects using 

the same radar hardware. In general, estimated HR results from most subjects are less than 3 BPM 

in average which is satisfactory in terms of accuracy. As discussed above, the mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 

of subjects #8 and #9 are relatively high probably because of the alignment issue. For subject #10, 

there was a big jump of estimated HR value in the first 5 seconds which makes the total mean-

error 𝜇𝑒𝑟𝑟𝑜𝑟 relatively high. This might be because the subject suddenly makes a movement after 

sitting down that cause the distortion. However, for the rest of the experiment, the estimated HR 

from radar agrees well with the ground truth.   

Figure 5.25 shows the accuracy rate of error calculation from MRC with selected channel method 

to show the percentage of errors that are within and beyond 3 BPM threshold. These percentages 

should be correlated with the mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 analysis. Therefore, we can see in Figure 5.25 that 

accuracy rates for the first 7 subjects are high while the last 3 subjects produce lower accuracy 

rate. This agrees with our observation and discussion based on Figures 5.23 and 5.24 above. 

 

5.8.3 Scenario #3: Subjects Lying Down and Normally Breathing with Radar on the Side 

The experimental setup for Scenario #3 is shown in Figure 5.26a. The first three participants 

from Scenarios #1 and #2 are asked to participate in this experiment. They will lie down for 5 

minutes so that the radar can monitor their RR and HR in a long-term setup. The radar is 0.6 meters 

away from the near edge of the bed. Therefore, distance between radar and subject’s chest is 

approximately 1 meter. The radar is 0.5 meters away from the ground. 2D-FFT of the target is 

shown in Figure 5.26b as an example. As can be seen from Figure 5.26b, the range bin of the target 

has stronger reflection than in Scenario #1 shown in Figure 5.16b even though the subject is at 

roughly the same range. This can be explained by the fact that the reflection from the edge of the 
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Figure 5.25. Accuracy Rate of HR Estimation compared with Ground Truth from all subjects. 

 

 

 

Figure 5.26. a) Experimental Setup of Scenario #3, b) 2D-FFT Range Profile 
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bed near the subject has made the reflection around the subject range bin stronger. However, this 

should not impact the target range bin selection as we still select the target range bin based on the 

variance level in the phase variation. As the bed has no vital sign, it does not produce any changes 

in phase thus the calculated variance in phase should be very small at the bed’s range bin. 

Experimental results of Scenario #3 are shown in Figures 5.27 – 5.30. As can be shown, when the 

subjects lie down, we expect minimal amount of RBSM during experiment. Therefore, both RR 

and HR can be estimated with high accuracy. We can observe comparable performance of HR 

estimation between different methods. Therefore, in this case, MRC is still preferable as it offers 

lower computational requirement and processing time. 

 

5.8.4 Scenario #4: Subjects Lying Down and Normally Breathing with Radar on the Ceiling 

The setup of Scenario #4 is shown in Figure 5.31a. The same three participants from Scenarios 

#1 and #3 are asked to participate in this experiment. They will lie down for 5 minutes so that the 

radar can monitor their RR and HR in a long-term setup. The radar is mounted on the ceiling and 

looks down at the lying down subject. The radar is 1.7 m away from subject’s chest. 2D-FFT of 

the target is shown in Figure 5.31b as an example. As this experimental setup is similar to 

Scenarios #1 and #2, the Range 2D-FFT plot should look similar except that the SUT is further 

away from the radar. Figures 5.32 and 5.33 show the RR estimation from all participants as well 

as the error analysis and accuracy rate. Since the setup of this scenario is similar to Scenario #2, 

we observe similar accuracy from RR estimation. HR estimation results from this experiment in 

Figures 5.34 and 5.35 suggest that as the SUT is further away from the radar, the SNR of the 

heartbeat signal start decreasing which degrades the accuracy of HR estimation as well. This 

explains why the accuracy rates of HR estimation are worse than that of Scenario #3. Furthermore, 
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Figure 5.27. RR Estimation compared with Ground Truth from all participating subjects for 

Scenario #3. 

 

 

 

Figure 5.28. Error Analysis and Accuracy Rate for RR Estimation for all subjects for Scenario #3. 
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Figure 5.29. HR Estimation compared with Ground Truth from all participating subjects for 

Scenario #3. 
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Figure 5.30. Results of HR Estimation from Scenario #3. a), b) Error Analysis and Accuracy Rate 

from Subjects #1, c), d), Error Analysis and Accuracy Rate from Subjects #2, e), f) Error Analysis 

and Accuracy Rate from Subjects #3. Horizontal axis shows: 1) MRC with all channels, 2) MRC 

with selected channels, 3) Channel average with all channels, 4) Channel average with selected 

channels, 5) Channel with lowest mean-error compared with ground truth among all channels.  
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Figure 5.31. a) Experimental Setup of Scenario #4, b) 2D-FFT Range Profile 

 

 

 

Figure 5.32. RR Estimation compared with Ground Truth from all participating subjects for 

Scenario #4. 
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Figure 5.33. a) Error Analysis and b) Accuracy Rate for RR Estimation for all subjects for 

Scenario #4. 

 

 

Figure 5.34. HR Estimation compared with Ground Truth from all participating subjects for 

Scenario #4. 

 



 108 

 

Figure 5.35. Results of HR Estimation from Scenario #4. a), b) Error Analysis and Accuracy Rate 

from Subjects #1, c), d), Error Analysis and Accuracy Rate from Subjects #2, e), f) Error Analysis 

and Accuracy Rate from Subjects #3. Horizontal axis shows: 1) MRC with all channels, 2) MRC 

with selected channels, 3) Channel average with all channels, 4) Channel average with selected 

channels, 5) Channel with lowest mean-error compared with ground truth among all channels.  
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as the radar is mounted on the ceiling, it is more difficult to align the radar and the subjects. This 

is one factor that affects the HR estimation accuracy. It can also be observed that the HR estimation 

is highly dependent on the SUT as well as the accuracy of HR estimation are different for the three 

participants. For participant #3, MRC with all channels and with selected channels produce 

comparable results with channel average method. For participant #2, MRC with all channels and 

with selected channels produce similar results and are better than channel average methods and 

the single channel with lowest mean error. For participant #1, MRC with selected channels 

significantly outperforms the rest of the methods. Therefore, the results in Scenarios #2 and #4 

suggest that while most of the time MRC with selected channels and channel average method have 

comparable results, MRC is preferable as it requires less complexity and processing time. 

 

5.8.5 Scenario #5: Two Subjects at Different Ranges Sitting Down and Normally Breathing 

in front of Radar 

To demonstrate the capability of the MIMO system, we also show results when participants #1 

and #2 sit still in front of the radar as shown in Figure 5.36a. Participant #1 is 0.75m away and 

participant #2 is 1.5m away from the radar aperture. Separation between them is 0.6m. An example 

of the range profile calculated from 2D-FFT to find the range bin of each of the two participants 

is shown in Figure 5.36b. 

As the two subjects are in different ranges, it is easy to select the range bin corresponding to each 

subject and apply the processing chain to each subject’s data separately. For scenarios where the 

two participants are at the same range bin, direction-of-arrival estimation must be performed to 

estimate the angular location of each participant. Figure 5.37 shows the RR estimation results of 

the two participating subjects along with the error analysis and accuracy rate. As the experimental  
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Figure 5.36. a) Experimental Setup of Scenario #5, b) 2D-FFT Range Profile 

 

 

Figure 5.37. a), b) RR Estimation compared with Ground Truth from two participating subjects 

for Scenario #5, c) Error analysis, d) Accuracy Rate. 



 111 

setup is similar to Scenarios #2 and #4, we observe high accuracy performance of the RR 

estimation for both subjects. 

For HR estimation, we observe from Figures 5.38 – 5.39 that a comparable performance as what 

reported in Scenarios #2 and #4 is also achieved here, as the radar is placed in front of the two 

subjects. Subject #2 still has slightly worse accuracy rates than subject #1 as the subject is 1.7m 

away. MRC with selected channels method produces comparable results with MRC with all 

channels. In general, HR estimation performance are satisfactory. Results from Scenario #5 

demonstrates the capability of our system and proposed signal processing even for a multi-subject 

scenario. 

 

5.9 Discussion 

5.9.1 Comparison between different methods 

 Figure 5.40 shows a comparison of average error in HR estimation from all experiments listed 

above for different methods. We can see that while MRC with selected channels slightly 

outperforms other methods including channel average method. Furthermore, channel with lowest 

mean error produces slightly worse result than the others. While we cannot draw a generalized 

conclusion on whether using MIMO configuration will guarantee an improvement in HR 

estimation because we do not have a sufficient amount of experimental data to perform statistical 

inference. However, based on the data collected from the recruited participants in above 

experiments, we can see having multiple channels generally helps to improve the accuracy of HR 

estimation. This observation is consistent as reported from other research groups in literature [38-

41].  
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Figure 5.38. HR Estimation compared with Ground Truth from two subjects for Scenario #5. 

 

 

Figure 5.39. Results of HR Estimation from Scenario #5. a), b) Error Analysis and Accuracy Rate 

from Subjects #1, c), d), Error Analysis and Accuracy Rate from Subjects #2. Horizontal axis 

shows: 1) MRC with all channels, 2) MRC with selected channels, 3) Channel average with all 

channels, 4) Channel average with selected channels, 5) Channel with lowest mean-error compared 

with ground truth among all channels.  
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Figure 5.40. Comparisons between different methods for average error of HR estimation from all 

experiments. 
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5.9.2 Comparison between experimental results of Scenario #3 to another research group  

To show the robustness of our proposed algorithms chain shown in Figure 5.1, this section shows 

comparisons with some work reported in the literature. To make fair comparison, we opt for the 

reported results where similar experimental setups were used. Table 5.4 shows a comparison 

between our experimental results in Scenario #3 and what was reported in [39].  

Since the Root-Mean-Square-Error (RMSE) of estimated HR is reported in inter-beat-interval 

(IBI), we also calculate the RMSE in IBI to compare the results. The IBI is usually determined 

based on periodicity of waveforms on time domain signals. Therefore, instead of using FFT to find 

HR on frequency spectrum, we will find local peaks of the CWT coefficients calculated from 

adapted wavelet in each sliding window. The time steps corresponding to these peaks are used to 

determine the IBI of cardiac waveform. Table 5.4 shows that RMSE in IBI calculated from our 

experimental results is lower than what is reported in [39]. This can be explained by the fact that 

despite similar setup, the hardware system in [39] only has 8 MIMO channels while ours has 192 

channels. This increases the number of useful information of heartbeat signal captured by widely 

distributed radar channels. Furthermore, the results in [39] are acquired without any methods to 

reduce the interferences from respiratory harmonics. Therefore, as our system has more distributed 

channels and we carefully use HBT extraction method with CWT to suppress harmonics 

interferences, we were able to achieve better estimation accuracy.  

 

5.9.3 Comparison between experimental results of Scenario #4 to another research group  

Comparison between our Scenario #4 results and reported work in [26] is also shown here in 

Table 5.5. Despite the similar experimental setup, results from [26] are obtained with a single 

channel FMCW radar and use Maximum Likelihood to estimate HR. The authors in [26] do not 

use any methods to suppress interferences from respiratory harmonics. Therefore, by having more  
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Table 5.4. Comparison between Scenario #3 with [39] 

 

Center 

Frequency 

(GHz) 

Bandwidth 

(GHz) 

Output Power 

(dBm) 
𝑁𝑇𝑋 ⨯ 𝑁𝑅𝑋 

[39] 60 1.5 13 2 x 4 

This work 78 3.8 10 12 x 16 

 

 Method 
Experimental 

Setup  

Total # of Radar 

Channels 

RMSE in IBI 

(ms) 

[39] 
MRC with 8 

Channels 

Subject is lying 

on bed ~1m with 

radar on the side  

8 148 

This work, 

Participants #1, 

#2 and #3. 

