
COGNITIVE RADIO PERFORMANCE OPTIMISATION THROUGH SPECTRUM

AVAILABILITY PREDICTION

by

Simon Daniel Barnes

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

March 2012

 
 
 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



SUMMARY

COGNITIVE RADIO PERFORMANCE OPTIMISATION THROUGH SPECTRUM

AVAILABILITY PREDICTION

by

Simon Daniel Barnes

Supervisor(s): Prof. B.T.J. Maharaj

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: Channel switching, cognitive radio, occupancy modelling, oppor-

tunistic spectrum allocation, prediction accuracy, secondary user

performance, spectrum measurements, spectrum sensing, traffic

density, training algorithm complexity

The federal communications commission (FCC) has predicted that, under the current regu-

latory environment, a spectrum shortage may be faced in the near future. This impending

spectrum shortage is in part due to a rapidly increasing demand for wireless services and in

part due to inefficient usage of currently licensed bands. A new paradigm pertaining to wire-

less spectrum allocation, known as cognitive radio (CR), has been proposed as a potential

solution to this problem.

This dissertation seeks to contribute to research in the field of CR through an investigation

into the effect that a primary user (PU) channel occupancy model will have on the perform-

ance of a secondary user (SU) in a CR network. The model assumes that PU channel occu-

pancy can be described as a binary process and a two state Hidden Markov Model (HMM)

was thus chosen for this investigation. Traditional algorithms for training the model were

compared with certain evolutionary-based training algorithms in terms of their resulting pre-

diction accuracy and computational complexity. The performance of this model is important

 
 
 



since it provides SUs with a basis for channel switching and future channel allocations.

A CR simulation platform was developed and the results gained illustrated the effect that

the model had on channel switching and the subsequently achievable performance of a SU

operating within a CR network. Performance with regard to achievable SU data throughput,

PU disruption rate and SU power consumption, were examined for both theoretical test data

as well as data obtained from real world spectrum measurements (taken in Pretoria, South

Africa). The results show that a trade-off exists between the achievable SU throughput and

the average PU disruption rate. Significant SU performance improvements were observed

when prediction modelling was employed and it was found that the performance and com-

plexity of the model were influenced by the algorithm employed to train it. SU performance

was also affected by the length of the quick sensing interval employed. Results obtained

from measured occupancy data were comparable with those obtained from theoretical occu-

pancy data with an average percentage similarity score of 96% for prediction accuracy (using

the Viterbi training algorithm), 90% for SU throughput, 83% for SU power consumption and

71% for PU disruption rate.

 
 
 



OPSOMMING
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SPEKTRUMBESKIKBAARHEIDVOORSPELLING
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Simon Daniel Barnes
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Sleutelwoorde: Besetting modellering, kanaal skakel, kognitiewe radio, oplei-

dingalgoritmekompleksiteit, opportunistiese spektrum toeken-

ning, sekondêre gebruiker prestasie, spektrummetings, spek-

trumopgelet, verkeerdigtheid, voorspellingakkuraatheid

Die Federale Kommunikasie Kommissie (FKK) het voorspel dat ’n spektrum-tekort in die

nabye toekoms, onder die huidige regulatoriese omgewing, ondervind kan word. Hierdie

dreigende spektrum-tekort is gedeeltelik as gevolg van die vinnig groei van aanvraag na

draadlose dienste en van ondoeltreffende gebruik van die huidige gelisensieerde spektrum.

’n Nuwe paradigma met betrekking tot draadlose spektrumtoekenning, wat bekend staan as

kognitiewe radio (KR), is voorgestel as ’n moontlike oplossing vir hierdie probleem.

Die doel van hierdie verhandeling is om navorsing op die gebied van KR te doen. Die

navorsing sal bydra deur ’n ondersoek in te stel op die effek van ’n primêre gebruiker (PG)

kanaalbesettingsmodel op die prestasie van ’n sekondêre gebruiker (SG) in ’n KR-netwerk.

Die model is gebaseer op die aanname dat die PG-kanaalbesetting as ’n binêre proses beskryf

kan word en ’n twee-toestand Verborge Markov-model (VMM) is dus vir hierdie ondersoek

gekies. Tradisionele algoritmes vir die afrigting van die model is met sekere evolusionêre-

gebaseerde opleidingalgoritmes in terme van hulle voorspelling van akkuraatheid en bere-

 
 
 



keningkompleksiteit vergelyk. Die prestasie van die model is belangrik omdat dit SGs ’n

basis bied vir kanaalskakeling en toekomstige kanaaltoekennings.

’n Basis vir KR-simulasies is ontwikkel en die effek wat dié model op die kanaalskakeling

het sowel as die bereikbare prestasie van ’n SG binne ’n KR-netwerk is deur die re-

sultate geïllustreer. Prestasie met betrekking tot die haalbare deurvoer van SG data, PG-

ontwrigtingkoers en die SG-kragverbruik, is vir beide teoretiese toetsdata asook die data wat

verkry is deur werklike spektrummetings (geneem in Pretoria, Suid-Afrika) word geïllust-

reer. Die resultate wys dat daar ’n duidelike verband bestaan tussen die haalbare SG-deurset

en die gemiddelde PU-ontwrigtingkoers. ’n Beduidende SG-prestasieverbetering is waargen-

eem wanneer voorspellingsmodellering gebruik word en dit is gevind dat die prestasie en

kompleksiteit van die model beïnvloed word deur die algoritme wat gebruik word om dit

op te lei. SG-prestasie word ook deur die lengte van die vinnige afmeting in tyd beïnvloed.

Uitslae wat verkry is op grond van gemete besettingsdata is vergelykbaar met dié wat met

teoretiese besettingsdata verkry is, met ’n gemiddelde gelykvormigheidstelling van 95% vir

die voorspellingakkuraatheid, 90% vir die SG-deurset, 83% vir die SG-kragverbruik en 71%

vir die PG-ontwrigtingskoers.

 
 
 



I dedicate this work to the Alpha and the Omega, the First and the Last, the Beginning

and the End.
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CHAPTER 1

RESEARCH OVERVIEW

1.1 INTRODUCTION

The past couple of decades have seen an ever-increasing number people relying on the

internet for both work and entertainment. This global trend, together with a continual growth

in demand for mobile voice and data services, has revolutionised the way in which many

people go about their daily lives, and continues to present communications engineers with a

number of fresh challenges [1]. The information and communications industry has become

a prominent member of the global economy, even reaching and significantly impacting upon

many of the smaller and more remote regions around the globe. Meeting the demands of

providing greater user capacity while still maintaining a healthy level of service quality,

is one of the challenges that wireless network planners are continually faced with. The

problem of meeting capacity requirements is further complicated by another, yet related,

challenge that may become increasingly prominent in future wireless networks: the issue

surrounding the availability of useful radio spectrum.

The federal communications commission (FCC) of the United States of America has

predicted a rapidly increasing demand for mobile data services, illustrated in Figure 1.1,

that may even exceed traditional network capacity in the near future [2]. Since regulators

have already allocated most of the useful radio spectrum, finding vacant bands to support

further growth for wireless technologies is becoming more of a challenge [3]. However, the
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Figure 1.1: Mobile traffic growth and spectrum utilisation predictions according to the FCC,

adapted from [2].

FCC has reported that although capacity appears to be running out, many licensed frequency

bands are in actual fact underutilised [4]. Legacy regulation in the form of fixed spectrum

assignment policy is a significant contributing factor in their observations, since the problem

surrounding spectrum availability has more to do with the potential to gain spectrum access

rather than simply a physical spectrum shortage [5, 6].

Radio spectrum is a finite natural resource, much like land, that needs to be effi-

ciently managed so as to ensure capacity for the continued growth of wireless and other

communication technologies. The way in which land becomes scarcer as urban areas
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Chapter 1 Research overview

become more densely populated, is readily compared to the decrease in availability of

useful radio spectrum with an increase in the number of wireless devices vying for usage

of similar frequency bands. Given this relationship, and that operation within certain

frequency bands is of greater usefulness for mobile wireless communication than others,

the need to develop ways in which to make more efficient usage of the radio frequency

spectrum is becoming increasingly relevant. Improving on spectral efficiency, would

help to increase the overall capacity of wireless communication networks. Quantitative

and qualitative benefits of such activities may be experienced both by network users and

service providers alike. Service providers may potentially benefit from increased reven-

ues, since a larger number of users would be serviceable at one time, while network users

may benefit from improved network capacity and in the long run potentially lower data costs.

To this end, the concept of cognitive radio (CR) has been proposed as a means to

greater spectral efficiency in future wireless networks. The concept of CR was first presen-

ted in 1999 in a paper by Joseph Mitola [7] where an outline for a more flexible approach

to wireless communications, based on software defined radios (SDR) [8], was discussed.

A CR is an intelligent communications system that makes decisions by being aware of and

understanding its environment. An attempt at addressing the impending spectrum scarcity

problem is made by CR, by allowing unlicensed secondary users (SU) to be dynamically

assigned temporarily available spectrum on an opportunistic basis. This spectrum would

traditionally be reserved for the exclusive use of licensed primary users (PU) who may

not always make efficient usage of this spectrum. A CR seeks to exploit these temporary

spectral opportunities, also referred to in the literature as ’spectrum holes’ [5], and in so

doing improve spectral efficiency by making use of spectrum that may otherwise have

remained unoccupied [5, 6, 7].

1.2 MOTIVATION

Performance in CR networks is inherently affected by the spectrum sensing (SS) and channel

selection process, which has a direct impact on parameters such as the chosen digital mod-

ulation scheme and forward error correction (FEC) coding rate. Incorrect identification of
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spectrum opportunities and furthermore, subsequent suboptimal channel selections, would

result in unnecessary delays, throughput degradation, disruption to PUs and an overall de-

gradation in performance for a CR network. Information gained about PU behaviour during

the SS process, is critical to the prediction of future channel availability, channel selection

and the subsequent allocation of radio resources. Usage of historical PU behaviour has been

shown to improve the SS process [9]. Accurate, proactive predictions of future channel us-

age may improve the channel allocation process, by helping to minimise the probability of

incorrectly detecting spectrum holes, thus actively reducing interference delays and minim-

ising transmission gaps due to sub-optimal channel switching [10]. Since processing and

battery power are limited in mobile devices, too much complexity in the prediction process

may not be desirable. A need for the development of a PU traffic prediction model that will

provide SUs with the necessary basis upon which optimal channel selection may be per-

formed, while maintaining a balance between complexity and accuracy, is thus evident and

compelling.

1.3 OBJECTIVE

The primary objective of this research is to investigate an algorithm that will, in time and

frequency, be able to accurately model and predict the channel occupancy behaviour of PUs

within licensed frequency bands. Based on channel occupancy prediction, this work aims to

contribute to the field of CR by specifically providing a platform from which SU channel

allocation may accurately and intelligently be performed. Although prediction accuracy is

of primary concern, convergence time and computational complexity should not be ignored.

While theoretical simulations are useful for observing initial trends, this research aims to

validate its primary objective by testing the prediction algorithm and approach to channel

allocation on actual PU spectrum occupancy measurements from the mobile cellular bands

in South Africa. SU throughput, the potential for PUs to experience interference and the

effect of the model on SU power consumption are tangible parameters that are used to test

this objective.
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1.4 CONTRIBUTION

The contribution that this research makes to the field of CR is through a comparison,

of existing published techniques, with a new approach to the prediction of PU channel

occupancy. This is achieved by investigating the effect of applying both traditional and

evolutionary algorithms to the training of a hidden Markov model (HMM). This research

aims to improve upon existing channel prediction methods by focusing on providing

better prediction accuracy, quicker solution convergence times and lower computational

complexity, as well as providing a set of results tested upon locally measured spectrum

occupancy data 1.

The channel selection process employed by SUs in a CR network should benefit from

this improved method through an improvement in its ability to correctly and quickly perform

SU channel allocations. This may lead to a reduction in the number of unnecessary channel

switches to be performed. The benefit of which may be seen in an increase in potential SU

data throughput as well as a reduction in the amount of interference experienced by PUs

due to SU activity. This research validates its effect on channel allocation performance

by investigating the effectiveness of combining the channel availability prediction and

allocation processes. Simulated results are verified using practically measured data from

the commercial cellular bands in South Africa. A comparison is also made between

results obtained from theoretical occupancy data and those obtained through practical

measurements.

1.5 OUTLINE OF DISSERTATION

This dissertation has been organised into seven Chapters. In Chapter 2 CR is discussed and

an overview of the current literature surrounding the SS and channel allocation processes is

provided. The first institute of electrical and electronics engineers (IEEE) standard on CR is

1The spectrum occupancy data was collected from a measurement campaign that formed part of a joint

post-graduate student initiative of the Sentech Broadband Wireless and Multimedia Communications research

group at the University of Pretoria.
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also summarised.

PU traffic modelling and prediction are discussed in Chapter 3. The HMM structure

is presented and various training algorithms and their complexities are also investigated.

The process of allocating spectrum to SUs is covered in Chapter 4, where an oppor-

tunistic spectrum access (OSA) simulation platform is presented.

A spectrum measurement campaign was performed to gather input data for the simu-

lation platform. The measurement system and campaign are described in Chapter 5.

The contribution of this work is highlighted through the presentation and discussion,

in Chapter 6, of results obtained from tests run on the simulation platform. These results

encompass the modelling of PU occupancy, the spectrum allocation process and the

subsequently achievable performance of a SU in a CR network. The results obtained

using theoretically simulated channel occupancy are compared to those obtained from data

collected during the measurement campaign.

Finally, the research problem is summarised and conclusions are drawn in Chapter 7.

Recommendations for possible future research relating to this work are also discussed.

1.6 PUBLICATIONS

The following peer reviewed publications have been derived from the work undertaken dur-

ing this research project. These publications pertain to the topics covered in this dissertation

which include: channel occupancy modelling, spectrum allocation, resulting CR network

performance and the spectrum measurements campaign.
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1.6.1 Conference proceedings

The following paper was presented at and published in the peer reviewed proceedings of an

international conference:

1. S.D. Barnes and B.T. Maharaj, “Performance of a Hidden Markov channel occupancy

model for cognitive radio,” Proceedings of IEEE AFRICON Conference, Livingstone,

Zambia, September 2011.

1.6.2 Journal publications

As part of the research activities for this degree, the following articles were submitted to

peer-reviewed and ISI accredited journals:

1. S.D. Barnes and B.T. Maharaj, “Spectrum occupancy prediction and channel allocation

performance for cognitive radio,” IET Communications, submitted for publication.

2. S.D. Barnes, M.J. Prinsloo and B.T. Maharaj, “Investigation into spectrum occupancy

through a South African measurement campaign,” IET Electronics Letters, submitted

for publication.
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CHAPTER 2

COGNITIVE RADIO

2.1 INTRODUCTION

CR has been proposed as a method to more efficiently utilise existing spectrum and intel-

ligently allocate radio resources in future wireless networks [7]. At present, PUs of the

spectrum are exclusively allocated fixed portions of the spectrum, which may or may not be

efficiently utilised. It has been noted [5] that in certain bands, spectrum may be scarce, but

is also quite often underutilised or erratically utilised. Traditionally, spectrum is allocated

to PUs by regulatory bodies 1 through a licensing process. This means that a PU is given

exclusive access to the bands of spectrum within which it has been licensed to operate. One

of the consequences of the current exclusive spectrum allocation policy, is that it often leads

to the problem of artificial spectrum scarcity. Artificial spectrum scarcity occurs when the

bands licensed to PUs are not fully utilised but at the same time are not available for use

by other would-be users. Thus certain currently licensed regions exist, either in time, geo-

graphical location or frequency, where spectrum is actually unused or only partially used.

Spectrum occupancy measurement studies 2 confirm this [4, 9, 11, 12, 13, 14, 15, 16]. These

regions may be referred to as ’spectrum holes’. In its broader sense, a CR aims to address

the artificial spectrum scarcity problem by exploiting these ’holes’ in the spectrum.

1In South Africa this is the independent communications authority of South Africa (ICASA).
2A spectrum occupancy measurement campaign carried out in Pretoria, South Africa as part of this research

work, is described in Chapter 5.
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2.2 OVERVIEW OF COGNITIVE RADIO

The pursuit of achieving greater spectral efficiency is not new to wireless communication

and there are a number of commonly used techniques currently employed for this purpose.

Amongst others these may include: multiple access schemes (based on time, frequency, code

and spatial division), spectrally efficient modulation schemes and also adaptive modulation

and FEC schemes (based on local channel conditions) [1, 17]. Network planners also make

use of frequency reuse schemes with adaptive power control, as well as smart and adaptive

antennas [18].

These techniques focus on the way in which information is packaged before and after

entering the wireless channel. Further improvements in spectral efficiency may however be

achieved by the use of CR and ultra wide band (UWB) technologies. These technologies

represent two opposing approaches. A CR follows an overlay approach by exploiting

spectrum ’holes’ through dynamic spectrum access (DSA). However, in UWB, an underlay

approach is followed where, due to bandwidth increases, waveforms may be successfully

transmitted at power levels low enough for SUs to coexist with PUs over the entire frequency

range [19]. The difference between overlay and underlay communication is illustrated in

Figure 2.1. In CR the SU (represented by the green block) avoids interference with the PU

by operating in a region where no PU (denoted by the maroon triangles) is present. In the

UWB case (represented by the orange region) transmission coincides with PUs, causing

tolerable levels of interference at power levels that fall below the noise floor (represented by

the blue region). Combining the under and overlay approaches to further improve channel

capacity has also been proposed [19].