MRC with 

Selected 

Channels + HBT 

+ CWT 

Shown in  

Figure 5.26 
192 

107 

96 

90 
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Table 5.5. Results Comparison between Scenario #4 with [26] 

 

Center 

Frequency 

(GHz) 

Bandwidth 

(GHz) 

Output Power 

(dBm) 
𝑁𝑇𝑋 ⨯ 𝑁𝑅𝑋 

[26] 78 3.9 10 1 x 1 

This work 78 3.8 10 12 x 16 

 

 Method 
Experimental 

Setup  

Total # of Radar 

Channels 

Accuracy Rate 

for Error < 3 

BPM (%) 

[26] 
Maximum 

Likelihood 

Subject is lying 

on bed ~1.7m 

with radar 

mounted on the 

ceiling  

1 80 

This work, 

Participants #1, 

#2 and #3. 

MRC with 

Selected 

Channels + 

Adapted CWT 

Shown in  

Figure 5.31 
192 

80 

84 

91 
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channels and better estimation method, we can achieve better accuracy than what is reported in 

[26]. 

 

5.10 Conclusion 

• This chapter demonstrates that the use of more MIMO generally produces better accuracy 

in HR estimation compared with single channel radar. Accuracy improvement can be 

achieved in HR estimation when MIMO configuration is used compared with single channel 

radar. 

• While using more channels can help improve the accuracy of HR estimation, DSP methods 

such as HBT extraction and Adapted CWT are also needed to reduce the interferences 

of respiratory harmonics.  

• Five different scenarios with voluntary participants are performed and studied. Experimental 

results show that MRC with selected channels is the most preferable method as it 

consistently produces accurate HR estimation results and require less processing time. 

• Automatic HBT extraction based on constellation is proposed in this chapter to help reduce the 

impact of respiratory harmonics and does not require human intervention for selecting a good 

HBT. 

• The Channel Classification methods proposed in this chapter can also be improved especially 

when more complicated scenarios with more interferences from random body motion are 

introduced. 
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CHAPTER VI 

REDUTION OF RANDOM BODY-SWAYING MOTION 

Under scenarios where there is a significant amount of random body-swaying motion (RBSM), 

these interferences from RBSM need to be considered so that the accuracy of HR estimation can 

be sustained. In this chapter, we extend the work in Chapter 5 that detects vital signs of quasi-static 

subjects to include impacts of RBSM. Here, we show that our proposed automatic HBT extraction 

and CWT with adapted wavelet methods still help to effectively reduce the impact of RBSM. 

However, under scenarios where the RBSM level is significantly strong, RBSM cannot be 

completely removed from the frequency spectra. Therefore, we have modified the signal 

processing chain proposed in previous chapter to add a spectral-based HR selection method which 

takes advantages of multiple radar channels to determine the HR estimation when there are 

significantly strong RBSM. 

 

6.1 Impact of RBSM on Constellation and Phase Variation Signals 

Before discussing the modification of the processing chain proposed in Chapter 5, we first use 

the simulated model and experimental data to analyze the impact of RBSM on the constellation 

and the extracted phase variation that carry information about the chest displacement due to both 

respiratory and heartbeat. It should be noticed that in this dissertation, we only deal with 

unintentional body-swaying motions while SUTs are sitting or standing. In other words, the 

interfered body motions’ effects that we are trying to suppress here is a short and aperiodic signal. 

If the SUT is actively in motion during the monitoring process such as walking or running, it is 

still a challenging problem to get highly accurate results even for RR estimation using this method.  
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6.1.1 Analysis of RBSM using Simulated Data 

When there are interferences from RBSM, the term 𝛥𝑅𝑅𝐵𝑆𝑀 discussed in equation (4.11) can no 

longer be neglected. Therefore, the phase variation extracted from AD will be distorted by the 

RBSM. To show the impact of RBSM, we use the simulated data discussed in Section 5.7 and 

include two RBSM as interferences. Table 6.1 shows simulated parameters of chest displacement 

due to respiration and heartbeat 𝑓𝑅𝑅 , 𝑓𝐻𝑅 , 𝐾𝑏 , 𝑇𝑖, 𝑇𝑒 , 𝜏, 𝐴ℎ for the 20-second simulation.  

Table 6.2 shows the simulated parameters of RBSM using equation (4.3), the Gaussian noises 

are also added to the following parameters 𝑇𝑛, 𝐴𝑛 during the 20-second simulation. 

To show the impact of RBSM to vital sign signal, Figure 6.1 shows the simulated waveforms of 

both vital sign signals, RBSM and combined signal. It can be shown in Figures 6.1a, 6.1d and 6.1g 

that the added RBSM signal will distort the original waveform of vital sign signal.  

We also show the frequency spectrum in two passbands 0.1 – 0.6 Hz and 0.75 – 2.5 Hz to 

visualize the impact of RBSM to vital sign signals. These are the passbands that have been used 

to determine RR and HR in our implementation but could be extended if need be if there are cases 

with higher HR. Figures 6.1b and 6.1c show that without RBSM, while we can clearly obtain the 

RR in the passband 0.1 – 0.6 Hz, the harmonic component of respiratory signal which has Power 

Spectral Density (PSD) of 5000, interferes with the spectrum of heartbeat signal in the passband 

of 0.75 – 2.5 Hz, which has the PSD of 3500. For the RBSM signal only, its spectrum spreads over 

the two passbands as shown in Figures 6.1e and 6.1f. Due to the random and aperiodic nature of 

the RBSM that we are considering in this dissertation, its magnitude will not significantly interfere 

with the RR estimation. As the maximum PSD of RBSM shown in Figure 6.1e is 5 × 104 while 

the maximum PSD of respiratory signal in the passband 0.1 – 0.6 Hz from Figure 6.1b is 5 × 105. 

Thus, as shown in Figure 6.1h, the RR can still be estimated in the passband 0.1 – 0.6 Hz even  
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Table 6.1. Simulated Parameters for Chest Displacement due to Respiration and Heartbeat 

 

𝑓𝑅𝑅 (𝐻𝑧) 𝑓𝐻𝑅 (𝐻𝑧) 𝐾𝑏 (𝑚𝑚) 𝑇𝑖 (𝑠) 𝑇𝑒 (𝑠) 𝜏 (𝑠) 𝐴ℎ (𝑚𝑚) 

0.18 1.48 7.65 1.73 3.71 0.23 0.25 

 

 

 Table 6.2. Simulated Parameters for Two RBSM for 20 seconds 

 

𝐴1 (𝑚𝑚) 𝐴2 (𝑚𝑚) 𝑇1 (𝑠) 𝑇2 (𝑠) 𝑡𝑑1 (𝑠) 𝑡𝑑2 (𝑠) 

10.1 6.2 1.4 1.41 6.85 7.14 

 

 

 

Figure 6.1. a), d), g) Time domain waveforms of vital sign, RBSM and combined signals, b), e), 

h) The frequency spectrums of corresponding signals in passband 0.1 – 0.6 Hz, c), f), i) The 

frequency spectrums of corresponding signals in passband 0.75 – 2.5 Hz. 
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when there is RBSM. However, in the passband 0.75 – 2.5 Hz, there are now two interferences 

from respiratory harmonics and from the RBSM, which makes it even more challenging to 

determine the HR. Next, based on the original signal in Figure 6.1g, we use equations (4.12) – 

(4.13) to calculate the constellation diagram and AD method to extract the phase variation. Then, 

we apply the automatic HBT extraction method discussed in Chapter 5 to show that the extracted 

HBTs comply with the conditions related to distances and angles between constellation 

points/vectors. Figure 6.2a shows the comparison between the phase variation signal with and 

without RBSM in blue and red colors, respectively. The extracted HBTs are shown in green based 

on the conditions of distances between constellation points and angles between vectors formed by 

the constellation points. We can see that based on the distances and angles data shown in Figures 

6.2b and 6.2c, we can identify the regions that only carry information about heartbeat signals 

(green regions). For the regions that are interfered by RBSM (black regions), we can see that both 

the distances between constellation points and angles between vectors formed by constellation 

points are relatively high. Thus, the black regions shown in Figure 6.2a will not be included in the 

HBT selection process. At the end, we can extract three HBTs that can be used to reduce the impact 

of RBSM and magnify the heartbeat signals. As the original 3 extracted HBTs shown in Figure 

6.2a are further processed by first finding their polynomial fitted versions as shown in Figures 

6.3a, 6.3d and 6.3g. Then, the new version 𝐻𝐵𝑇𝑛𝑒𝑤 of these HBT can be found by subtracting the 

original 𝐻𝐵𝑇𝑜𝑟𝑖 from the fitted version 𝐻𝐵𝑇𝑓𝑖𝑡𝑡𝑒𝑑 as shown in Figures 6.3b, 6.3e and 6.3h. Figures 

6.3c, 6.3f and 6.3i show comparisons of the frequency spectra between the filtered version of the 

original phase variation and the CWT coefficients using wavelet adapted from 𝐻𝐵𝑇𝑛𝑒𝑤. We can 

see that with our HBT-CWT method, we can reduce the interferences from the harmonics and 

RBSM as well as magnify the heartbeat signal so that HR can be accurately estimated.  
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Figure 6.2. Signal Analysis for Simulated Data, a) Chest displacement obtained using AD method, 

b) Normalized distances 𝑑𝑗,𝑗+1 between consecutive constellation points, c) Angles between 

vectors formed by consecutive constellation points 𝜃𝑗,𝑗+1,𝑗+2. 
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Figure 6.3. a), d), g) Original HBTs and their polynomial fitter versions, b). e), h) New versions 

of HBTs, c), f), i) Comparisons of frequency spectrum before and after using CWT with adapted 

wavelet from HBTs. 
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6.1.2 Analysis of RBSM using Experimental Data for Standing Subject with Significant 

RBSM 

Next, we analyze the impact of RBSM based on experimental data when SUT is standing. To 

show the distortion of RBSM to vital sign signal (blue line), we show the reference respiratory 

signal from contact Belt Sensor (red line) in Figure 6.4a. Although it is difficult to identify the 

portions where RBSM interferes with the vital sign signal, we can see the distortion of RBSM to 

the vital sign signal by comparing with respiratory waveform from the Belt Sensor. Regardless, 

with the help of the distances and angles parameters calculated from the constellation diagram 

shown in Figures 6.4b and 6.4c, the selection of HBTs can be carried out.  

The same approach is then employed here in which the polynomial fitted version of the extracted 

HBTs are calculated and are shown in Figures 6.5a and 6.5d below. Then the new versions 𝐻𝐵𝑇𝑛𝑒𝑤 

of the original templates 𝐻𝐵𝑇𝑜𝑟𝑖 are found by calculating the difference between 𝐻𝐵𝑇𝑜𝑟𝑖 −

𝐻𝐵𝑇𝑓𝑖𝑡𝑡𝑒𝑑 as shown in Figures 6.5b and 6.5e. These newly calculated 𝐻𝐵𝑇𝑛𝑒𝑤 are then used for 

adapted wavelet to the CWT calculation in which the input signal to the CWT is the band-pass 

filtered phase variation with passband 0.75 – 2.5 Hz. The frequency spectrum of the CWT 

coefficients are then calculated with FFT. After this step, the frequency spectrum should reveal 

the magnified heartbeat spectrum, as well as the reduction of the magnitude of interferences from 

respiratory harmonics and RBSM as shown in Figures 6.5c and 6.5f. 

With results from simulated and experimental data from sections 6.1.1 and 6.1.2, we can see that 

even when there are RBSM which happens unintentionally especially when the SUTs are standing, 

our proposed HBT extraction method and CWT with adapted wavelet can help to magnify the 

heartbeat signal and reduce impacts from RBSM.  