The IEEE 1900.1 standard on DSA provides the following definition for CR [20]:

1. “A type of radio in which communication systems are aware of their environment and

internal state and can make decisions about their radio operating behaviour based on

that information and predefined objectives.”
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Figure 2.1: Graphical depiction of the difference between overlay and underlay communic-

ation.

2. “Cognitive radio (as defined above) that uses software-defined radio, adaptive radio,

and other technologies to adjust automatically its behaviour or operations to achieve

desired objectives.”

Similarly, the international telecommunication union radiocommunication sector (ITU-R)

provides the following definition for a CR system [21]:

“A radio system employing technology that allows the system to obtain know-

ledge of its operational and geographical environment, established policies and

its internal state; to dynamically and autonomously adjust its operational para-

meters and protocols according to its obtained knowledge in order to achieve

predefined objectives; and to learn from the results obtained.”

A key concept surrounding the CR is that secondary, unlicensed users are allowed to address

the artificial spectrum scarcity problem by exploiting spectrum holes. This is achieved

through dynamic opportunistic access to detected spectrum holes in such a way that

interference to currently licensed PUs is avoided. It is important that SUs are as invisible
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as possible to PUs of the spectrum, since PUs are licensed to make exclusive use of certain

parts of the spectrum, for which they pay large amounts of money to regulatory bodies. Any

interference from SUs would thus infringe upon the exclusive rights of the PU.

Built on the platform of SDR [22], a CR will determine and try to predict when and

where spectrum-hole opportunities exist, and then intelligently select a portion of available

spectrum for its own use. Radio resources may then be allocated to this SU, based on the

channel conditions under which it is seeking to operate [5, 7]. This spectrum selection and

resource allocation is temporary and will thus only be valid for as long as the PU does

not need to make use of that portion of the spectrum. Once the PU again requires use

of that portion of the spectrum, the SU must immediately vacate the band. The selection

and allocation process will then have to be repeated so as to find an alternative part of the

spectrum within which to operate. To maintain uninterrupted communication, a SU would

thus be required to repetitively perform this process, and would also have to rely on the

availability of a sufficient number of alternative spectrum holes.

A possible PU occupation pattern encompassing four adjacent frequency channels is

illustrated in Figure 2.2. The horizontal blocks represent frequency channels over a period
F
re
q
u
e
n
c
y

Time

Figure 2.2: PU spectrum occupation over time and frequency.
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of time, where the green blocks represent un-utilised spectrum holes and the grey blocks

represent PU activity. When the PU returns to the channel currently occupied by a SU,

the SU needs to jump to the next best available channel, as indicated by the arrowed line.

To maintain uninterrupted communication, a SU would thus need to continuously operate

within the green blocks.

2.3 PRIMARY COGNITIVE FUNCTIONS

By definition CR is a system that operates in an intellectual manner. By being acutely aware

of its environment and consequently performing actions based on an understanding and pro-

cessing of that knowledge, CRs possess an inherent form of intelligence. The primary func-

tionality required of a CR, can be summarised into three broader categories [5],

1. analysis and awareness of the radio environment,

2. channel identification and prediction, as well as

3. intelligent resource allocation and spectrum management.

These three categories of operation form the basis for an intelligent feedback communication

system and are repetitively performed within a CR environment. A graphical depiction of

this concept is presented in Figure 2.3. The SDR [7] provides the platform upon which this

process may be performed.

2.3.1 Analysis and awareness

An essential part of the CR process involves awareness about the operating environment.

Sensing of the available spectrum opportunities is a major challenge in a CR network [23].

For SUs to operate in a disruptive yet unobtrusive manner, it is essential that holes in the

spectrum are accurately detected and that reliable information about the interference temper-

ature of the radio environment is obtained. A spectrum hole occurs when a specific band of

frequencies, that have been allocated to a PU, become temporarily unoccupied for a specific
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Figure 2.3: Basic description of the CR cycle, adapted from [5].

period of time at a specific geographical location [5].

2.3.2 Channel identification and prediction

Based on information gained about the environment in which a CR is to operate, chan-

nel state information needs to be estimated. Intelligent processing and interpretation of the

knowledge obtained during sensing, enables the SU to decide how to further proceed under

the channel conditions within which it finds itself. Estimates of potential channel capacity

may be calculated and decisions made about how best the SU may be configured to operate

within the current conditions.

2.3.3 Intelligent resource allocation and spectrum management

Once operating conditions have been properly determined and decisions made about how to

proceed, spectrum is assigned and resources are allocated to the SU in an intelligent manner.

This allocation is performed on a personal basis, taking into consideration the specific needs
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of the SU. Communication with the outside environment may then commence.

2.4 ENABLING TECHNOLOGIES FOR COGNITIVE RADIO

The practical implementation of the concept of CR relies heavily on technological advances

in radio communications hardware. Since a SU in a CR network needs to be able to switch

quickly and dynamically between different operating channels, preferably without having

to physically change its hardware configuration, the SDR and the software defined antenna

(SDA) are essential enabling technologies for CR communication.

2.4.1 Software-defined radio

One of the main enablers of CR is the SDR. The SDR is a radio communication system that

provides for a greater level of communication flexibility than traditionally available. Ad-

vances in technology have made it possible for a SDR to access multiple frequency bands at

one time. This is made possible by the software implementation of many components pre-

viously implemented in hardware. By making use of variable-frequency filters, oscillators

and mixers, together with wide-band analogue-to-digital and digital-to-analogue converters

(ADCs and DACs), a SDR is able to handle all aspects of the radio air interface in software

[22]. The SDR is thus able to deliver real-time and dynamically programmable commu-

nication services through the software implementation of traditional hardware components

such as filters, modulators, mixers and detectors. A SDR may be implemented using a

personal computer or on embedded platforms such as: digital signal processors (DSP), field-

programmable gate arrays (FPGA) or application-specific integrated circuits (ASIC) [8]. A

basic illustration of a SDR is illustrated in Figure 2.4.

2.4.2 Software-defined antennas

The other major enabler for CR communication is the SDA. As with the SDR, the phys-

ical characteristics of the SDA are configurable in software, allowing for dynamically ad-

justable operation over a wide range of frequencies. Potential implementations of the SDA
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Figure 2.4: Simple illustration of a SDR using a SDA, adapted from [22].

are presented in [24, 25]. A microstrip patch antenna, made up of individually controllable

pixels, is proposed to create a programmable and reconfigurable antenna array. The pixels in

the array are mechanically actuated to change the physical dimensions and orientation of the

antenna, which in turn changes its frequency, gain, polarisation and beam angle.

2.5 DETECTING SPECTRUM OPPORTUNITIES

Before a SU may operate in a CR network, it first needs to determine within which portion

of the spectrum it may operate. An initial sensing of the spectrum must thus be performed.

This process of detecting spectrum holes is one of the most important components of a CR

system. Thus, measuring, sensing and learning about the radio environment within which

the SU will be operating, are of great importance. It is imperative that knowledge about

the radio environment, availability of spectrum, user requirements, local policies and other

operating restrictions are obtained before SU communication may commence.

A number of methods, including energy detection, cyclostationary feature detection,

radio identification, matched filtering, waveform-based sensing, cooperative sensing and

sensing with multiple antennas, have been proposed to accomplish this task [23, 26]. Of

these methods, energy detection is the most commonly applied technique presented in the

literature, due to its relative ease of implementation and low computational complexity. A

comparison between the accuracy and complexity of the first five of these SS techniques is

shown in Figure 2.5 and a description of these techniques, as found in the literature, now

follows [23, 27].
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Figure 2.5: Relationship between SS techniques in terms of their accuracy and complexity,

adapted from [23].

2.5.1 Energy detection

Energy detection (ED) is the most commonly implemented approach to SS for CR applic-

ations. Signal detection is performed by comparing the output of an energy detector to a

predetermined threshold that is influenced by the environmental noise floor. Mathematically,

the detected signal may be represented by the following signal model [23],

r (n) = s(n)+w(n) , (2.1)

where s(n) is the original PU signal and w(n) denotes additive white Gaussian noise

(AWGN). If one assumes that PU channel occupancy follows a binary model of being either

unoccupied H0 or occupied H1, then the following binary hypothesis holds,

H0 : r (n) = w(n) ,

H1 : r (n) = s(n)+w(n) .
(2.2)

Thus, in the absence of the PU, s(n) = 0. Alternatively s(n)> 0 when the PU is present.

To test the binary hypothesis presented in Equation 2.2, a signal detection threshold
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Table 2.1: Binary hypothesis decision criteria.

Relationship Hypothesis choice

M ≤ λT H0

M > λT H1

λT needs to be calculated under noise only conditions. A decision metric M may then be

compared against this threshold to determine channel occupancy, as shown in Table 2.1 [28].

If N is the observation vector size, the decision metric M may be represented as fol-

lows [23],

M =
N

∑
n=0

|r (n)|2. (2.3)

Errors that may arise when testing the binary hypothesis include miss-detection and false

alarm [10]. When performing SS it is desirable for the probability of either of these

conditions occurring to be minimised. These erroneous conditions are defined as follows:

the miss-detection probability (MP) is the probability of detecting the band of interest to free

when it is actually already occupied and the false alarm probability (FAP) is the probability

of detecting a state to be occupied by a PU when the PU is not actually present.

Although ED is easier to implement and provides lower computational complexity, it

performs poorly under low signal to noise ratio conditions and may suffer under Rayleigh

fading channel conditions. It has also been noted in [23] that sensing efficiency is comprom-

ised when detecting spread spectrum signals using ED. The basic structure of a conventional

energy detector is illustrated in Figure 2.6 [29].

BPF
Threshold 

device
r(t)

Choose 

H0 or H1

2/N0

∫
T

0
()2

.

Figure 2.6: Generic block diagram of an energy detector, adapted from [29].
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2.5.2 Cyclostationary feature detection

The cyclically varying features of a PU signal are exploited by the cyclostationary feature

detection method. Statistical properties such as the mean and variance of the signal are used

to detect the presence of a PU. Since noise may be assumed to be a wide-sense stationary

process, modulated signals may be distinguished from noise. This also makes it possible to

distinguish between different types of PU signals. The PU is detected by analysing the cyclic

spectral density function (CSD) of a received signal, since the CSD outputs peak values when

the cyclic frequency is equal to the frequency of the transmitted signal. The CSD may be

expressed as follows [23],

S ( f ,α) =
∞

∑
τ=−∞

Rα
r (τ)e− j2π f τ . (2.4)

where α is the cyclic frequency and the cyclic autocorrelation function Rα
r (τ) is given

as,

Rα
r (τ) = E

[

r (n+ τ)r∗ (n− τ)e j2παn
]

. (2.5)

Several techniques for application in CR have been proposed in the literature [30, 31, 32, 28].

Although cyclostationary detection has the advantage of being robust in the presence

of noise and channel attenuation, it has a disadvantage in that it requires a very high

sampling rate, which in turn leads to high computational complexity.

2.5.3 Radio identification based sensing

PUs may also be detected by identifying the type of transmission technology that they are us-

ing. This involves two main tasks, initial mode identification (the initial search for a possible

transmission) and alternative mode monitoring (the continual search for additional transmis-

sion modes during communication in an already selected mode). The most probable PU

technology is selected by extracting various features from a received signal. In order to clas-

sify the type of signal, these features may be obtained by observing various parameters such

as: the amount of energy detected, the centre frequency, the channel bandwidth and other

statistical information. Amongst other methods, Bayesian classifiers, neural networks and
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HMMs may use these features for classification [23].

2.5.4 Matched filter detection

If the characteristics of the transmitted signal are known to the receiver in advance, then

matched filtering represents the most optimum scheme for detecting a PU [17]. If matched

filtering is to be used for PU detection, then the receiver will need to have pre-knowledge of

the PU’s signalling features and be able to demodulate a number of different signal types.

This presents the unwanted issue of impractical levels of receiver complexity [33].

Matched filter detection assumes the use of an optimal correlation receiver. If the re-

ceived signal is denoted by r (t) and the set of basis functions by x(t), then the output of the

correlator may be given by [17],

rx =
∫ ∞

−∞
r (t)x(t)dt. (2.6)

The impulse response of the matched filter h(t) is defined as,

h(t) = x(t −T ) , (2.7)

where T is chosen so as to ensure the causality of the filter, i.e., h(t) = 0, t < 0. The impulse

response h(t) is thus matched to x(t) provided that y(t) is sampled at time t = T . The output

of the filter y(t) is obtained by the convolution of r (t) and h(t) and may thus be expressed

as,

y(t) =
∫ ∞

−∞
r (τ)x(T − t + τ)dτ. (2.8)

2.5.5 Waveform-based sensing

In systems where the waveform patterns are known, waveform-based sensing can also be

used for PU detection. Known waveform patterns may be correlated with the received sig-

nals to determine if they belong to PUs. Examples of non-statistical patterns that may be

compared include amongst others: transmitted pilot symbols, spreading sequences, and other

known sequences such as preambles and mid-ambles. It has been noted that waveform-based
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detection methods do provide the advantage of short measuring times, but also suffer from

synchronisation issues [23]. Using the signal model from Equation (2.1), the decision metric

M (presented in Table 2.1) for waveform-based sensing, may be described as follows,

M = ℜ

[

N

∑
n=1

r (n)s∗(n)

]

. (2.9)

2.5.6 Cooperative sensing

It has been shown in the literature [23, 34] that a collaborative approach to SS leads to an

improvement in correctly detecting available spectrum. In cooperative sensing, SUs share

information with each other about their individual sensing measurements. The real benefit

of cooperative sensing is experienced under conditions where fading, shadowing and noise

uncertainty, are prevalent. Significant reductions in the MP and FAP have been observed

when cooperative sensing is employed under these conditions [34, 35]. Space, time and

frequency diversity can also be exploited, when cooperative sensing is employed, to further

improve SS performance [36].

However, when the cooperative sensing approach is employed issues pertaining to

complexity as well as algorithm efficiency may arise. Some of the approaches employed by

CRs to achieve cooperative sensing include: sharing information centrally for processing

and decision making (this is also known as data fusion [27]), following a distributed sensing

approach where multiple users perform processing independently before sending their

outputs to a single user for final decision making (this is also known as decision fusion [27])

and gaining frequency spectrum information from external devices [23]. Energy detection

based hybrid cooperative sensing algorithms have also been proposed that require less CR

nodes to perform cooperative SS [37, 38]. It has also been shown in the literature [26], that

soft combination for cooperative SS provides an improvement over hard combination.
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2.5.7 Sensing with multiple antennas

Existing multiple input multiple output (MIMO) techniques, such as maximum ratio

combining (MRC) and equal gain combining (EGC), may be employed to perform SS. In

this way the time and spatial correlation between multiple versions of the received signal

may be exploited [26, 39, 40].

In [27] optimal combining energy detection (OCED) is proposed for this purpose.

OCED aims to maximize the signal to noise ratio (SNR) of a set of M > 1 combined receiver

signals such that,

Γ(BBB) =
E
[

∥

∥BBBT s(n)
∥

∥

2
]

E
[

∥

∥BBBT w(n)
∥

∥

2
] (2.10)

where BBB is the combining matrix and where the individual elements of Equation 2.1 change

as follows for the MIMO case,

r (n) = [r1(n) · · ·rM(n)]T

s(n) = [s1(n) · · ·sM(n)]T

w(n) = [w1(n) · · ·wM(n)]T

(2.11)

2.6 MODELLING SPECTRUM OPPORTUNITIES

The process of SS may be taken further to include predicting the future radio environment

and the behaviour of PUs based on past knowledge. The purpose behind predicting future PU

behaviour is to contribute towards improved CR performance [41]. Predicting future channel

occupancy first requires SUs to observe/sense the frequency bands of interest to them over

a fixed training interval. During this time, the SU gathers statistical information about the

appearances and disappearances of other users of these bands. The statistical model gener-

ated from this information may then be used to predict how the future spectrum occupation

of these bands will look. Proposed spectrum occupancy models in the literature include

applying Markov chains (MC) and machine learning techniques to process channel usage

statistics [42], modelling channel occupancy as an exponentially distributed process [43, 44]

as well as applying regression techniques to binary time series channel representations [45].
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Accurate prediction of future channel occupancy states contributes toward the SU channel

selection process [43].

2.6.1 Markov modelling

The HMM has been suggested for modelling channel occupancy in the literature [10, 46,

47, 48, 49, 50]. A MC may thus be used to represent sub-band channel occupancy over a

number of consecutive time periods L. In this approach, spectrum occupancy is modelled

as having a particular state of being and a PU’s current occupancy state will depend on its

previous state. HMMs have been suggested for this purpose, since true occupancy states

are not always known to SUs after the SS process. Maximum likelihood techniques have

been proposed to aid in the prediction of true HMM states [10], however issues pertaining to

prediction accuracy and complexity have arisen. The use of evolutionary based algorithms

[51] has been proposed to further aid this process.

2.6.1.1 HMM structure

A HMM is a statistical process whereby PU channel occupancy may be modelled as a

probabilistic finite state machine [52]. The basic structure of a HMM is shown in Figure 2.7.
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e0N

X0

Y1

e11

p11

XN

e1N
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eM1
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eMN

p01 pM-1Mp12 ...