 



 125 

 

Figure 6.4. Signal Analysis for Standing Subject, a) Chest displacement obtained using AD 

method [22], b) Normalized distances between consecutive constellation points, c) Angles between 

vectors formed by consecutive constellation points. 
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Figure 6.5. a), d), Original HBTs and their polynomial fitter versions, b), e), New versions of 

HBTs, c), f), Comparisons of frequency spectrum before and after using CWT with adapted 

wavelet from HBTs. 
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6.2 Spectral-based Heart Rate Selection Method 

With the magnitude of RBSM being unpredictable and significantly higher than heartbeat 

signals, not all extracted HBT will help to completely suppress interferences from RBSM and 

magnify the heartbeat signal to the peak of frequency spectrum. Since the magnitude from RBSM 

can overwhelm the heartbeat signal even after being magnified by HBTs, RBSM’s spectrum might 

still occupy the highest PSD within a frequency spectrum. Therefore, when there are interferences 

from RBSM, simply assuming that the peak of frequency spectrum always occur at the heartbeat 

frequency is not a good approach. Because if the peak of the frequency spectrum is occupied by 

RBSM instead of heartbeat signal, there will be inaccurate HR estimation contributing to the 

estimation process and make it more difficult for us to determine the final HR value. To deal with 

this issue, we propose a spectral-based HR selection method to better select the HR estimation 

based on SNR characteristics from their frequency spectra.  

The purpose of spectral-based HR selection is to take advantage of two characteristics about our 

frameworks: 1) the SNR of heartbeat signals are increased after using HBT and CWT, 2) multiple 

MIMO channels which produce lots of HR estimation from separate channel. Assuming each of 

the 𝑁 MIMO channels has 𝐾 valid extracted HBTs, then there is potentially up to 𝑁 × 𝐾 HR 

estimation and the SNR corresponding to these HR estimations. We can then select the final HR 

from among these 𝑁 × 𝐾 estimations based on the two characteristics discussed above. The 

procedure of the spectral-based HR selection can be divided into three steps: 

Step 1: After HBT extraction, we can find the frequency spectrum of the CWT coefficients for 

each pair of band-pass filtered phase variation signals with passband 0.75 – 2.5 Hz and the 

extracted HBTs. 
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Step 2: For each set of normalized frequency spectrum, create a set of potential HR values 휀 =

{𝐻𝑅1, 𝐻𝑅2, … , 𝐻𝑅𝑀} where M is the total number of potential HR values. These potential HR 

values are selected if they are local maxima within the frequency spectrum with a normalized PSD 

at least equals 0.5. This value is chosen to make sure even if the PSD of the heartbeat signal is not 

at a peak after the CWT calculation using the extracted HBT, it is still selected as a potential HR 

value. 

Step 3: Let 𝑐𝑜𝑢𝑛𝑡𝑃𝑒𝑎𝑘𝐻𝑅𝑗 be the number of occurrences that the PSD of the spectrum located at 

𝐻𝑅𝑗 is the peak. Let 𝑐𝑜𝑢𝑛𝑡𝑃𝑆𝐷𝐻𝑅𝑗  be the number of occurrences that the magnitude of the 

spectrum located at 𝐻𝑅𝑗 increases after CWT calculation. The final HR values is selected as: 

                                 𝐻𝑅𝑓𝑖𝑛𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑐𝑜𝑢𝑛𝑡𝑃𝑒𝑎𝑘𝐻𝑅𝑗 + 𝑐𝑜𝑢𝑛𝑡𝑃𝑆𝐷𝐻𝑅𝑗}                                (6.1) 

With this approach, even if the PSD at the right HR is not peaked within a frequency spectrum, 

by combining the two metrics reflected through 𝑐𝑜𝑢𝑛𝑡𝑃𝑒𝑎𝑘𝐻𝑅𝑗 and 𝑐𝑜𝑢𝑛𝑡𝑃𝑆𝐷𝐻𝑅𝑗, it helps to 

bring up the total occurrence of the accurate HR compared with the others. This is similar to a 

scoring mechanism where the potential HR’s score is increased if it receives an upvote from 

different pairs of phase variation and HBT. To have its score increases, the potential HR must 

either peak in one frequency spectrum or have its normalized PSD increases higher than 0.5 after 

CWT calculation in another frequency spectrum. In the next section 6.4, we will demonstrate the 

spectral-based HR selection with a particular simulation set. 

 

6.3 Modification of the Signal Processing Chain 

In the previous chapter, we considered quasi-static scenarios when there are minimal RBSM, we 

can use MRC to combine the phase variation signal into one. The combined phase variation is then 
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passed through a band-pass filter with a passband 0.75 – 2.5 Hz. The filtered signal is used as input 

for CWT with an extracted HBT to magnify the heartbeat signal. The HR from each pair of phase 

variation and HBT is determined by finding the highest peak of frequency spectrum.  Then final 

HR is determined by taking the average of all HR estimation from each pair of phase variation and 

HBTs.  

With the interferences of RBSM, the proposed signal processing chain in Chapter 5 needs to be 

modified to deal with the unpredictable and random nature of the RBSM especially when the SUTs 

are standing. As discussed above, the extracted HBTs along with CWT with adapted wavelet can 

be used to magnify the heartbeat signal and reduce the interferences from respiratory harmonics. 

However, because of the unpredictable interferences from RBSM, just finding the HR by looking 

for the highest peak within a frequency spectrum is not an optimal approach. Therefore, to address 

the RBSM issue, we want to combine the use of CWT method with the extracted HBTs as wavelets 

and spectral-based HR selection for better HR estimation accuracy. In other word, we are fully 

taking advantage of the MIMO’s spatial diversity to implement the spectral-based HR selection 

method in which the final HR is selected if it receives the highest scores from all channels based 

on its spectral characteristics. Figure 6.6 shows the modified signal processing chain for RR/HR 

estimation under scenarios with significant RBSM. As shown in Figure 6.6, we can observe several 

differences compared with the processing chain proposed in Chapter 5. Most importantly, we do 

not use MRC to combine the phase variation signals from multiple channels anymore. This is 

because combining the signals in this case limits the amount of heartbeat information that can be 

extracted separately from each channel. As RBSM might severely impact accuracy of HR 

estimation, we need as much useful information as we can get from multiple channels to be able 

to get accurate HR estimation. As a result, the adapted wavelet designed from HBTs and its CWT  



 130 

 

Figure 6.6. Block diagram for RR/HR estimation processing chain when there are RBSM. 
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coefficients are also calculated separately. The FFT spectrum of CWT coefficients from all MIMO 

channels are then passed through the Spectral-based HR selection to determine the final HR 

estimation.  

 

6.4 Simulation Results 

To validate the robustness of our proposed processing chain discussed above, we first show 

results with simulated data that also consider interferences from RBSM. Tables 6.3 and 6.4 show 

simulated parameters of chest displacement due to respiration and heartbeat and RBSM for the 20-

second simulation, respectively. To make the RBSM level more pronounced, we increase the 

magnitude of the two RBSM as well as their duration so that their interferences are more 

significant. Figures 6.7 shows the simulated waveform of both vital sign signals and RBSM 

combined signal. Figures 6.7a, 6.7d and 6.7g show that the added RBSM signal distorts the 

waveform of vital sign signal.  

Here, similar observations from section 6.1.1 can be made where respiratory harmonics and 

RBSM exist, the heartbeat signal is heavily concealed by these interferences hence it is hard to 

identify the heartbeat spectrum by just looking for the highest peak in the frequency spectrum as 

shown in Figure 6.7i. This observation from RBSM and its slow characteristics as well as wide-

band behavior was also reported in [53].  

Figure 6.8a shows a comparison between the phase variation signal with and without RBSM in 

blue and red colors, respectively. The extracted HBTs are shown in green based on the conditions 

of distances between constellation points and the angles between the vectors formed by 

constellation points as previously described in Chapter 5. We can see that based on the distances 

and angles data shown in Figures 6.8b and 6.8c, we can identify the regions that would only carry 

information about heartbeat signals (green regions). For the regions that are interfered by RBSM  
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Table 6.3. Simulated Parameters for Chest Displacement due to Respiration and Heartbeat 

 

𝑓𝑅𝑅 (𝐻𝑧) 𝑓𝐻𝑅 (𝐻𝑧) 𝐾𝑏 (𝑚𝑚) 𝑇𝑖 (𝑠) 𝑇𝑒 (𝑠) 𝜏 (𝑠) 𝐴ℎ (𝑚𝑚) 

0.2 1.5 3.96 1.6 3.47 0.21 0.15 

 

 

 Table 6.4. Simulated Parameters for Two RBSM for 20 seconds 

 

𝐴1 (𝑚𝑚) 𝐴2 (𝑚𝑚) 𝑇1 (𝑠) 𝑇2 (𝑠) 𝑡𝑑1 (𝑠) 𝑡𝑑2 (𝑠) 

5.6 9.8 3.6 3.3 2.38 7.84 

 

 

 

Figure 6.7. a), d), g) Time domain waveforms of vital sign, RBSM and combined signals, b), e), 

h) The frequency spectrums of corresponding signals in passband 0.1 – 0.6 Hz, c), f), i) The 

frequency spectrums of corresponding signals in the passband 0.75 – 2.5 Hz. 
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Figure 6.8. Signal Analysis for Simulated Data, a) Chest displacement obtained using AD method, 

b) Normalized distances 𝑑𝑗,𝑗+1 between consecutive constellation points, c) Angles between 

vectors formed by consecutive constellation points 𝜃𝑗,𝑗+1,𝑗+2. 
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(black regions), we can see that both the distances between constellation points and angles between 

vectors formed by constellation points are relatively high. Thus, the black regions shown in Figure 

6.8a will not be included in the HBT selection process. At the end, we can extract three HBTs that 

can be used to adapt corresponding wavelets and thus help to reduce the impact of RBSM and 

magnify the heartbeat signals. 

Next, the original 3 extracted HBTs shown in Figure 6.8a are further processed by first finding 

their polynomial fitted versions as shown in Figures 6.9a, 6.9d and 6.9g. Then, the new version 

𝐻𝐵𝑇𝑛𝑒𝑤 of these HBT can be found by subtracting the original 𝐻𝐵𝑇𝑜𝑟𝑖 from the fitted version 

𝐻𝐵𝑇𝑓𝑖𝑡𝑡𝑒𝑑 as shown in Figures 6.9b, 6.9e and 6.9h. Figures 6.9c, 6.9f and 6.9i show comparisons 

of frequency spectra between the filtered version of the original phase variation and the CWT 

coefficients using wavelets adapted from the extracted 𝐻𝐵𝑇𝑛𝑒𝑤. These three frequency spectra are 

now passed through the spectral-based HR selection to pick the final HR value. As discussed 

above, the spectral-based selection will first create a list of potential HR values by finding local 

maxima within the spectra that has normalized PSD higher than 0.5. In this simulation, the list of 

potential HR includes two HR values which are 47 BPM and 91 BPM. Their corresponding PSD 

before the CWT are 1 and 0.25 for all three spectra, respectively. After CWT, their PSDs are 0.97 

and 1 which still makes it challenging to pick the correct HR by looking for the peak of the 

frequency spectrum. In this case, the PSD of HR at 47 BPM decreases after CWT calculations, 

while PSD at 91 BPM significantly increases after the CWT calculation. Thus, even though the 

PSDs at the two potential HR values are approximately the same in the spectra, based on the 

spectral characteristics, we can conclude that the final HR should be 91 BPM, which is close to 

the true HR value, which is 90 BPM. 

Finally, Figure 6.10 shows the RR estimation by passing the phase variation signal through the  
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Figure 6.9. a), d), g) Original HBTs and their polynomial fitter versions, b). e), h) New versions 

of HBTs, c), f), i) Comparisons of frequency spectrum before and after using CWT with adapted 

wavelet from HBTs. 

 

 

Figure 6.10. Estimation of RR for simulated data. 
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BPF with passband 0.1 – 0.6 Hz. Then by finding the peak of frequency spectrum, we can 

determine the RR which agrees well with the true RR (approximately 12 BRPM). From this 

simulation, we can show that even with more pronounced RBSM, we are still able to estimate 

RR/HR with high accuracy. Next, we will validate the robustness of our proposed processing chain 

using experimental data. 

 

6.5 Experimental Scenarios and Results 

Scenarios with single and multiple subjects standing in front of the radar are performed and 

pursued to validate our proposed signal processing chain in this chapter. Similar to Chapter 5, 

Respiration waveform from Belt Sensor NUL-236 and photoplethysmogram (PPG) signal from 

Pulse sensor SEN-11574 are extracted and processed with FFT to estimate RR and HR as our 

ground truth. 20-second window is used at a time to estimate RR and HR. Two adjacent windows 

have 19-second overlapped data and 1-second new data. To assess the estimation performance 

throughout our experiments, statistical metrics such as mean-error 𝜇𝑒, standard deviation (std) of 

errors 𝜎𝑒, accuracy rate for estimated error <= 3 BPM and > 3 BPM compared with the contact 

sensor reading are discussed. Comparisons between the modified algorithm chain proposed in this 

chapter will be presented along with the algorithm chain discussed in the Chapter 5.   

 

6.5.1 Scenario #1: Subjects Standing and Withholding Respiration in front of Radar 

In this experiment, the SUTs hold their breath for almost 1 minute and stand 1 meter away from 

the radar as shown in Figure 6.11a. A 2D-FFT to show the location of the target during the 

experiment is shown in Figure 6.11b as an example. For this scenario, the same three participants 

from experimental scenario #1, #3 and #4 from Chapter 5 are asked to participate. Table 6.5 shows 
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Figure 6.11. a) Experimental Setup of Scenario #1 and #2, b) 2D-FFT Range Profile 

 

 

Table 6.5. Information of participants in Scenario #1 

 

Participant # Gender Age Weight (lbs) Height (in) 

1 Male 29 125 64 

2 Female 30 110 62 

3 Male 22 185 70 
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information about genders, ages, weights, and heights of these participants. To show the significant 

impact of the RBSM to the vital sign signals, Figure 6.12 shows a comparison between the 

scenarios when the SUT withhold their breath while sitting/standing in front of the radar. It can be 

observed in Figure 6.12a that while sitting, the upper body of the SUT does not sway too much, 

the phase variation signal clearly reflects the chest displacement due only to heartbeat signal. This 

can also be confirmed by comparing the phase variation signal with the ground truth signal from 

the Pulse Sensor in Figure 6.12b. Figure 6.12c shows the frequency spectrum of the original phase 

variation and the CWT coefficients, we see that there is no significant interfered signals and the 

heartbeat spectrum is clearly shown which agrees with the ground truth result. As seen in Figure 

6.12d, although the SUT is withholding their breaths during the experiment, since they are 

standing, their upper bodies tend to sway back and forth unintentionally, which creates a strong 

interfering signal. Figures 6.12d and 6.12e show the time domain signal captured by the radar 

which is not correlated with the ground truth time-domain signal. Figure 6.12f shows the frequency 

spectrum of the phase variation signal in Figure 6.12d. It can be seen that there are two significant 

large low-frequency components due to RBSM. However, with proper HBT extraction, the CWT 

coefficient has been able to reduce the first interference at around 50 BPM. And more importantly, 

the heartbeat spectrum is magnified to become the highest peak in the spectrum. It should be 

noticed that the result shown here is for one channel, additionally with multiple MIMO channels 

producing similar performance, the probability of correct HR estimation is significantly higher. 

Figure 6.13 shows the estimated HR results for 3 subjects compared with ground truth. We can 

see a correlation in the trend between the estimated radar and ground truth. Furthermore, because 

the participants try to hold their breath for 1 minute, their HR increases because their nervous 

systems are reacting due to the lack of oxygen level for the brain and other organs to function.  
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Figure 6.12. a) Phase variation of a sitting SUT and not breathing, b) Its corresponding ground 

truth, c) Frequency spectrum of original phase variation and CWT coefficient, d) Phase variation 

of a standing SUT and not breathing, e) Its corresponding ground truth, f) c) Frequency spectrum 

of original phase variation and CWT coefficient. 

 

 



 140 

 

Figure 6.13. HR Estimation compared with ground truth pulse sensor of, a) Subject #1, b) Subject 

#2, c) Subject #3. 
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Figure 6.14 shows the error analysis and accuracy rate for the three subjects from top to bottom 

when all the 192 MIMO channels are used. It can be observed that for standing subjects, the 

methods used in Chapter 5 are no longer efficient due to the strong interferences of RBSM. This 

explains why HR estimated from these methods have very high std- and mean-error compared 

with ground truth. With proper adaptive HBT extraction and spectral-based HR selection method, 

the proposed processing chain in this chapter has successfully estimated HR with significantly 

higher accuracy. The HR estimated from the proposed methods in this chapter typically 

outperforms the accuracy of the Channel with Lowest Mean-Error. This again validates the 

efficiency of using multi-channel radars instead of single-channel radar. Overall, our proposed 

method in this chapter has demonstrated satisfactory performance for the scenario where SUTs 

stands in front of radar and withholds their breaths.  

A disadvantage of the proposed method in this chapter is that it requires more computational and 

processing time. As shown in Figures 6.15, the average processing time for the proposed method 

in this chapter is approximately 1.4s when all 192 channels are used while the others require only 

less than 0.2s on average to produce HR estimation. The processing time is approximated on a 

Dell Latitude 7400 laptop with 8-core Intel Core i7 CPU and a total 16 GB of memory running at 

2.1 GHz. The laptop operates on Microsoft Windows 10, and all implementation is done with 

MATLAB version R2021b. This is expected because the proposed method must adaptively 

identify and extract multiple HBTs from different MIMO channels separately. To expedite the 

proposed method, parallelization of the whole process can be done so that the HBT extraction from 

different channels can be executed at the same time.  

Another approach is to reduce the numbers of channels used for processing. For example, not all 

192 channels are needed for accurate HR estimation. This is because if the two receiving antennas  
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Figure 6.14. Results of HR Estimation from Scenario #1. a), b) Error Analysis and Accuracy Rate 

from Subjects #1, c), d), Error Analysis and Accuracy Rate from Subjects #2, e), f) Error Analysis 

and Accuracy Rate from Subjects #3. Horizontal axis shows: 1) Modified Processing Chain 2) 

MRC with all channels, 3) MRC with selected channels, 4) Channel average with all channels, 5) 

Channel average with selected channels, 6) Channel with lowest mean-error compared with ground 

truth among all channels.  
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Figure 6.15. Comparison of average processing time between different methods. 

 

 

Figure 6.16. a) Comparison of average processing time when different # of channels are used, b) 

Mean-Error of Scenario #1 from three different participants when different # of channels are used. 
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are physically close to each other (less than 𝜆0-spacing) they will receive redundant information. 

Thus, by reducing the redundant channels, we can speed up the computation without losing useful 

information. Figure 6.16a shows the average processing time increases as the number of channels 

increases. Therefore, reducing the number of channels used form processing can significantly 

speeds up the HR estimation. Figure 6.16b shows the analysis of mean-error in HR estimation 

compared with the number of channels used for processing. It can be seen for Participants #1 and 

2, up to 60 channels are needed to acquire satisfactory performance while for Participant #3 there 

are 24 channels needed. Therefore, we can see that it is not necessary to use all 192 channels for 

HR estimation. However, proper number of channels is still required. Furthermore, selecting the 

channel that has good information about HR also helps to reduce the number of channels needed. 

In the next chapter, we will discuss a deep learning (DL) framework to support the processing  

chain proposed in this chapter. The DL framework will be designed to identify good channels prior 

to processing so that channels that do not have strong information about HR will be eliminated. 

Hence, the processing can be speed up and accuracy can be improved further. 

 

6.5.2 Scenario #2: Subjects Standing and Normally Breathing in front of Radar 

The experimental setup for this scenario is similar to that of Scenario #1 where the SUTs stands 

in front of the radar and is 1 m away. However, they will be asked to normally breath during the 

5-minute experiment so that both their RR and HR can be monitored by the radar in a long-term 

setup. Since this is a common scenario and can be applied to various real-world applications such 

as at clinics, hospitals, etc., we recruited 10 voluntary participants for this scenario to have a better 

performance analysis of our proposed hardware and algorithm chains. Table 6.6 shows information 

about genders, ages, weights, and heights of these participants. Figure 6.17 shows the RR 
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estimation results from radar using MRC with all channels method compared with the ground truth 

Belt Sensor NUL-236. As shown in the simulation results, RBSM is aperiodic and random which 

should not significantly interfere with the RR estimation. This can be validated in experimental 

results where for most the participants, the trend in RR estimated from the radar agrees well with 

the RR estimated from ground truth. For subjects #7 and #9, there were technical issues where the 

Belt Sensor does not fit the subjects. Therefore, we could not capture the refence respiratory 

waveforms for comparison.  

Figure 6.18 shows the error analysis of the RR estimation results shown above by calculating 

the std-error 𝜎𝑒𝑟𝑟𝑜𝑟 and mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 of the estimated results. We can see that for most 

participating subjects, the mean-error of estimated results can be as low as 0.5 BRPM and the 

worst result is from subjects #5, #6 and #8 with mean-error 1.1 BRPM.  

Figure 6.19 shows the accuracy rate as another metrics to assess the estimation accuracy 

compared with the ground truth. We can see that estimated RR from most of the subjects have 

over 96% estimations with error within 3 BRPM compared with the ground truth.  

Next, we analyze the performance of HR estimation from all participating subjects for Scenario 

#2. Figure 6.20 shows the estimated HR from radar using the proposed processing chain in this 

chapter compared with the ground truth Pulse Sensor SEN-11574. We can see that estimated HRs 

are not as good compared with HR results from quasi-static scenario is Chapter 5. However, the 

estimated HRs from radar are still following the trend relative to the ground truth. Figures 6.21 

and 6.22 show the error analysis using std-error 𝜎𝑒𝑟𝑟𝑜𝑟 and mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 from all participating 

subjects using different methods as discussed above. It can be observed that for all subjects, the 

proposed processing chain in this chapter outperform the methods used in Chapter 5. This was due 

to the unpredictable interferences from RBSM. By just finding the HR by looking up the highest 
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Table 6.6. Information of participants in Scenario #2 

 

Participant # Gender Age Weight (lbs) Height (in) 

1 Male 29 125 64 

2 Female 30 110 62 

3 Male 22 185 70 

4 Male 26 150 69 

5 Female 54 150 61 

6 Female 65 110 64 

7 Female 64 235 67 

8 Male 23 170 72 

9 Male 33 340 73 

10 Male 27 125 66 

 

 

 

Figure 6.17. RR Estimation compared with Ground Truth from all participating subjects. 
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Figure 6.18. Error Analysis of RR Estimation compared with Ground Truth from all subjects. 

 

 

Figure 6.19. Accuracy Rate of RR Estimation compared with Ground Truth from all subjects. 
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Figure 6.20. HR Estimation compared with Ground Truth from all participating subjects. 
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peak within a frequency spectrum is not an optimal approach. Therefore, in the current processing 

chain, the combination of CWT method with extracted HBT as wavelet and spectral-based HR 

selection help to produce better HR estimation accuracy. It can also be shown from Figures 6.21 

and 6.22 that results from single channel with lowest mean-error compared with ground truth are 

worse than the current processing chain which employs multiple MIMO channels. Thus, we can 

confirm that using more channels and appropriate processing technique can generally help to 

improve the accuracy of HR estimation especially when there is significant amount of RBSM.  

Finally, Figure 6.23 shows the accuracy calculation using the proposed processing chain in this 

chapter for the percentage of errors that are within and beyond 3-BPM threshold. These 

percentages should be correlated with the mean-error 𝜇𝑒𝑟𝑟𝑜𝑟 analysis. For most subjects, accuracy 

is typically higher than 80%. While this is certainly lower than the average accuracy rate compared 

with results from quasi-static scenarios, we still consider these as satisfactory results based on 

comparison with other research groups in terms of reported performances and hardware 

requirements for similar experimental setup which will be shown in the next section. 