Figure 2.7: Basic structure of a HMM.
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A HMM comprises a set YYY of M possible states,

YYY = {y1,y2, · · · ,yM} , (2.12)

and a set XXX of N possible emissions,

XXX = {x1,x2, · · · ,xN} . (2.13)

Two statistical parameters govern the operation of a HMM. The first parameter PPP is an M-by-

M state transition probability matrix, representing the probabilities associated with changing

from one state to another [17, 53], and is given by,

PPP =
(

pi j

)

M×M
, i, j ∈ YYY , (2.14)

where the individual elements of Equation (2.14) are denoted by,

pi j = Pr (yn = j | yn−1 = i) , 2 ≤ n ≤ τ, (2.15)

and τ represents the length of an observation period. Similarly, the second parameter EEE

is an M-by-N emission probability matrix that represents the probabilities associated with

obtaining a certain output given that the model is currently in a true state yn, and is given

by,

EEE =
(

ei j

)

M×N
, i, j ∈ XXX . (2.16)

The individual elements of Equation (2.16) are denoted by,

eik = Pr (xn = j | yn = i) , 2 ≤ n ≤ τ. (2.17)

When attempting to predict a sequence of channel occupancy states with a HMM, it is ne-

cessary to find P(XXX |λλλ ). The HMM parameters may be denoted by λλλ = (PPP,EEE,π), where π

is the initial state distribution [54].

2.6.2 ON-OFF occupancy models

Channel occupancy is driven by human behavioural patterns and is thus not a purely random

process. Methods for modelling PU occupancy that assume that PU activity follows an ON-

OFF mode occupancy pattern have thus been proposed in the literature [43, 55]. For these

methods, it is assumed that the PU is occupying the band of interest for an ON mode, and an

OFF mode is assumed when the band of interest is unoccupied.
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2.6.2.1 Alternative exponential approach

The most prominent of these methods assumes that usage by a PU of a set of frequency

channels q = 1,2 . . . ,ϑ , follows a Poisson process with a PU arrival rate of λq, provided

that only one PU occupies a channel over a time interval tψ . In this case the probability that

a PU accesses the band of interest k times over this interval, may be expressed as follows

[55],

f
(

k,λq

)

=
λq

k
e−λq

k!
, q = 1,2 . . . ,ϑ . (2.18)

This is known as the ON-OFF alternative exponential distribution. Channel occupancy is

modelled as an independently exponentially distributed processes. A PU channel q, with an

ON occupancy duration of length tON (q) and mean ON duration of 1/λtON(q), may then be

described by the following probability density function,

f
(

tON (q) ,λq

)

=







λqe−λqtON(q), tON (q)≥ 0

0, tON (q)< 0.
(2.19)

Similarly, a PU channel q with an OFF duration of length tOFF (q) and mean OFF duration

1/λtOFF (q), may be described by the following probability density function,

f
(

tOFF (q) ,λq

)

=







λqe−λqtOFF (q), tOFF (q)≥ 0

0, tOFF (q)< 0.
(2.20)

2.6.2.2 Periodic approach

The periodic ON-OFF model is another method that follows an ON-OFF mode channel

occupancy pattern. In this model it is assumed that over time, channel occupancy follows a

pattern of fixed ON and OFF occupancy periods [43]. However, for it to be accurate, this

method does require long term observations of PU occupancy behaviour.

2.6.3 Linear techniques

Due to their relative simplicity, various linear approaches to traffic modelling in wireless

networks, have been proposed. These include regression modelling, the normalised least

mean square (NLMS) algorithm and the recursive least squares (RLS) algorithm.
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2.6.3.1 Regression model

A method that makes use of linear regression techniques to predict spectrum opportunities,

is proposed in [45]. PU channel occupancy is modelled as a binary time series Bt with a time

index t, where the presence of a PU is indicated as Bt = 1 and its absence as Bt = 0. With

the model parameters given by β , the probability of success is then expressed as the sigmoid

function transformation of the following expression,

µt = ∑
d

k=1
βkBt−k. (2.21)

If SSS represents the band of interest to a CR, then a linear regression is performed on past ob-

servations and the probability of success is evaluated by logit transformation, such that,

P(Sit = 1|St−1,St−2, · · · ,St−p) =
1

1+ e−MMM
, (2.22)

where MMM is an auto regression function,

MMM = a0 +∑
d

j=1

(

AAA jSSSt− j

)

+nnn, (2.23)

with the coefficient matrices AAA j, an error vector nnn, an offset a0 and a set of past observed

values SSSt− j.

2.6.3.2 Recursive least squares algorithm

A method known as the RLS algorithm has been proposed for predicting traffic as an aid to

proactive network management in wireless networks [56]. This method is reported to be a

computationally efficient approach to predicting wireless network traffic over a relatively

short time scale without having to make any assumptions about the statistics of the data

being observed. Recent traffic observations are used to predict traffic load in the near future

and the basis of the RLS method is rooted in adaptive filter theory.

Using the RLS algorithm, future traffic load y(n) is estimated by the following ex-

pression,

y(n) = wT (n−1)u(n) , (2.24)
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where u(n) represents a set of n recent traffic observations and w(n) a corresponding set of

weighting factors. If d (n) represents the actual traffic load then the prediction error e(n)

may be described as,

e(n) = d (n)− y(n) . (2.25)

The RLS method tries to minimise the mean square value of Equation (2.25) by minimising

the cost function J (n), together with an exponential weighting factor λ , as follows,

J (n) =
n

∑
i=1

λ n−i [e(i)]2 . (2.26)

The weight factor w(n) is calculated so as to attain the minimum value for Equation (2.26)

using the following expression,

w(n) = w(n−1)+K (n)e(n) , (2.27)

where K (n) is known as the gain vector and is derived as follows,

K (n) =
λ−1P(n−1)u(n)

1+λ−1uT (n)P(n−1)u(n)
. (2.28)

The cross correlation P(n) between the observation signal and the actual traffic load signal,

is calculated using the following expression,

P(n) =
n

∑
i=1

u(i)d (i) . (2.29)

2.6.3.3 Normalised least mean square algorithm

Both the RLS and NLMS algorithms have the advantage that they do not rely on prior statist-

ical traffic information. However, they have been reported to suffer performance degradation

when there are rapid traffic variations [57]. The NLMS algorithm is similar to the RLS

method, with the only perceivable difference being that the weight factor w(n) is calculated

as follows [58],

w(n) = w(n−1)+
µe(n)u(n)

‖u(n)‖2
, (2.30)

where µ is a step size constant.
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2.7 CHANNEL ALLOCATION AND SWITCHING

Once SUs have determined which channels are available to them, they must then determine

which of these channels will be best to operate within. Similarly, at the return of the PU to

the channel, SUs must also determine which channels will be best to switch to. The main

objectives here should be to contribute to achieving optimal performance in a CR network

[41, 59]. These objectives include minimising interference to PUs, maintaining required

quality of service (QoS) levels, facilitating disruption free communication by minimising

delays and maximising throughput whilst still maximising spectral efficiency and limiting

interference to PUs. SUs should not only choose channels that are simply available to them,

but also look to select the channels that they will be switching to in an intelligent manner

[43].

2.7.1 Switching techniques

In [41] and [43] different channel switching techniques are presented. These may be grouped

into two basic switching categories, namely: reactive switching (RSW) and proactive switch-

ing (PSW).

2.7.1.1 Reactive switching

RSW is undesirable as it causes interference to the PU. This is due to the fact that when

using RSW, SUs will continue to occupy a band until they detect the presence of a PU on

the band, regardless of what may be happening on that band. If the arrival of a PU occurs

in between a SS event (assuming that SS is performed on a periodic basis), then the SU

will cause interference to the PU on that band, until the next SS and switching event is

performed. Furthermore, once the SU does realise that it is causing interference, it will

randomly pick and blindly switch to another channel. This new channel may already be

occupied by a PU, in which case the shortcomings of RSW would then be perpetuated by

causing further PU interference.
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sense switch transmit disruption

Channel q + 1

Channel q

I II

Figure 2.8: Illustration of reactive (I) and proactive (II) channel switching.

Basic RSW is illustrated by part I of Figure 2.8. The solid black line represents PU

spectrum usage. When it is in the high position, a PU is occupying the channel q and the

converse is true when it is in the low position. The green bars represent sensing operations

and the orange bars switching operations. The blue sections represent data transmission and

the red section represents a disruption to the PU, since the SU is still occupying the band

even though the PU has returned.

2.7.1.2 Proactive switching

PSW attempts to address the problems associated with RSW by limiting interference to PUs

and reducing the delays that may be caused by excessive channel switching. When PSW

is employed, SUs are able to make informed channel switching decisions so as to avoid

PU interference, since they are able to vacate the band before the PU actually arrives. This

process is based on statistical knowledge gained about the past behaviour of PUs on that

band. The performance of PSW is thus heavily reliant on the accuracy of the employed

spectrum occupancy and prediction model. PSW is illustrated by part II of Figure 2.8. In

this case the SU vacated the band before the PU returned.
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PSW may be classed as either intelligent or dumb [43]. When PSW is performed in

an intelligent way, the channel that the SU will switch to will not only be an available

channel, but should be the best available channel for the SU to operate within. Various

factors may be considered when making this decision, e.g., the channel that is least likely to

be re-occupied may be deemed to be the best choice. In this way PU interference is avoided

and the number of channel switches that will have to be performed may be reduced.

Dumb PSW will usually occur as a result of inaccurate channel prediction, causing

the SU to either switch to a band that it perceives to be free but is in actual fact already

occupied by a PU, or to switch to a channel that will not be available for as long as the

band that it already occupies. The former, proactive busy switching (PBSW) will lead to

interference with the PU and the latter, proactive short switching (PSSW), will inevitably

introduce a delay into the system, because an extra channel switching event will then have

to be performed. The above mentioned switching techniques are summarised in Table

2.2.

Table 2.2: Switching techniques for CR.

Switching technique Description

Reactive switching Switch channel after detecting PUs.

Proactive intelligent switching SU switches to a channel that has a longer remaining idle

time than the channel it currently occupies.

Proactive busy switching SU switches to a channel that is already occupied.

Proactive short switching SU switches to a channel that has a shorter remaining idle

time than the channel it currently occupies.
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2.8 IEEE STANDARDS FOR COGNITIVE RADIO

The IEEE 802.22 standard for cognitive wireless regional area networks (WRAN) (published

in July 2011) and the IEEE DySPAN/P1900 standard for dynamic spectrum access networks

(currently under development) are both applicable to CR. The IEEE DySPAN standard

covers issues pertaining to dynamic and real-time usage of spectrum, taking into consid-

eration the changing objectives and environmental circumstances of that spectrum. Since

IEEE DySPAN is not yet available, only the IEEE 802.22 standard will be discussed in detail.

A high-level overview of the IEEE 802.22 standard for cognitive WRANs standard is

presented in [60]. This document discusses the standards guidelines for how CR should be

implemented to provide broadband wireless access in the WRAN context. It covers issues

pertaining to both the physical and media access control (MAC) layers as well as basic

cognitive functionality [60].

2.8.1 Physical layer features

The IEEE 802.22 standard specifies three major areas pertaining to CR implementation at

the physical layer. These include: handling the main data communications, performing SS

and providing geo-location functionality. The main physical layer features prescribed by

the standard are listed in Table 2.3. The standard assumes that CR will operate within the

favourable propagation environment of the current very high frequency (VHF) and ultra

high frequency (UHF) licensed television bands and caters for 6 MHz, 7 MHz and 8 MHz

channel bandwidths.

The standard also provides guidelines for the use of adaptive modulation and coding.

Fourteen physical layer modulation and coding modes have been prescribed. These modes

are tabulated in Table 2.4. Mode 1 will be used for the transmission of code-division mul-

tiple access (CDMA) ranging and bandwidth request messages and for urgent coexistence

situation notification (UCS), mode 2 will be used for transmitting the coexistence beacon

protocol (CBP) and modes 3 to 14 are provided for data communications purposes.
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Table 2.3: CR physical layer features as prescribed by the IEEE 802.22 draft standard.

Description Physical layer features

Network type WRAN

Air interface OFDMA

FFT Single mode (2048)

OFDMA channel profile 6, 7, or 8 MHz

Max data rate 23, 27 or 31 Mb/s

Range 17- 30 Km

Operating frequencies 54 - 862 MHz (VHF/UHF)

Cyclic prefix 37 s (1/4, 1/8, 1/16, and 1/32)

Frame size 10 ms

Superframe size 160 ms (16 frames)

FEC 1/2 rate convolutional code, constraint length 7

2.8.1.1 Spectrum sensing

Provision is made for sensing of analogue television transmissions, digital television trans-

missions and other licensed low power devices, e.g., wireless microphones. The standard

specifies that the sensing antenna must be mounted at least 10 m above the ground, be kept

clear of any obstructions and have a reference antenna gain of 0 dBi. As listed in Table 2.5,

receiver sensitivity levels for different signals types have also been specified.

2.8.1.2 Geo-location

The standard specifies the need for SUs to keep track of where they are geographically situ-

ated in relation to each other and in relation to the nearest base station. In the WRAN context,

SUs need to be able to pin point the location of other SUs to within a radius of 100 m and

the location the BS to within a radius of 15 m. Geo-location technologies such as global

positioning system (GPS) or Gallileo are proposed for this purpose.
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Table 2.4: IEEE 802.22 draft standard adaptive modulation and coding rates.

PHY Modulation Coding rate Peak data rate Peak data rate Spectral

mode at 6 MHz (Mb/s) at 8 MHz (Mb/s) efficiency

1 BPSK none 4.54 6.05 0.76

2 QPSK 1/2 & repeat: 3 1.51 2.02 0.25

3 QPSK 1/2 4.54 6.05 0.76

4 QPSK 2/3 6.05 8.07 1.01

5 QPSK 3/4 6.81 9.08 1.13

6 QPSK 5/6 7.56 10.09 1.26

7 16-QAM 1/2 9.08 12.11 1.51

8 16-QAM 2/3 12.10 16.14 2.02

9 16-QAM 3/4 13.61 18.16 2.27

10 16-QAM 5/6 15.13 20.18 2.52

11 64-QAM 1/2 13.61 18.16 2.27

12 64-QAM 2/3 18.15 24.21 3.03

13 64-QAM 3/4 20.42 27.24 3.40

14 64-QAM 5/6 22.69 30.27 3.78

2.8.2 Frame structure

The MAC layer specification of the standard prescribes guidelines pertaining to CR frame

structure. Figure 2.9 illustrates this specification. According to the standard, data should be

Table 2.5: IEEE 802.22 draft standard receiver sensitivity levels for different signal types.

Signal type Receiver sensitivity (dBm)

Digital TV -116

Analogue TV -94

Wireless microphones -107
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Figure 2.9: CR superframe and frame structure, adapted from [60].

transmitted in 160 ms sized superframes. These superframes are preceded by a superframe

preamble and a superframe control header (SCH). They are in turn followed by a group of

16 MAC frames. Each MAC frame has a frame size of 10 ms and is itself preceded by its

own frame preamble. The rest of the frame is comprised of a downstream subframe (DSF)

and an upstream subframe (USF) with an adaptive boundary in between and a time buffered

self co-existence window. The self coexistence window is used to limit mutual interference

among SUs.

2.8.3 South African regulatory environment

The South African telecommunications and broadcasting sectors are regulated by ICASA.

ICASA is an independent regulatory body that falls under the Department of Communica-

tions within the South African government. Since South Africa falls within Region 1 of the

International Telecommunication Union (ITU), ICASA has allocated the VHF bands from

174 MHz to 230 MHz and 246 MHz to 254 MHz (band III), as well as the UHF bands

from 470 MHz to 582 MHz (band IV) and 582 MHz to 854 MHz (band V) for terrestrial
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Table 2.6: Potential bands for IEEE 802.22 WRAN implementation in South Africa.

Band Frequency (MHz)

Band III 174 - 230; 246 - 254

Band IV 470 - 582

Band V 582 - 854

broadcasting, radio astronomy, fixed links, low power mobile radio and single frequency and

trunked mobile applications [61]. The allocations are summarised in Table 2.6. These bands

may be found suitable for future implementation of the IEEE 802.22 WRAN standard in

South Africa, especially once the switch over from analogue to digital terrestrial television

(DTT) has been completed.

2.9 CONCLUDING REMARKS

This chapter provided an overview of the concept of CR and its primary functionality. A

theoretical platform was laid that covers the key areas of importance to the work described

in the chapters that follow. Various SS techniques were discussed as well as methods pertain-

ing to the modelling and prediction of PU activity in CR networks. The channel selection and

switching processes required by SUs in a CR network were also briefly covered and an over-

view of the current IEEE standards pertaining to CR implementation was provided.
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CHAPTER 3

TRAFFIC MODELLING AND PREDICT-

ION

3.1 INTRODUCTION

Before SU communication may be initiated, and for it to successfully continue, it is

imperative that the SUs in a CR network are able to distinguish between channels that are

currently occupied by PUs and those that are available for SU communication. This is

important since any form of interference to PUs is undesirable. Continuous communication

relies on the correct identification of spectrum holes. Accurate and up-to-date information

from the SS process is thus required. However, obtaining this information does introduce

certain challenges to SU communication, since every time a SU engages in the SS process,

valuable time that may otherwise have been spent on data communications, is lost.

Some of this time may however be redeemed, since accurate modelling and predic-

tion of PU behaviour may be used to supplement the SS process [62]. By allowing a certain

proportion of SS operations to be substituted for by occupancy predictions, a reduction in

the number of SS operations required of SUs, may be achieved. A SU may experience

the benefit of such a reduction in the form of increased data throughput. Since future

prediction of PU activity is an essential prerequisite for proactive channel selection, a PU

may benefit from fewer incidences of PU disruption. The ability of the SU to predict future

PU behaviour may thus provide significant benefits to both sets of users.
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In this chapter the model chosen by the author for the modelling and prediction of

PU channel occupancy is described and various different algorithms for training the model

are also presented. The training algorithms are also compared by performing a complexity

analysis of each algorithm.

3.2 TRAFFIC OCCUPANCY MODEL

It is necessary to model and predict channel occupancy since enabling SUs to predict future

PU behaviour allows for a potential improvement in the channel allocation process. One of

the methods, suggested in the literature for modelling channel occupancy in CR networks, is

the two-state HMM [10, 47, 48]. In this approach, sub-band spectrum occupancy is modelled

as a consecutive sequence of binary states. The HMM is better suited to this problem than

the less complex MC, since true occupancy states are not always known to SUs due to errors

introduced through imperfections in the SS process.

3.2.1 Hidden Markov occupancy model

Due to its simplicity, a two-dimensional HMM with parameters λλλ (as described in Chapter

2.6.1), state space YYY = {0,1} and emission state space XXX = {0,1}, is proposed to model and

predict PU channel occupancy [10]. The structure of the model is illustrated in Figure 3.1.

At any given time, a channel may be detected to be either occupied by a PU, Yi = 1

or available for use by a SU Yi = 0. Since the HMM will be used to predict a sequence

of channel occupancy observations, both P(XXX | λλλ ) and the HMM model parameters need

to be determined. Initially, an educated guess is made for these parameters. A set of

observations OOO(t) = {ot+1,ot+2, · · · ,oL} is then collected, by observing the band of interest

for a time interval comprising a maximum of L observations. The model parameters are then

fine-tuned by feeding these observations into a model training algorithm that will attempt to

maximise P(OOO|λλλ ). After training has been performed, the model is used to predict the most

likely sequence of near-future channel occupancy states YYY = {yt+1,yt+2, · · · ,yN}. These
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Figure 3.1: HMM representation of binary sub-band spectrum occupancy, adapted from

[10].

predictions may be used to form the basis upon which future SU channel allocations may

be performed. The channel allocation process will be discussed in more detail in Chapter

4.

3.3 MODEL TRAINING ALGORITHMS

The accuracy level that the model is able to achieve is influenced by the accuracy of its

parameters λλλ , i.e. if the model is poorly trained then it will not accurately represent the

statistics of the channel within which the SU is attempting to operate. Consequently, the

accuracy of predicted PU behaviour may be negatively affected. It is therefore important

to select an algorithm that is able to train the model accurately. Although accuracy is the

key requirement of the model, computational complexity is also important. The algorithms

employed for training our model are now presented.
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3.3.1 Baum-Welch algorithm

The Baum-Welch algorithm (BWA) is an instance of a generalized expectation-maximisation

(EM) algorithm used for estimating HMM parameters PPP and EEE. It makes use of both the

forward and backward algorithms [53]. If the number of hidden and visible states are known

to a SU, then it is possible for the SU to obtain a good solution for λλλ by iteratively updating

the weights of the BWA until certain convergence criteria have been met.

To begin with, a definition of the forward and backward variables and there associ-

ated algorithms is discussed. The forward variable αt (i) is suggested as a means to lowering

complexity when finding P(XXX |λλλ ). This is the probability of obtaining the partial observation

sequence, OOO, when it terminates in state i. In mathematical terms, αt (i) may be described as

follows [63],

αt (i) = P(o1,o2, · · · ,ot ,yt = i|λλλ ) . (3.1)

This forms part of a recursive relationship known as the forward algorithm, which may be

expressed as,

αt+1 ( j) = e j(ot+1)γt , 1 ≤ j ≤ M,1 ≤ t ≤ L−1, (3.2)

where γt is given by,

γt =
M

∑
i=1

αt (i) pi j, 1 ≤ j ≤ M,1 ≤ t ≤ L−1. (3.3)

The first instance of αt (i), with initial state distribution π , may be expressed as fol-

lows,

α1 ( j) = π je j (o1) , 1 ≤ j ≤ M. (3.4)

Therefore, since it is possible to calculate,

αL (i) , 1 ≤ i ≤ M, (3.5)

the probability of obtaining the emission state space XXX (given the model parameters λλλ ) may

be expressed as,

P(XXX | λλλ ) =
M

∑
i=1

αL (i) . (3.6)
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Similarly the backward variable βt (i) may be defined as the probability of obtaining

the partial observation sequence, OOO, when its current state is i. In mathematical terms, this

may be expressed as,

βt (i) = P(ot+1,ot+2, · · · ,oL,yt = i|λλλ ) . (3.7)

Once again a recursive relationship follows for calculating βt (i) that includes the elements

of both PPP and EEE. This relationship is known as the backward algorithm and may be ex-

pressed,

βt (i) = e j(ot+1)ηt+1, 1 ≤ i ≤ M,1 ≤ t ≤ L−1, (3.8)

where ηt is now given by the following expression,

ηt+1 =
M

∑
j=1

βt+1 ( j) pi j, 1 ≤ i ≤ M,1 ≤ t ≤ L−1, (3.9)

and where initially,

βL (i) = 1, 1 ≤ i ≤ M. (3.10)

Once the forward and backward algorithms have been defined, it is possible to define

the probability γt (i) of being in a particular state yi at time t, given the observation sequence

OOO and model parameters λλλ . This probability may be expressed as follows,

γt (i) = P(qt = yi|OOO,λλλ ) , (3.11)

which in terms of the forward and backward variables, may be expressed as,

γt (i) =
αt (i)βt (i)

P(OOO|λλλ )
. (3.12)

Since the values calculated for αt (i) and βt ( j) from the forward and backward algorithms

are only estimates, a new parameter ξi j (t) may be defined. This is the probability of the state

transitions between yi at time t and y j at time t + 1 given that the SU has knowledge of the

complete visible sequence OOO. This is defined as,

ξt (i, j) = P
(

qt = yi,qt+1 = y j|OOO,λλλ
)

. (3.13)
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Writing Equation 3.13 in terms of the forward and backward variables leads to the following

expression,

ξt (i, j) =
e j (ot+1)αt (i)βt+1( j)pi j

P(OOO|λλλ )
. (3.14)

Using this new parameter, more accurate estimates for pi j and e j (ot+1) may now be obtained.

Since the expected number of state transitions from yi at any time is given by ∑T−1
t=1 γt (i) and

the expected number of state transitions from yi to y j is given as ∑T−1
t=1 ξt (i, j), improved

model parameter estimates may be calculated. The improved initial probability estimate

may thus be given as,

π̂i = γ1 (i) , (3.15)

and the improved transition probability estimate as,

p̂i j =
∑T−1

t=1 ξt (i, j)

∑T−1
t=1 γt (i)

. (3.16)

Similarly, the improved emission probability estimate may be expressed as,

ê jk =
∑T

t=1,Ot=xk
γt ( j)

∑T
t=1 γt ( j)

. (3.17)

which is the ratio between the frequency that a particular symbol xk will be emitted and the

frequency that any symbol will be emitted.

3.3.2 Viterbi algorithm

The Viterbi algorithm (VA) may be applied to the training of a HMM and is well suited to

the HMM decoding problem. The VA may be used to calculate the most likely sequence of

states Vt,k that may be obtained from the set of observations OOO(ttt). The algorithm is given by

the following expression [64],

Vt,k = P(ot |k) .max
y∈YYY

py,kVt−1,y, (3.18)

which may also be expressed in logarithmic form as,

Vt,k = log[P(ot | k)]+max
y∈YYY

[

log
(

py,k

)

+Vt−1,y

]

. (3.19)

Using Equation (3.19) rather than Equation (3.18) helps us to avoid the underflow problem,

which occurs when py,k gets really small. Given that the final state is k, the output of Equation
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(3.19) corresponds to the most likely sequence of states for the first t + 1 observations. By

saving the actual states that the model was in at each time instance in the sequence, it is

possible to backtrack through the sequence and calculate the maximum likelihood Viterbi

path as follows,

yL = argmax
y∈YYY

VL,y. (3.20)

An example of such a path, for a sample of three consecutive states, is illustrated by the

green arrows in Figure 3.2. A path has been calculated where, at time t = 0, the band is

unoccupied (Y = 0) but then changes state and becomes occupied (Y = 1) at t = 1 and

remains that way at t = 2.

From initial HMM parameter estimates, Equation (3.20) may be used to obtain a se-

quence of predicted states from which new estimates for the HMM transition and emission

parameters may be calculated. This process is repeated until the model generated by the

new HMM parameter estimates matches the observed sequence to within a pre-defined error

tolerance level.

Y = 1

Y = 0

Y = 1

Y = 0

Y = 1

Y = 0

X={0,1} X={0,1} X={0,1}

X={0,1} X={0,1} X={0,1}

t = 0 t = 1 t = 2

Figure 3.2: Trellis diagram used by the VA for training the HMM channel occupancy model.
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3.3.3 Particle swarm optimisation

Particle swarm optimisation (PSO) is an evolutionary-based algorithm that imitates the so-

cial behaviour of a flock of migrating birds trying to reach a certain destination [65]. In

contrast to traditional evolutionary computing, individuals are evolved by both competition

and cooperation amongst the individuals of the flock. These birds/particles communicate

with each other at fixed intervals and then adjust their flying speeds and resultant positions

accordingly [66, 67]. Each bird’s flying speed is a function of both its local position and

the position of the best bird in the flock. Thus PSO incorporates both intelligence and social

interaction, since particles learn from both their own experience (local search) and from each

other (global search).

3.3.3.1 Algorithm

The process followed by PSO is as follows. In an S-dimensional space consisting of N

particles, each particle i monitors three values: its own current position,

XXX i = (xi1,xi2, · · · ,xiS) , (3.21)

the best position it reached in previous cycles,

PPPi = (pi1, pi2, · · · , piS) , (3.22)

and its own flying velocity,

VVV i = (vi1,vi2, · · · ,viS) . (3.23)

At the end of every time interval t, each particle’s position is evaluated according to a pre-

defined and problem dependent fitness function. The best position of the particles PPPi is then

updated by comparing each particle’s current position to its previously best achieved posi-

tion and the particle that is deemed to have the global best position PPPg, is then calculated

and stored. Each particle then has its velocity updated according to the following expres-

sion,

VVV t+1
i = ωVVV t

i + c1r1

[

PPPt
i −XXX t

i

]

+ c2r2

[

PPPt
g −XXX t

i

]

. (3.24)
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This is illustrated in Figure 3.3. The constants c1 and c2 represent the amount by which

the velocity is updated and the constants r1 and r2 are causal uniformly distributed random

variables. An inertial weight factor ω is also included to balance the local and global search

ability. The optimal balance between local and global search depends on the problem being

solved [66]. Through a process of trial and error, a choice was made to decrease ω linearly

from a numerical value of 0.8 down to 0.6.

The maximum particle velocity increase allowed at each time interval is limited by

Vmax, in accordance with the following constraint,

−Vmax ≤VVV t+1
i ≤Vmax. (3.25)

Using the new set of velocities, each particle’s position Xi may be updated according to the

following expression,

XXX t+1
i = XXX t

i +VVV t+1
i . (3.26)

This process is then repeated until the algorithm’s termination criteria are reached. This is

achieved when the particles either converge upon a solution within an acceptable tolerance

level or the algorithm reaches a specified maximum number of iterations.

X i
t+1

V i

t+1

V i
tX i

t

P g
t

P i
t

S 2

S 1

ω

c1r1

c2r2

Figure 3.3: Graphical illustration of the PSO training algorithm, adapted from [66].
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3.3.3.2 HMM training

PSO may be used to train a HMM. The position of each particle in the swarm is given by an

XXX +YYY multi-dimensional set of HMM parameters λλλ , i.e. the elements of both PPP and EEE are

represented within the dimensions of each particle. The starting position of each particle is

a random variation of the initial guess for the HMM parameters. Thereafter, each particle’s

position is adjusted according to the outcome of the applied fitness function.

At each iteration of the algorithm, the proposed fitness function, compares a pre-

dicted sequence of length WWW PU observations KKK = {kw+1,kw+2, · · · ,kW} to an actual set of

measured training observations OOO = {ot+1,ot+2, · · · ,oT}. It is assumed that T = W . Each

particle’s current position (i.e. HMM parameters) is used to generate a predicted sequence

by maximising P(KKK|λλλ ). The error between the two sets of observations may be defined to

be,

ΨPrd =
N

∑
t=0

(OOO−KKK)/W . (3.27)

The error calculated in Equation (3.27) is used to update each particle’s best position. The

global best position of all N particles may then be calculated as the particle that has the

smallest value for ΨPrd . Using this information, each particle’s position is updated according

to Equation (3.24).

3.3.4 Memetic algorithm

The memetic algorithm (MA) is presented in the context of a genetic algorithm (GA),

since the MA is quite similar to the GA. Both the GA and MA attempt to find a solution

by following the evolutionary process of natural selection and survival of the fittest. The

main difference between the two, however, is that in a MA the offspring gain a certain

amount of experience through local searching. Thus, the MA also bases survival on the most

experienced members of the population by performing additional local searching, i.e., a MA

is a GA that heavily uses local search. It is thus sometimes also referred to as a cultural

algorithm [65, 68].
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The MA consists of a population of chromosomes. These chromosomes contain memes,

which hold values for the optimisation variables (in a GA, chromosome elements are called

genes). Chromosomes and offspring will first gain experience through local search before

evolution is performed to bring about the next generation.

The main factors that affect the performance of the MA include the size of the popu-

lation NC, the number of generations generated, the crossover rate PCR, the mutation rate

PMUT and the local search mechanism employed.

The key elements of the MA are now briefly introduced [65, 68, 69, 70].

1. Selection: at each successive generation, a set of parents Zn are selected for breeding.

Our approach to selection is to match the best parents, as determined by a predefined

fitness function. This is based on the assumption that if both parents provide a good

solution, then their offspring should do likewise.

2. Crossover: crossover is the process whereby information is exchanged between parent

members of the same generation. The assumption here is that the offspring will be

a combination of the best attributes of both sets of parents. The simplest method

for performing crossover is known as single-point crossover. For a chromosome of

length LC a random point is selected at a location p, where 1 ≤ p ≤ LC − 1 [59].

The two parent chromosomes are then interchanged at this point to generate two child

chromosomes C1 and C2 as follows,

CCC1 =
{

Z1,0, · · · ,Z1,p

}

+
{

Z2,p+1, · · · ,Z2,LC

}

, (3.28)

CCC2 =
{

Z2,0, · · · ,Z2,p

}

+
{

Z1,p+1, · · · ,Z1,LC

}

. (3.29)

It is recommended that the rate at which crossover occurs falls within the range 0.6 ≤

PCR ≤ 1.0 [65]. A crossover rate of PCR = 0.8 has thus been chosen. The single point

crossover operation is illustrated in Figure 3.4.

3. Mutation: mutation is a rare occurrence where one or more genes within a chro-

mosome are selected and mutated according to a mutation probability PM. Usually,
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Z1,1
...

Parent 1

...

Parent 2

...

Child 1

Z2,1

Child 2

Cross-over point

...

Z1,3Z1,2 Z1,4 Z1,Lc

Z2,1 Z2,3Z2,2 Z2,4 Z2,Lc

Z1,1 Z1,3Z1,2 Z2,4 Z2,Lc

Z2,3Z2,2 Z1,4 Z1,Lc

Figure 3.4: Illustration of the single-point cross-over operation.

mutation rate is kept fairly low, PM < 0.1 [65]. Through this operation new genetic

material is randomly introduced into the evolutionary process, helping to prevent stag-

nation around local minima. The simplest way of performing mutation is to swop

the positions of randomly selected genes/memes within a chromosome [59], another

way that this may be done is by arbitrarily selecting and randomly changing some of

genes/memes contained within that chromosome [65], in this case, mutation is limited

by a maximum mutation rate parameter ζm, such that PM ≤ ζm. The latter method with

ζm = 0.08 has been adopted.

4. Local Search: the MA makes use of a local searching operation that provides chro-

mosomes of the same generation with experience. For every generation, each chro-

mosome is slightly modified before being involved in the evolutionary process. In

[69] a local search through pair-wise information interchange heuristic is proposed.

This local searching method can however be designed to suit the specific nature of

the problem being solved. A modified approach is suggested in [65], where an incre-

mental value x, limited by Λm, is added to each gene in a chromosome and then tested

for improved performance. Only chromosomes that exhibit improved performance are
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retained, otherwise they are ignored [65]. This process may be expressed as follows,

Zi, j = Zi, j + x, −Λm ≤ x ≤ Λm,1 ≤ i ≤ NC,1 ≤ j ≤ LC. (3.30)

3.4 COMPLEXITY ANALYSIS

Limiting the complexity associated with modelling and predicting PU activity is of import-

ance to SUs for at least two reasons: namely the effect that this process has on SU data

throughput and on SU power consumption. More time spent on training the HMM occu-

pancy model means that less time is available for transmitting data. Greater training al-

gorithm complexity places greater processing and power consumption demands on SUs. The

computational complexity of the algorithms described in this chapter will thus be analysed

and compared.

3.4.1 Big O notation

One approach to analysing training algorithm complexity, is big O notation. By character-

ising growth rate, a worst-case scenario of the amount of execution time required by each

algorithm is provided [71]. The big O notation that describes a single iteration of each al-

gorithm is summarised in Table 3.1, where N is the number of symbols in the HMM state

alphabet, M is the PSO population size, W is the MA population size and L is the training

sequence length. Since N, M and W may differ in size and since big O notation does not

take into consideration the number of iterations i required by each algorithm to converge on

a good solution, it is difficult to make an accurate comparison between the algorithms by

following this approach.