 

6.6 Discussion 

6.6.1 Comparison between different methods 

 Figure 6.24 shows a comparison of average error in HR estimation from all experiments listed 

above for different methods. The proposed processing chain in this chapter outperforms the 

methods used in Chapter 5. This was due to the unpredictable interferences from RBSM which 

makes finding the HR by looking up the highest peak within a frequency spectrum is not an optimal 

approach. Furthermore, channel with lowest mean-error produces worse result than the modified 

processing chain. While we cannot draw a generalized conclusion because we do not have 

sufficient amount of experimental data to perform statistical inference. However, based on the data 
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Figure 6.21. Std-Error Analysis of HR Estimation compared with Ground Truth from all subjects. 
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Figure 6.22. Mean-Error Analysis of HR Estimation compared with Ground Truth from all 

subjects. 

 

 

Figure 6.23. Accuracy Rate of HR Estimation compared with Ground Truth from all subjects. 
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Figure 6.24. Comparisons between different methods for average error of HR estimation from all 

experiments. 
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collected from the recruited participants in above experiments, we can see that having multiple 

channels and appropriate processing technique helps to improve the accuracy of HR estimation 

especially when there are significant interferences from RBSM. This observation is consistent as 

reported from other research groups in literature [12, 44-53].  

 

6.6.2 Comparison with reported performances from literature  

Table 6.7 provides a summary of the methods used for RR/HR estimation in the presence of 

RBSM from various research groups along with their reported performances, hardware 

description, advantages, and limitations of their proposed methods. Unlike most of the current 

approaches in the literature to cancel RBSM, where multiple radar devices are placed around the 

SUT so that RBSM can be canceled, our proposed method in this chapter does not require 

additional radar systems which reduces the hardware complexity and the need for 

alignment/calibration between these radar devices [10-16]. Furthermore, our HBT extraction 

method does not require human intervention as the one used in [21]. Therefore, it is more suitable 

to be implemented for real-time and automatic operation. It should be noted that, however, our 

method relies on constellation diagram to identify and select good HBTs. Therefore, with RBSM, 

we are certain that there will be a time interval when there is minimal amount of RBSM and the 

HBT can be selected from these time intervals [53]. Thus, under scenarios where there are various 

motions involved, such as when subjects are actively walking or running, our proposed method 

probably fails as it is challenging to use constellation diagrams to identify valid HBTs because 

there are velocity components from different body parts interfering with the respiratory/heartbeat 

signals. Another limitation is that our proposed method requires multiple MIMO channels to 

estimate HR accurately. These MIMO channels need to be widely distributed similarly to the 

antenna configuration of the MMWCAS-RF-EVM that we are using in this dissertation. This is  
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Table 6.7. Comparison with other groups that address RBSM from SUT for RR/HR estimation 

 

Groups 
# of 

Subjects 
Distances Hardware Software 

Type of 

RM 

Advantage

s 
Limitation 

Reported 

Performan

ces 

This work 2 1 m 

FMCW 

MIMO 

77-81 GHz 

HBT-

CWT-

FFT-

Spectral-

based HR 

Selection 

RBSM 

Reduce 

RBSM, 

Improve 

SNR of 

heartbeat 

signals 

Require 

widely 

distributed 

MIMO in 

front of 

SUT 

Improving 

up to 89% 

of 

accuracy 

Li et al. 

[12] 
1 Up to 2 m 

CW 

Dual 

Front-Back 

Radar 

2.4 GHz  

AD-FFT RBSM 
Cancel 

RBSM 

Require 

dual 

devices in 

front and 

back of 

SUT 

N/A 

Wang et 

al. [44] 
1 1 m 

CW 

Dual 

Front-Back 

Radar 

2.4 GHz 

AD-FFT RBSM 

Cancel 

additional 

motion 

Require 

dual 

devices in 

front and 

back of 

SUT 

97% RM 

Reduction 

Tang et al. 

[45] 
1 1 m 

CW 

Dual Top-

Bottom 

Radar 

2.4 GHz 

AD-FFT RBSM 
Cancel 

RBSM 

Require 

separated 

dual 

devices in 

front of 

SUT 

85% RM 

Reduction 

Rich et al. 

[47] 
1 0.5 m 

CW 

Dual Top-

Bottom 

Radar 

2.4 GHz 

AD-FFT RBSM 
Cancel 

RBSM 

Require 

separated 

dual 

devices in 

front of 

SUT 

N/A 

Rong et al. 

[48] 
1 0.6 m 

UWB 

Dual Left-

Right 

Radar 

7.3 GHz 

AD-FFT + 

HR 

harmonics 

RBSM 
Cancel 

RBSM 

Require 

separated 

dual 

devices in 

front of 

SUT 

Improve 

up to 70% 

Accuracy  

Xiaogang 

et al. [49] 
1 N/A 

CW 

4 Radars at 

4 sides 

AD-FFT RBSM 
Cancel 

RBSM 

Require 4 

separated 

devices in 

front of 

SUT 

N/A 

Changzhan 

et al. [50-

51] 

1 
Up to 1.5 

m 

Camera + 

CW 

Radar @ 

2.4 GHz 

AD-FFT RBSM 
Cancel 

RBSM 

Users 

privacy + 

Sensitive 

to Lighting  

N/A 

Qinyi et al. 

[53] 
1 1 m 

CW 

Radar 

@5.8 GHz 

Matched 

Filter with 

HBT - FFT 

RBSM 

Reduce 

RBSM 

effects and 

Improve 

heartbeat’s 

SNR  

HBT are 

Manually 

extract  

N/A 
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because collocated antennas (with less than a wavelength spacing) usually receive redundant 

information from the scenario and are not useful for this application. Our proposed method also 

takes more time to produce HR estimation compared with other methods used in Chapter 5, as 

each channel needs to extract their own HBTs and applies the same processing chain to obtain a 

list of potential HRs, which will then be passed through the spectral-based HR selection to 

determine final HR values. 

 

6.7 Conclusion 

• This chapter demonstrates that the use of more MIMO generally produces better accuracy 

in HR estimation compared with a single channel radar. Especially when there are 

significant interferences from RBSM of SUTs’ upper bodies. Up to 89% of accuracy 

improvement can be achieved in HR estimation with MIMO configuration and our proposed 

method when the SUTs stand in front of the radar compared with other methods. 

• Spectral-based HR selection method also plays an important role in helping in the 

determination of the final accurate HR as it takes frequency spectrums from multiple MIMO 

channels and analyzes the SNR level from potential HR to determine the most accurate HR 

values of SUTs.  

• Simulated results with synthesized data are first shown to prove the robustness of the proposed 

processing chain in this chapter. After that, two different scenarios with voluntary participants 

are performed and studied. Experimental results show that our proposed processing chain 

produces satisfactory performances for standing SUTs. 

• Further improvements can be made by having a robust Channel Classification method to 

identify the good channels and eliminates the bad ones so that less MIMO channels are needed 
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while increasing the overall accuracy. 
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CHAPTER VII 

DEEP LEARNING TO IMPROVE HEART RATE ESTIMATION  

This chapter discusses the Deep Learning Framework using convolutional neural network 

(CNN) and multilayer perceptron (MLP) neural network that can be used to expedite and improve 

the accuracy of our proposed processing chain in Chapters 5 and 6. As discussed from previous 

chapters, if there exists a method to help select only the channels that carry good information about 

the heartbeat signal and eliminate the others, the overall processing can be reduced significantly 

while also improving the accuracy of HR estimation. Therefore, in this chapter, we propose a 

channel classification framework using a CNN. This CNN will be trained using experimental data 

collected from previous chapters.  

Besides the CNN for MIMO channel classification, another add-on framework is also proposed 

in this chapter where a MLP neural network is used to reconstruct the heartbeat signals when they 

are interfered by RBSM or respiratory harmonics. It will be shown in this chapter that these 

modules are shown to be useful in improving the HR estimation accuracy. In this dissertation, 

these deep learning frameworks are considered add-on to the signal processing chain proposed in 

chapters 5 and 6. It should also be noticed that the results from these works are preliminary and 

can be further improved. In the author’s opinion, deep learning techniques are extremely useful in 

HR estimation using radar-based techniques in scenarios where the SUTs are actively moving such 

as walking, running, or exercising. 

 

7.1 Overview and Proposed Framework 

Under the impact of the RBSM, deterministic algorithms may not perform consistently 

especially in HR estimation. Therefore, adaptive learning methods based on artificial intelligence 
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can be useful since they are able to learn the regularities that characterize the radar signals and 

then automatically extract useful information from the learnt features. There have been works in 

literature that employs different machine learning or deep learning techniques for variety of tasks 

such as recovering heartbeat signals embedded in respiratory signals and its harmonics under 

quasi-static scenarios [78] of with body movements involved [79]. Multiple neural networks 

architectures are employed such as cascaded 1D-CNN [78], hybrid CNN-LSTM [79], cascaded 

LSTM [80], multi-layer perceptron [39, 81], adaptive gamma filtering [82], and other hybrid 

architectures [83-89] to deal with heartbeat signals reconstruction with or without interferences 

from body movements. Table 7.1 summarizes the state-of-the-art machine learning/deep learning 

methods in radar-based monitoring of RR/HR along with their reported performances and 

limitations. Interestingly, while all the works listed below proposed the use of complex neural 

networks architecture for heartbeat signals reconstruction, the radar systems used in these works 

are single channel radars. This means that to compensate for lack of collected heartbeat 

information from single channel radar, the authors from listed works below must use more 

complex NN along with an extensive amount of experimental data for training and validating their 

proposed NN.  

In this dissertation, since we have multiple radar channels that are widely distributed, we can 

collect more heartbeat information from the SUTs compared with single-channel radar. 

Furthermore, as we currently consider RBSM, which is simpler than other types of motions such 

as walking, exercising, etc., we propose a supervised learning framework where simpler CNN and 

MLP architectures are used to perform two separate tasks. The first task is channel classification 

to help eliminate the channels that do not carry sufficient heartbeat information for accurate HR 

estimation. This classification process will help decrease the numbers of channels required from 
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Table 7.1. Machine Learning/Deep Learning methods in radar-based monitoring of RR/HR 

Group Radar Config Contributions Methods Limitations Performances 

Chen et al. [78] 

FMCW, 

77GHz, 

Single Channel 

Reconstruct 

ECG from 

Radar Device  

Cascaded 1D-

CNNs 

Only for quasi-

static, lying 

down SUTs  

91% correlation 

between 

reconstructed 

and ground truth  

Chen et al. [79] 

UWB - 7GHz 

FMCW-

24/77GHz, 

Single Channel 

 

Reconstruct 

Heartbeat 

signals under 

ambulant 

conditions 

Self-Supervised 

Contrastive-

Learning and 

Multi-Layer 

Perceptron 

Require 

extensive 

amount of 

experimental 

data for training 

90% correlation 

between 

recovered 

heartbeat signals 

and ground truth 

Gong et al. [80] 

FMCW, 

77 GHz, 

Single Channel 

Detect and 

remove motions 

for RR/HR 

estimation in 

ambulant 

conditions 

Cascaded 

LSTMs 

Improvement is 

needed for 

generalizing 

network 

Average HR 

Error is 4.22 

BPM for 

walking SUTs 

Gu et al. [39] 

CW, 

2.4 GHz, 

Single Channel 

Recover 

Respiratory 

Signal when 

there is RBM 

Multi-Layer 

Perceptron 

Only 

Respiration 

Information is 

extracted 

N/A 

Malesevic et al. 

[81] 

CW, 

24 GHz, 

Single Channel 

Detect 

heartbeats in 

real-time  

Multi-Layer 

Perceptron 

Interferences 

from RBM is 

not considered 

Up to 2% error 

was achieved 

Saluja et al. [82] 

CW, 

5.8 GHz, 

Single Channel 

Recover 

heartbeat 

waveform from 

radar signals 

Adaptive 

Gamma Filter 

Interferences 

from Body 

Motion is not 

considered 

Average error 

was 3.8% for 

estimated HR  

Toda et al. [83] 

FMCW, 

79 GHz, 

Single Channel 

Reconstruct 

ECG from radar 

signals 

CNN 

Network is 

trained and 

tested on semi-

experimental 

data 

86% of 

correlation 

between 

reconstructed 

and ground truth  

Wang et al. [84] 

UWB, 

7 GHz, 

Single Channel 

Reconstruct 

heartbeat 

waveform from 

radar signals 

Convolution 

Sparse Coding 

Interferences 

from Body 

Motion is not 

considered 

Average error 

was 4.5% for 

estimated HR  

Wu et al. [85] 

UWB, 

79 GHz, 

16 Channels 

Reconstruct 

heartbeat 

waveform 

CNN 

Interferences 

from RBM is 

not considered 

Improve 69% of 

accuracy  

Yamamoto et al. 

[86] 

CW, 

24 GHz, 

Single Channel 

Reconstruct 

heartbeat 

waveform 

LSTM 

Interferences 

from RBM is 

not considered 

Average HR 

Error is 3.84 

BPM  

Yamamoto et al. 

[87] 

CW, 24 GHz, 

Single Channel 

Reconstruct 

ECG from radar 

signals 

CNN-LSTM 
Only for lying 

down SUTs 

86% of 

correlation 

between 

reconstructed 

and ground truth  

Yang et al. [88] 

UWB - 7GHz 

FMCW-77GHz, 

Single Channel 

Recover 

heartbeat 

waveform from 

radar signals 

with RBM 

Cascaded CNN 

and LSTM 

Require 3 

separate radar 

devices 

Up to 95% of 

HR estimation 

accuracy for 

moving SUTs 
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Table 7.1. Continued 

Group Radar Config Contributions Methods Limitations Performances 

Ye et al. [89] 

CW, 

24 GHz, 

Single Channel 

Recover 

heartbeat 

waveform from 

radar signals of 

typewriting 

SUT with 

random body 

movements 

LSTM and K-

means algorithm 

Require short 

distances for 

good accuracy 

(30 cm) 

Average HR 

Error is 3.56 

BPM for 

typewriting 

SUTs 

Yin et al. [90] 
UWB, 

Single Channel 

Reconstruct 

ECG from radar 

signals 

Cascaded CNNs 

Only for quasi-

static, sitting 

SUTs 

Up to 91% 

accuracy 

compared with 

ground truth 

ECG 
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processing and as a result reduce the processing time as shown in Chapter 6. 

The second task is reconstruction of heartbeat signal under the interferences of RBSM. It should 

be noticed that the deep learning framework proposed in this chapter is not intended to replace the 

processing chain in Chapter 6 but a support framework to increase the confidence level in 

estimated results from its. Figure 7.1 shows the block diagram of the two deep learning modules 

proposed in this dissertation and how they can be deployed as add-ons to the proposed processing 

chain in Chapter 6. 

 

7.2 MIMO Channel Classification with CNN 

The purpose of channel classification is to determine if a channel is good or bad based on the 

amount of heartbeat information they carry. Since this is a supervised learning procedure, we will 

first label the phase variation of each channel with the help of HBT extraction technique discussed 

in chapters 5 and 6. Next, we calculate the Scalogram of the labeled phase variations using CWT. 

The calculated scalograms are then converted into RGB images. These RGB images are used as 

input to train the proposed CNN so that it can learn high-level characteristics that can be used to 

distinguish between good and bad channels. Once trained, the CNN will be deployed to the 

processing chain so that it can frequently perform the channel classification during the experiment. 

Because during the experiment the SUT might unintentionally adjust their standing/sitting position 

and we do not know when they move, frequently performing the channel classification can help to 

adaptively identify good/bad channels for calibration purposes. The concept of CNN model is 

widely discussed and employed for classification task in different areas such as computer vision 

[91-92], audio [93-94], or communication [95-96], etc. Figure 7.2 shows the working principle of  
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Figure 7.1. Block Diagram of processing chain in Chapter 6 that includes the DL framework 

 

 

Figure 7.2. CNN is performed as Good/Bad channel classifier. 
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the CNN for our proposed channel classification task. 

Generally, a typical deep neural network training procedure includes several main steps [91-96]:  

• Labeling and pre-processing training data to suit with input requirements of CNN architecture. 

• Determine the architecture of the networks such as number convolution layers, pooling layers, 

and type activation function. 

• Train the network with the labeled data and selected network architecture, training options. 

• Once trained, the network can be deployed to the application to predict the labels of unseen 

data and calculate the classification accuracy. 

 

7.2.1 Criteria for Determining Good/Bad Channels 

As discussed earlier, the purpose of the CNN is to help identify if the phase variation from a 

channel carries a good amount information of heartbeat signal because if it does, it will be easier 

to estimate accurate HR from these channels. Thus, there are two output classes for the CNN which 

are Good Channel and Bad Channel as shown in Figure 7.2. To label the phase variation data, 

we first define the criteria of how we, as a human, identify if a phase variation is Good or Bad. 

Because the trained network will follow the criteria designed by human to classify the input, it is 

important that we clearly define the criteria before we design and use the data to train the neural 

network.  

• Good Channel: A channel is considered good, 1) if we can identify the HR from the peak of 

frequency spectrum of its phase variation or, 2) if its phase variation is significantly interfered 

by RBSM, there should exist at least one HBT that can be reduce the impact of the RBSM’s 

interferences. 

• Bad Channel: A channel is considered bad if we cannot identify the HR from the peak of 
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frequency spectrum of its phase variation or there are no HBTs that can be extracted to easily 

identify the HR information. 

Figures 7.3 demonstrates examples of phase variations from channels that are considered good 

based on our discussed criteria. It can be shown in Figure 7.3a and 7.3c that by just looking at the 

phase variations in time domain, it is difficult to identify if the channels are good or bad even with 

human intervention. However, based on the constellation diagram method discussed in Chapters 

5 and 6, we can extract some HBTs that can be used to magnify the heartbeat signals. Figures 7.3b 

and 7.3d show frequency spectrums of the corresponding phase variations as well as the CWT 

coefficient calculated with the extracted HBTs as wavelet. By comparing the peaks of these 

spectrums with HR values from ground truth, we can determine that these phase variations from 

these channels can be considered good. Once we know that these channels are good, we can label 

them as GOOD and move on to next channels. Figure 7.4 shows examples of phase variations 

from channels that are considered BAD. There can be multiple factors that impact the quality of 

the phase variations such as RBSM or the TX-RX pair of that channel just does not get a good 

reading of the heartbeat signals as its beam to the heartbeat region on the upper body of the SUT 

might be limited. Therefore, if we can eliminate these channels prior to the signal processing, we 

can reduce the chance that these bad channels contribute inaccurate HR estimation. As shown in 

Figures 7.4a and 7.4c, the phase variations look similar compared with the ones in Figures 7.3a 

and 7.3c because they still carry the respiratory signals information. However, when looking at 

their frequency spectrum before and after the CWT calculation with several extracted HBTs, we 

still cannot identify the HR accurately. Thus, these channels will be labeled as BAD for the 

classification process. 
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Figure 7.3. Examples of two channels that are considered Good channels where a), b) the heartbeat 

spectrum can be clearly identify and c), d) a HBT can be used to magnify the heartbeat spectrum. 

 

 

 

Figure 7.4. Examples of two channels that are considered Bad channels where a), b), c), d) the 

heartbeat spectrum cannot be clearly identify even if HBT is used. 
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7.2.2 Data Labeling for Phase Variation Data 

After figuring out the criteria mentioned above that we use to determine if a channel is 

considered Good/Bad, we next discuss the labeling and pre-processing techniques to prepare the 

data to train the CNN. It should be noticed that the labeling step is done manually by human. We 

must look at each channel’s phase variation, find and extract any valid HBTs, then calculate 

frequency spectrums of its phase variation and CWT coefficient with the extracted HBTs. This 

way we can be certain that the channel is accurately labeled so that the CNN can learn to optimally 

classify the channel from the training data. This is like the classic image classification of dogs and 

cats’ images where the human must first go through images to create label of dog/cat before the 

training process. To generalize the classification capability of the trained CNN, data sets from 

different subjects can be used so that the CNN is able to classify channels’ data collected from 

different subjects. 

To make it easier and faster for the labeling process, a simple interface in MATLAB was built 

for this task. This interface allows users to look at the phase variation from each channel and 

manually select the HBT. If a channel is Good, the user will assign letter “G” for that channel and 

store the valid HBT of that channel. If the channel is considered Bad, the user will assign letter 

“B” and move on to the next channel. After the labeling step, we can establish a table that contains 

all the information about the phase variations from each channel, their labels of “G” or “B”, and 

the HBTs if the label is “G”. 

 

7.2.3 CNN Architecture for Channel Classification 

There are various architectures of deep neural network that can perform two-class classification 

problem such CNN [97], LSTM [98] or Temporal Convolutional Network (TCN) [99]. LSTM and 

TCN are trained to identify the high-level characteristics of time-domain signals by leaning the 
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individual time step of the signals. A CNN typically takes in an input image, assigns learnable 

weights and biases to various aspects/objects in the image and be able to differentiate one from the 

other. To perform MIMO channel classification, as was shown in [100] that simply use of raw 

phase variation as input for LSTM or TCN does not yield the best classification performance as 

the amount information from the time-domain signals is limited. Therefore, feature extraction from 

the data can help improve the training and testing accuracies of the classifier. As a result, extracting 

both time and frequency information from the phase variation should give the classifier more 

information and improve the training accuracy. Thus, the phase variation will be transformed into 

RGB images using CWT to extract its time-frequency information. With RGB images as input, we 

opt for CNN architecture for our classifier. Since this is a two-class classifier, typical CNN 

proposed in [97] can be used. This CNN architecture has been used widely in various classification 

problems in computer visions [91], audio signals [93], and communication [95]. Figure 7.5 shows 

the CNN layers that we want to use for our channel classification problem. The CNN architecture 

consists of several layers (or so-called multi-building blocks). Each layer in the CNN architecture 

is briefly described below.  

• Input Layer: The input layer in a CNN model is organized in three dimensions: height, width, 

and depth. For an RGB image as input, height and width are the dimensions of the image and 

depth is equal to three which are the red, green, blue channels of the images.  

• Convolutional Layer: This is the most significant component of the CNN model. It consists of 

a collection of convolutional filters that are used to convolve with the input images to generate 

the output feature maps. These output feature maps are used to characterize and distinguish 

between different images.  
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Figure 7.5. Layers of CNN for Channel Classification 
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• Pooling Layer: Since the feature maps from the convolutional layers have large size, pooling 

layers are usually used next to them to sub-sample the feature maps. In other words, the pooling 

layers shrinks large-size feature maps to create smaller feature maps. As a result, the overall 

trainable weights can be reduced. 

• Dropout Layer: For CNN model, over-fitting is an issue associated with achieving well-

behaved generalization. The model is over-fitted when the model executes especially well on 

training data but does not perform well on unseen data. Dropout is a widely used regularization 

method that reduces overfitting of the training dataset and makes the model more robust. This 

is done during training, where random number of layer outputs are dropped out. As a result, 

the layers have different number of nodes and connectivity to the prior layers during training. 

By contrast, the full-scale network is utilized to perform prediction during the testing process 

and reduces the chance of over-fitting in the trained network. 

• Flatten Layer: This layer reshapes the input data into one-dimension matrix to prepare the 

connection to Fully Connected Layer. 

• Fully Connected Layer: This layer is typically located at the end of each CNN model. Inside 

this layer, each neuron is connected to all neurons of the previous layer. It is utilized as the 

CNN classifier.  

 

7.2.4 Create Images for Input Layer of CNN 

As discussed above, the input layer to CNN requires RGB images. In this dissertation, we will 

extract the time-frequency features from the phase variations. There are various ways to do this 

such as calculating spectrogram using Short Time Fourier Transform (STFT) or scalogram using 

CWT. As CWT offers more time-resolution compared with STFT, we opt for using CWT to extract 
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time-frequency features of the phase variations. Figure 7.6 shows the examples of the RGB images 

which show the scalograms of the phase variation from a good channel and a bad channel. From 

Figure 7.6, we can see that while it is difficult to tell the difference between them, the CNN will 

extract features from these images and learn a way to distinguish them. 