3.4.2 Floating point operations

As an attempt at compensating for the perceived shortcomings of big O notation, another

approach to calculating algorithm complexity is considered. This approach incorporates

i into a calculation of the total number of floating-point operations per second (FLOPS)

required by each algorithm to train the HMM occupancy model. In this approach algorithm
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Table 3.1: Training algorithm complexity according to big O notation.

Algorithm Complexity

BWA O
(

N2L
)

VA O
(

N2L
)

PSO O(ML)

MA O
(

W 2L
)

complexity may be estimated according to the assumptions listed in Table 3.2. These

values are based on the assumption that it only requires one FLOPS to execute an addition,

subtraction, multiplication or division of two floating-point numbers [72].

The total complexity CTot of each algorithm may thus be calculated by multiplying

the complexity Cs (expressed in FLOPS), required to perform a single iteration of the

algorithm, by i. This may be expressed as follows,

CTot = i×Cs. (3.31)

In Table 3.3, the training algorithms have been broken down into their major functional

components so as to calculate a complexity estimate for a single iteration of each algorithm.

Polynomial estimates for the complexity of each component, as well as the final estimated

Table 3.2: Floating point operation assumptions.

Label Description Complexity

a vector-vector scalar (x,y ∈ RRRn) n

b vector-vector inner product (x,y ∈ RRRn) 2n

c vector-matrix product (A ∈ RRRm×n) 2n2

d matrix-matrix product (A ∈ RRRm×n,B ∈ RRRn×p) 2n3

e randomisation function n2

f logarithm function 20n

g exponential function 40n
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Table 3.3: Comparison of the estimated complexity required to perform a single training

algorithm iteration Cs by considering the number of FLOPS required when n = 4.

Algorithm Function Polynomial Complexity (CCCs) FLOPS

BWA decode HMM 5a+3b+d 2n3 +221n 1012

parameter update a

calculate P 5a+4 f +g

calculate E 2a+1b+2 f +g

VA generate trellis 5a 8n3 +12n 560

estimate λλλ 2a+2b+2d

parameter update a+2d

PSO calculate ω 5a 18n3 +10n2 +17n 1380

test fitness 3a+1b+2d +2e

new position 2a+4c+7d

convergence 5a

MA test fitness 3a+b+2d +2e 22n3 +26n2 +35n 1964

local searching 15a+3b+6c+9d +9e

crossover a+ e

mutation 3a+ c+2e

convergence 5a

complexity of a single iteration Cs of each algorithm, are listed. In the last column, an

estimate for the number of FLOPS required by the algorithm, when n = 4, is presented.

These estimates indicate that the MA and the VA exhibit by far the largest and least

amounts of single iteration computational complexity respectively, while the BWA and PSO

algorithms would appear to fall somewhere in between. The BWA and PSO algorithms

exhibit similar levels of single iteration complexity when n is small, however, PSO would

become more complex than the BWA for larger values of n. In Chapter 6, the presented re-

sults together with Equation (3.31), will be employed to verify these theoretical complexity

observations.
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3.5 CONCLUDING REMARKS

In this chapter, a two-state HMM, for modelling PU traffic occupancy, was presented and

described. This model requires a set of observations from which it may be trained. Four

algorithms that could potentially be used to train the model were discussed and a theo-

retical complexity analysis was performed to help compare them. From this analysis the

VA emerged as the least complex option (for a single iteration of the algorithm) for training

the HMM occupancy model. The HMM model discussed in this chapter forms the basis for

the discussion that follows in Chapter 4 on OSA. The performance of the HMM model, in

combination with these training algorithms, will be further explored through the simulated

and practically measured results that will be presented in Chapter 6.
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CHAPTER 4

SECONDARY USER PERFORMANCE SIMU-

LATOR

4.1 INTRODUCTION

The way in which a CR selects which channels to operate within, has a significant impact

on the performance of a cognitive radio network. In Chapter 2, the concept of DSA was

introduced, according to the IEEE standard definitions and concepts for DSA [20] a CR

should follow the DSA approach to assign spectrum to SUs on a real-time basis as dictated

by CR requirements and circumstantial changes. In this chapter a model is presented that

allows SUs to employ a form of DSA known as OSA. This model assumes that SUs are

able to exploit spectrum opportunities in a non-interfering way and without any form of

negotiation between SUs and PUs [20]. In a CR network, OSA is an on-going process that

needs to be continually performed so as to keep up with changes in PU behaviour.

This chapter will take a closer look at some of the relevant aspects pertaining to

OSA, specifically with the goal of investigating how the channel occupancy modelling and

prediction method, discussed in Chapter 3, may affect CR radio performance. To do this,

a HMM prediction model based simulation platform is presented. This platform allows for

an investigation into the effects that the occupancy model may have on CR performance

measures such as achievable SU data throughput, PU disruption and basic SU power

consumption.
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4.2 OPPORTUNISTIC SPECTRUM ALLOCATION MODEL

A basic model for performing OSA in a CR network is described in this section. The model

forms the basis of the simulation platform that will be discussed in the Section 4.3. The

model is illustrated in Figure 4.1.

When a SU first enters a CR network, it needs to gather information about the envir-

onment within which it wishes to operate. Thus, the first step in the model, is for the SU to

sense its current operating channel for a fixed time period so as to obtain a sequence of chan-

nel occupancy observations OOO = {ot+1,ot+2, · · · ,oT}. These observations are used together

with an initial guess for λλλ to train the HMM occupancy model and obtain values for λλλ that

accurately describe OOO. The model is then used to gather channel availability information

from a prediction of near future PU occupancy states. Once future channel availability is

known to the SU channel allocation may be performed, based on these predictions, and data

transmission may commence. This process is repeated at fixed re-training intervals with

the trained model parameters from each previous set of observations taking the place of the

current initial guess for λλλ .

Channel allocations are based on a future prediction length interval NRT , which is a

measure of how many samples of PU activity will be considered when determining which

channel would be best for SU communication. This is further discussed in the description of

the simulation platform.

Guess λ
Observe set 

of emissions

Determine 

HMM model 

parameters

Predict near 

future 

channel 

availability 

Channel 

allocation
Data 

transmission

Figure 4.1: OSA system model.
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4.2.1 Proactive switching and prediction length

So as to adhere to the requirements that OSA places on PU interference, it is essential that the

method employed to perform SU channel switching adheres to the description of intelligent

PSW described in Chapter 2. By allowing a SU to simultaneously perform SS and apply the

prediction model across multiple adjacent PU channels, a list of predicted future PU channel

occupancy states may be generated. From this list, the channels within which the SU should

be operating at the next time instance, may be intelligently chosen. If a SU is currently

operating at time t, then it should not only select any available channel at time t+1, but rather

intelligently select the best channel within which to operate. In [41] it is suggested that the

channel with the longest expected remaining idle time be selected for this purpose.

4.2.2 Effect of primary user traffic density

Channel switching performance is heavily influenced by the traffic density of the SU’s oper-

ating environment. Intuitively one may assume that the higher the density of users vying for

access to a particular channel, the less likely it becomes that a SU will readily find a good

channel within which to operate. Consequently, a shortage of good channels within which to

operate could have a negative effect on SU performance. In this investigation it was assumed

that PU traffic density follows either a heavy or a light traffic density profile. In essence, for

any given point in time a heavy traffic density profile may be defined to mean that it is more

probable for the PU to be occupying the band of interest, than the probability that it is not.

The converse is true for light traffic density. If DL is used to denote a light traffic density and

DH a heavy traffic density, the following hypothesis may thus be defined,

DL : Pr (YYY = 0)≥ Pr (YYY = 1) ,

DH : Pr (YYY = 1)> Pr (YYY = 0) .
(4.1)

4.3 SIMULATION PLATFORM

A software simulation platform was developed to investigate the effects that channel switch-

ing may have on the performance of SUs while operating within a CR network. The channel
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occupancy model discussed in Chapter 3 and the OSA model described in the first part of

this chapter, form the basis of the simulation platform.

4.3.1 Physical layer considerations

The simulation platform was set up to operate under various physical layer parameters that

are based on the IEEE 802.22 wireless regional network standard for CR [60]. The standard

specifies a number of adaptive modulation Θ and coding rate r modes. Mode 3, described

in Table 2.4, was chosen for the results gained from this simulation platform (presented

in Chapter 6). This mode specifies a spectral efficiency of 0.76 b/s/hz and incorporates

quadrature phase-shift keying (QPSK) with a forward error correction (FEC) code of rate d =

1/2. Guidelines pertaining to CR frame structure are also provided for by the media access

control (MAC) layer specification of the standard. For a B = 6 MHz channel bandwidth,

the standard suggests that data should be transmitted in ts f = 16t f sized superframes, where

t f = 10 ms is the frame period. For the purpose of channel switching analysis, another MAC

structure was added: the superblock. A superblock consists of tsb = 32ts f superframes. The

new MAC structure is illustrated in Figure 4.2 (modified from [60]).

Superframe 0 Superframe 31Superframe 1

5120 ms

Frame 0

10 ms

Frame 1

10 ms

Frame 15

10 ms

...

...

160 ms 160 ms 160 ms

Superblock n Superblock n+1Superblock n-1

Figure 4.2: Frame, superframe and superblock MAC structure, adapted from [60].
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4.3.2 Channel switching algorithm

A software flow diagram summarising the channel switching algorithm central to the

simulation platform, is presented in Figure 4.3. This algorithm takes into consideration all

the OSA requirements outlined in Chapter 4.2. The simulation platform was built around

this algorithm and provides a set of logical instructions that govern the proposed way

in which a SU will be allocated channels within in a CR radio network. A step-by-step

description of the algorithm now follows.

To begin with, a SU must perform wide-band SS to determine the current channel oc-

cupancies of a set of potential narrow-band operating channels IIIq. During this process,

occupancy data covering L frame periods is collected such that,

IIIq = OOOq (t) , 1 ≤ q ≤ ϑ ,1 ≤ t ≤ L, (4.2)

where ϑ denotes the size of the actual channel set. This set of channel occupancy data IIIq is

then used to train a HMM for each channel q in the set (as described in Chapter 3).

Once a model has been generated for each channel of interest, near future channel

occupancy predictions for the entire set of channels FFFq may be calculated in accordance

with the following expression,

FFFq = XXX (t) , tL ≤ t ≤ Ψ. (4.3)

The frame period commencing immediately after model training has been performed is

denoted by tL and Ψ represents the maximum number of states that will be predicted by the

model. The foundation upon which a SU will determine when and within which channels to

operate is provided by FFFq.

A SU should strive to avoid PU interference, therefore before SU data transmission

actually commences, the SU must again sense the currently selected operating channel qc

for a time tsn ≤ t f . This sensing operation will henceforth be referred to as a quick sensing

operation. Quick sensing is performed to obtain immediate and up-to-date information

Department of Electrical, Electronic and Computer Engineering

University of Pretoria

55

 
 
 



Chapter 4 Secondary user performance simulator
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Figure 4.3: Software flow diagram illustrating the algorithm central to the simulation plat-

form.

about PU activity. This information allows the SU to adapt to unexpected changes to the

occupancy profile of the band. It is important to take note of the difference between this

operation, where only the band of interest qc is sensed, and the initial wide-band sensing

operation that covers the entire range of potential operating channels IIIq. Initially, qc is

picked at random, but thereafter FFFq will be employed for this purpose.

The next step is to use the information gained from the quick sensing operation to

determine the occupancy status of qc at time tc. If qc is found to be currently available at

time tc, OOOq (tc) = 0, then the SU may commence data transmission on qc for a time interval

tI . The length of this interval is governed by the selected SS approach (this will be discussed

in section 4.3.3).
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However, if qc is found to be currently occupied, OOOq (tc) = 1, the SU will try to find

an alternative channel to which it can pro-actively switch. This channel is chosen by

selecting what the SU deems to be the channel q that will remain unoccupied for the

longest expected number of frame periods Ωq (based on the set of future channel occupancy

predictions FFFq) such that,

argmax
q

Ωq, tc ≤ Ωqt f ≤ tc +ρt f , (4.4)

where ρ is the maximum number of future frame periods that the SU will consider when cal-

culating Ωq. However, if all the channels in the set are currently occupied, IIIq = 1,1 ≤ q ≤ ϑ ,

then the SU will wait until t = tc +1 before performing another quick sensing operation and

testing for an alternative operating channel.

The SU will continue the cycle of quick sensing, testing channel availability, channel

switching and data transmission until the prediction period is exceeded, i.e. until t = tL +Ψ.

At this point the set of channel occupancy models IIIq will be updated and FFFq will be

repopulated with a set of new channel occupancy predictions, thus continuing the SU

channel switching and data transmission cycle.

4.3.3 Spectrum sensing approaches

SS is performed to verify the occupancy status of the channel within which a SU is cur-

rently operating. This is meant to limit PU interference, however, every sensing operation

does introduce added delays that could affect SU performance. The SS approach determines

how regularly the quick sensing operation is performed. To illustrate the effect that the quick

sensing operation has on CR performance, four different approaches to the sensing of generic

PU activity, based on the periodic sensing concept presented in [73], are proposed. These

sensing approaches are categorised as follows: aggressive, bi-frame, quad-frame and predic-

tion dependent. These four approaches are now briefly described and a graphical illustration

is provided in Figure 4.4.

1. Aggressive: quick sensing is performed after every single frame period and should
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Figure 4.4: Graphical illustration of the differences between the quick sensing approaches,

assuming tsn = t f /2.

provide maximum protection against PU disruption. The transmission interval tI is

thus given as,

tI = t f . (4.5)

2. Bi-frame: quick sensing is performed after every second frame period. Therefore the

transmission interval tI is given as,

tI = 2t f . (4.6)

3. Quad-frame: quick sensing is performed after every fourth frame period. While the

quad-frame sensing approach provides more time for SU communication than the pre-

vious methods, it is likely to provide the least amount of protection against PU disrup-
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tion. The transmission interval tI is given as,

tI = 4t f . (4.7)

4. Prediction dependent: quick sensing is only performed after Ωq frame periods and re-

lies on a high level of channel occupancy prediction accuracy. The prediction depend-

ent approach has the potential to provide a balance between allowing for SU commu-

nication and providing protection against PU disruption. The transmission interval tI

for the prediction dependent approach is thus given as,

tI = Ωqt f . (4.8)

4.4 SECONDARY USER PERFORMANCE

In this section certain criteria are discussed for evaluating the performance of a SU when the

channel occupancy and OSA models are combined. For the simulation platform, occupancy

model performance, SU data throughput, PU disruption and SU power consumption are

considered.

4.4.1 Channel occupancy model performance

The only way that a SU will be able to perform channel switching is if it has up to date PU

occupancy knowledge of all the channels that it may potentially be operating within. Chan-

nel occupancy prediction is thus an essential prerequisite to proactive channel switching.

Amongst other factors, the accuracy with which future PU behaviour may be predicted, will

have a significant effect on the achievable performance of a SU in a CR network. The more

accurately that channel occupancy states are able to be predicted, the more accurately chan-

nel switching may be performed. Poor prediction accuracy may cause a SU to experience

extra delays due to additional sensing and channel switching requirements and PUs may also

be more likely to experience SU interference.
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4.4.2 Secondary user data throughput

To help measure the impact that channel modelling may have on SU performance, the effect

that channel switching accuracy has on the throughput of a single SU, is calculated. Certain

factors that are specific to a cognitive radio network, will affect the actual throughput

achieved. These are over and above traditional factors such as modulation scheme, coding

rate and imperfect channel conditions.

Any delays introduced into a communications network, including those that are a res-

ult of CR-specific functions, will have a negative impact on the achievable throughput of the

network. Unfortunately, due to the inherent nature of CR, various CR-specific delays are

inevitable. Amongst others, these delays may include,

• sensing delays dsn,

• waiting delays dwt ,

• switching delays dsw,

• observation delays dob and

• training delays dtr.

These delays have been incorporated into the simulation platform described in the previous

section, the cause of which may be attributed to the following CR specific phenomena,

• the number of SU quick sensing operations υsn performed,

• the number of times a SU has to wait for any free channel to become available υwt ,

• the number of times a SU has to switch channels υsw,

• the HMM training algorithm observation length L and
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• the number of iterations performed during the HMM training process υtr.

CR-specific delays may be calculated using these phenomena. The delay incurred by per-

forming the quick sensing operation dsn, with sensing time tsn, may thus be given as,

dsn = υsntsn, (4.9)

the delay incurred when waiting for an available channel dwt may be given as,

dwt = υwttIt f , (4.10)

and the delay incurred by performing channel switching dsw may be given as,

dsw = υswtsw, (4.11)

where tsw ≤ t f denotes the time required to perform a channel switch. The delay incurred

when gathering channel occupancy observations dob may be given as,

dob = t f L, (4.12)

and the the delay incurred by training the HMM occupancy models dtr may be given as,

dtr = υtrttr, (4.13)

where ttr << t f is the average time required to perform a single iteration of the HMM

training algorithm.