 

7.3 Performances of CNN for Channel Classification 

7.3.1 Evaluation Metrics  

The evaluation metrics is utilized to measure the efficiency of the classifier within the model 

testing stage using unseen data. Let True Positive (TP) and True Negative (TN) are number of 

positive and negative instances, which are successfully classified. False Positive (FP) and False 

Negative (FN) are number of misclassified positive and negative instances. Below we show the 

metrics that are widely used to assess the performance of classifier [101]. 

• Accuracy: Calculates the ratio of correct predicted classes to the total number of samples 

evaluated. 

                                                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                 (7.1) 

• Precision: Calculate the positive patterns that are correctly predicted by all predicted patterns 

in a positive class. 

                                                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                            (7.2) 

 

• Recall: Calculate the fraction of positive patterns that are correctly classified. 

                                                                   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                               (7.3) 
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Figure 7.6. Examples of Scalogram for the phase variations from a) Good Channel and b) Bad 

Channel 
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• F1-Score: Calculate the harmonics average between recall and precision rates. 

                                                      𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                               (7.4) 

  

7.3.2 Channel Classification with Experimental Data  

To show the robustness of the proposed CNN architecture, we use the collected data discussed 

in Chapter 5 where the SUTs sit in quasi-static positions. The experimental data from quasi-static 

SUTs help us evaluate the overall performance of the CNN. In total, about 35 minutes of 

experimental data from 10 participants are used for training. In other words, an overall 5040 data 

sets of 20-second time sequences from 48 channels are used for training. Meanwhile, 15 minutes 

of experimental data are separated for testing which corresponding to 2160 data sets of 20-second 

time sequences from 48 channels. The percentage between good channels and bad channels are 

50% - 50% to avoid biasing from the trained CNN. 

Table 7.2 discusses parameters used for training the CNN for channel classification task. These 

are typical settings for a two-class classifier with CNN [101]. We implement the network by using 

the Tensor Flow – Keras library and use the Stochastic Gradient Descent (SGD) optimizer to 

minimize the loss function and to update the network parameters iteratively. Figure 7.7 shows the 

training curve of the CNN of channel classification task with the training data sets that are collected 

from quasi-static, sitting SUTs from Chapter 5. In Figure 7.7, the blue line shows the performance 

to validate our model performance during training. This validation process gives information that 

helps us tune the model’s hyperparameters and configurations accordingly. It is like a critic that 

helps keep track of the training procedure and tells us if the training is going in the right direction 

or not. From Figure 7.7a, we see that around epoch 16, the model starts over-fitting because even 

when training loss keeps decreasing, the validating loss starts saturating. This means that the model  
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Table 7.2. Hyper Parameters used for Training the CNN 

Optimizer Stochastic Gradient Descent (SGD) 

Learning Rate 0.001 

Momentum 0.9 

Mini Batch Size 16 

Number of Epochs 20 

 

 

 

Figure 7.7. a) Training and Validation Cross-Entropy Loss, b) Classification Accuracy for 

Training and Validation 
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will end up memorizing the training data patterns and will fail to generalize and perform well in 

the case of unseen data. Therefore, it is a good idea to terminate the training around epoch 16 or 

17 to stop the over-fitting. Figure 7.7b shows the classification accuracy of the training and 

validation data. We can also see the over-fitting issue around epoch 16 which suggests we should 

terminate the training around epoch 16 or 17. 

Table 7.3 shows the evaluation metrics discussed in equations (7.1) – (7.4) to better quantify the 

testing performance of our trained classifier. The accuracy of the classifier is 80% which means 

that on average, there are 80% of correct classification to the total number of predictions. Other 

metric calculated here is precision of 89% which means that up to 89% of Good Channels are 

correctly classified among all samples classified as Good Channels (correctly of incorrectly). This 

means that among all channels that are classified as Good, 89% of them are Good Channels and 

11% are not. This means that our classifier can classify the Good Channel accurately. Other metrics 

are the recall of 75% which shows the classifier’s ability to detect the Good Channel and 𝐹1𝑠𝑐𝑜𝑟𝑒 

of 81% which shows the balance of the classifier in equally being able to classify both Good/Bad 

Channel. Finally, Figure 7.8 shows the confusion matrix which is the summary of classification 

results from our trained CNN based on the testing (unseen data). We can see that our trained CNN 

did a good job in correctly classifying Good and Bad channels from the testing data set. 

 

7.4 Heartbeat Signal Reconstruction Using Multiple-Layer Perceptron 

As shown in Figure 6.1, another deep learning framework that we are interested in is the use of 

a multilayer perceptron (MLP) neural network to help denoise the phase variation signals and only 

reconstruct the heartbeat waveforms. This approach has been proposed in [39] for recovering the 

respiratory signals under the interference of the body motions or in [81] where heartbeat signals 
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Table 7.3. Testing Performance from the trained CNN  

Accuracy 80 % 

Precision 89 % 

Recall 75 % 

𝐹1𝑠𝑐𝑜𝑟𝑒 81 % 

 

 

           

Figure 7.8. Confusion Matrix of the classification result. 
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are reconstructed from the captured radar signals. In this dissertation, we want to extend the 

approach in [39] so that we can extract the heartbeat waveform when there are interferences from 

RBSM. Thus, when looking at the phase variations, only heartbeat signals are of interests while 

the others such as respiratory signals, random body movements are considered noises. Therefore, 

we aim to remove noises from the heartbeat signals to enhance the accuracy of HR estimation. 

This is a regression problem where the neural network will learn the relationship between a noisy 

signal and a corresponding clean signal so that it can predict the clean version of a new signal 

when it sees a noisy one [39].  

Figures 7.9 and 7.10 summarizes the working principle of our proposed framework for denoising 

the heartbeat signal with neural networks. To train the deep neural network for a regression task, 

it typically requires two sets of input, the first set is the noisy signal (predictor) that we are trying 

to denoise, and the second set is the clean version of that noisy signal (target). A feature extraction 

technique such as STFT or CWT can be used to extract time-frequency information from the 

signals so that it is easier for the neural network to learn from. These input sets will be fed into the 

neural network so that it can learn the relationship between the predictors and targets. This is done 

by using the predictor input to minimize the mean squared error between its output and the input 

target. After the training process, the trained neural network can be used to denoise unseen phase 

variation to reconstruct the heartbeat waveform as shown in Figure 7.10. For example, if a time-

frequency image from unseen phase variation is inputted to trained network, it will be able to 

output/predict a denoised time-frequency image. The denoised heartbeat signal is converted back 

to the time domain using inverse operation of the feature extraction techniques (ISTFT or ICWT). 

Next, we will discuss steps for our heartbeat waveform reconstruction framework using the MLP:  

• Pre-processing predictor and target data to suit with input requirements of MLP architecture. 
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Figure 7.9. Training principle of the deep learning framework for denoising heartbeat signal. 

  

 

 

Figure 7.10. Testing/Deploying principle of the deep learning framework for denoising heartbeat 

signal. 
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• Determine the architecture of the networks such as number of hidden layers and type of 

activation function. 

• Specify training options such as which solver to use, number of mini batch size, number of 

epochs, etc.  

• Train the network with the predictor/target data and selected network architecture, training 

options. Depends on hardware availability and the size of input data, the training procedure 

can be expedited if GPU platform are used. 

• Once trained, the network can be deployed to the application to predict the denoised heartbeat 

signals. 

 

7.4.1 Pre-processing of Predictor/Target Data 

The first step is to prepare the predictor and target data for training the MLP. It should be noticed 

that we have already eliminated bad channels from the CNN discussed in previous section. Thus, 

we only take input from the classified good channels. From the labeling step in the Channel 

Classification task with CNN, we already have information about the phase variations (predictor) 

and the CWT coefficients calculated from the stored HBTs which can be used as the clean version 

of the phase variations (target). While the ground truth signal from contact Pulse Sensor can also 

be used as target signal, it requires precise synchronization between radar device and contact pulse 

sensor. Figure 7.11 shows an example of the predictor and target signals obtained from the selected 

HBT along with their frequency spectrums. It can be observed that the phase variation (predictor) 

has several interferences (noises) while the corresponding signal from CWT coefficient only 

carries heartbeat information (target). Thus, we expect the deep neural network to learn the 

relationship between the predictor and the target so that it can reduce the impact from interferences  
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Figure 7.11. Examples for data used for training the MLP-NN, a), c) Phase variation for predictor 

and the selected HBTs used to calculate the CWT coefficient to find target signal, b), d) Frequency 

spectrum of the predictor and target compared the ground truth. 
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and improve the SNR of heartbeat signal. This way, when combined with the processing chain in 

Chapter 6, we can increase the confidence level of the HR estimation. 

 

7.4.2 MLP Architecture for Regression Task 

There are various architectures of deep neural network that can perform this type of regression 

task. However, we decide to adopt the classic MLP neural network as it is straightforward and 

easier to understand [39]. As shown in Figures 7.9 and 7.10, feature extraction from the data can 

help improve the training and testing accuracies of the MLP. Thus, both the predictor and target 

will be transformed into RGB images using CWT to extract its time-frequency information. These 

transformed images of the predictor and target will be fed to the input layer of the MLP model. 

Figure 7.12 shows the MLP layers that we want to use for our regression task. The MLP 

architecture consists of several layers (or so-called multi-building blocks). 

 

7.4.3 Create Images for Input Layer of MLP-NN 

This step is discussed in Section 6.2.4 where CWT is used to extract time-frequency features of 

the predictor and target signals. Figure 7.13 shows an example RGB images from predictor and 

target signals. 

 

7.5 Performances of MLP for Reconstruction of Heartbeat Waveform 

7.5.1 Regression Performance with Synthesized Data  

To first validate the efficiency of our proposed MLP architecture for the regression task, we try 

to train the network with synthesized data using simulated models of chest displacement from 

respiratory signals, heartbeat signals and interferences from RBSM as discussed in Chapter 4. The  
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Figure 7.12. Layers of MLP for Regression Task 

 

 

Figure 7.13. Examples of Scalogram from a) predictor and b) target signals 

 

 



 182 

neural network in this case is expected to predict the original HR that is disrupted by the harmonic 

components of respiratory signal as well as interferences from RBSM. To train the network with 

the synthesized data, we create 1500 sets of 20-second data with random values of parameters for 

simulated that will be listed in Table 7.4.  

Table 7.5 discusses parameters used for training the MLP-NN for regression task. These are 

typical settings for a regression network with MLP [39]. We implement the network by using the 

Tensor Flow – Keras library and use the Adam optimizer to minimize the loss function and to 

update the network parameters iteratively.  

Figure 7.14 shows the training loss and validating lost when training with the synthesized data. 

To test the trained network, we show the predicted 𝐻𝑅 results from 100 test signals of 20-second 

phase variation with random simulated parameters shown in Table 7.4. Figure 7.15a shows the 

average error over 100 test signals in BPM is 3.7 and Figure 7.15b shows the fitted line between 

predicted HR from MLP-NN with the true HR. This confirms that our proposed MLP-NN works 

well for simple synthesized data. 