If data throughput Rb may be defined to be the rate at which data is received, then it

may be calculated as a function of the number of bits k received over a fixed period of time

Ts. Data throughput Rb may thus be given as follows[17],

Rb =
k

Ts
. (4.14)

However, the theoretically achievable throughput based on CR factors only Rsu, i.e., the

effects of modulation, coding and channel gain are ignored, may thus be expressed as,

Rsu =
k

Tcr
, (4.15)

where Tcr represents the transmission time period with the extra time delay introduced by

the CR process included. It is thus defined as follows,

Tcr = Ts +dsn +dwt +dsw +dob +dtr. (4.16)
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4.4.3 Primary user disruption rate

When a SU erroneously switches to a channel that is already occupied by a PU, it may cause

disruption and interference to the PU. This will occur when a SU switches to a channel that

has either been incorrectly sensed and/or predicted to be unoccupied, at a time when it is in

actual fact currently occupied by a PU. If the occurrence of such an event over a period of

time t, is denoted by δt , then the number of such events Icr that occur during the time period

Tcr, calculated as follows,

Icr =
Tcr

∑
t=0

δt (4.17)

may be used to calculate the rate Dpu at which a SU causes disruptions to PUs. The following

expression may be employed for this purpose,

Dpu =
Icr

Tcr
. (4.18)

4.4.4 Secondary user power consumption

Intuitively, it would seem that the potential exists for CR-specific functionality to increase

the power requirements experienced by a SU. This may become a problem if the SU is a

mobile device, since the battery life of the device would inevitably be affected. The same

CR-specific factors that negatively impact upon SU throughput will inevitably also affect SU

power consumption. To illustrate this concept, fixed power requirements for performing SS,

channel switching and channel occupancy prediction, as well as the power wasted in an idle

state due to unnecessary waiting when no free channels exist, have been assigned for use in

the simulation platform. These power requirements will be referred to as CR power penalty

rates and may include,

• a sensing power penalty rate psn,

• a waiting power penalty rate pwt ,

• a switching power penalty rate psw, and
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• a training and prediction power penalty rate pt p.

If PT F is defined to be the power required to transmit a single uninterrupted frame of data

under standard operating conditions, then the power required to transmit the same amount of

data CR-specific conditions Psu, may be calculated from the following expression,

Psu = PT F +(psndsn)+(pwtdwt)+(pswdsw)+ pt p (dob +dtr) . (4.19)

4.5 CONCLUDING REMARKS

In this chapter, a stand-alone simulation platform, based on the concept of OSA, was presen-

ted. The simulation platform made use of the channel occupancy model described in Chapter

3 to investigate its effect on SU performance in a CR radio network. A detailed description

of the simulation platform, including its physical layer properties, the channel switching al-

gorithm and the approach to SS, was presented. A description of the CR performance meas-

ures investigated by the platform, which included SU throughput, PU disruption rate and SU

power consumption was also provided. Performance results obtained from simulations run

on the simulation platform, will be presented in Chapter 6.
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CHAPTER 5

SPECTRUM OCCUPANCY MEASURE-

MENTS

5.1 INTRODUCTION

While theoretical simulations are useful for analysing the preliminary performance of the

PU spectrum occupancy prediction model, a more complete analysis may be obtained

by testing the model on actual spectrum measurements. Typical channel occupancy data

was thus collected for this purpose as part of a spectrum measurement campaign carried

out on the main campus of the University of Pretoria. Certain portions of the spectrum

measurements, in the commercial cellular bands, were selected for model testing.

However, the purpose of the measurement campaign was to also gather information

about typical local spectrum occupancy. Although, various measurement campaigns have

been undertaken in other countries [9, 11, 16, 74, 75, 76, 77, 2], there is still a general lack

of knowledge regarding spectrum occupancy in South Africa. A mobile system, which can

be used to gather spectrum occupancy information from a range of frequencies over long

periods of time, was thus developed. This system included a modular hardware system

and software environment aimed at delivering detailed information about the occupancy

of various South African commercial frequency bands. Data was collected during a

six-week-long measurement campaign at the University of Pretoria, South Africa.

 
 
 



Chapter 5 Spectrum occupancy measurements

Firstly, the proposed method for calculating spectrum occupancy from raw spectrum

measurements, is discussed. The frequency bands selected for analysis are then presented,

followed by a description of the major functional and physical aspects of the measurement

system. The measurements of the bands selected for model testing, as well as their

calculated spectrum occupancies, are then presented and discussed.

5.2 OCCUPANCY THRESHOLD

Since the measured data is in the form of actual instantaneous signal power, a certain amount

of post processing needs to be performed before spectrum occupancy may be determined.

The following method for calculating the signal detection threshold λT , required for testing

the binary hypothesis described in Equation 2.1, is thus proposed.

To begin with, the raw received signal r(n) needs to be transformed into a more detector

friendly form. This may be accomplished by raising r(n) to a power δ as follows,

Y = |r (n)|δ , 0 ≤ n ≤ N. (5.1)

The value chosen for δ determines the extent to which the noise w(n) and smaller signal

components of r(n) are suppressed (N is the observation vector size). Once the noise com-

ponents w(n) have been suppressed, Y is clipped by the sum of its mean µs and standard

deviation σs. The clipped signal may thus be expressed as follows,

Yc =







Y, |Y | ≤ µs +σs

µs +σs, |Y |> µs +σs.
(5.2)

The signal detection threshold λT may now be calculated by adding the mean of the clipped

signal µc to a preselected constant γ , as follows,

λT = µc + γ. (5.3)

Once λT has been calculated, a measured channel occupancy vector C(n) may then be pop-

ulated in accordance with the following expression,

C (n) =







H0, |Y |< λT

H1, |Y | ≥ λT .
(5.4)
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The contents of C(n) have been used as practically measured values for OOOq in the simulation

platform described in Chapter 4.

The design choices for δ and γ will have an effect on the calculated channel occu-

pancy accuracy, since these parameters have a direct influence on λT . They thus need to be

selected appropriately, so as to the minimize the probabilities associated with incorrectly

detecting PU activity, namely the probabilities of miss-detection Pmd and false alarm Pf a.

The former is defined to be the probability of detecting a band to be free when in reality it is

actually occupied and may thus be described as,

Pmd = Pr {Y > KT h|H0} , (5.5)

while the latter is defined to be the probability of detecting PU activity when the channel is

actually free and may be described as,

Pf a = Pr {Y < KT h|H1|} . (5.6)

The importance of correct threshold calculation and selection is illustrated in Figure 5.1,

where Pf a , Pmd and the resulting percentage accuracy of PU detection are compared. A

clear trade-off exists between these two probabilities and the highest level of PU detection

accuracy is achieved when these two probabilities intersect. The trends illustrated in Figure

5.1, have been generated from a set of simulated test data. The average channel occupancy

of the simulated test data is 41.6% (calculated from known transmitter information as the

percentage of discrete measurement points, within the band of interest, that occur above the

detection threshold λT ) and Pf a and Pmd have been estimated by counting the rate at which

these events occur over a test sequence of 2000 states. The calculated detection threshold,

when δ = 1.73 (the intersection of Pf a and Pmd in this scenario) and γ = 0, is also visually

illustrated.

5.3 BANDS OF INTEREST

In Chapter 6, SU performance will be investigated using selected measured data from the

South African GSM cellular bands. Measured channel occupancy vectors C(n) from two
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Figure 5.1: Simulated effect of δ on Pf a, Pmd (part a) and the resulting accuracy of channel

occupancy detection (part b). An illustration of KT h when δ = 1.73 is presented in part c.

specific bands have been selected for analysis. The bands, described in Table 5.2, are denoted

as: frequency band A (890.1 to 895.1 MHz) and frequency band B (1848.5 to 1853.5 MHz).

Portions of the GSM cellular bands were selected since they exhibit conditions where PU

occupancy fluctuates more rapidly than in the other bands measured, e.g., additional meas-

urements in the South African UHF bands showed very low occupancy and little variation in

PU activity. Frequency bands A and B were thus specifically chosen as an attempt at repres-

enting both high and low traffic density conditions that would be appropriate for CR usage.

Data from these bands will be used to test the occupancy model and also provide inputs to

the simulation platform (described in Chapter 4.3). Measurements were thus taken from 5

MHz portions of the GSM 900 up-link (band A) as well as the GSM 1800 down-link (band

B). A total of 150 s worth of data was collected for each measurement.
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5.4 MEASUREMENT SYSTEM

The system used to take spectrum measurements 1, based on the design in [15], employs a

wide band antenna that is connected to a spectrum analyser (SA) via a low noise amplifier

(LNA). Operation of the system is controlled by an automated software application that

interfaces with the SA over a remote Ethernet connection. The antenna, LNA and SA are

housed within an air-conditioned metal cabinet at the measurement site. A more detailed

description is now provided.

5.4.1 Functional description

A functional description of the measurement system is illustrated in Figure 5.2 in the form

of a functional block diagram. FU H1 is a wide-band Super-M Ultra Base Station antenna

[78] with a frequency range of 25 MHz to 6 GHz, capable of receiving both vertically and

horizontally polarized signals.

Antenna

FU H1

Remote Storage 

Server
FU H4

Scheduler PC

FU H3

LNA
FU H2.1

Power Supply

FU H2.2

Air Conditioner

FU H2.3

Metal Cabinet

FU H2

FU H2.4

Spectrum Analyser

Local PC

FU H2.4.1

FU H2.4.2

RF
Local 

Storage

FU H2.4.3

Figure 5.2: Hardware component functional block diagram of the SS system.

1The spectrum measurement system was developed as part of a joint post-graduate student initiative of the

Sentech BWMC research group at the University of Pretoria.
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The main hardware components of the receiver system were housed within a metal

cabinet, FU H2, located on the roof of the Engineering I building of the University of

Pretoria. This cabinet housed FU H2.1, a low-noise amplifier (LNA) with an operating

range of 50 MHz to 3 GHz [79], FU H2.2, a regulated 5V DC power supply for powering

the LNA, FU H2.3, a custom-built air conditioning unit (since the SA had to operate within

a closed environment, the cabinet needed to be sufficiently air conditioned to protect against

overheating) and a SA, FU H2.4.

The SA, FU H2.4, although physically housed within the same enclosure, was split

into two functional hardware units: a local personal computer (PC) that houses device-

controlling software, FU H2.4.1, and the radio frequency (RF) component of the device,

FU H2.4.2. Temporary data storage space was available on the local PC, FU2.4.3. FU H1

was connected to FU H2.1 via 10 metres of rugged low-loss LMR 600 coaxial cable. FU

H2.1 was in turn connected to FU H2.4.2 via a Sucoflex 100 coaxial cable. An Ethernet

connection provided the interface between FU H2.4 and two other functional hardware

components: FU H3, a remote personal computer (PC) that ran the remote scheduling

software and FU H4, a backup and storage server for remote storage and backup of the

spectrum measurement data. FU H3 and FU H4 were remotely located in an office in the

Engineering II building of the University of Pretoria.

The hardware components of the measurement system were controlled by three separ-

ate software applications. These included applications to,

• interface with and locally control the SA, manage data files and provide operational

status reports (installed on FU H2.4.1),

• provide secure storage of measurement result files on the backup server (installed on

FU H2.4.1) and

• remotely schedule measurements and allow remote access to the system configuration

function (installed on FU H3).
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5.4.2 System calibration and sensitivity

The major functional components of the measurement system were all calibrated using an

Agilent E5071C ENA series network analyser. The complete system link budget is illustrated

in Figure 5.3, and includes the calibrated gains for the antenna Ga, the coaxial cables (LMR

600, Gcl , and Sucoflex 100, Gcs) and the LNA Glna. The total calibrated gain of the system

Gtot , illustrated by the red line in Figure 5.3, is a linear combination of the gain curves of all

the major physical elements of the system and may thus be calculated as follows,

Gtot = Ga +Gcl +Gcs +Glna. (5.7)

The receiver sensitivity of the system Sr was also calculated to assist in determining the

detection threshold λT . This was done by subtracting Gtot from the received signal r(n) as

follows,

Sr = r (n)−Gtot . (5.8)

In Table 5.1, the measured sensitivity of the system is compared for both the GSM 900

(-103.4 dBm) and GSM 1800 (-102.3 dBm) bands respectively.
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Figure 5.3: Link budget of the hardware setup.

Department of Electrical, Electronic and Computer Engineering

University of Pretoria

70

 
 
 



Chapter 5 Spectrum occupancy measurements

Table 5.1: Spectrum measurement system sensitivity after calibration.

GSM 900 GSM 1800

Sensitivity (dBm) -103.4 -102.3

5.4.3 Measurement description

Measurements, spaced at a channel frequency interval of 100 kHz, were taken from a 5 MHz

block of spectrum using the energy detection method. Each measured channel consisted

of a sweep of 1500 discrete time samples that were spaced 100 ms apart from each other.

However, these measurements were truncated to 512 time samples for the sake of consistency

between the results derived from theoretical and practical occupancy data. Thus, each band

was represented by a frequency-time matrix of 50 frequency bins of 512 time samples each (5

MHz x 51.2 s). Measurements were taken every two hours during a measurement campaign

that covered a period of six weeks during May and June 2011 (the length and regularity of

these measurements were restricted due to hardware and storage capacity limitations).

5.4.4 Physical installation and measurement site

The physical installation of the spectrum measurement system is illustrated in Figure 5.4

and includes the Super-M Ultra base antenna FU H1 (top left), the metal cabinet, FU H2

(bottom), the scheduler PC FU H3 (top middle) and the remote storage server FU H4 (top

far right). The antenna was mounted towards the northern end of the roof of the Engineering

I building at the University of Pretoria. The metal cabinet was also located on the roof, a

few meters away from the antenna. The scheduler PC and remote storage server were both

housed in an office in the Engineering II building.

An aerial photograph indicating the exact measurement site and its immediate sur-

roundings [80], denoted by a yellow arrow, is provided in Figure 5.5. The measurement site,

located on the Hatfield campus of the University of Pretoria, South Africa, is the second

highest point in the immediate surrounding area (after the Human Sciences building).
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a

c

b

Figure 5.4: Photograph of the physical installation of the spectrum measurement system.

Part a is the antenna, part b the storage and scheduler PCs and part c is the metal cabinet.

Figure 5.5: Aerial photograph of the spectrum measurement site, adapted from [79].
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5.5 MEASURED CHANNEL OCCUPANCY

The measured average frequency-time power spectra of the bands presented in Table 5.2,

are illustrated in Figure 5.6 and Figure 5.7 respectively. These plots represent the raw signal

powers of the measured bands, averaged over the six week measurement period, that were

used to validate the theoretical results obtained from the simulation platform.

Detection thresholds for these bands were calculated according to the procedure de-

scribed in Section 5.2. The values chosen for δ in Equation 5.1 were selected by a process

of visual inspection. Separate values for δ were selected for each band due to differences

in the frequency-power profile of each band (this was necessitated by the reliance of the

threshold detection method on calculating mean received power levels). Threshold exponent

values of δ = 5.0 and δ = 0.1 were chosen for frequency band A and B respectively.

The chosen exponent values and calculated detection thresholds, together with the

resulting percentage channel occupancies of each band, are listed in Table 5.2. The

calculated channel occupancy for both bands is also visually illustrated in Figure 5.8 in the

form of a black and white frequency-time binary occupancy map. The white areas represent

PU occupancy and the black areas the absence thereof.

The selected bands clearly exhibit rapidly changing PU activity across both time and

frequency. The calculated average percentage occupancy of frequency band A is 20.47%

and for band B 84.38%. It is thus assumed that data from band A may be used to represent

practically measured low density traffic conditions and the data from band B practically

measured high density traffic conditions.

Table 5.2: Table of measured frequency bands and their associated properties.

.

Freq. band Freq. (MHz) δδδ Thres. (dBm) Occup. (% )

A 890.1 - 895.1 5.0 -91.49 20.47

B 1848.5 - 1853.5 0.1 -93.50 84.38
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Figure 5.6: Measured power spectra of frequency band A.
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Figure 5.7: Measured power spectra of frequency band B.
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Figure 5.8: Binary occupancy plots for frequency bands A (part a) and B (part b).

5.6 CONCLUDING REMARKS

Collecting real spectrum measurements makes it possible for a more complete analysis to

be performed of the spectrum occupancy, prediction and OSA models presented in Chapter

3 and Chapter 4. A description of the chosen frequency bands and the measurement system

used to gather data from them, was provided in this chapter. A technique for determining

spectrum occupancy from raw signal power measurements, was also presented.

The results obtained when using the measured spectrum occupancy data as an input

to the simulation platform, will be presented and analysed in Chapter 6.
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CHAPTER 6

RESULTS

6.1 INTRODUCTION

In this chapter a performance evaluation is presented for both the channel occupancy model

and the OSA model described in Chapter 3 and Chapter 4 respectively. The simulation

platform presented in Chapter 4, was used to investigate the effect that the traffic occupancy

model might have on the performance of a single SU within a CR network. Simulation

results are compared for both simulated and practically measured channel occupancy under

both light and heavy density traffic conditions.

In Section 6.2, the effects of using different training algorithms to train the HMM

based occupancy model, described in Chapter 3, are compared. The relationship between

occupancy model performance and training sequence length L, is also illustrated.

In Section 6.3, spectrum allocation performance results, obtained from the simulation

platform described in Chapter 4, are presented. The effect of the channel occupancy model

on SU channel switching is investigated both in terms of the model training algorithm and

the training sequence length L.

The effect that the spectrum allocation results have on SU performance are then presented

in Section 6.4. These results have been split into two categories: results obtained by varying
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the training sequence length L and those obtained by varying the quick sensing interval tI .

Performance measures presented include: SU data throughput, PU disruption and SU power

consumption. The effect of traffic density on SU performance is also considered.

A similarity comparison between the SU performance results obtained from theo-

retical occupancy data and those obtained from practically measured data is provided in

Section 6.5.

6.2 OCCUPANCY MODEL PERFORMANCE

Performance results for the HMM based occupancy model are presented in Table 6.1

(trained by the VA), Table 6.2 (trained by the BWA), Table 6.3 (trained using PSO) and

Table 6.4 (trained by the MA). Results obtained from both theoretical occupancy data and

measured occupancy data are included and a measure of the difference between them is also

provided (the similarity scores were calculated using Equation 6.3, which will be discussed

in Section 6.5). The effect that the different training algorithms have on the performance of

the occupancy model has been quantified in terms of the mean and standard deviation of

prediction accuracy as well as algorithm complexity (as described by Table 3.2 and Table

3.3 in Chapter 3).

The performance of the model has been investigated for a range of training observa-

tion lengths L (200, 300 and 400) and it is evident that prediction accuracy proportionately

improves as L is increased. Results generated from theoretical occupancy data indicate

that using different training algorithms does not result in any significant differences in the

accuracy of the channel occupancy and prediction model. However, results generated from

practically measured occupancy data in frequency band A, indicate that the VA results in a

lower mean prediction accuracy than the other three algorithms (particularly for L = 200

and L = 300). Nevertheless, for both frequency bands A and B, the evolutionary based

training algorithms seem to exhibit a higher prediction accuracy standard deviation than the

VA and BWA algorithms.
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Table 6.1: HMM based occupancy prediction performance using the VA training algorithm.

L Theoretical Freq. band A Freq. band B

200 75.00 72.45 -2.56 96.59 82.54 7.54 89.95

Mean (%) 300 84.57 81.81 -2.76 96.73 86.60 2.03 97.60

400 92.70 89.85 -2.85 96.92 92.79 0.09 99.91

200 11.31 1.56 -9.75 13.78 1.69 -9.62 14.93

Std (%) 300 6.43 1.35 -5.08 20.95 1.96 -4.47 30.53

400 3.82 0.52 -3.30 13.55 0.01 -3.81 0.21

200 2.24 3.07 0.83 62.82 2.69 0.45 80.06

KFLOPS 300 2.24 8.48 6.24 -178.50 2.79 0.55 75.50

400 2.24 3.16 0.92 58.83 2.89 0.65 71.00

Meas. Diff. Similar. Meas. Diff. Similar.

Table 6.2: HMM based occupancy prediction performance using the BWA training al-

gorithm.

L Theoretical Freq. band A Freq. band B

200 76.49 81.99 5.50 92.81 85.72 9.23 87.94

Mean (%) 300 84.06 87.44 3.37 95.99 89.78 5.72 93.20

400 92.51 92.57 0.07 99.93 92.59 0.08 99.91

200 8.62 1.78 -6.84 20.63 2.15 -6.47 24.90

Std (%) 300 6.28 1.19 -5.09 18.93 1.01 -5.26 16.20

400 3.33 0.57 -2.76 17.12 0.99 -2.34 29.71

200 108.08 78.28 -29.80 72.43 102.41 -5.67 94.76

KFLOPS 300 118.00 80.32 -37.68 68.07 92.94 -2.51 78.77

400 128.02 91.52 -36.50 71.49 91.57 -36.45 71.53

Meas. Diff. Similar. Meas. Diff. Similar.
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Table 6.3: HMM based occupancy prediction performance using the PSO training algorithm.

L Theoretical Freq. band A Freq. band B

200 75.16 81.10 5.94 92.09 83.07 7.91 89.48

Mean (%) 300 83.13 86.50 3.38 95.93 90.50 7.37 91.13

400 91.70 93.70 1.99 97.82 94.96 3.26 96.44

200 9.79 2.77 -7.02 28.31 3.49 -6.30 35.68

Std (%) 300 6.76 1.40 -5.36 20.76 1.22 -5.54 18.07

400 3.64 0.50 -3.14 13.78 1.06 -2.58 29.07

200 364.18 363.19 -0.99 99.73 363.69 -0.50 99.86

KFLOPS 300 369.98 368.76 -1.22 99.67 369.00 -0.97 99.74

400 372.05 369.62 -2.42 99.35 373.35 1.31 99.65

Meas. Diff. Similar. Meas. Diff. Similar.

Comparing the two evolutionary based algorithms, it would appear that the overall

difference between them lies in the standard deviation of prediction accuracy, with PSO

Table 6.4: HMM based occupancy prediction performance using the MA training algorithm.

L Theoretical Freq. band A Freq. band B

200 75.62 94.40 18.78 75.17 83.50 7.88 89.58

Mean (%) 300 83.86 97.57 13.71 83.66 89.77 5.90 92.96

400 91.82 99.00 7.18 92.18 94.65 2.84 96.91

200 10.54 10.15 -0.39 96.29 6.50 -4.04 61.71

Std (%) 300 7.43 6.11 -1.33 82.14 3.15 -4.28 42.43

400 3.77 2.87 -0.90 76.03 2.02 -1.75 53.54

200 647.65 670.51 22.86 96.47 661.48 13.83 97.87

KFLOPS 300 656.08 698.40 42.32 93.55 673.65 17.57 97.32

400 655.46 712 54 57.08 91.29 690.15 34.69 94.71

Meas. Diff. Similar. Meas. Diff. Similar.
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clearly having a better standard deviation that the MA. The difference between the VA and

the BWA is less pronounced, but the BWA does provide a marginal improvement in standard

deviation.

However, the major distinguishing factor, between the results obtained from the dif-

ferent algorithms, lies in the complexity and number of iterations required by the prediction

model to converge upon a good solution. While the VA may have a marginally worse

prediction accuracy, it is by far the least complex of the algorithms, requiring approximately

only three KFLOPS to converge upon a good solution. This is significantly lower than

the roughly 100, 370 and 660 KFLOPS required of the BWA, PSO and MA algorithms

respectively. Further results, indicating the number of iterations required for each training

algorithm, are presented in Table A.1 in Appendix A.

From the tables it is evident that the results for all four training algorithms, both in

terms of measured prediction accuracy and algorithm complexity, are either comparable

with or show an improvement over the simulated results (especially for shorter lengths of L).

The similarity between these results will be dealt with in more detail in Section 6.5.

6.3 SPECTRUM ALLOCATION PERFORMANCE

Results illustrating the effect that PU traffic prediction modelling has on the channel alloca-

tion process, are presented in this section. The number of channel switches υsw required by a

SU, to communicate within a CR network, is compared against the size of the channel set ϑ

available to them. The trends observed in this section form the basis for the CR performance

results that will be presented in Section 6.4.

6.3.1 Simulation parameters and assumptions

Certain parameters and assumptions were adhered to when calculating the SU performance

results described in the following sections. To begin with, two different traffic density

scenarios were defined as described in Section 4.2.2. Chosen model parameter values, used
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Table 6.5: Model parameters for simulating traffic density.

Density PPPtr EEEtr Occup. (%)

Light traffic





0.70 0.30

0.80 0.20









0.95 0.05

0.05 0.95



 75.78

Heavy traffic





0.30 0.70

0.20 0.80









0.95 0.05

0.05 0.95



 31.84

to generate theoretical channel occupancy data PPPtr and EEEtr, are presented in Table 6.5.

The resulting percentage channel occupancies, for both traffic density scenarios, are also

included.

The physical layer parameters listed in Table 6.6 were also adhered to and the obser-

vation and training window was limited to L+Ψ = 512 consecutive states. This means that

as L was increased, Ψ decreased by a proportionate amount. However, due to the physical

limitations of the SA on the speed at which spectrum measurements were able to be taken,

the frame period had to be adjusted to be ten times longer than that specified in the IEEE

802.22 standard. A frame period of t f = 100 ms was thus utilised. A channel bandwidth of

B = 100 KHz was assumed and simulations were run for a length of one superblock tsb for

Sx = 1024tsb iterations.

For determining SU channel switching and performance results, the VA was chosen

to train the channel occupancy model. This decision was made since the VA exhibits

significantly lower computational complexity than the other algorithms (as reported in

Section 6.2).

Table 6.6: Physical layer parameters for investigating SU performance.

Param. Θ d B tsb ts f t f ρ

Value QPSK 1/2 100 kHz 32ts f 16t f 100 ms 5
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Since a-priori information about PU activity is usually not known to SUs, channel oc-

cupancy was calculated by selecting a detection threshold δ at acceptable SNR conditions.

Therefore, only CR-specific effects were considered, i.e. channel gain was ignored.

A summary of the assumptions made, regarding the length of the CR-specific delays

and power penalty rates employed in the simulation platform, is presented in Table 6.7. The

power penalty rate assumptions were partially based on the typical power consumption of a

GSM handset, as described in [81].

6.3.2 Channel switching evaluation by training sequence variation

In Figure 6.1, theoretical SU channel switching requirements are presented for varying

occupancy model training sequence lengths L. Both simulated traffic densities, as described

in Table 6.5, are considered (the results in part a are for light traffic density and those in

part b are for high traffic density). The channel switching requirements that are based on

occupancy modelling and prediction, are compared against those where channel switching

is performed on a purely random basis.

Table 6.7: CR-specific simulation parameter assumptions for investigating SU performance.

Parameter Value Units

Delays dsn t f /2 ms

dwt t f ms

dsw t f /2 ms

dtr t f /10 ms

Power psn 500 mW/s

penalty pwt 50 mW/s

rate psw 80 mW/s

pt p 100 mW/s

PT F 600 mW
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Figure 6.1: Simulated number of required channel switches, for both light (part a) and heavy

(part b) traffic densities, for varying lengths of L.

Since prediction accuracy improves as L increases, a longer L should mean that fewer

channel switching operations will be required of the SU. It is thus not surprising that the

results shown in Figure 6.1 indicate that this is indeed the case. The results at ϑ = 25,

indicate a significant reduction in the required number of SU channel switches than in the

random case when prediction is employed and L = 400 (51.32% and 72.21% reduction for

light and heavy density traffic conditions respectively). However, when L is decreased, the

prediction model’s benefit to channel switching also decreases by roughly 20% per 100

samples of L.

It is noticeable that under heavy traffic density conditions, the prediction model provides

a greater reduction in the required number of SU channel switches than under light

traffic density conditions. The adverse effects that higher traffic density has on channel

switching are however evident. When L = 400 the required number of SU channel switches
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under heavy traffic density conditions, is clearly greater than under light traffic density

conditions, e.g., when ϑ = 22, SUs under the simulated heavy traffic density conditions

would be required to make 80.98% more channel switches than under light traffic conditions.

An asymptotic relationship is evident as ϑ is increased. For light traffic conditions,

there is a gradual asymptotic decrease in υsw as ϑ is increased. However, for heavy traffic

conditions, there is an initial increase in υsw up until ϑ = 20, after which υsw begins to

gradually decrease. The lack of available channels for the SU to operate within under heavy

traffic density conditions, for smaller values of ϑ , may explain the increasing shape of these

results as opposed to a decreasing shape under light traffic density conditions.

6.3.3 Channel switching evaluation by training algorithm

To illustrate the effect that the different training algorithms may have on channel switching,

theoretical SU channel switching requirements are presented in Figure 6.2 for these

algorithms. For these plots, the training sequence length has been fixed at L = 400.

As shown in Section 6.2, there is not a large difference in the accuracy obtained when using

the different training algorithms. It is evident that the BWA does however, provide some

improvement over the other training algorithms. At ϑ = 25, the BWA provides a 5.93% and

9.56% improvement over the MA (which seems to be the worst performing algorithm) under

light and heavy traffic density conditions respectively. It is also interesting to note, that while

the VA performs similarly to the MA under light traffic conditions, it performs 6.90% better

than the MA under heavy traffic conditions. However, these improvements are relatively

small compared with the differences in complexity required of each algorithm.

6.4 SECONDARY USER PERFORMANCE EVALUATION

Simulations, based on both theoretical and measured occupancy data, have been run on the

simulation platform to investigate the effect that prediction model based channel allocation

has on certain CR network performance parameters. In this section the channel switching
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Figure 6.2: Simulated number of required channel switches, for both light (part a) and heavy

(part b) traffic densities, for various occupancy model training algorithms when L = 400.

trends observed in Section 6.3 are further applied to calculating their effect on potentially

achievable SU throughput, PU disruption rate and SU power consumption. The relationship

between prediction model accuracy, PU traffic density, the quick sensing interval and these

SU performance measures, is investigated. Due its relatively lower level of computational

complexity, the VA was chosen to train the occupancy models in this section.

6.4.1 Performance evaluation by training sequence variation

In previous sections it was shown that prediction model accuracy is a function of the training

sequence length L. The effect that this relationship has on the previously mentioned SU

performance measures is now investigated. The prediction dependant approach to quick

sensing was adopted when generating these results.
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6.4.1.1 Secondary user data throughput

SU throughput results based on theoretically simulated PU channel occupancy are presented

in Figure 6.3 and results based on practically measured data are presented in Figure 6.4.

These results compare the potentially achievable throughput of a SU in a CR network

for both heavy and light traffic densities and also for different levels of prediction model

accuracy. The throughput measured when prediction is employed is compared against the

throughput measured when channel allocation is performed on a purely random basis.

A reduction in υSW should free up more time for data transmission and ultimately

result in an increase throughput. However, although it was shown in the previous section

that prediction modelling results in a decrease in υSW , the trend for throughput under light

traffic density with prediction seems to be reversed. For high traffic density though, the

results are as expected and throughput does improve as prediction accuracy is increased and

is significantly higher than without prediction. A possible explanation for this phenomenon

is that under light traffic density conditions there are many more channels available
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Figure 6.3: Simulated SU throughput for different traffic densities and varying lengths of L.
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Figure 6.4: Measured SU throughput for different traffic densities and varying lengths of L.

for the SU to switch to and thus in terms of throughput, the reduction gained for υSW

is too small to justify the time spent on gathering training sequence observations, i.e.,

more time is spent on training the model than is saved by the achieved reduction in υSW .

This trend is observable for both the theoretically simulated and practically measured results.

Similar to spectrum allocation performance, an asymptotic trend is observable for SU

throughput. A gradual increase in throughput appears to flatten out as ϑ is increased. For

high traffic density there is an initial drop in throughput before this behaviour is observed.

As expected, heavy traffic density has a noticeably negative effect on SU throughput

when compared with light traffic density.

When random channel switching is employed, a turning point is observable at ϑ = 5

under light traffic density conditions. This point may indicate the threshold at which the

capacity of the channel set FFFq begins to exceed the SU input traffic rate.
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6.4.1.2 Primary user disruption rate

A plot showing the measured theoretical primary user disruption rate is shown in Figure

6.5. The results for practically measured data are illustrated in Figure 6.6. These plots

correspond to the SU throughput results shown in Figure 6.3 and Figure 6.4 and have been

generated under the same conditions. The effects experience by PUs, due to SU activity on

the same bands in which they are licensed to operate, are illustrated.

While it may seem that prediction is not of benefit to the throughput of SUs under

light traffic conditions, there is a clear reduction in the amount of interference experienced

by PUs when prediction is employed. Heavy density conditions still seem to experience

the greatest reduction in PU disruption, but disruption also decreases under light density

conditions as prediction accuracy and the length of L are increased.
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Figure 6.5: Simulated PU disruption rate for different traffic densities and lengths of L.
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Figure 6.6: Measured PU disruption rate for different traffic densities and lengths of L.

6.4.1.3 Secondary user power consumption

The results for SU power consumption follow a similar trend to the that observed for PU

disruption, where prediction provides a significant improvement to SUs as compared to the

case where prediction is absent. These improvements also increase as L is increased. Al-

though both traffic densities benefit from prediction, the greatest benefit is again experienced

under heavy traffic density conditions. Plots indicating the trends in SU power consumption

are provided in Figure 6.7 and Figure 6.8 and illustrate the results derived from theoretical

occupancy data and those derived from practically measured data respectively.

The results obtained from practically measured data under high density traffic condi-

tions, seem to require a larger channel set size ϑ before the asymptotic behaviour, seen in

the plots based on theoretical occupancy, is observed. This may be attributed to the high

power value assigned to the sensing power penalty rate psn in Table 6.7, together with the

higher occupancy of frequency band B when compared to simulated high density traffic

conditions. When traffic density is high, the lack of channels available to SUs results in
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Figure 6.7: Simulated SU power consumption for different traffic densities and lengths of

L.

5 10 15 20 25 30 35

1500

2000

2500

3000

3500

4000

4500

Number of channels (ϑ)

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

m
W

)

 

 

L=200, A

L=300, A

L=400, A

Rand, A

L=200, B

L=300, B

L=400, B

Rand, B

Figure 6.8: Measured SU power consumption for different traffic densities and lengths of L.

Department of Electrical, Electronic and Computer Engineering

University of Pretoria

90

 
 
 



Chapter 6 Results

a large number of channel switches being required of the SU. The subsequent number of

sensing operations needed to keep track of the entire channel set thus increases.

6.4.2 Performance evaluation by quick sensing approach

In this section, the consequences of employing the different quick sensing operations, de-

scribed in Section 4.3.3, are explored. A further investigation into prediction-model-based

SU performance is provide by comparing the aggressive, bi-frame, quad-frame and predic-

tion dependent approaches to quick sensing in terms of the same SU performance measures

described in Section 6.4.1.

6.4.2.1 Secondary user data throughput

Plots illustrating the effects that the different approaches to quick sensing have on SU

throughput, are provide in Figure 6.9 and Figure 6.10.
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Figure 6.9: Simulated SU throughput for varying lengths of tI under light (part a) and heavy

(part b) traffic densities.
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Figure 6.10: Measured SU throughput for varying lengths of tI for frequency band A (part

a) and frequency band B (part b).