 

7.5.2 Regression Performance with Experimental Data 

Next, we validate the proposed MLP architecture using the collected data discussed in Chapter 

5 where the SUTs sit in quasi-static positions. The experimental data from quasi-static SUT helps 

us evaluate the overall performance of the MLP. In total, about 35 minutes of experimental data 

from 10 participants are used for training and 15 minutes are used for testing. An overall 5000 data 

sets of 20-second time sequences from 48 channels are used for training. Figure 7.16 shows the 

training loss and validating lost when training with the synthesized data. To test the trained network 

with experimental data, we use 15-minute unseen experimental data to try to predict HR results 

for 20-second phase variation signals. Figure 7.17a shows the average error from 15-minute test  



 183 

Table 7.4. Simulated Parameters used for Synthesizing Training Data for the MLP-NN 

Respiratory Rate (RR) 8 – 20 BRPM 

Chest displacement due to Respiration (𝐴𝑅𝑅) 1 – 12 mm 

Ratio of Inhalation and Exhalation Period (𝑇𝑟𝑎𝑡𝑖𝑜) 0.3 – 0.5 s 

Decay rate of exhalation period (𝜏𝑅𝑅) 0.1 – 0.3 s 

Heart Rate (HR) 50 – 100 BPM 

Chest displacement due to Heartbeat (𝐴𝐻𝑅) 0.1 – 0.5 mm 

Number of Interferences from RBSM 0 – 3  

Magnitude of Interferences from RBSM (𝐴𝑅𝐵𝑆𝑀) 5 – 12 mm 

Duration of Interferences from RBSM (𝑇𝑅𝐵𝑆𝑀) 1 – 4 mm 

Time Delay between RBSM (𝑡𝑑𝑅𝐵𝑆𝑀) 2 – 10 mm 

 

 

Table 7.5. Hyper Parameters used for Training the MLP 

Optimizer Adam 

Learning Rate 0.001 

Momentum 0.9 

Mini Batch Size 16 

Number of Epochs 20 
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Figure 7.14. Training and Validation Cross-Entropy Loss 

 

 

 

Figure 7.15. a) Predicted HR from MLP-NN compared with True HR, b) Plot of Predicted HR vs 

True HR and fitted line with 80% match. 
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Figure 7.16. Training and Validation Cross-Entropy Loss 

 

 

 

Figure 7.17. a) Predicted HR from MLP-NN compared with True HR, b) Plot of Predicted HR vs 

True HR and fitted line with 88% match. 
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signals in BPM are 3.7 and Figure 7.17b shows the fitted line between predicted HR from MLP-

NN with the true HR. This confirms that our proposed MLP-NN works well for simple synthesized 

data. 

 

7.6 Discussion 

To assess the performance of our proposed MLP-NN for reconstructing the heartbeat signals in 

quasi-static scenarios, we show a comparison between our work with other research groups that 

report similar machine learning/deep learning frameworks for recovering heartbeat signals when 

there are minimal interferences from random body motions. Table 7.6 lists the comparisons 

between radar configurations, methods, amount of data needed for training and reported 

performances between different research groups and ours. Here, we show that our proposed 

framework achieves comparable accuracy in reconstruction of heartbeat signals while requires 

significantly less amount of data sets required form training the MLP. Therefore, we can show the 

advantages of using MIMO configurations and our HBT extraction method for reconstruction of 

heartbeat signals using artificial intelligence. Since most results from other groups are reported 

using the average relative error (ARE) in percentage, we also calculate this as [86]: 

 

                                             𝐴𝑅𝐸 = 𝑚𝑒𝑎𝑛 (
|𝐻𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐻𝑅𝑡𝑟𝑢𝑒|

𝐻𝑅𝑡𝑟𝑢𝑒
)                                             (7.5) 

 

7.7 Conclusion 

• This chapter discusses the Deep Learning Framework using convolutional neural network 

(CNN) and multilayer perceptron (MLP) neural network that can be used to expedite and 

improve the accuracy of our proposed processing chain in Chapters 5 and 6. 
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Table 7.6. Comparison between our proposed MLP-NN with other research groups 

Group 
Radar 

Config 

Contributio

ns 
Methods 

Data 

required 

for training 

Data for 

Testing 
ARE 

This work 

FMCW, 

77 GHz. 

Up to 192 

Channels 

Recover 

heartbeat 

waveform 

from radar 

signals 

Multi-

Layer 

Perceptron 

35 minutes 15 minutes 

4.8% 

compared 

with 

ground 

truth 

Malesevic 

et al. [81] 

CW, 

24 GHz, 

Single 

Channel 

Detect 

heartbeats 

in real-time  

Multi-

Layer 

Perceptron 

70 minutes 35 minutes 

Up to 2% 

compared 

with 

ground 

truth 

Saluja et 

al. [82] 

CW, 

5.8 GHz, 

Single 

Channel 

Recover 

heartbeat 

waveform 

from radar 

signals 

Adaptive 

Gamma 

Filter 

250 

minutes 

250 

minutes 

3.8% 

compared 

with 

ground 

truth 

Yamamoto 

et al. [86] 

CW, 

24 GHz, 

Single 

Channel 

Reconstruc

t heartbeat 

waveform 

LSTM 

32 minutes 

+  

800 

minutes of 

augmented 

data 

51 minutes 

4% 

compared 

with 

ground 

truth 
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• The trained CNN can classify good/bad channels with accuracy of 80% which means that on 

average, there are 80% of correct classification to the total number of predictions. This is 

satisfactory for our application as if 80% of bad channels are correctly classified and eliminated 

prior to processing, we can save more computational time as well as reduce the contribution 

from these bad channels to the HR estimation results.  

• The proposed MLP neural network for reconstructing the heartbeat signals also works as 

expected. We first use synthesized data to train the proposed MLP neural network to show that 

even with interferences from respiratory harmonics and RBSM, the trained MLP network is 

still able to reconstruct the heartbeat signal and estimate the HR. Next, experimental data are 

used to train the same MLP neural network. Experimental results show a mean error of 3.8 

BPM from predicted HR from the trained MLP network compared with the ground truth and a 

88% match between predicted HR and true HR. 

• Results from this chapter are preliminary and show the potential of using deep learning 

frameworks for improving accuracy of HR estimation using radar-based techniques. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

This chapter discusses the contribution, concluding remarks of this dissertation as well as 

potential future work to further improve the proposed approach for monitoring RR/HR with radar-

based techniques especially with the interferences from RBSM.  

 

8.1 Summary of Results 

It was shown that the MMWCAS-RF-EVM radar device used in this work could accurately 

detect human RR and HR. However, while the respiratory rate can be accurately estimated with 

band-pass filtering and Fourier Transform, significant work still needs to be done to improve the 

accuracy of HR estimation under the impact of random body-swaying motion. Respiratory 

harmonics and random body-swaying motion can negatively affect the estimation accuracy of 

heart rate and they need to be suppressed. From this dissertation, we propose an automatic 

heartbeat template extraction technique to identify the signals’ portion that carry sufficient amount 

of heartbeat signals. These heartbeat templates are then used as adapted wavelet for CWT 

calculations to reduce the interferences from respiratory harmonics and random body-swaying 

motion while magnifying the magnitude level of heartbeat signals.  

Under quasi-static scenarios where there is a minimal amount of random body-swaying motion, 

presences from respiratory harmonics are the main factor that can plague the estimation accuracy. 

Under quasi-static scenarios, we can first use MRC technique to combine the phase variation from 

different MIMO channels to reduce the total processing time. Then the combined phase variation 

from MRC will be used with the extracted HBT to magnify the heartbeat signal by calculating its 
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CWT using the HBTs as adapted wavelets. The HR can then be determined by finding the highest 

peak within the frequency spectrum of the calculated CWT coefficients. 

In scenarios where the SUTs are standing in front of the radar, the effect of RBSM becomes 

more significant and the HR cannot be determined by simply finding the highest peak within the 

frequency spectrum of the calculated CWT coefficients. This is because the RBSM is relatively 

large in magnitude and its spectrum can occupy the highest peak within the frequency spectrum. 

Therefore, the processing chain was modified to further address the interferences from RBSM. For 

scenarios where SUTs are standing, MRC is dropped and a spectral-based HR selection technique 

is added so that it helps to search and determine the accurate HR value even if the spectral 

components at correct HR are not highest peak within the frequency spectrum. This is done based 

on the fact that the power spectral densities of heartbeat signals generally increase after the CWT 

calculation using HBTs as adapted wavelets. Therefore, by using different MIMO channels to 

search for HR values that tend to increase its power spectral density values after CWT calculation, 

the spectral-based HR selection technique can help to find the accurate HR value. 

To improve the accuracy of HR estimation, we also investigate different applications of deep 

learning frameworks. In this dissertation, two deep learning architectures have been studied for 

two different tasks: MIMO Channel Classification and HR Prediction. The first deep learning 

architecture is CNN where we try to train the CNN to learn time-frequency characteristics that 

associate with Good/Bad Channels from the scalograms images calculated from the CWT. With 

the CNN trained using experimental data, the classification accuracy of 80% is achieved. This 

means the trained CNN can correctly classify if a channel is good or bad with 80% accuracy. The 

second task is HR prediction which is performed by training the MLP-NN to also learn the time-

frequency characteristics of phase variation signals through scalograms calculated using CWT. 
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The trained MLP-NN is then able to predict HR from unseen phase variation data for up to 88% 

match. 

 

8.2 Contribution 

The contributions of this dissertation include: 

• The MMWCAS-RF-EVM offers the use of a compact, portable, widely distributed MIMO 

radar system operating at 77-81 GHz to improve the respiratory/heart rate estimation results. 

We show that by using more widely distributed MIMO channels, better estimation accuracy 

especially for heart rate can be achieved compared with single channel systems especially in 

scenarios where there are pronounced random body-swaying motion that interfere with the 

respiratory and heartbeat signals. The exploration of this device on monitoring vital sign of 

human subjects have not been widely published in the literature and this dissertation is one of 

the first work that investigate the use of this device. 

• We propose a novel automatic heartbeat template extraction method based on constellation 

diagram of the received radar signal to adaptively identify the corrupted signal portions due to 

random swaying body motion and extract the templates that contain heartbeat signal to magnify 

its magnitude. The idea of using heartbeat template and matched filtering for magnifying 

heartbeat signals is not novel. However, the works in the literature require human intervention 

to extract a heartbeat template which are certainly not practical for real-time operation while 

our method is completely automatic and does not require human intervention.  

• We develop a spectral-based heart rate selection to adaptively search for accurate heart rate 

based on the spectral characteristics of the wavelet transformed signal to address the interfered 

random body-swaying motion. Under the strong impact from the random body-swaying 

motion, the power spectral density of the heartbeat signals can be concealed by the 
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interferences given that simply picking the highest peak within the frequency spectrum do not 

guarantee accurate heart rate estimation. While most of the work using MIMO in the literature 

are not fully taking use of the spatial diversity of the system, our developed spectral-based 

heart rate selection can be implemented in different widely distributed MIMO devices to 

improve accuracy of the heart rate estimation. 

• Develop and analyze a convolutional neural network (CNN) for channel classification in which 

channels with low signal-to-noise ratio of heartbeat signals are identified and excluded from 

the estimating procedure to reduce the error of HR detection. Currently in the literature, deep 

learning frameworks are mostly applied for single-channel radar which results in the 

requirement for large amount of data sets for certain tasks. With the advantages of having more 

information from different radar channels, we are among the first research groups that steers 

the effort of using deep learning for simpler tasks such as channel classification where there is 

no need for extensive amounts of data while still improving heart rate estimation’s accuracy. 

• We also utilize a multi-layer perceptron neural network to reconstruct the heartbeat signals and 

predict heart rates from subjects under test. While there have been works in the literature that 

use neural network for heartbeat signals’ reconstruction, most of them use single-channel radar 

which eventually require an extensive amount of data for reconstructing the heartbeat signals, 

especially under scenarios with moving subjects under test. Our proposed framework addresses 

the challenge that extensive amount of radar data collected from different subjects do not 

currently exist, hence by using more information from different MIMO channels and extracted 

information about our heartbeat template extraction method, we reduce the amount of training 

data needed while still achieving satisfactory performance for heartbeat signals reconstruction. 
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8.3 Future Work 

Additional work which would be complementary to the work presented here includes: 

• Digital beamforming on the receive end so that we can monitor the respiratory rate and heart 

rate of multiple subjects at the same ranges, which was not done in this work.  

• Development of a real-time operating system using this radar device or radar devices with 

similar antenna configuration so that it can be deployed in multiple places. 

• Analysis on the efficiency of CNN for Channel Classification on how it can really help to 

expedite the overall procedure of estimating HR. While the CNN can help to reduce the number 

of required channels while maintaining the estimation accuracy, current implementation of 

preparing the RGB images from phase variation signals to perform classification still requires 

significant amount of processing time. Therefore, timing analysis and how frequent the trained 

CNN should be used during the experiment to minimize the overall processing time are 

necessary, which has not been done in this dissertation.   

• Furthermore, research on more complex deep learning frameworks is also required to further 

improve the accuracy of our classification and prediction task. This will be beneficial for 

scenarios when SUTs are actively moving during the experiment. 
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