It is evident from the plots, as would be intuitively expected, that SU throughput in-

creases when less time is spent on performing spectrum sensing. The quad-frame approach

shows the highest throughput and the aggressive approach the lowest. Although the predic-

tion dependant approach provides more throughput gain than the aggressive approach, it is

lower than the bi-frame approach (particularly for the results based on practically measured

data). It does however seem to improve as ϑ increases. Similar trends are observable for

both traffic densities as well as between the results based on theoretical and practically

measured data.

6.4.2.2 Primary user disruption rate

For PU disruption, increasing the length of tI during a quick sensing operation, has different

consequences under light traffic conditions as compared with heavy traffic conditions. As

shown in Figure 6.11 and Figure 6.12, PU disruption is negatively influenced by an increase

in tI and follows the same trend by which SU throughput is positively influenced. As tI is

increased, it is thus evident that a slight trade-off may exist between the gains experienced in
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Figure 6.11: Simulated PU disruption rate for varying lengths of tI under light (part a) and

heavy (part b) traffic densities.
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Figure 6.12: Measured PU disruption rate for varying lengths of tI for frequency band A

(part a) and frequency band B (part b).
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SU throughput and the losses incurred for PU disruption. However, this seems to be true un-

der light traffic density conditions only, as there is very little difference between the results

obtained from the different quick sensing approaches under heavy traffic conditions. The

same reasons, provided in Section 6.4.1.1, for the observed differences between SU through-

put under light and heavy density traffic conditions, may provide a possible explanation for

this observation.

6.4.2.3 Secondary user power consumption

As described in Section 4.4.4, SU power consumption (due to CR effects) is influenced by

the same major parameters as the SU throughput and PU disruption rate, i.e., the required

number of channel switches and sensing operations, as well as the required waiting and

training time lengths. It is thus not surprising that the same trends observed regarding the

length of the quick sensing operation for SU throughput, are observable in Figure 6.13 and

Figure 6.14. The notable difference being that the trends surrounding the results for the

prediction dependant approach, based on theoretical occupancy data, are more comparable
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Figure 6.13: Simulated SU power consumption for varying lengths of tI under light (part a)

and heavy (part b) traffic densities.
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Figure 6.14: Measured SU power consumption for varying lengths of tI for frequency band

A (part a) and frequency band B (part b).

to those based on practically measured occupancy data, i.e., in these plots the prediction

dependent approach shows a larger degree of improvement over the aggressive approach for

practically measured data.

6.4.3 Quantification of performance improvement

Further quantification of the graphical results presented for SU performance thus far, are

provided in Table 6.8 as a calculation of the SU performance improvement percentage χ .

These results were obtained when performing simulations to calculate SU throughput, PU

disruption and SU power consumption for varying training sequence lengths L, spectrum

sensing approaches tI and channel set sizes ϑ . To calculate improvement, Θx is defined as a

general representation of these performance measures. Results from frequency bands A and

B are compared with those obtained from theoretical occupancy data for light and heavy

density traffic conditions.

When L is varied, χL denotes the improvements gained over the case where channel
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switching is performed on a purely random basis and has been calculated as follows,

χL = 100

(

ΘRand −ΘL

ΘRand

)

, L = 200,300,400. (6.1)

When tI is varied, χtI denotes the differences in performance gained over the use of the

aggressive approach to quick sensing. In this case χtI has been calculated according to the

following expression,

χtI = 100

(

ΘtI=t f
−ΘtI=ut f

ΘtI=t f

)

, u = 2,4,Ωq. (6.2)

For both Equation 6.1 and Equation 6.2, values for χL and χtI have been calculated at

ϑ = 10, ϑ = 20 and ϑ = 30.

The negative values listed in Table 6.8 indicate a degradation in SU performance

(rather than an improvement) when prediction modelling is employed, as compared with

the results obtained from either random channel switching or employing the aggressive

approach to the quick sensing operation. This may be explained by the same argument as

provided in Section 6.4.1.1.

6.4.3.1 Quantification by training sequence variation

In Table 6.8, the degradation in SU throughput is evident under light traffic density

conditions (approximately 14% degradation for the theoretical based results and 32% for

the practically based results when L = 400 and ϑ = 30) when compared with the significant

improvements in the results under heavy traffic density conditions (approximately 80%

improvement for the theoretical based results and 145% for the practically based results

when L = 400 and ϑ = 30).

The decrease in PU disruption rate is also evident, where there is an improvement of

roughly 50% and 53% for heavy and light density conditions and an improvement of 28%

and 53% for frequency bands A and B respectively (L = 400 and ϑ = 30).

The benefit that prediction modelling provides to the power consumption of a SU,
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Table 6.8: Percentage performance improvements χL, gained through the use PU predic-

tion as opposed to employing random channel switching, and χtI , gained by employing less

aggressive approaches to the quick spectrum sensing operation.

Simulated data Practical data

LLL/tttI Light traffic Heavy traffic Freq. band A Freq. band B

ϑϑϑ === 111000

200 -1.2 12.2 20.4 66.6 30.5 44.3 -10.4 2.4 0.1 60.4 37.1 23.6

300 -6.8 31.9 24.7 66.4 41.4 48.4 -27.0 11.8 0.2 60.0 56.7 27.9

400 -11.8 50.1 29.1 73.0 52.5 54.5 -33.5 18.0 3.9 51.6 57.8 29.1

2t f 17.0 -14.3 25.6 26.8 -2.7 30.4 28.7 -79.2 32.4 16.2 -10.5 25.4

4t f 28.0 -27.6 38.5 53.5 -9.9 47.8 35.8 -126 41.9 38.6 11.4 42.2

Ωqt f 12.9 -21.2 22.0 10.5 -4.0 13.0 1.2 -3.3 12.5 0.3 -21.0 0.2

ϑϑϑ === 222000

200 -2.9 7.1 19.3 65.8 27.4 44.2 -11.1 4.3 7.5 83.7 30.1 35.9

300 -8.5 28.6 23.6 73.4 39.2 50.4 -26.1 11.1 3.6 108 52.4 48.6

400 -13.3 48.5 27.6 87.9 53.0 58.5 -32.7 26.3 7.6 110 58.3 53.5

2t f 16.8 -15.7 25.4 27.7 -0.4 30.2 28.1 -52.3 33.3 15.7 -0.8 27.2

4t f 27.7 -30.9 38.1 54.1 -7.1 48.0 35.4 -102 43.0 44.6 11.8 45.4

Ωqt f 12.8 -21.7 20.7 14.8 1.3 18.2 1.6 -2.2 13.7 1.5 -10.7 2.3

ϑϑϑ === 333000

200 -3.5 5.3 19.1 54.2 24.8 40.4 -10.6 3.3 12.7 74.3 19.5 32.7

300 -9.0 27.3 23.2 65.3 37.9 48.3 -25.3 10.4 8.9 124 40.3 52.9

400 -13.9 47.9 27.5 79.7 52.8 57.2 -31.6 28.0 12.5 145 52.9 60.1

2t f 16.7 -16.3 25.4 26.8 0.5 29.7 28.7 -64.6 33.1 21.3 0.2 28.0

4t f 27.5 -31.4 38.2 52.1 -6.0 47.3 35.7 -120 42.8 48.3 -0.9 46.0

Ωqt f 12.5 -21.2 21.2 16.3 1.3 20.0 4.0 -9.8 13.3 5.2 -4.4 7.5

RRRsu DDDpu PPPsu RRRsu DDDpu PPPsu RRRsu DDDpu PPPsu RRRsu DDDpu PPPsu
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when L = 400 and ϑ = 30, is seen as a 28% and 57% reduction for light and heavy density

conditions and 13% and 60% reduction for frequency bands A and B respectively.

6.4.3.2 Quantification by quick sensing approach

The influence that the less aggressive quick sensing approaches have on SU throughput, is

provided in greater detail in Table 6.8, e.g., when tI = 4t f and ϑ = 30, there is approximately

a 28% and 52% increase for light and heavy density traffic and a 36% and 48% increase for

frequency bands A and B respectively.

For the PU disruption rate, the difference between the traffic densities is clear: a 31%

and 120% increase (for light density traffic conditions and frequency band A respectively)

compared with a 6% and 1% increase (for heavy density traffic conditions and frequency

band B respectively) when tI = 4t f and ϑ = 30.

As seen from the graphical results, there is a greater correlation between SU power

consumption and SU throughput with an approximate decrease of 38% and 47%, for light

density traffic and frequency band A respectively, and an approximate decrease of 43% and

46% for heavy density traffic and frequency band B, when tI = 4t f and ϑ = 30.

6.5 THEORETICAL AND PRACTICALLY MEASURED RESULT SIMILAR-

ITY

To test how results based on theoretical occupancy HHH compare to those based on measured

occupancy ΓΓΓ, an average percentage similarity score η has been calculated as follows,

η = 100

(

1−
1

ϑ

ϑ

∑
i=0

|ΓΓΓ−HHH|

HHH

)

. (6.3)

The values calculated for η in Table 6.9 and Table 6.10 indicate that there is a good

overall correlation between the results generated from theoretical occupancy data and those

generated from practically measured data. Average percentage similarity scores when

training sequence variation is considered, as listed in Table 6.1, Table 6.2, Table 6.3, Table
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Table 6.9: CR performance similarity scores η for frequency bands A and B for varying

training sequence lengths L.

L Freq. band A Freq. band B

200 96.0 61.4 86.3 82.4 75.6 73.7

300 91.1 72.1 82.0 88.7 67.9 86.2

400 88.3 81.9 80.5 92.2 68.6 88.8

Ave. 91.8 71.8 82.9 87.8 70.7 82.9

RRRsu DDDpu PPPsu RRRsu DDDpu PPPsu

6.4 and Table 6.9, indicate a high correlation between theoretical and measured results. This

is evident for both occupancy model prediction accuracy (η ≈ 96% for VA, η ≈ 94% for

BWA, η ≈ 92% for PSO and η ≈ 93% for MA) and SU throughput (η ≈ 90%). There

is also a good correlation for SU power consumption (η ≈ 83%) and a lower but still fair

correlation (η ≈ 71%) for PU disruption rate.

The effect that the various approaches to quick sensing has on SU performance simil-

arity, is summarised in Table 6.10. For both frequency band A and B, the results for both

theoretically based SU throughput and SU power consumption, correlate well with the

Table 6.10: CR performance similarity scores η for frequency bands A and B for varying

approaches to the quick sensing operation.

tttI Freq. band A Freq. band B

tI = t f 96.8 89.4 97.1 91.4 73.8 89.7

tI = 2t f 93.6 62.3 92.3 93.7 74.7 91.8

tI = Ωqt f 97.3 36.5 95.3 95.5 69.2 92.7

tI = 4t f 88.2 81.9 88.0 92.2 77.9 89.1

Ave. 94.0 67.5 93.2 93.2 73.9 90.8

RRRsu DDDpu PPPsu RRRsu DDDpu PPPsu
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results based on practical measurements (η ≈ 94% for RSU and η ≈ 92% for PSU ). The

correlation for PU disruption rate is again lower but fair (η ≈ 71%). The lower η values

obtained for PU disruption rate when the prediction dependant quick sensing approach was

employed, may be attributed to significantly improved performance when simulations were

based on the measured occupancy data as opposed to the theoretical occupancy data. These

results compare well with the results listed in Table 6.9, where training sequence variation

is considered.

6.6 SUMMARY OF RESULTS

In this chapter, an evaluation of the performance of the HMM based channel occupancy

model was presented. Four different model training algorithms were compared for a range

of training sequence lengths L. The accuracy of the model was not significantly altered by

the use of the different algorithms. However, it was shown that the VA introduced by far the

least amount of complexity into the modelling and prediction process.

Results indicating the effect that channel modelling and prediction may have on SU

channel allocation were also presented. It was shown that increasing L provided better PU

prediction accuracy and consequently resulted in improved proactive channel allocations.

Prediction modelling was found to provide an improvement over the random channel

switching approach under both sets of traffic densities. The use of the BWA was also found

to slightly reduce SU channel switching requirements when compared with the other model

training algorithms.

The SU performance simulator was employed to investigate SU performance meas-

ures, as influenced by the prediction model based channel allocation process, that included:

SU throughput, PU disruption rate and SU power consumption. These performance

measures were evaluated for varying lengths of L as well as for different approaches to the

quick sensing operation. It was found that increasing L generally leads to an improvement

in the throughput and power consumption requirements of SUs and a degradation in the

amount of disruption that may be experienced by PUs. However, SU throughput performed
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more poorly under light traffic density conditions.

It was also found that there is a slight trade-off between SU throughput and the PU

disruption rate when tI is increased. However, the quick sensing approach did not seem

to have much of an effect on the PU disruption rate under light traffic density conditions.

However, increasing tI always led to a reduction in SU power consumption.

Overall, it was verified that predication modelling improves the performance of a SU

in a CR network and that the results generated from theoretical occupancy data correlated

well with those generated from practically measured data. Heavier traffic densities were

also found to have a negative effect on all of the above mentioned CR performance

measures.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 CONCLUDING REMARKS

In this dissertation potential CR performance benefits, due to channel occupancy and

prediction modelling, were investigated.

In Chapter 2, the concept of CR was introduced and a summary of its basic function-

ality was presented. Topics of importance to the theoretical foundation of this thesis were

discussed. These included methods employed in the literature for detecting PU activity,

modelling PU occupancy and performing SU channel allocation. Some of the IEEE draft

standards pertaining to CR were also summarised.

In Chapter 3, an HMM based model for modelling PU activity in a CR network was

described. Various model training algorithms were also presented, namely: the BWA, VA,

PSO and the MA. A complexity analysis was performed for all four of these algorithms and

it was determined that the VA would require the least number of FLOPS to perform a single

iteration of the training algorithm.

A simulation platform for investigating SU performance in a CR network was presen-

ted in Chapter 4. A channel switching algorithm for performing OSA (based on the

two-state HMM described in Chapter 3) was proposed and various approaches to per-
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forming the quick sensing operation described in the algorithm, were presented. The CR

performance measures investigated on the simulation platform were also presented, namely:

SU throughput, PU disruption rate and SU power consumption.

In Chapter 5 a spectrum measurement campaign was briefly described, from which

two frequency bands were selected for analysis on the simulation platform. A threshold

based method for determining PU occupancy was discussed and the measured power spectra

and channel occupancy of the selected bands were presented.

Finally, results pertaining to the PU channel occupancy model and the CR perform-

ance measures investigated with the aid of the simulation platform, were presented and

discussed in Chapter 6. It was found that all of the investigated training algorithms provided

similar prediction accuracies but that the VA converged on a solution far more quickly

than the other algorithms did. Results from the simulation platform indicated that channel

occupancy prediction significantly reduces the number of channel switches required of SUs

in a CR network. Significant performance improvements were clearly visible when PU

activity was accurately modelled and intelligent proactive channel switching techniques

employed. Overall, significant throughput gains, a reduction in the PU disruption rate

and a reduction in SU power consumption were evident. Results obtained from measured

occupancy data were comparable with those obtained from simulated occupancy data and

the model was shown to be of general benefit to SUs under both light and heavy traffic

density conditions.

7.2 FUTURE RESEARCH

Further research areas that could be explored may include the following:

• A further investigation into the optimal combination and values for ρ,L and tI . Various

combinations of these parameters may be optimal for different PU traffic profiles.

• A comparison with other occupancy modelling techniques. The HMM based occu-

pancy model may be compared with other channel occupancy models in the literature
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to determine which model would be most suited to solving this problem. This could

also be extended to the development of a new PU occupancy model.

• Further verification of the performance of the results based on theoretical PU activity,

by testing the model on additional sets of measured occupancy data. This may include

different commercial frequency bands and varying channel bandwidths.

• Incorporating additional constraints into the channel allocation process, e.g., the qual-

ity of the channel within which the SU wishes to operate. A cross layered approach

may also be considered for this purpose.

• Expanding the current SU simulator to include multiple SUs. An investigation into

how to best manage the channel allocation process when more than one SU is vying

for usage of the same set of PU channels, would be a logical continuation of the work

presented in this dissertation. In this case, SUs may need to employ some form of con-

flict resolution to ensure that fair opportunity is provided to all competing users of the

spectrum. Techniques such as game theory may be considered. The way in which the

CR performance parameters, investigated in this dissertation, are affected by the intro-

duction of multiple SUs should be considered and the concept of SU disruption rate

could be investigated as another potential performance parameter. An investigation

into how cooperation between multiple SUs could be employed to perform channel

allocation should also be considered.

• The incorporation of this work into a complete CR simulator and/or physical CR test

bed.
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APPENDIX A

FURTHER RESULTS

Table A.1: Required number of HMM training algorithm iterations.

L Theoretical Freq. band A Freq. band B

VA

200 4.0 5.49 1.49 62.82 4.80 0.80 80.06

Iterations 300 4.0 15.14 11.14 -178.50 4.98 0.98 75.50

400 4.0 5.65 1.65 58.83 5.16 1.16 71.00

BWA

200 106.8 77.35 -29.45 72.43 101.2 -5.60 94.76

Iterations 300 116.6 79.37 -37.23 68.07 91.84 -24.76 78.77

400 126.5 90.43 -36.07 71.49 90.48 -36.02 71.53

PSO

200 263.90 263.18 -0.72 99.73 263.54 -0.36 99.86

Iterations 300 268.10 267.22 -0.88 99.67 267.39 -0.71 99.74

400 269.60 267.84 -1.76 99.35 270.55 0.95 99.65

MA

200 329.76 341.40 11.64 96.47 336.80 7.04 97.87

Iterations 300 334.05 355.60 21.55 93.55 343.00 8.95 97.32

400 333.74 362.80 29.06 91.29 351.40 17.66 94.71

Meas. Diff. Similar. Meas. Diff. Similar.
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